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Abstract. Ontologies are at the heart of knowledge management and make use 

of information that is not only written in English but also in many other natural 

languages. In order to enable knowledge discovery, sharing and reuse of these 

multilingual ontologies, it is necessary to support ontology mapping despite 

natural language barriers. This paper examines the soundness of a generic 

approach that involves machine translation tools and monolingual ontology 

matching techniques in cross-lingual ontology mapping scenarios. In particular, 

experimental results collected from case studies which engage mappings of 

independent ontologies that are labeled in English and Chinese are presented. 

Based on findings derived from these studies, limitations of this generic 

approach are discussed. It is shown with evidence that appropriate translations 

of conceptual labels in ontologies are of crucial importance when applying 

monolingual matching techniques in cross-lingual ontology mapping. Finally, 

to address the identified challenges, a semantic-oriented cross-lingual ontology 

mapping (SOCOM) framework is proposed and discussed.    

Keywords: Cross-lingual Ontology Mapping; Multilingual Ontologies; 

Ontology Rendering. 

1   Introduction 

The evolution of the World Wide Web in recent years has brought innovation in 

technology that encourages information sharing and user collaboration as seen in 

popular applications during the Web 2.0 era. The future of the Web – the Semantic 

Web will “allow for integration of data-oriented applications as well as document-

oriented applications” [1]. In the process of achieving this goal, ontologies have 

become a core technology for representing structured knowledge as well as an 

instrument to enhance the quality of information retrieval [2] [3] and machine 

translation [4]. Benjamins et al [5] identify multilinguality as one of the six challenges 

for the Semantic Web, and propose solutions at the ontology level, annotation level 

and the interface level. At the ontology level, support should be provided for ontology 

engineers to create knowledge representations in diverse native natural languages. At 

the annotation level, tools should be developed to aid the users in the annotation of 

ontologies regardless of the natural languages used in the given ontologies. Finally, at 



the interface level, users should be able to access information in natural languages of 

their choice. This paper aims to tackle challenges at the annotation level, in particular, 

it investigates issues involved in cross-lingual ontology mapping and aims to provide 

the necessary support for ontology mapping in cross-lingual environments. Cross-

lingual ontology mapping (CLOM) refers to the process of establishing relationships 

among ontological resources from two or more independent ontologies where each 

ontology is labeled in a different natural language. The term multilingual ontologies 

in this paper refers to independent ontologies o and o´ where the labels in o are 

written in a natural language which is different from that of the labels in o´. It must 

not be confused with representing concepts in one ontology using multilingual labels. 

In addition, this paper focuses on multilingual ontologies that have not been 

linguistically enriched, and are specified according to the Resource Description 

Framework (RDF) schema1. Furthermore, this paper presents a first step towards 

achieving CLOM in generic knowledge domains, which can be improved upon to 

accommodate more sophisticated CLOM mapping strategies among ontologies in 

more refined, particular knowledge domains.  

A generic approach is investigated in this paper, CLOM is achieved by first 

translating the labels of a source ontology into the target natural language using freely 

available machine translation (MT) tools, then applying monolingual ontology 

matching techniques to the translated source ontology and the target ontology in order 

to establish matching relationships. In particular, the impact of MT tools is 

investigated and it is shown with evidence that when using the generic approach in 

CLOM, the quality of matching results is dependent upon the quality of ontology 

label translations. Based on this conclusion, a semantic-oriented cross-lingual 

ontology mapping (SOCOM) framework is proposed which is specifically designed to 

map multilingual ontologies and to reduce noise introduced by MT tools. The 

remainder of this paper is organised as follows, section 2 discusses related work. 

Section 3 details the application of the aforementioned generic approach in CLOM 

experiments which involve mappings of ontologies labeled in Chinese and English. 

Findings and conclusions from these experiments are presented and discussed in 

section 4. The proposed SOCOM framework and its current development are 

discussed in section 5.  

