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ABSTRACT
Recent approaches to crowdsourcing entity matching (EM)
are limited in that they crowdsource only parts of the EM
workflow, requiring a developer to execute the remaining
parts. Consequently, these approaches do not scale to the
growing EM need at enterprises and crowdsourcing startups,
and cannot handle scenarios where ordinary users (i.e., the
masses) want to leverage crowdsourcing to match entities. In
response, we propose the notion of hands-off crowdsourcing
(HOC), which crowdsources the entire workflow of a task,
thus requiring no developers. We show how HOC can repre-
sent a next logical direction for crowdsourcing research, scale
up EM at enterprises and crowdsourcing startups, and open
up crowdsourcing for the masses. We describe Corleone, a
HOC solution for EM, which uses the crowd in all major
steps of the EM process. Finally, we discuss the implica-
tions of our work to executing crowdsourced RDBMS joins,
cleaning learning models, and soliciting complex information
types from crowd workers.

Categories and Subject Descriptors
H.2 [Database Management]: Systems
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1. INTRODUCTION
Entity matching (EM) finds data records that refer to the

same real-world entity, such as (David Smith, JHU) and (D.
Smith, John Hopkins). This problem has received significant
attention (e.g., [2, 5, 15, 7]). In particular, in the past few
years crowdsourcing has been increasingly applied to EM.
In crowdsourcing, certain parts of a problem are “farmed
out” to a crowd of workers to solve. As such, crowdsourcing
is well suited for EM, and indeed several crowdsourced EM
solutions have been proposed (e.g., [30, 31, 6, 33, 34]).

These pioneering solutions demonstrate the promise of
crowdsourced EM, but suffer from a major limitation: they
crowdsource only parts of the EM workflow, requiring a de-
veloper who knows how to code and match to execute the
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remaining parts. For example, several recent solutions re-
quire a developer to write heuristic rules to reduce the num-
ber of candidate pairs to be matched, then train and apply
a matcher to the remaining pairs to predict matches (see
Section 2). They use the crowd only at the end, to verify
the predicted matches. The developer must know how to
code (e.g., to write heuristic rules in Perl) and match enti-
ties (e.g., to select learning models and features).

As described, current solutions do not scale to the growing
EM need at enterprises and crowdsourcing startups. Many
enterprises (e.g., eBay, Microsoft, Amazon, Walmart) rou-
tinely need to solve tens to hundreds of EM tasks, and this
need is growing rapidly. It is not possible to crowdsource all
these tasks if crowdsourcing each requires the involvement
of a developer (even when sharing developers across tasks).
To address this problem, enterprises often ask crowdsourc-
ing startups (e.g., CrowdFlower) to solve the tasks on their
behalf. But again, if each task requires a developer, then
it is difficult for a startup, with a limited staff, to handle
hundreds of EM tasks coming in from multiple enterprises.
This is a bottleneck that we have experienced firsthand in
our crowdsourcing work at two e-commerce enterprises and
two crowdsourcing startups, and this was a major motiva-
tion for the work in this paper.

Furthermore, current solutions cannot help ordinary users
(i.e., the “masses”) leverage crowdsourcing to match enti-
ties. For example, suppose a journalist wants to match two
long lists of political donors, and can pay up to a modest
amount, say $500, to the crowd on Amazon’s Mechanical
Turk (AMT). He or she typically does not know how to
code, thus cannot act as a developer and use current solu-
tions. He or she cannot ask a crowdsourcing startup to help
either. The startup would need to engage a developer, and
$500 is not enough to offset the developer’s cost. The same
problem would arise for domain scientists, small business
workers, end users, and other “data enthusiasts” [12].

To address these problems, in this paper we introduce
the notion of hands-off crowdsourcing (HOC). HOC crowd-
sources the entire workflow of a task, thus requiring no de-
velopers. HOC can be a next logical direction for EM and
crowdsourcing research, moving from no-, to partial-, to
complete crowdsourcing for EM. By requiring no develop-
ers, HOC can scale up EM at enterprises and crowdsourcing
startups.

HOC can also open up crowdsourcing for the masses. Re-
turning to our example, the journalist wanting to match two
lists of donors can just upload the lists to a HOC Web site,
and specify how much he or she is willing to pay. The Web



site will use the crowd to execute a HOC-based EM work-
flow, then return the matches. Developing crowdsourcing
solutions for the masses (rather than for enterprises) has
received rather little attention, despite its potential to mag-
nify many times the impact of crowdsourcing. HOC can
significantly advance this direction.

We then describe Corleone, a HOC solution for EM (named
after Don Corleone, the fictional Godfather figure who man-
aged the mob in a hands-off fashion). Corleone uses the
crowd (no developers) in all four major steps of the EM
matching process:

• Virtually any large-scale EM problem requires blocking, a
step that uses heuristic rules to reduce the number of tuple
pairs to be matched (e.g., “if the prices of two products
differ by at least $20, then they do not match”). Current
solutions require a developer to write such rules. We show
how to use the crowd instead. As far as we know, ours
is the first solution that uses the crowd, thus removing
developers from this important step.

• We develop a solution that uses crowdsourcing to train
a learning-based matcher. We show how to use active
learning [26] to minimize crowdsourcing costs.

• Users often want to estimate the matching accuracy, e.g.,
as precision and recall. Surprisingly, very little work has
addressed this problem, and we show that this work breaks
down when the data is highly skewed by having very few
matches (a common situation). We show how to use the
crowd to estimate accuracy in a principled fashion. As
far as we know, this is the first in-depth solution to this
important problem.

• In practice developers often do EM iteratively, with each
iteration focusing on the tuple pairs that earlier iterations
have failed to match correctly. So far this has been done in
an ad-hoc fashion. We show how to address this problem
in a rigorous way, using crowdsourcing.

We present extensive experiments over three real-world data
sets, showing that Corleone achieves comparable or signifi-
cantly better accuracy (by as much as 19.8% F1) than tradi-
tional solutions and published results, at a reasonable crowd-
sourcing cost. Finally, we discuss the implications of our
work to crowdsourced RDBMSs, learning, and soliciting com-
plex information types from the crowd. For example, recent
work has proposed crowdsourced RDBMSs (e.g., [9, 23, 20]).
Crowdsourced joins lie at the heart of such RDBMSs, and
many such joins in essence do EM. Today executing such
a join on a large amount of data requires developers, thus
making such RDBMSs impractical. Our work can help build
hands-off no-developer crowdsourced join solutions.

2. BACKGROUND & RELATED WORK
Entity matching has received extensive attention (see [7,

Chapter 7]). A common setting finds all tuple pairs (a ∈
A, b ∈ B) from two relational tables A and B that refer to
the same real-world entity. In this paper we will consider
this setting (leaving other EM settings as ongoing work).

Recently, crowdsourced EM has received increasing atten-
tion in academia (e.g., [30, 31, 6, 33, 34, 27]) and industry
(e.g., CrowdFlower, CrowdComputing, and SamaSource).
Current works use the crowd to verify predicted matches [30,
31, 6], finds the best questions to ask the crowd [33], and
finds the best UI to pose such questions [34]. These works

still crowdsource only parts of the EM workflow, requiring
a developer to execute the remaining parts. In contrast,
Corleone tries to crowdsource the entire EM workflow, thus
requiring no developers.

Specifically, virtually any large-scale EM workflow starts
with blocking, a step that uses heuristic rules to reduce the
number of pairs to be matched. This is because the Carte-
sian product A×B is often very large, e.g., 10 billion tuple
pairs if |A| = |B| = 100, 000. Matching so many pairs is
very expensive or highly impractical. Hence many blocking
solutions have been proposed (e.g., [5, 7]). These solutions
however do not employ crowdsourcing, and still require a de-
veloper (e.g., to write and apply rules, create training data,
and build indexes). In contrast, Corleone completely crowd-
sources this step.

