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ABSTRACT
Schema mappings are high-level specifications that describe the re-
lationship between two database schemas; they are considered to be
the essential building blocks in data exchange and data integration,
and have been the object of extensive research investigations. Since
in real-life applications schema mappings can be quite complex, it
is important to develop methods and tools for understanding, ex-
plaining, and refining schema mappings. A promising approach to
this effect is to use “good" data examples that illustrate the schema
mapping at hand.

We develop a foundation for the systematic investigation ofdata
examples and obtain a number of results on both the capabilities
and the limitations of data examples in explaining and understand-
ing schema mappings. We focus on schema mappings specified
by source-to-target tuple generating dependencies (s-t tgds) and in-
vestigate the following problem: which classes of s-t tgds can be
“uniquely characterized" by a finite set of data examples? Our in-
vestigation begins by considering finite sets of positive and negative
examples, which are arguably the most natural choice of dataexam-
ples. However, we show that they are not powerful enough to yield
interesting unique characterizations. We then consider finite sets of
universal examples, where a universal example is a pair consisting
of a source instance and a universal solution for that sourcein-
stance. We unveil a tight connection between unique characteriza-
tions via universal examples and the existence of Armstrongbases
(a relaxation of the classical notion of Armstrong databases). On
the positive side, we show that every schema mapping specified by
LAV s-t tgds is uniquely characterized by a finite set of universal
examples with respect to the class of LAV s-t tgds. Moreover,this
positive result extends to the much broader classes ofn-modular
schema mappings,n a positive integer. Finally, we show that, on
the negative side, there are schema mappings specified by GAVs-t
tgds that are not uniquely characterized by any finite set of uni-
versal examples and negative examples with respect to the class of
GAV s-t tgds (hence also with respect to the class of all s-t tgds).
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1. Introduction and Summary of Results
Schema mappings are high-level specifications that describe the

relationship between two database schemas. Schema mappings are
considered to be the essential building blocks in data exchange
[18] and data integration [19] systems. The work on schema map-
pings to date has branched into two different (and, to a largeex-
tent, independent) directions of research. The first direction is con-
cerned with the structural and algorithmic properties of schema
mappings as given objects, and with their uses in the execution of
data exchange and data integration tasks. The second direction is
concerned with the discovery of schema mappings between two
schemas, which is one of the first crucial steps taken towardsthe
exchange or integration of data across database schemas.

Since real-life schemas can be complex, the discovery of a schema
mapping between two schemas can be a difficult task. Conse-
quently, several commercial systems, such as Altova Mapforce,
Microsoft BizTalk Mapper, and Stylus Studio, as well as IBM’s
research prototype Clio [13, 15], have been developed to facilitate
the task of producing a schema mapping between two schemas. All
these systems adopt a common architecture towards the comple-
tion of this task: First, a user interface that displays bothschemas
is used to facilitate the derivation of a set of correspondences be-
tween attributes of relations of the two schemas. The set of corre-
spondences is usually derived automatically or semi-automatically
with the help of a schema-matching engine. After this, a schema-
mapping generation component derives a schema mapping between
the source schema and the target schema that is consistent with the
set of correspondences. Typically, there are multiple schema map-
pings that are consistent with a set of correspondences between a
source schema and a target schema, and most commercial systems
produce just one of them. Actually, different commercial systems
may produce semantically different schema mappings even when
they are presented with the same set of correspondences between
a source and a target schema [3]. In research prototypes, such as
Clio, multiple schema mappings that are consistent with theset of



correspondences are generated, and one of them is designated as
the default schema mapping.

Regardless of whether just a single schema mapping or multi-
ple schema mappings may be derived by these systems, there is
a clear and pressing need to illustrate the exact semantics of the
schema mappings that are generated. In fact, in real-life appli-
cations, schema mappings can be quite complex even if they are
derived manually. A promising approach to this effect is to use
“good” data examples that illustrate the schema mapping at hand.
This approach is motivated from the long and venerable tradition
of using test examples in understanding and debugging computer
programs. The use of data examples for schema mappings was
advocated in [26], where the concept of a mapping example was
introduced together with a set of operators for manipulating such
examples. More recently, data examples were used in [2] to aid
designers in refining various aspects of schema-mapping specifica-
tions; furthermore, in [5], the “behavior” of schema mappings was
illustrated in the form of routes from source to target data.Beyond
schema mappings, the problem of generating “illustrative”exam-
ples for dataflow programs was recently investigated in [22].

In this paper, we develop a foundation for the systematic inves-
tigation of data examples for schema mappings and obtain a num-
ber of results that shed light on both the capabilities and the lim-
itations of data examples in explaining and understanding schema
mappings. We focus on schema mappings specified by source-to-
target tuple generating dependencies (s-t tgds, in short),also known
as GLAV (global-and-local-as-view) dependencies; this class of
schema mappings comprises the most extensively studied schema
mappings to date and contains, as important special cases, the classes
of schema mappings specified by LAV (local-as-view) dependen-
cies and by GAV (global-as-view) dependencies.