2 Related Work 

Considered as light weight ontologies, thesauri often contain large collections of 

associated words. According to the Global WordNet Association2, (at the time of this 

publication) there are over forty WordNet3-like thesauri in the world covering nearly 

50 different natural languages, and counting. Natural languages used include Arabic 

(used in ArabicWordNet4); Bulgarian (used in BulNet5); Chinese (used in HowNet6); 

                                                           
1 http://www.w3.org/TR/rdf-schema 
2 http://www.globalwordnet.org 
3 http://wordnet.princeton.edu 
4 http://www.globalwordnet.org/AWN 
5 http://dcl.bas.bg/BulNet/general_en.html 



Dutch, French, German, Italian, Spanish (used in EuroWordNet7); Irish (used in LSG8) 

and many others. To make use of such enormous knowledge bases, research has been 

conducted in the field of thesaurus merging. This is explored when Carpuat et al [6] 

merged thesauri that were written in English and Chinese into one bilingual thesaurus 

in order to minimize repetitive work while building ontologies containing 

multilingual resources. A language-independent, corpus based approach was 

employed to merge WordNet and HowNet by aligning synsets from the former and 

definitions of the latter. Similar research was conducted in [7] to match Dutch 

thesauri to WordNet by using a bilingual dictionary, and concluded a methodology for 

vocabulary alignment of thesauri written in different natural languages. Automatic 

bilingual thesaurus construction with an English-Japanese dictionary is presented in 

[8], where hierarchies of words can be generated based on related words’ co-

occurrence frequencies. Multilinguality is not only found in thesauri but also evident 

in RDF/OWL ontologies. For instance, the OntoSelect Ontology Library9 reports that 

more than 25% (at the time of this publication) of its indexed 1530 ontologies are 

labeled in natural languages other than English10. To enable knowledge discovery, 

sharing and reuse, ontology matching must be able to operate across natural language 

barriers. Although there is already a well-established field of research in monolingual 

ontology matching tools and techniques [9], as ontology mapping can no longer be 

limited to monolingual environments, tools and techniques must be developed to 

assist mappings in cross-lingual scenarios.   

One approach of facilitating knowledge sharing among diverse natural languages 

builds on the notion of enriching ontologies with linguistic resources. A framework is 

proposed in [10] which aims to support the linguistic enrichment process of 

ontological concepts during ontology development. A tool – OntoLing11 is developed 

as a plug-in for the ontology editor Protégé12 to realise such a process as discussed in 

[11]. Similar research aiming to provide multilingual information to ontologies is 

discussed in [12], where a linguistic information repository is proposed to link 

ontological concepts with lexical resources. Such enrichment of ontologies provide 

knowledge engineers with rich linguistic data and can be used in CLOM, however, in 

order for computer-based applications to make use of these data, standardisation of 

the enrichment is required. As such requirement is currently not included in the OWL 

2 specification13, it would be difficult to make use of the vast number of monolingual 

ontology matching techniques that already exist.   

Similar to linguistically enriching ontologies, translating the natural language 

content in ontologies is another approach to enable knowledge sharing and reuse. The 

translation of the multilingual AGROVOC thesaurus14 is discussed in [13], which 

                                                                                                                                           
6 http://www.keenage.com 
7 http://www.illc.uva.nl/EuroWordNet 
8 http://borel.slu.edu/lsg 
9 http://olp.dfki.de/ontoselect 
10 http://olp.dfki.de/ontoselect;jsessionid=3B72F3160F4D7592EE3A5CCF702AAE00?wicket:b

ookmarkablePage=:de.dfki.ontoselect.Statistics 
11 http://art.uniroma2.it/software/OntoLing 
12 http://protege.stanford.edu 
13 http://www.w3.org/TR/owl2-profiles 
14 http://aims.fao.org/en/website/AGROVOC-Thesaurus/sub 



involves a large amount of manual work and proves to be time and human resource 

consuming. An ontology label translation tool, LabelTranslator is demonstrated in 

[14]. It is designed to provide end-users with ranked translation suggestions for 

ontology labels. The motivation of its design is to ensure that information represented 

in an ontology using one particular natural language could still achieve the same level 

of knowledge expressivity if translated into another natural language. Users must 

select labels to be translated one at a time, LabelTranslator then returns the selected 

label’s suggested translations in one of the three target natural languages, English, 