After blocking, the next step builds and applies a matcher
(e.g., using hand-crafted rules or learning) to match the sur-
viving pairs [7, Chapter 7]. Here the works closest to ours
are those that use active learning [24, 2, 3, 22]. These works
however either do not use crowdsourcing (requiring a devel-
oper to label training data) (e.g., [24, 2, 3]), or use crowd-
sourcing [22] but do not consider how to effectively handle
noisy crowd input and to terminate the active learning pro-
cess. In contrast, Corleone considers both of these problems,
and uses only crowdsourcing, with no developer in the loop.

The next step, estimating the matching accuracy (e.g., as
precision and recall), is vital in real-world EM (e.g., so that
the user can decide whether to continue the EM process),
but surprisingly has received very little attention in EM re-
search. Here the most relevant work is [14, 25]. [14] uses a
continuously refined stratified sampling strategy to estimate
the accuracy of a classifier. However, it can not be used to
estimate recall which is often necessary for EM. [25] con-
siders the problem of constructing the optimal labeled set
for evaluating a given classifier given the size of the sample.
In contrast, we consider the different problem of construct-
ing a minimal labeled set, given a maximum allowable error
bound.

Subsequent steps in the EM process involve “zooming in”
on difficult-to-match pairs, revising the matcher, then match-
ing again. While very common in industrial EM, these steps
have received little or no attention in EM research. Corleone
shows how they can be executed rigorously, using only the
crowd.

Finally, crowdsourcing in general has received significant
recent attention [8]. In the database community, the work
[9, 23, 20] build crowdsourced RDBMSs. Many other works
crowdsource joins [19], find the maximal value [11], collect
data [28], match schemas [21], and perform data mining [1]
and analytics [18].

3. PROPOSED SOLUTION
We now discuss hands-off crowdsourcing and our proposed

Corleone solution.

Hands-Off Crowdsourcing (HOC): Given a problem P
supplied by a user U , we say a crowdsourced solution to P is
hands-off if it uses no developers, only a crowd of ordinary
workers (such as those on AMT). It can ask user U to do a
little initial setup work, but this should require no special
skills (e.g., coding) and should be doable by any ordinary
workers. For example, Corleone only requires a user U to
supply
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Figure 1: The Corleone architecture.

1. two tables A and B to be matched,

2. a short textual instruction to the crowd on what it means
for two tuples to match (e.g., “these records describe
products sold in a department store, they should match
if they represent the same product”), and

3. four examples, two positive and two negative (i.e., pairs
that match and do not match, respectively), to illustrate
the instruction. EM tasks posted on AMT commonly
come with such instruction and examples.

Corleone then uses the crowd to match A and B (sending
them information in (2) and (3) to explain what user U
means by a match), then returns the matches. As such,
Corleone is a hands-off solution. The following real-world
example illustrates Corleone and contrasts it with current
EM solutions.

Example 3.1. Consider a retailer that must match tens
of millions of products between the online division and the
brick-and-mortar division (these divisions often obtain prod-
ucts from different sets of suppliers). The products fall into
500+ categories: toy, electronics, homes, etc. To obtain
high matching accuracy, the retailer must consider matching
products in each category separately, thus effectively having
500 EM problems, one per category.

Today, solving each of these EM problems (with or without
crowdsourcing) requires extensive developer’s involvement,
e.g., to write blocking rules, to create training data for a
learning-based matcher, to estimate the matching accuracy,
and to revise the matcher, among others. Thus current so-
lutions are not hands-off. One may argue that once created
and trained, a solution to an EM problem, say for toys, is
hands-off in that it can be automatically applied to match
future toy products, without using a developer. But this ig-
nores the initial non-negligible developer effort put into cre-
ating and training the solution (thus violating our defini-
tion). Furthermore, this solution cannot be transferred to
other categories (e.g., electronics). As a result, extensive
developer effort is still required for all 500+ categories, a
highly impractical approach.

In contrast, using Corleone, per category the user only has
to provide Items 1-3, as described above (i.e., the two tables
to be matched; the matching instruction which is the same
across categories; and the four illustrating examples which
virtually any crowdsourcing solutions would have to provide
for the crowd). Corleone then uses the crowd to execute all
steps of the EM workflow. As such, it is hands-off in that
it does not use any developer when solving an EM problem,
thus potentially scaling to all 500+ categories. 2

We believe HOC is a general notion that can apply to many
problem types, such as entity matching, schema matching,
information extraction, etc. In this paper we will focus on
entity matching. Realizing HOC poses serious challenges, in
large part because it has been quite hard to figure out how
to make the crowd do certain things. For example, how can
the crowd write blocking rules (e.g., “if prices differ by at
least $20, then two products do not match”)? We need rules
in machine-readable format (so that we can apply them).
However, most ordinary crowd workers cannot write such
rules, and if they write in English, we cannot reliably con-
vert them into machine-readable ones. Finally, if we ask
them to select among a set of rules, we often can only work
with relatively simple rules and it is hard to construct so-
phisticated ones. Corleone addresses such challenges, and
provides a HOC solution for entity matching.

The Corleone Solution: Figure 1 shows the Corleone ar-
chitecture, which consists of four main modules: Blocker,
Matcher, Accuracy Estimator, and Difficult Pairs’ Locator.
The Blocker generates and applies blocking rules to A × B
to remove obviously non-matched pairs. The Matcher uses
active learning to train a random forest [4], then applies it
to the surviving pairs to predict matches. The Accuracy
Estimator computes the accuracy of the Matcher. The Dif-
ficult Pairs’ Locator finds pairs that the current Matcher
has matched incorrectly. The Matcher then learns a better
random forest to match these pairs, and so on, until the
estimated matching accuracy no longer improves.

As described, Corleone is distinguished in three important
ways. (1) All four modules do not use any developers, but
heavily use crowdsourcing. (2) In a sense, the modules use
crowdsourcing not just to label the data, as existing work has
done, but also to “create” complex rules (blocking rules for
the Blocker, negative rules for the Estimator, and reduction
rules for the Locator, see Sections 4-7). And (3) Corleone
can be run in many different ways. The default is to run
multiple iterations until the estimated accuracy no longer
improves. But the user may also decide to just run until a
budget (e.g., $300) has been exhausted, or to run just one
iteration, or just the Blocker and Matcher, etc.

In the rest of the paper we describe Corleone in detail.
Sections 4-7 describe the Blocker, Matcher, Estimator, and
Locator, respectively. We defer all discussions on how Cor-
leone engages the crowd to Section 8.

4. BLOCKING TO REDUCE SET OF PAIRS
We now describe the Blocker, which generates and applies

blocking rules. As discussed earlier, this is critical for large-
scale EM. Prior work requires a developer to execute this
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Figure 2: (a)-(b) A toy random forest consisting of two deci-
sion trees, and (b) negative rules extracted from the forest.

step. Our goal however is to completely crowdsource it. To
do so, we must address the challenge of using the crowd to
generate machine-readable blocking rules.

To solve this challenge, Blocker takes a relatively small
sample S from A×B; applies crowdsourced active learning,
in which the crowd labels a small set of informative pairs
in S, to learn a random forest matcher; extracts potential
blocking rules from the matcher; uses the crowd again to
evaluate the quality of these rules; then retain only the best
ones. We now describe these steps in detail.

4.1 Generating Candidate Blocking Rules
1. Decide Whether to Do Blocking: Let A and B be
the two tables to be matched. Intuitively, we want to do
blocking only if A×B is too large to be processed efficiently
by subsequent steps. Currently we deem this is the case if
A×B exceeds a threshold tB , set to be the largest number
such that if after blocking we have tB tuple pairs, then we
can fit the feature vectors of all these pairs in memory (we
discuss feature vectors below), thus minimizing I/O costs for
subsequent steps. The goal of blocking is then to generate
and apply blocking rules to remove as many obviously non-
matched pairs from A×B as possible.