Spanish and German. It can be used to provide assistance in the linguistic enrichment 

process of ontologies as discussed in [15]. LabelTranslator is designed to assist the 

human to perform semi-automatic ontology label translations and linguistic 

enrichments, it is not concerned with generations of machine-readable ontologies in 

the target natural language so that matching tools can manipulate. In contrast to 

LabelTranslator, the ontology rendering process presented in this paper differs in its 

input, output and aim. Firstly, the input of our ontology rendering process is 

ontologies and not ontology labels. Secondly, the output of this rendering process is 

machine-readable formally defined ontologies that can be manipulated by computer-

based systems such as monolingual matching tools. Lastly, such an ontology 

rendering design aims to facilitate CLOM, it is designed to assist further machine 

processing whereas the LabelTranslator tool aims to assist humans.  

An example of CLOM scenario is illustrated by the Ontology Alignment 

Evaluation Initiative15 (OAEI) contest in 2008, where a test case requiring the 

mapping of web directories written in English and Japanese was defined16. Among 

thirteen participants, only four took part in this test scenario with results submitted 

from just one contestant. Zhang et al. [16] used a dictionary to translate Japanese 

words into English (it is unclear whether this translation process is manual or 

automated) before carrying out the matching process using RiMOM. The generic 

approach presented in this paper is based on Zhang et al.’s method, instead of using a 

dictionary, freely available MT tools are used. Montiel-Ponsoda & Peters [17] classify 

three levels to localizing multilingual ontologies, at the terminological layer, at the 

conceptual layer and at the pragmatic layer. The translation process presented in the 

generic CLOM approach concerns translations at the terminological layer, i.e., the 

terms used to define classes and properties are translated into the target natural 

language. Pazienza & Stellato propose a linguistically motivated approach to ontology 

mapping in [18]. The approach urges the usage of linguistically enriched expressions 

when building ontologies, and envisions systems that can automatically discover the 

embedded linguistic evidence and establish alignments that support users to generate 

sound ontology mapping relationships. However, as mentioned previously, the 

multilingual linguistically enriched ontologies demanded by this approach are hard to 

come by when such specifications are not currently included in the OWL 2 

standardization effort. Trojahn et al. propose a multilingual ontology mapping 

framework in [19], which consists of smart agents that are responsible for ontology 

translation and capable of negotiating mapping results. For each ontology label, the 

translation agent looks up a dictionary and returns a collection of results in the target 

                                                           
15 http://oaei.ontologymatching.org 
16 http://ri-www.nii.ac.jp/OAEI/2008 



natural language. The ontology labels are then represented with a group of the 

returned translation results. Once source and target ontologies are in the same natural 

language, they are passed to the mapping process which consists of three types of 

mapping agents, lexical, semantic and structural. These agents each conclude a set of 

mapping results with an extended value-based argumentation algorithm. Finally, 

globally accepted results are generated as the final set of mappings [20]. Such an 

approach is based on the assumption that correct mapping results are and always will 

be generated by various matching techniques regardless of the algorithms used. 

However, as stated by Shvaiko & Euzenat [21], “despite the many component 

matching solutions that have been developed so far, there is no integrated solution 

that is a clear success”, therefore, looking for globally accepted results may limit the 

scope of correct mapping relationship discovery. In contrast, the proposed SOCOM 

framework in this paper aims to maximize the performance of individual monolingual 

ontology matching algorithms in CLOM by providing them with ontology renditions 

that contain appropriate label translations.  

3 A Generic Approach to Cross-lingual Ontology Mapping  

A generic approach to achieve CLOM is presented in this section, as shown in figure 

1. Given two ontologies representing knowledge in different natural languages, the 

ontology rendering process first creates a translated source ontology which is an 

equivalent of the original source ontology, only labeled in the target natural language. 

Then monolingual matching tools are applied to generate matching results between 

the translated source ontology and the target ontology. An integration of the generic 

approach is discussed in section 3.1. To evaluate the soundness of this approach, two 

experiments involving the Semantic Web for Research Communities (SWRC) 

ontology17 and the ISWC ontology18 were designed to examine the impact of MT 

tools in the process of ontology rendering (discussed in section 3.2), also the quality 

of matching results generated using such an approach (discussed in section 3.3).  

 

Fig 1. A Generic Cross-lingual Ontology Mapping Approach 

                                                           
17 http://ontoware.org/frs/download.php/298/swrc_v0.3.owl 
18 http://annotation.semanticweb.org/ontologies/iswc.owl 



3.1 Integration of the Generic Approach 

The ontology rendering process shown in figure 1 is achieved with a Java application 

– OntLocalizer, which generates machine-readable, formally defined ontologies in the 

target natural language by translating labels of the given ontology’s concepts using 

MT tools, assigning them with new namespaces and structuring these resources – now 

labeled in the target natural language – using the Jena Framework19 in the exact same 

way as the original ontology. Figure 2 shows the components of the OntLocalizer 

tool. Labels of ontology resources are extracted first by the Jena Framework, which 

are then passed onto the MT tools to generate translations in the target natural 

language. Given the original ontology’s structure, these translated labels can be 

structured accordingly to create the translated source ontology. The integrated MT 

tools include the GoogleTranslate API 20  and the SDL FreeTranslation 21  online 

translator.  

 

Fig 2. OntLocalizer Component Overview 

 

Fig 3. An Example of Ontology Translation  

As white spaces are not allowed in the naming of the ontological resources, 

ontology labels often contain phrases that are made up by two or more words. An 

example of such labels can be a class named “AssistantProfessor”, where the white 

space between two words has been removed and capital letters are used to indicate the 

beginning of another word. Another example can be an object property labeled as 

“is_about”, where the white space between two words has been replaced by an 

underscore. As these labels cannot be translated by the integrated MT tools, the 

                                                           
19 http://jena.sourceforge.net 
20 http://code.google.com/p/google-api-translate-java 
21 http://www.freetranslation.com 



OntLocalizer tool thus breaks up such labels to sequences of constituent words based 

on the composing pattern, before sending them to the MT tools. In the aforementioned 

examples, “AssistantProfessor” is transformed to “Assistant Professor”, and 

“is_about” is transformed to “is about”. Now both in their natural language forms, 

phrases “Assistant Professor” and “is about” are passed to the MT tools to generate 

results in the target natural language. Such a procedure is not required when 

translating labels written in languages such as Chinese, Japanese etc., as phrases 

written in these languages naturally do not contain white spaces between words and 

can be processed by the integrated MT tools. Finally, when structuring the translated 

labels, white spaces are removed to create well-formed resource URIs. Translation 

collisions can happen when a translator returns the same result for several resources in 

an ontology. For instance, in the SWRC ontology, using the GoogleTranslate API 

(version 0.4), the class “Conference” and the class “Meeting” are both translated into 

“会议” (meaning “meeting” in Chinese). To differentiate the two, the OntLocalizer 

tool checks whether such a resource already exists in the translated source ontology. 

If so, a number is assigned to the resource label which is under consideration. In the 

aforementioned example, “Conference” becomes “会议” and “Meeting” becomes “会议 0” in the translated ontology. As the integrated MT tools only return one 

translation result for each intake phrase, it is therefore unnecessary to disambiguate 

the returned translations in the experiment. A part of the SWRC ontology and its 

translation in Chinese using the OntLocalizer tool is shown in figure 3. 

Once the source ontology is labeled in the target natural language, monolingual 

ontology matching techniques can be used to generate matching results. Currently, 

this is achieved by the Alignment API22 (version 2.5).  