2. Take a Small Sample S from A × B: We want
to learn a random forest F , then extract candidate block-
ing rules from it. Learning F directly over A × B however
is impractical because this set is too large. Hence we will
sample a far smaller set S from A × B, then learn F over
S. Naively, we can randomly sample tuples from A and B,
then take their Cartesian product to be S. Random tuples
from A and B however are unlikely to match. So we may
get no or very few positive pairs in S, rendering learning
ineffective.

To address this problem, we sample as follows. Let A be
the smaller table. We randomly sample tB/|A| tuples from
B, then take S to be the Cartesian product between this set
of tuples and A. Note that we also add the four examples
(two positive, two negative) supplied by the user to S. This
way, S has roughly tB pairs, thus having the largest possi-
ble size that still fits in memory, to ensure efficient learning.
Furthermore, if B has a reasonable number of tuples that
have matches in A, and if these tuples are distributed uni-

formly in B, then the above strategy ensures that S has a
reasonable number of positive pairs. We show empirically
later that this simple sampling strategy is effective; explor-
ing better sampling strategies is an ongoing work.

3. Apply Crowdsourced Active Learning to S: In the
next step, we convert each tuple pair in S into a feature vec-
tor, using features taken from a pre-supplied feature library.
Example features include edit distance, Jaccard measure,
Jaro-Winkler, TF/IDF, Monge-Elkan, etc. [7, Chapter 4.2].
Then we apply crowdsourced active learning to S to learn a
random forest F . Briefly, we use the two positive and two
negative examples supplied by the user to build an initial
forest F , use F to find informative examples in S, ask the
crowd to label them, then use the labeled examples to im-
prove F , and so on. A random forest is a set of decision
trees [24]. We use decision trees because blocking rules can
be naturally extracted from them, as we will see, and we use
active learning to minimize the number of examples that the
crowd must label. We defer describing this learning process
in detail to Section 5.

4. Extract Candidate Blocking Rules from F : The
active learning process outputs a random forest F , which is
a set of decision trees, as mentioned earlier. Figures 2.a-b
show a toy forest with just two trees (in our experiments
each forest has 10 trees, and the trees have 8-655 leaves).
Here, the first tree states that two books match only if the
ISBNs match and the numbers of pages match. Observe that
the leftmost branch of this tree forms a decision rule, shown
as the first rule in Figure 2.c. This rule states that if the
ISBNs do not match, then the two books do not match. It is
therefore a negative rule, and can clearly serve as a blocking
rule because it identifies book pairs that do not match. In
general, given a forest F , we can extract all tree branches
that lead from a root to a “no” leaf to form negative rules.
Figure 2.c show all five negative rules extracted from the
forest in Figures 2.a-b. We return all negative rules as the
set of candidate blocking rules.

4.2 Evaluating Rules using the Crowd
1. Select k Blocking Rules: The extracted blocking
rules can vary widely in precision. So we must evaluate and
discard the imprecise ones. Ideally, we want to evaluate all
rules, using the crowd. This however can be very expen-
sive money-wise (we have to pay the crowd), given the large
number of rules (e.g., up to 8943 in our experiments). So
we pick only k rules to be evaluated by the crowd (current
k = 20).

Specifically, for each rule R, we compute the coverage
of R over sample S, cov(R,S), to be the set of examples
in S for which R predicts “no”. We define the precision
of R over S, prec(R,S), to be the number of examples in
cov(R,S) that are indeed negative divided by |cov(R,S)|.
Of course, we cannot compute prec(R,S) because we do
not know the true labels of examples in cov(R,S). How-
ever, we can compute an upper bound on prec(R,S). Let
T be the set of examples in S that (a) were selected dur-
ing the active learning process in Step 3, Section 4.1, and
(b) have been labeled by the crowd as positive. Then clearly
prec(R,S) ≤ |cov(R,S)−T |/|cov(R,S)|. We then select the
rules in decreasing order of the upper bound on prec(R,S),
breaking tie using cov(R,S), until we have selected k rules,



or have run out of rules. Intuitively, we prefer rules with
higher precision and coverage, all else being equal.

2. Evaluate the Selected Rules Using the Crowd:
Let V be the set of selected rules. We now use the crowd to
estimate the precision of rules in V , then keep only highly
precise rules. Specifically, for each rule R ∈ V , we execute
the following loop:

1. We randomly select b examples in cov(R,S), use the
crowd to label each example as matched / not matched,
then add the labeled examples to a set X (initially set to
empty).

2. Let |cov(R,S)| = m, |X| = n, and n− be the num-
ber of examples in X that are labeled negative (i.e., not
matched) by the crowd. Then we can estimate the preci-
sion of rule R over S as P = n−/n, with an error margin

ε = Z1−δ/2

√(
P (1−P )

n

)(
m−n
m−1

)
[32]. This means that the

true precision of R over S is in the range [P − ε, P + ε]
with a δ confidence (currently set to 0.95).

3. If P ≥ Pmin and ε ≤ εmax (which are pre-specified thresh-
olds), then we stop and add R to the set of precise rules.
If (a) (P + ε) < Pmin, or (b) ε ≤ εmax and P < Pmin,
then we stop and drop R (note that in case (b) with con-
tinued evaluation P may still exceed Pmin, but we judge
the continued evaluation to be costly, and hence drop R).
Otherwise return to Step 1.

Currently we set b = 20, Pmin = 0.95, εmax = 0.05. Asking
the crowd to label an example is rather involved, and will
be discussed in Section 8.

The above procedure evaluates each rule in V in isola-
tion. We can do better by evaluating all rules in V jointly,
to reuse examples across rules. Specifically, let R1, . . . , Rq
be the rules in V . Then we start by randomly selecting b
examples from the union of the coverages of R1, . . . , Rq, use
the crowd to label them, then add them to X1, . . . , Xq, the
set of labeled examples that we maintain for the R1, . . . , Rq,
respectively. (For example, if a selected example is in the
coverage of only R1 and R2, then we add it to X1 and X2.)
Next, we use X1, . . . , Xq to estimate the precision of the
rules, as detailed in Step 2, and then to keep or drop rules,
as detailed in Step 3. If we keep or drop a rule, we remove
it from the union, and sample only from the union of the
remaining rules. We omit further detail for space reasons.

4.3 Applying Blocking Rules
Let Y be the set of rules in V that have survived crowd-

based evaluation. We now consider which subset of rules R
in Y should be applied as blocking rules to A×B.

This is highly non-trivial. Let Z(R) be the set of pairs
obtained after applying the subset of rules R to A × B. If
|Z(R)| falls below threshold tB (recall that our goal is to
try to reduce A×B to tB pairs, if possible), then among all
subsets of rules that satisfy this condition, we will want to
select the one whose set Z(R) is the largest. This is because
we want to reduce the number of pairs to be matched to
tB , but do not want to go too much below that, because
then we run the risk of eliminating many true positive pairs.
On the other hand, if no subset of rules from Y can reduce
A × B to below tB , then we will want to select the subset
that does the most reduction, because we want to minimize
the number of pairs to be matched.

We cannot execute all subsets of Y on A×B, in order to
select the optimal subset. So we use a greedy solution. First,
we rank all rules in Y based on the precision prec(R,S),
coverage cov(R,S), and the tuple pair cost. The tuple pair
cost is the cost of applying rule R to a tuple pair, primarily
the cost of computing the features mentioned in R. We
can compute this because we know the cost of computing
each feature in Step 3, Section 4.1. Next, we select the first
rule, apply it to reduce S to S′, re-estimate the precision,
coverage, and tuple cost of all remaining rules on S′, re-rank
them, select the second rule, and so on. We repeat until the
set of selected rules when applied to S has reduced it to a set
of size no more than |S|∗(tB/|A×B|), or we have selected all
rules. We then apply the set of selected rules to A×B (using
a Hadoop cluster), to obtain a smaller set of tuple pairs to
be matched. This set is passed to the Matcher, which we
describe next.