3.2 Experiment One Design and Integration 

Experiment one is designed to examine the impact of MT tools in the process of 

ontology rendition, specifically, the quality of machine translated resource labels. In 

this experiment, labels in the SWRC ontology are translated from English to Chinese 

through two media, the OntLocalizer tool and a human domain expert – being the lead 

author. Three translated versions of the SWRC ontology are then created, the 

GSWRC ontology when using the GoogleTranslate API, the FSWRC ontology when 

using the FreeTranslation online translator, and the HSWRC ontology which is 

created manually using the Protégé ontology editor. Each translated version has the 

original structure of the SWRC ontology with new namespaces assigned to labels in 

the target natural language. The SWRC ontology is mapped to itself to generate a gold 

standard of the matching results as M(1), which consists of pairs of matched ontology 

resources in English. M(A) which contains results of matched resources in Chinese, is 

then created when the HSWRC ontology is mapped to itself. If exactly the same pairs 

of resources are matched in M(A) as those found in M(1), then M(A) can be 

considered as the gold standard in Chinese. The GSWRC ontology and the FSWRC 

ontology are then each mapped to the HSWRC ontology to create the mappings M(B) 

                                                           
22 http://alignapi.gforge.inria.fr 



and M(C), both containing matched resources in Chinese. Finally, M(B) and M(C) are 

compared against M(A). This process is shown in figure 4. Eight matching algorithms 

supported by the Alignment API are used in this experiment. 

 

Fig 4. Experiment One Overview 

The hypothesis of this experimental setup is to verify whether the label translation 

procedure using MT tools would impact on the quality of translated ontologies. If 

M(B) and M(C) show the same set of results as suggested by M(A), it would mean 

that MT tools are able to perform like humans and a generic approach using them in 

CLOM is ideal. If M(B) and M(C) proves to be poorly generated, it would mean that 

the ontology rendition process is flawed. 

3.2   Experiment Two Design and Integration 

The second experiment is designed to further investigate the impact of MT tools in 

CLOM by evaluating the quality of matching results generated using the generic 

approach. An overview of the experimental steps is shown in figure 5. The English 

SWRC ontology and the English ISWC ontology are both translated by OntLocalizer 

to create ontologies labeled in Chinese. The GSWRC ontology and the GISWC 

ontology are created when using the GoogleTranslate API, and the FSWRC ontology 

and the FISWC ontology are generated when using the SDL FreeTranslation online 

translator integrated in OntLocalizer.  

 

Fig 5. Experiment Two Overview 

The original SWRC ontology is mapped to the original ISWC ontology to 

generate M(2) as the gold standard which contains matched resources in English. 



M(B') is generated when the GSWRC ontology is mapped to the GISWC ontology, 

similarly M(C') is generated when the FSWRC ontology is mapped to the FISWC 

ontology. Both M(B') and M(C') contain matched resources in Chinese. Again eight 

matching algorithms provided by the Alignment API were used in every mapping. To 

evaluate the quality of M(B') and M(C'), they are compared against the gold standard. 

Since M(2) contains matched resources written in English, the labels of these 

resources are translated manually to Chinese by the lead author as M(A'). M(A') is 

then regarded as the gold standard. Evaluations of M(B') and M(C') are finally 

conducted based on comparisons to M(A'). The hypothesis of this experiment is, if 

M(B') and M(C') generated the same sets of matching results as M(A'), it would mean 

that the generic approach is satisfactory to achieve CLOM. If M(B'), M(C') fail to 

conclude the same results as found in the gold standard, it would mean that the 

generic approach would be error-prone when applied to CLOM scenarios.  

Precision, recall, fallout and f-measure scores were calculated in both experiments 

for all the matching algorithms used. Precision measures the correctness of a set of 

results. Recall measures the completeness of the number of correct results. Fallout 

measures the number of incorrect matching results based on the gold standard. 

Finally, f-measure can be considered as a determination for the overall quality of a set 

of results. If the established gold standard has R number of results and a matching 

algorithm finds X number of results, among which N number of them are correct 

according to the gold standard, then precision = N/X; recall = N/R; fallout = (X-N)/X; 

and f-measure = 2/(1/precision + 1/recall). All scores range between 0 and 1, with 1 

being very good and 0 being very poor. An example can be that low fallout score 

accompanied by high precision and recall scores denote superior matching results. 