5. TRAINING & APPLYING A MATCHER
Let C be the set of tuple pairs output by the Blocker.

We now describe Matcher M , which applies crowdsourcing
to learn to match tuple pairs in C. We want to maximize
the matching accuracy, while minimizing the crowdsourcing
cost. To do this, we use active learning. Specifically, we
train an initial matcher M , use it to select a small set of
informative examples from C, ask the crowd to label the ex-
amples, use them to improve M , and so on. A key challenge
is deciding when to stop training M . Excessive training
wastes money, and yet surprisingly can actually decrease,
rather than increase the matcher’s accuracy. We now de-
scribe matcher M and our solution to the above challenge.

5.1 Training the Initial Matcher
We convert all examples (i.e., tuple pairs) in C into fea-

ture vectors, for learning purposes. This is done at the end
of the blocking step: any surviving example is immediately
converted into a feature vector, using all features that are ap-
propriate (e.g., no TF/IDF features for numeric attributes)
and available in our feature library. In what follows we use
the terms example, pair, and feature vector interchangeably,
when there is no ambiguity.

Next, we use all labeled examples available at that point
(supplied by the user or labeled by the crowd) to train an ini-
tial classifier that when given an example (x, y) will predict
if x matches y. Currently we use an ensemble-of-decision-
trees approach called random forest [4]. In this approach,
we train k decision trees independently, each on a random
portion (typically set at 60%) of the original training data.
When training a tree, at each tree node we randomly select
m features from the full set of features f1, . . . , fn, then use
the best feature among the m selected to split the remaining
training examples. We use the default values k = 10 and
m = log(n) + 1 of the random forest learner in the Weka
package (cs.waikato.ac.nz/ml/weka). Once trained, apply-
ing a random forest classifier means applying the k decision
trees, then taking the majority vote.

Example 5.1. Consider matching book tuples (title, au-
thors, isbn, publisher, pages, year). Then we may gener-
ate features such as isbn match, title match, etc. A tuple
pair 〈(Data mining, Joe Smith, 1321, Springer, 234, 2013),
(Data mining, Joseph Smith, 1324, Springer, 234, 2013)〉
then can be converted into a feature vector with isb match =



N, title match = Y, etc. Given a set of such feature vectors,
together with label “matched”/”not matched”, we may learn
a random forest such as the one shown in Figure 2. 2

5.2 Consuming the Next Batch of Examples
Once matcher M has trained a classifier, M evaluates the

classifier to decide whether further training is necessary (see
Section 5.3). Suppose M has decided yes, then it must select
new examples for labeling.

In the simplest case, M can select just a single example
(as current active learning approaches often do). A crowd
however often refuses to label just one example, judging it
to be too much overhead for little money. Consequently, M
selects q examples for the crowd to label (currently set to
20, after experimenting with different q values on AMT). In-
tuitively, M wants these examples to be “most informative”.
A common way to measure the “informativeness” of an ex-
ample e is to measure the disagreement of the component
classifiers using entropy [26]:

entropy(e) = −[P+(e) · ln(P+(e)) +P−(e) · ln(P−(e))], (1)

where P+(e) and P−(e) are the fractions of the decision trees
in the random forest that label example e positive and neg-
ative, respectively. The higher the entropy, the stronger the
disagreement, and the more informative the example is.

Thus, M selects the p examples (currently set to 100) with
the highest entropy from set C (excluding those that have
been selected in the previous iterations). Next, M selects q
examples from these p examples, using weighted sampling,
with the entropy values being the weights. This sampling
step is necessary because M wants the q selected examples
to be not just informative, but also diverse. M sends the q
selected examples to the crowd to label (described in Section
8), adds the labeled examples to the current training data,
then re-trains the classifier.

5.3 Deciding When to Stop
Recall that matcher M trains in iteration, in each of which

it pays the crowd to label q training examples. We must de-
cide then when to stop the training. Interestingly, more it-
erations of training not only cost more, as expected, but
can actually decrease rather than increase M ’s accuracy.
This happens because after M has reached peak accuracy,
more training, even with perfectly labeled examples, does
not supply any more informative examples, and can mislead
M instead. This problem became especially acute in crowd-
sourcing, where crowd-supplied labels can often be incorrect,
thereby misleading the matcher even more.

To address this problem, we develop a solution that tells
M when to stop training. Our solution defines the “confi-
dence” of M as the degree to which the component decision
trees agree with one another when labeling. We then moni-
tor M and stop it when its confidence has peaked, indicating
that there are no or few informative examples left to learn
from.

Specifically, let conf(e) = 1−entropy(e), where entropy(e)
is computed as in Equation 1, be the confidence of M over
an example e. The smaller the entropy, the more decision
trees of M agree with one another when labeling e, and so
the more confident M is that it has correctly labeled e.

Before starting the active learning process, we set aside a
small portion of C (currently set to be 3%), to be used as a
monitoring set V . We monitor the confidence of M over V ,
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Figure 3: Typical confidence patterns that we can exploit
for stopping.

defined as conf(V ) =
∑
e∈V conf(e)/|V |. We expect that

initially conf(V ) is low, reflecting the fact that M has not
been trained sufficiently, so the decision trees still disagree
a lot when labeling examples. As M is trained with more
and more informative examples (see Section 5.2), the trees
become more and more “robust”, and disagree less and less.
So conf(V ) will rise, i.e., M is becoming more and more
confident in its labeling. Eventually there are no or few
informative examples left to learn from, so the disagreement
of the trees levels off. This means conf(V ) will also level
off. At this point we stop the training of matcher M .

We now describe the precise stopping conditions, which,
as it turned out, was quite tricky to establish. Ideally, once
confidence conf(V ) has leveled off, it should stay level. In
practice, additional training examples may lead the matcher
astray, thus reducing or increasing conf(V ). This is exac-
erbated in crowdsourcing, where the crowd-supplied labels
may be wrong, leading the matcher even more astray, thus
causing drastic “peaks” and “valleys” in the confidence line.
This makes it difficult to sift through the “noise” to discern
when the confidence appears to have peaked. We solve this
problem as follows.

First, we run a smoothing window of size w over the confi-
dence values recorded so far (one value per iteration), using
average as the smoothing function. That is, we replace each
value x with the average of the w values: (w − 1)/2 values
on the left of x, (w − 1)/2 values on the right, and x it-
self. (Currently w = 5.) We then stop if we observe any of
the following three patterns over the smoothed confidence
values:

• Converged confidence: In this pattern the confidence
values have stabilized and stayed within a 2ε interval (i.e.,
for all values v, |v − v∗| ≤ ε for some v∗) over nconverged
iterations. We use ε = 0.01 and nconverged = 20 in our
experiments (these parameters and those described below
are set using simulated crowds). Figure 3.a illustrates this
case. When this happens, the confidence is likely to have
converged, and unlikely to still go up or down. So we stop
the training.

• Near-absolute confidence: This pattern is a special
case of the first pattern. In this pattern, the confidence is
at least 1− ε, for nhigh consecutive iterations (see Figure
3.b). We currently use nhigh = 3. When this pattern hap-
pens, confidence has reached a very high, near-absolute
value, and has no more room to improve. So we can stop,
not having to wait for the whole 20 iterations as in the
case of the first pattern.

• Degrading confidence: This pattern captures the sce-
narios where the confidence has reached the peak, then
degraded. In this pattern we consider two consecutive
windows of size ndegrade, and find that the maximal value
in the first window (i.e., the earlier one in time) is higher



than that of the second window by more than ε (see Fig-
ure 3.b). We currently use ndegrade = 15. We have exper-
imented with several variations of this pattern. For ex-
ample, we considered comparing the average values of the
two windows, or comparing the first value, average value,
and the last value of a (relatively long) window. We found
however that the above pattern appears to be the best at
accurately detecting degrading confidence after the peak.