4  Findings and Conclusions 

Findings and conclusions from the two experiments are presented in this section. The 

results of experiment one is presented and discussed in section 4.1. Section 4.2 shows 

the results from the second experiment. Finally, data analysis is given in section 4.3. 

4.1 Experiment One Findings  

Regardless of the matching algorithms used from the Alignment API, the exact same 

sets of matching results generated in M(1) were found in M(A). Thus, it is with 

confidence that M(A) can be considered as the gold standard in Chinese. Figure 5 

shows an overview of the evaluation results of experiment one. As M(A) equals M(1), 

its precision, recall and f-measure scores are 1.00 and with 0.00 fallout. The results 

generated by the eight matching algorithms from the Alignment API are evaluated 

based on comparisons made to M(A). In M(B) and M(C), a pair of matched resources 

is considered correct when it is found in the gold standard regardless of its confidence 

level. Such an evaluation approach aims to measure the maximum precision, recall 

and f-measure scores that can be achieved in the generated results.  



As figure 5 shows, in experiment one, NameEqAligment and StringDistAlignment 

algorithm had the highest precision score, however, their low recall scores resulted 

just above the average f-measure scores. Structure-based matching algorithms had 

lower recall scores and higher fallout scores comparing to lexicon-based matching 

algorithms. For each set of results evaluated, the precision score is always higher than 

its other scores, which suggests that a considerable number of correct matching results 

is found, however, they are always incomplete. On average, regardless of the 

matching algorithms used, f-measure scores are almost always less than 0.50, 

showing that none of the matching algorithms could meet the standard which is set by 

the gold standard. Moreover, M(B)’s average f-measure is 0.4272, whereas M(C)’s 

average f-measure is 0.3992, which suggests that GoogleTranslate API performed 

slightly better than SDL FreeTranslation online translator in this experiment. 

Nevertheless, it must be noted that neither of the MT tools was able to generate a 

translated ontology which, when mapped to itself, could produce a same set of results 

that are determined by the gold standard. This finding suggests that MT tools had a 

negative impact on the quality of ontology rendition output. 
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Fig 5. Experiment One Results 

4.2 Experiment Two Findings  

To further validate this finding, the same evaluation approach is used in the second 

experiment, where a pair of matched result is considered correct as long as it is found 

in the gold standard, regardless of its confidence level. A series of gold standards 

were generated for each of the eight matching algorithms in M(2) – written in 

English, and later manually translated as M(A') – written in Chinese. The evaluation 

of the results found in M(B') and M(C') is shown in Figure 6. 

The StringDistAlignment matching algorithm had the highest precision and recall 

scores in this experiment, thus yielding the highest f-measure score in M(B') and 

M(C'). Similar to the results found in experiment one, structure-based matching 

algorithms had lower recall scores comparing to lexicon-based matching algorithms. 

In experiment two, fallout scores for all the matching algorithms are higher than that 

of experiment one’s, which suggests that the matching procedure was further 

complicated by the translated ontologies. Also, f-measure scores indicate that 

structure-based matching algorithms were unable to perform as well as lexicon-based 



matching algorithms. The average f-measure in M(B') was 0.2927 and 0.3054 in 

M(C'), which suggests that the FreeTranslation online translator had a slightly better 

performance than the Google Translate API in this experiment. Nevertheless, from an 

ontology matching point of view, such low f-measure scores would mean that when 

used in CLOM, the generic approach would only yield less than fifty percent of the 

correct matching results. The findings from experiment two show that it is difficult 

for matching algorithms to maintain high-quality performance when labels have been 

translated in isolation using MT tools, and the generic approach in CLOM can only 

yield poor matching results.  
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Figure 6. Experiment Two Results 

4.3 Result Analysis  

So far, the evaluation results that are shown in the previous sections disregard 

confidence levels. When these confidence levels are taken into account, it is shown 

that there is a drop in the number of matching results generated with absolute 

confidence. Table 1 gives an overview of the percentages of matching results with 