Afterward, M selects the last classifier before degrading to
match the tuple pairs in the input set C.

6. ESTIMATING MATCHING ACCURACY
After applying matcher M , Corleone estimates M ’s accu-

racy. If this exceeds the best accuracy obtained so far, Cor-
leone continues with another round of matching (see Section
7). Otherwise, it stops, returning the matches together with
the estimated accuracy. This estimated accuracy is espe-
cially useful to the user, as it helps decide how good the
crowdsourced matches are and how best to use them. We
now describe how to estimate the matching accuracy.

6.1 Current Methods and Their Limitations
To motivate our method, we begin by describing current

evaluation methods and their limitations. Suppose we have
applied matcher M to a set of examples C. To estimate
the accuracy of M , a common method is to take a random
sample S from C, manually label S, then compute the pre-
cision P = ntp/npp and the recall R = ntp/nap, where (a)
npp is the number of predicted positives: those examples in
S that are labeled positive (i.e., matched) by M ; (b) nap is
the number of actual positives: those examples in S that are
manually labeled as positive; and (c) ntp is the number of
true positives: those examples in S that are both predicted
positive and actual positive.

Let P ∗ and R∗ be the precision and recall on the set C
(computed in an analogous fashion, but over C, not over S).
Since S is a random sample of C, we can report that with δ
confidence, P ∗ ∈ [P − εp, P + εp] and R∗ ∈ [R− εr, R+ εr],
where the error margins are defined as

εp = Z1−δ/2

√(
P (1− P )

npp

)(
n∗pp − npp
n∗pp − 1

)
, (2)

εr = Z1−δ/2

√(
R(1−R)

nap

)(
n∗ap − nap
n∗ap − 1

)
, (3)

where n∗ap and n∗pp are the number of actual positives and
predicted positives on C, respectively, and Z1−δ/2 is the (1−
δ/2) percentile of the standard normal distribution [32].

As described, the above method has a major limitation:
it often requires a very large sample S to ensure small error
margins, and thus ensuring meaningful estimation ranges for
P ∗ and R∗. For example, assuming R∗ = 0.8, to obtain a
reasonable error margin of, say εr = 0.025, using Equation
3 we can show that nap ≥ 984 (regardless of the value for
n∗ap). That is, S should contain at least 984 actual positive
examples.

The example universe for EM however is often quite skewed,
with the number of positive examples being just a small frac-
tion of the total number of examples (e.g., 0.06%, 2.64%, and
0.56% for the three data sets in Section 9, even after block-
ing). A fraction of 2.64% means that S must contain at least

37,273 examples, in order to ensure at least 984 actual pos-
itive examples. Labeling 37000+ examples however is often
impractical, regardless of whether we use a developer or the
crowd, thus making the above method inapplicable.

When finding too few positive examples, developers of-
ten apply heuristic rules that eliminate negative examples
from C, thus attempting to “reduce” C into a smaller set
C1 with a far higher “density” of positives. They then ran-
domly sample from C1, in the hope of boosting nap and npp,
thereby reducing the margins of error. This approach, while
promising, is often carried out in an ad-hoc fashion. As far
as we know, no strategy on how to do reduction systemat-
ically has been reported. In what follows, we show how to
do this in a rigorous way, using crowdsourcing and negative
rules extracted from the random forest.

6.2 Crowdsourced Estimation with Corleone
Our solution incrementally samples from C. If it detects

data skew, i.e., too few positive examples, it performs reduc-
tion (i.e., using rules to eliminate certain negative examples
from C) to increase the positive density, then samples again.
This continues until it has managed to estimate P and R
within a given margin of error εmax. Our solution does not
use any developer. Rather, it uses the crowd to label ex-
amples in the samples, and to generate reduction rules, as
described below.

1. Generating Candidate Reduction Rules: When
applied to a set of examples (e.g., C), reduction rules elimi-
nate negative examples, thus increasing the density of pos-
itive examples in the set. As such, they are conceptually
the same as blocking rules in Section 4. Those rules cannot
be used on C, however, because they are already applied to
A×B to generate C.

Instead, we can generate candidate reduction rules exactly
the way we generate blocking rules in Section 4, except for
the following. First, in the blocking step in Section 4 we
extract the rules from a random forest trained over a rela-
tively small sample S. Here, we extract the rules from the
random forest of matcher M , trained over the entire set C.
Second, in the blocking step we select top k rules, evalu-
ate them using the crowd, then keep only the precise rules.
Here, we also select top k rules, but we do not yet evaluate
them using the crowd (that will come later, if necessary).
We return the selected rules as candidate reduction rules.

2. Repeating a Probe-Eval-Reduce Loop: We then
perform the following online search algorithm to estimate
the accuracy of matcher M over C:

1. Enumerating our options: To estimate the accuracy, we
may execute no reduction rule at all, or just one rule, or
two rules, and so on. Let R = {R1, . . . , Rn} be the set
of candidate reduction rules. Then we have a total of 2n

possible options, each executing a subset of rules in R.

2. Estimating and selecting the lowest-cost option: A priori
we do not know which option is the best. Hence, we
perform a limited sampling of C to estimate the cost of
each option (to be discussed below), then select the one
with the lowest cost.

3. Partially evaluating the selected option: Without loss of
generalization, suppose we have selected the option that
executes rules D = {R1, . . . , Rd}. Fully evaluating this
option means (a) using the crowd to evaluate rulesR1, . . . , Rd,
exactly the way we evaluate blocking rules in Section 4.2,



(b) keeping only good, i.e., highly precise, rules, (c) ex-
ecuting these rules on C to reduce it, thereby increasing
the positive density, then (d) sampling from the reduced
C until we have managed to estimate P and R within the
margin of error εmax.

Instead of fully evaluating the selected option, we do mid-
execution re-optimization. Specifically, after executing
(a)-(c), we do not do (d). Instead we return to Step 1
to re-enumerate our options. Note that now we have a
reduced set C (because we have applied the good rules
in D), and also a reduced set R (because we have re-
moved all rules in D from R). This is akin to mid-query
re-optimization in RDBMSs: given a SQL query, find a
good execution plan, partially evaluate the plan, then use
the newly gathered statistics to re-optimize to find a po-
tentially better plan, and so on.

4. Termination: If we have not terminated earlier (e.g., in
Step 2, after sampling of C, see below), then eventu-
ally we will select the option of using no rules (in the
worst-case scenario this happens when we have applied
all rules). If so, we sample until we have managed to
estimate P and R within a margin of error εmax.

All that is left is to describe how we estimate the costs of the
options in Step 2. Without loss of generalization, consider an
option that executes rules Q = {R1, . . . , Rq}. We estimate
its cost to be (1) the cost of evaluating all rules in Q, plus (2)
the cost of sampling from the reduced set C after we have
applied all rules in Q (note that we are making an optimistic
assumption here that all rules in Q turn out to be good).

Currently we estimate the cost in (1) to be the sum of
the costs of evaluating each individual rule. In turn, the
cost of evaluating a rule is the number of examples that
we would need to select from its coverage for the crowd to
label, in order to estimate the precision to be within εmax
(see Section 4.2). We can estimate this number using the
formulas for precision P and error margin ε given in Section
4.2.

Suppose after applying all rules in Q, C is reduced to set
C′. We estimate the cost in (2) to be the number of examples
we need to sample from C′ to guarantee margin of error
εmax. If we know the positive density d′ of C′, we estimate
the above number. It is easy to prove that d′ = d ∗ |C|/|C′|,
where d is the positive density of C (assuming that the rules
are 100% precise).