1.00 confidence levels. In both experiments, all pairs of matched resources generated 

by the NameEqAlignment algorithm and the NameAndPropertyAlignment algorithm 

have 1.00 confidence levels. This is not the case for other algorithms however, where 

more than half of the results with absolute confidence was not found. For example, 

every matched pairs of resources by the EditDistNameAlignment algorithm from the 

gold standard in experiment one had 1.00 confidence levels. This was not achieved in 

M(B) or M(C), where the former contained 47.31% of confident results and only 

41.94% for the latter. Averagely, the gold standard in experiment one established a 

96.25% of confident results, whereas only 49.53% were found in M(B) and 49.37% in 

M(C). A similar finding can be concluded for experiment two based on the statistics 

shown in table 1.  

Findings from the experiments suggest that if automated MT tools are to be used 

in CLOM, more specifically, in the ontology rendering process, the quality of 

translated ontologies needs to be improved in order for monolingual matching tools to 

generate high quality matching results. Translation errors introduced by the MT tools 

in the experiments can be categorized into three main categories. Inadequate 



translation – as mentioned earlier in section 3.1, “Conference” and “Meeting” were 

both translated into the same words in Chinese. However, since conference is a 

specified type of meeting, the translated term was not precise enough to capture the 

intended concept presented in the original ontology. This can be improved if given the 

context of a resource label to be translated, i.e. the context of a resource can be 

indicated by a collection of associated property labels, super/sub-class labels. 

Synonymic translation – where the translation result of a label is correct, however it is 

different with the one that was used by the target ontology. This can be accounted by 

algorithms that take structural approaches when establishing matching results, 

however, it can be very difficult for lexicon-based algorithms to associate them. This 

can be improved if several candidates are provided in the translation process, and the 

selection of these candidates gives priority to labels which are used by the target 

ontology. Incorrect translation – where the translation of a term is simply wrong, 

yielding poor matching results. Similar to inadequate translations, this can be 

improved if the context of an ontology resource is known to the translation process.  

Table 1. Matched Pairs of Results with 1.00 Confidence Levels (%) 
 1 2 3 4 5 6 7 8 Avg. 

M(A) 100.00 77.34 100.00 100.00 100.00 92.68 100.00 100.00 96.25 

M(B) 100.00 33.78 47.83 47.31 100.00 37.25 15.05 15.05 49.53 

M(C) 100.00 35.38 44.32 41.94 100.00 34.62 19.35 19.35 49.37 

M(A') 100.00 30.89 26.56 48.57 100.00 30.36 0.00 10.94 43.42 

M(B') 100.00 16.00 30.86 36.23 100.00 11.63 3.23 3.23 37.65 

M(C') 100.00 18.00 30.59 38.24 100.00 13.95 1.30 4.30 38.30 

1 = NameEqAlignment 2 = SMOANameAlignment 

3 = SubsDistNameAlignment 4 = EditDistNameAlignment 

5 = StringDistAlignment 6 = NameAndPropertyAlignment 

7 = ClassStructAlignment 8 = StrucSubsDistAlignment 
 

To overcome these challenges and maximise the performance of monolingual 

matching tools in CLOM, appropriate translations of ontology labels must be 

achieved. A Semantic-Oriented Cross-lingual Ontology Mapping (SOCOM) 

framework designed to achieve this is proposed and discussed in the next section.  

5 The SOCOM Framework and On-going Research 

The semantic-oriented cross-lingual ontology mapping (SOCOM) framework is 

presented and discussed in this section. The SOCOM framework illustrates a process 

that is designed specifically to achieve CLOM, it has an extensible architecture that 

aims to accommodate easy integrations of off-the-shelf software components. To 

address challenges identified in the experiments and reduce noise introduced by the 

MT tools, the selection of appropriate translated labels is under the influence of labels 

used in the target ontology. The SOCOM framework divides the mapping task into 

three phases – an ontology rendering phase, an ontology matching phase and a 

matching audit phase. The first phase of the SOCOM framework is concerned with 

the rendition of an ontology labeled in the target natural language, particularly, 



appropriate translations of its labels. The second phase concerns the generation of 

matching results in a monolingual environment. Finally, the third phase of the 

framework aids ontology engineers in the process of establishing accurate and 

confident mapping results. Ontology matching is the identification of candidate 

matches between ontologies, whereas ontology mapping is the establishment of the 

actual correspondence between ontology resources based on candidate matches [22], 

this distinction is reflected in the SOCOM framework. Figure 7 shows a process 

diagram of the proposed framework. 