To estimate d, we perform a “limited sampling”, by sam-
pling b examples from the set C (currently b = 50). We
use the crowd to label these examples, then estimate d to
be the fraction of examples being labeled positive by the
crowd. (We note that in addition, we also use these labeled
b examples to estimate P,R, εp, εr, as shown in Section 6.1,
and immediately exit if εp and εr are already below εmax.)
We omit further details for space reasons.

7. ITERATING TO IMPROVE
In practice, entity matching is not a one-shot operation.

Developers often estimate the matching result, then revise
and match again. A common way to revise is to find tu-
ple pairs that have proven difficult to match, then modify
the current matcher, or build a new matcher specifically for
these pairs. For example, when matching e-commerce prod-
ucts, a developer may find that the current matcher does
reasonably well across all categories, except in Clothes, and

so may build a new matcher specifically for Clothes prod-
ucts.

Corleone operates in a similar fashion. It estimates the
matching accuracy (as discussed earlier), then stops if the
accuracy does not improve (compared to the previous itera-
tion). Otherwise, it revises and matches again. Specifically,
it attempts to locate difficult-to-match pairs, then build a
new matcher specifically for those. The challenge is how to
locate difficult-to-match pairs. Our key idea is to identify
precise positive and negative rules from the learned random
forest, then remove all pairs covered by these rules (they are,
in a sense, easy to match, because there already exist rules
that cover them). We treat the remaining examples as dif-
ficult to match, because the current forest does not contain
any precise rule that covers them. We now describe this idea
in detail.

1. Extract Positive & Negative Rules: Let F be the
random forest learned by matcher M . In Section 4 we have
discussed how to extract negative rules from F , select top
rules, use the crowd to evaluate them, then keep only the
highly precise ones. Here we do exactly the same thing to
obtain k highly precise negative rules (or as many as F has).
Note that some of these rules might have been used in esti-
mating the matching accuracy (Section 6).

We then proceed similarly to obtain k highly precise pos-
itive rules (or as many as F has). A positive rule is similar
to a negative rule, except that it is a path from a root to a
“yes” leaf node in F . That is, if it applies to a pair, then it
predicts that the pair match.

2. Apply Rules to Remove Easy-to-Match Pairs:
Let E be the set of positive and negative rules so obtained.
Recall that in the current iteration we have applied matcher
M to match examples in set C. We now apply all rules in E
to C, to remove examples covered by any of these rules. Let
the set of remaining examples be C′. As mentioned earlier,
we treat these examples as difficult to match, because they
have not been covered by any precise (negative or positive)
rule in the current matcher M .

3. Learn a New Matcher for Surviving Pairs: In
the next iteration, we learn a new matcher M ′ over the
set C′, using the same crowdsourced active learning method
described in Section 5 , and so on. In the end we use the
so-constructed set of matchers to match examples in C. For
example, if we terminate after two iterations, then we use
matcher M to make prediction for any example in C \ C′

and M ′ for any example in C′.
Note that if the set C′ is too small (e.g., having less than

200 examples), or if no significant reduction happens (e.g.,
|C′| ≥ 0.9 ∗ |C|), then we terminate without learning a new
matcher M ′ for C′.

8. ENGAGING THE CROWD
As described so far, Corleone heavily uses crowdsourcing.

In particular, it engages the crowd to label examples, to
(a) supply training data for active learning (in blocking and
matching), (b) supply labeled data for accuracy estimation,
and (c) evaluate rule precision (in blocking, accuracy estima-
tion, and locating difficult examples). We now describe how
Corleone engages the crowd to label examples, highlighting
in particular how we address the challenges of noisy crowd
answers and example reuse.



Do these products match?

Product 1 Product 2

Brand Kingston Kingston

Product
image

Name
Kingston HyperX 4GB Kit  

2 x 2GB …

Kingston HyperX 12GB 

Kit  3 x 4GB …

Model no.
……. …  …. … …  …. … 

Features
o Memory size 4 GB

o 2 x 2GB 667 MHz …

o 3 x 4 GB 1600 MHz

o HyperX module with …
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Yes No Not sure

Figure 4: A sample question to the crowd.

1. Crowdsourcing Platforms: Currently we use Ama-
zon’s Mechanical Turk (AMT) to label the examples. How-
ever we believe that much of what we discuss here will also
carry over to other crowdsourcing platforms. To label a
batch of examples, we organize them into HITs (i.e., “Hu-
man Intelligence Tasks”), which are the smallest tasks that
can be sent to the crowd. Crowds often prefer many exam-
ples per HIT, to reduce their overhead (e.g., the number of
clicks). Hence, we put 10 examples into a HIT. Within each
HIT, we convert each example (x, y) into a question “does
x match y?”. Figure 4 shows a sample question. Currently
we pay 1-2 pennies per question, a typical pay rate for EM
tasks on AMT.

2. Combining Noisy Crowd Answers: Several solu-
tions have been proposed for combining noisy answers, such
as golden questions [17] and expectation maximization [13].
They often require a large number of answers to work well,
and it is not yet clear when they outperform simple solu-
tions, e.g., majority voting [29]. Hence, we started out using
the 2+1 majority voting solution: for each question, solicit
two answers; if they agree then return the label, otherwise
solicit one more answer then take the majority vote. This
solution is commonly used in industry and also by recent
work [9, 35, 19].

Soon we found that this solution works well for supplying
training data for active learning, but less so for accuracy
estimation and rule evaluation, which are quite sensitive to
incorrect labels. Thus, we need a more rigorous scheme than
2+1. We adopted a scheme of “strong majority vote”: for
each question, we solicit answers until (a) the number of an-
swers with the majority label minus that with the minority
label is at least 3, or (b) we have solicited 7 answers. In both
cases we return the majority label. For example, 4 positive
and 1 negative answers would return a positive label, while
4 negative and 3 positive would return negative.

The strong majority scheme works well, but is too costly
compared to the 2+1 scheme. So we improved it further,
by analyzing the importance of different types of error, then
using strong majority only for the important ones. Specif-
ically, we found that false positive errors (labeling a true
negative example as positive) are far more serious than false
negative errors (labeling a true positive as negative). This
is because false positive errors change nap, the number of
actual positives, which is used in estimating R = ntp/nap
and in Formula 3 for estimating εr. Since this number ap-

Datasets Table A Table B # of Matches
Restaurants 533 331 112
Citations 2616 64263 5347
Products 2554 22074 1154

Table 1: Data sets for our experiment.

pears in the denominators, a small change can result in a
big change in the error margins, as well as estimated R and
hence F1. The same problem does not arise for false nega-
tive errors. Based on this analysis, we use strong majority
voting only if the current majority vote on a question is
positive (thus can potentially be a false positive error), and
use 2+1 otherwise. We found empirically that this revised
scheme works very well, at a minimal overhead compared to
the 2+1 scheme.

3. Re-using Labeled Examples: Since Corleone engages
the crowd to label at many different places (blocking, match-
ing, estimating, locating), we cache the already labeled ex-
amples for reuse. When we get a new example, we check the
cache to see if it is there and has been labeled the way we
want (i.e., with the 2+1 or strong majority scheme). If yes
then we can reuse without going to the crowd.

Interestingly this simple and obviously useful scheme poses
complications in how we present the questions to the crowd.
Recall that at any time we typically send 20 examples, packed
into two HITs (10 questions each), to the crowd. What hap-
pens if we find 15 examples out of 20 already in the cache?
It turns out we cannot send the remaining 5 examples as a
HIT. Turkers avoid such “small” HITs because they contain
too few questions and thus incur a high relative overhead.

To address this problem, we require that a HIT always
contains 10 questions. Now suppose that k examples out of
20 have been found in the cache and k ≤ 10, then we take
10 example from the remaining 20− k examples, pack them
into a HIT, ask the crowd to label, then return these 10 plus
the k examples in the cache (as the result of labeling this
batch). Otherwise if k > 10, then we simply return these k
examples as the result of labeling this batch (thus ignoring
the 20− k remaining examples).

9. EMPIRICAL EVALUATION
We now empirically evaluate Corleone. Table 1 describes

three real-world data sets for our experiments. Restaurants
matches restaurant descriptions. Citations matches cita-
tions between DBLP and Google Scholar [16]. These two
data sets have been used extensively in prior EM work (Sec-
tion 9.1 compares published results on them with that of
Corleone, when appropriate). Products, a new data set cre-
ated by us, matches electronics products between Amazon
and Walmart. Overall, our goal is to select a diverse set of
data sets, with varying matching difficulties.

We used Mechanical Turk and ran Corleone on each data
set three times, each in a different week. The results re-
ported below are averaged over the three runs. In each run
we used common turker qualifications to avoid spammers,
such as allowing only turkers with at least 100 approved
HITs and 95% approval rate. We paid 1 cent per question
for Restaurants & Citations, and 2 cents for Products (it
can take longer to answer Product questions due to more
attributes being involved).

9.1 Overall Performance
Accuracy and Cost: We begin by examining the over-
all performance of Corleone. The first five columns of Table



Datasets
Corleone Baseline 1 Baseline 2 Published Works

P R F1 Cost # Pairs P R F1 P R F1 F1

Restaurants 97.0 96.1 96.5 $9.2 274 10.0 6.1 7.6 99.2 93.8 96.4 92-97 [30, 15]
Citations 89.9 94.3 92.1 $69.5 2082 90.4 84.3 87.1 93.0 91.1 92.0 88-92 [16, 15, 3]
Products 91.5 87.4 89.3 $256.8 3205 92.9 26.6 40.5 95.0 54.8 69.5 Not available

Table 2: Comparing the performance of Corleone against that of traditional solutions and published works.

2 (under “Corleone”) show this performance, broken down
into P , R, F1, the total cost, and the total number of tuple
pairs labeled by the crowd. The results show that Corleone
achieves high matching accuracy, 89.3-96.5% F1, across the
three data sets, at a reasonable total cost of $9.2-256.8. The
number of pairs being labeled, 274-3205, is low compared
to the total number of pairs. For example, after blocking,
Products has more than 173,000 pairs, and yet only 3205
pairs need to be labeled, thereby demonstrating the effec-
tiveness of Corleone in minimizing the labeling cost.

Comparison to Traditional Solutions: In the next step,
we compare Corleone to two traditional solutions: Baseline
1 and Baseline 2. Baseline 1 uses a developer to perform
blocking, then trains a random forest using the same number
of labeled pairs as the average number of labeled pairs used
by Corleone. Baseline 2 is similar to Baseline 1, but uses 20%
of the candidate set (obtained after blocking) for training.
For example, for Products, Baseline 1 uses 3205 pairs for
training (same as Corleone), while Baseline 2 uses 20% *
180,382 = 36,076 pairs, more than 11 times what Corleone
uses. Baseline 2 is therefore a very strong baseline matcher.

The next six columns of Table 2 show the accuracy (P , R,
and F1) of Baseline 1 and Baseline 2. The results show that
Corleone significantly outperforms Baseline 1 (89.3-96.5% F1

vs. 7.6-87.1% F1), thereby demonstrating the importance
of active learning, as used in Corleone. Baseline 1 achieves
low accuracy because it training set is too small. Corleone
is comparable to Baseline 2 for Restaurants and Citations
(92.1-96.5% vs. 92.0-96.4%), but significantly outperforms
Baseline 2 for Products (89.3% vs. 69.5%). This is despite
the fact that Baseline 2 uses 11 times more training exam-
ples.

Comparison to Published Results: The last column
of Table 2 shows F1 results reported by prior EM work for
Restaurants and Citations. On Restaurants, [15] reports 92-
97% F1 for several works that they compare. Furthermore,
CrowdER [30], a recent crowdsourced EM work, reports 92%
F1 at a cost of $8.4. In contrast, Corleone achieves 96.5% F1

at a cost of $9.2 (including the cost of estimating accuracy).
On Citations, [16, 15, 3] report 88-92% F1, compared to
92.1% F1 for Corleone. It is important to emphasize that due
to different experimental settings, the above results are not
directly comparable. However, they do suggest that Corleone
has reasonable accuracy and cost, while being hands-off.

Summary: The overall result suggests that Corleone achieves
comparable or in certain cases significantly better accuracy
than traditional solutions and published results, at a rea-
sonable crowdsourcing cost. The important advantage of
Corleone is that it is totally hands-off, requiring no devel-
oper in the loop, and it provides accuracy estimates of the
matching result.

9.2 Performance of the Components
We now “zoom in” to examine Corleone in more details.

Datasets
Cartesian Umbrella

Recall (%) Cost # Pairs
Product Set

Restaurants 176.4K 176.4K 100 $0 0
Citations 168.1M 38.2K 99 $7.2 214
Products 56.4M 173.4K 92 $22 333

Table 3: Blocking results for Corleone.

Blocking: Table 3 shows the results for crowdsourced au-
tomatic blocking executed on the three data sets. From left
to right, the columns show the size of the Cartesian product
(of tables A and B), the size of the umbrella set (i.e., the set
after applying the blocking rules), recall (i.e., the percent-
age of positive examples in the Cartesian product that are
retained in the umbrella set), total cost, and total number
of pairs being labeled by the crowd. Note that Restaurants
is relatively small and hence does not trigger blocking.

The results show that automatic crowdsourced blocking
is quite effective, reducing the total number of pairs to be
matched to be just 0.02-0.3% of the original Cartesian prod-
uct, for Citations and Products. This is achieved at a low
cost of $7.2-22, or just 214-333 examples having to be la-
beled. In all the runs, Corleone applied 1-3 blocking rules.
These rules have 99.9-99.99% precision. Finally, Corleone
also achieves high recall of 92-99% on Products and Ci-
tations. For comparison purposes, we asked a developer
well versed in EM to write blocking rules. The developer
achieved 100% recall on Citations, reducing the Cartesian
product to 202.5K pairs (far higher than our result of 38.2K
pair). Blocking on Products turned out to be quite difficult,
and the developer achieved a recall of 90%, compared to our
result of 92%. Overall, the results suggest that Corleone can
find highly precise blocking rules at a low cost, to dramati-
cally reduce the original Cartesian products, while achieving
high recall.

Performance of the Iterations: Table 4 shows Corleone’s
performance per iteration on each data set. To explain, con-
sider for example the result for Restaurants (the first row
of the table). In Iteration 1 Corleone trains and applies a
matcher. This step uses the crowd to label 140 examples,
and achieves a true F1 of 96.5%. Next, in Estimation 1, Cor-
leone estimates the matching accuracy in Iteration 1. This
step uses 134 examples, and produces an estimated F1 of
96% (very close to the true F1 of 96.5%). Next, in Reduc-
tion 1, Corleone identifies the difficult pairs and comes up
with 157 such pairs. It uses no new examples, being able to
re-use existing examples. At this point, since the set of diffi-
cult pairs is too small (below 200), Corleone stops, returning
the matching results of Iteration 1.

The result shows that Corleone needs 1-2 iterations on
the three data sets. The estimated F1 is quite accurate,
always within 0.5-5.4% of true F1. Note that sometimes
the estimation error can be larger than our desired maximal
margin of 5% (e.g., Estimation 2 for Products). This is
due to the noisy labels from the crowd. Despite the crowd
noise, however, the effect on estimation error is relatively
insignificant. Note that the iterative process can indeed lead
to improvement in F1, e.g., by 3.3% for Products from the



Datasets
Iteration 1 Estimation 1 Reduction 1 Iteration 2 Estimation 2

# Pairs P R F1 # Pairs P R F1 # Pairs Reduced Set # Pairs P R F1 # Pairs P R F1

Restaurants 140 97 96.1 96.5 134 95.6 96.3 96 0 157
Citations 973 89.4 94.2 91.7 366 92.4 93.8 93.1 213 4934 475 89.9 94.3 92.1 0 95.2 95.7 95.5
Products 1060 89.7 82.8 86 1677 90.9 86.1 88.3 94 4212 597 91.5 87.4 89.3 0 96 93.5 94.7

Table 4: Corleone’s performance per iteration on the data sets.

first to the second iteration (see more below). Note further
that the cost of reduction is just a modest fraction (3-10%)
of the overall cost.