 

Fig 7. The SOCOM Framework Process Diagram 

In phase one, the SOCOM framework searches for the most appropriate 

translation results for ontology labels in the target natural language. To achieve this, 

the selection of translation candidates is defined by the context a resource is used in, 

and influenced by the labels that appear in the target ontology. As experimental 

results show that translating ontology labels in isolation leads to poorly translated 

ontologies which then yields low-quality matching results, thus, label translations 

should be conducted within context. As the meaning of a word vary depending on the 

context it is used in, it is therefore important to capture what a word/phrase signifies 

as accurately as possible in the target natural language. For instance, the sentence 

there is a shift in the tone of today’s news broadcasts and the sentence research shows 

that an inevitable side effect of night shifts is weight gain both use the word shift. 

However, in the first sentence, it is used to express a change, whereas in the second 

sentence, it refers to a period of work. In the SOCOM framework, to capture the 

meaning of a word/phrase in the ontology rendering phase, the context is 

characterised by the surrounding ontology concepts. As the purpose of translating the 

source ontology is so that it can be mapped to the target ontology for generations of 

high quality mapping results (i.e. the translation of the source ontology concepts is 

within a specific context), the identification of the most appropriate translation results 

is aided by the labels that appear in the target ontology. Instead of blindly accepting 

translation results that are returned from a MT tool, for each resource label, a group of 

translation results are collected and treated as translation candidates. A translation 

repository containing source labels and their translation candidates can be created 

given a source ontology. On the other hand, a lexicon repository can be constructed 

based on the labels presented in a given target ontology. For each target label, a 



collection of synonyms can be assembled to maximize knowledge representation with 

various words and phrases other than those that originally appeared in the target 

ontology. This can be achieved by querying dictionaries, WordNet, etc., or accessing 

refined lexicon bases for precise knowledge domains with strict vocabularies such as 

medicine. Each of the candidates can then be compared to the phrases in the lexicon 

repository. When matches are found with a target label or a target label’s synonym, 

the target label is chosen as the most appropriate translation result. In addition, when 

translations are compared to terms in the lexicon repository, similarity measures can 

be calculated using string comparison techniques, which can then assist the ontology 

engineers in the final mapping process.  

In the second phase, as the source ontology is now labeled in the target natural 

language, the SOCOM framework can apply existing monolingual ontology matching 

techniques. It is assumed that prior to CLOM using the SOCOM framework, human 

experts are involved to establish that it is meaningful to map the concerned 

ontologies, i.e. they cover the same/similar domain of interest, they are reliable, 

complete and similar in granularity. 

Lastly, in phase three, the matching audit procedure aids ontology engineers in the 

process of generating the final mapping results. This procedure makes use of the 

semantic similarity measures that have been concluded in phase one, and displays 

these findings to the mapping expert providing background information to assist the 

final mapping. Phase one and two of the SOCOM framework have been integrated, 

phase three of the proposed framework is currently under development. In the near 

future, evaluation results of the SOCOM framework and suitability of matching 

algorithms will become available.    

The SOCOM framework is semantic-oriented for two reasons. Firstly, during the 

ontology rendition phase, the context of an ontological resource is studied in order to 

determine the most appropriate translation result for its label. This context is defined 

by the semantics an ontology resource represents, which can be obtained by studying 

its surrounding concepts, i.e. super/sub-classes and property restrictions. Secondly, 

the mapping process makes uses of the similarity measures established in the 

ontology rendition phase in order to generate mapping results. The similarity 

measures are determined based on the semantics from each pair of ontology 

resources. An experimental version of the SOCOM framework has been integrated 

and is currently being evaluated. 
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