9.3 Additional Experimental Results
We have run a large number of additional experiments

to extensively evaluate Corleone. For space reasons, we will
briefly summarize them here, deferring the detailed results
to a forthcoming technical report [10].

Estimating Matching Accuracy: Section 9.2 has shown
that our method provides accurate estimation of matching
accuracy, despite noisy answers from real crowds. Compared
to the baseline accuracy estimation method in Section 6.1,
we found that our method also used far fewer examples. For
Restaurants, the baseline method needs 100,000+ examples
to estimate both P and R within a 0.05 error margin, while
ours uses just 170 examples. For Citations and Products, we
use 50% and 92% fewer examples, respectively. The result
here is not as striking as for Restaurants primarily because of
the much higher positive density for Citations and Products.

Effectiveness of Reduction: Section 9.2 has shown that
the iterative matching process can improve the overall F1,
by 0.4-3.3% in our experiments. This improvement is actu-
ally much more pronounced over the set of difficult-to-match
pairs, primarily due to increase in recall. On this set, recall
improves by 3.3% and 11.8% for Citations and Products, re-
spectively, leading to F1 increases of 2.1% and 9.2%. These
results suggest that in subsequent iterations Corleone suc-
ceeds in zooming in and matching correctly more pairs in
the difficult-to-match set, thereby increasing recall.

Effectiveness of Rule Evaluation: Section 9.2 has shown
that blocking rules found by Corleone are highly precise
(99.9-99.99%). We have found that rules found in later steps
(estimation, reduction, i.e., identifying difficult-to-match pairs)
are highly precise as well, at 97.5-99.99%. For the estima-
tion step, Corleone uses 1, 4.33, and 7.67 rules on average
(over three runs) for Restaurants, Citations, and Products,
respectively. For the reduction step, Citations uses on aver-
age 11.33 negative rules and 16.33 positive rules, and Prod-
ucts uses 17.33 negative rules and 9.33 positive rules.

Sensitivity Analysis: We have run extensive sensitivity
analysis for Corleone. Of these, the most interesting is on
varying the labeling accuracy of the crowd. To do this, we
use the random worker model in [13, 11] to simulate a crowd
of random workers with a fixed error rate (i.e., the proba-
bility of incorrectly labeling an example). We found that a
small change in the error rate causes only a small change in
Corleone’s performance. However, as we vary the error rate
over a large range, the performance can change significantly.
With a perfect crowd (0% error rate), Corleone performs ex-
tremely well on all three data sets. With moderate noise in
labeling (10% error rate), F1 reduces by only 2-4%, while
the cost increases by up to $20. As we move to a very noisy
crowd (20% error rate), F1 further dips by 1-10 % for Prod-
ucts and Citations, and 28% for Restaurants. The cost on
the other hand shoots up by $250 to $500. Managing crowd’s

error rates better therefore is an important topic for future
research.

9.4 Evaluating and Setting System Parameters
Finally, we discuss how we evaluated and set system pa-

rameters (see the technical report [10] for more details). In
the blocker, tB is set to be the maximal number of tuple
pairs that can fit into memory (a heuristic used to speed up
active learning during blocking), and is currently set to 3
millions, based on the amount of memory available on our
machine. We have experimented and found that Corleone
is robust to varying tB (e.g., as we increase tB , the time
it takes to learn blocking rules increases only linearly, due
to processing larger samples). See the technical report for
details.

The batch size b = 20 is set using experimental validation
with simulated crowds (of varying degrees of accuracy). The
number of rules k is set to a conservative value that tries to
ensure that the blocker does not miss any good blocking
rules. Our experiments show that k can be set to as low as
5 without affecting accuracy. Similarly, experiments suggest
we can vary Pmin from 0.9 to 0.99 without noticeable effects,
because the rules we learned appear to be either very accu-
rate (at least .99 precision) or very inaccurate (well below
0.9). Given this, we current set Pmin to 0.95. The confi-
dence interval 0.95 and error margin 0.95 are set based on
established conventions.

In the matcher, the parameters for the random forest
learner are set to default values in the Weka package. The
stopping parameters (validation set size, smoothing window
w, etc.) are set using experiments with simulated crowds
with varying degrees of accuracy.

For engaging the crowd, we solicit 3 labels per pair because
3 is the minimum number of labels that give us a majority
vote, and it has been used extensively in crowdsourcing pub-
lications as well as in industry. When we need higher crowd
accuracy for the estimator, we need to consider 5 labels or 7
labels. After extensive experiments with simulated crowds,
we found that 5 gave us too wide error ranges, whereas 7
worked very well (for the estimator). Hence our decision to
solicit 7 labels per pair in such cases. Finally, the estimator
and the difficult pairs’ locator use many algorithms used by
the blocker and the matcher, so their parameters are set as
described above.

10. DISCUSSION & FUTURE WORK
Our goals with this paper are to introduce the novel con-

cept of hands-off crowdsourcing, to describe Corleone, the
very first HOC solution to EM, and to establish the feasi-
bility and promise of HOC, via extensive experiments with
Corleone. While these goals have been achieved, it is also
clear that Corleone is just a starting point for HOC research,
and can be significantly extended in many ways.

First, sensitivity analysis shows that Corleone is relatively
robust to small changes in parameter values (see Sections
9.3-9.4), but we need solutions to select optimal ones. Sec-
ond, the Corleone components are highly modular and each



can be significantly improved further, e.g., developing bet-
ter sampling strategies for blocking, better ways to use the
crowd to evaluate rules, and better accuracy estimation meth-
ods. Third, it is highly desirable to develop cost models
making the system more cost efficient. For example, given a
monetary budget constraint, how to best allocate it among
the blocking, matching, and accuracy estimation step? As
another example, paying more per question often gets the
crowd to answer faster. How should we manage this money-
time trade-off? A possible approach is to profile the crowd
during the blocking step, then use the estimated crowd mod-
els (in terms of time, money, and accuracy) to help guide the
subsequent steps of Corleone. Fourth, it is critical to exam-
ine how to run Corleone on a Hadoop cluster, to scale up to
very large data sets.

Fifth, it would be interesting to explore how the ideas
underlying Corleone can be applied to other problem set-
tings. Consider for example crowdsourced joins, which lie
at the heart of recently proposed crowdsourced RDBMSs.
Many such joins in essence do EM. In such cases our solution
can potentially be adapted to run as hands-off crowdsourced
joins. We note also that crowdsourcing typically has helped
learning by providing labeled data for training and accuracy
estimation. Our work however raises the possibility that
crowdsourcing can also help “clean” learning models, such
as finding and removing “bad” positive/negative rules from
a random forest. Finally, our work shows that it is possible
to ask crowd workers to help generate complex machine-
readable rules, raising the possibility that we can “solicit”
even more complex information types from them. We plan
to explore these directions.

11. CONCLUSIONS
We have proposed the concept of hands-off crowdsourc-

ing (HOC), and showed how HOC can scale to EM needs
at enterprises and startups, and open up crowdsourcing for
the masses. We have also presented Corleone, a HOC so-
lution for EM, and showed that it achieves comparable or
better accuracy than traditional solutions and published re-
sults, at a reasonable crowdsourcing cost. Our work thus
demonstrates the feasibility and promise of HOC, and sug-
gests many interesting research directions in this area.
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