LetS be a source schema andT be a target schema. We consider
schema mappingsM = (S,T,Σ), whereΣ is a finite set of s-t
tgds. A data example is a pair(I, J) such thatI is a source instance
andJ is a target instance. The central notion in our investigation
is what it means to say that a schema mappingM = (S,T,Σ)
is uniquely characterized by a finite setF of data examples with
respect to (w.r.t.) a classC of s-t tgds of interest. Informally,M
is uniquely characterized byF w.r.t. C if Σ is, up to logical equiv-
alence, the only finite setΣ′ of s-t tgds fromC such that each data
example inF has the “same relationship” withΣ as it has with
Σ′. This concept is formalized by making precise the notion of the
“relationship" between a data example and a set of s-t tgds. As we
shall see, this notion can be made precise in different natural ways;
furthermore, the different notions obtained give rise to different re-
sults concerning unique characterizations of schema mappings.

Our investigation of unique characterizations begins by consid-
ering finite setsF of data examples that arepositive examplesor
negative examples, where a data example(I, J) is a positive exam-
ple for a schema mappingM = (S,T,Σ) if (I, J) |= Σ, and it is
a negative example if(I, J) 6|= Σ. Positive and negative examples
are arguably the most natural types of data examples to consider;
in fact, these types of examples are the main objects of studyin the
context of computational learning (e.g., see [17]). We showthat if
the source schemaS and the target schemaT contain only unary
relation symbols, then every schema mappingM = (S,T,Σ),
whereΣ is a finite set of s-t tgds, can be uniquely characterized by
a finite set of positive and negative examples w.r.t. the class of all
s-t tgds. This result appears to be a promising first step, but, un-
fortunately, it does not extend to schema mappings over source and
target schemas that contain non-unary relation symbols. Indeed,
we exhibit a LAV schema mapping over a source schema with one
binary relation symbol and a target schema with one binary rela-

tion symbol that isnot uniquely characterizable by any finite set
of positive and negative examples w.r.t. the class of LAV s-ttgds
(hence, also w.r.t. the class of all s-t tgds). Furthermore,we exhibit
a GAV schema mapping for which a similar state of affairs holds
with respect to the class of all GAV s-t tgds (hence, also w.r.t. the
class of all s-t tgds).

In view of the failure of positive and negative examples to yield
unique characterizations beyond the very limited case of schemas
consisting of unary relation symbols only, we consider the notion
of a universal example, where a data example(I, J) is a universal
example for a schema mappingM = (S,T,Σ) if J is a universal
solution forI with respect toM. Universal solutions were intro-
duced in [9] and shown to be the preferred solutions to materialize
in data exchange because, among other reasons, they are the most
general solutions and they represent (in a precise technical sense)
the entire space of solutions for a given source instance. These
properties of universal solutions suggest that universal examples
are indeed a natural type of data example to consider as candidates
for unique characterizations of schema mappings.

Before delineating the capabilities and limitations of universal
examples, we unveil a very tight (and unexpected) connection be-
tween the existence of unique characterizations of schema map-
pingsM = (S,T,Σ) via universal examples and the existence
of an Armstrong basis forΣ, which is a relaxation of the classi-
cal notion of an Armstrong database forΣ. As is well known, an
Armstrong database forΣ w.r.t. a classC of database dependen-
cies is a databaseD that satisfies all the dependencies inC that are
logical consequences ofΣ, and no other dependencies inC. Arm-
strong databases were extensively studied in the context ofdatabase
dependency theory in the 1970s and 1980s (see [7] for a survey).
Clearly, if Σ and Σ′ are two sets of s-t tgds and if(I, J) is an
Armstrong database for bothΣ andΣ′ w.r.t. a classC of s-t tgds
containingΣ andΣ′, thenΣ is logically equivalent toΣ′. Thus,
Armstrong databases are ideal data examples for unique character-
izations of schema mappings. Nevertheless, it is rare that aschema
mapping specified by s-t tgds possesses an Armstrong database.
For this reason, we introduce and study the following relaxation of
the notion of an Armstrong database. LetΣ be a set of s-t tgds and
let D = {(I1, J1), . . . , (In, Jn)} be a finite set of data examples.
We say thatD is anArmstrong basis forΣ w.r.t. a classC of s-t
tgds if for every s-t tgdσ in C, we have thatΣ logically implies
σ if and only if (Ii, Ji) |= σ, for everyi = 1, . . . , n. This is a
strict relaxation of the notion of an Armstrong database because
we show that there are LAV s-t tgds that have an Armstrong basis
w.r.t. the class of all LAV s-t tgds, but not an Armstrong database.
Also, it is quite easy to see that ifD is an Armstrong basis for both
Σ andΣ′ w.r.t. a classC containingΣ andΣ′, thenΣ is logically
equivalent toΣ′. Thus, when they exist, Armstrong bases readily
yield unique characterizations of schema mappings. We showthat
a schema mappingM = (S,T,Σ), whereΣ is a set of s-t tgds,
is uniquely characterized by a finite set of universal examples w.r.t.
a classC of s-t tgds containingΣ if and only if Σ possesses an
Armstrong basis w.r.t. toC. This result reinforces the “goodness”
of universal examples and, at the same time, reveals an a priori un-
expected connection between (a natural relaxation of) a keynotion
in database dependency theory and a key notion in data exchange.

The following question naturally arises. Which classes of schema
mappings specified by s-t tgds possess unique characterizations via
universal examples? Equivalently, which schema mappings spec-
ified by s-t tgds possess Armstrong bases? On the positive side,
we show that every schema mapping specified by LAV s-t tgds is
uniquely characterized by a finite set of universal examplesw.r.t.
the class of LAV s-t tgds. We then extend this positive resultto



the class ofn-modular schema mappingsM = (S,T,Σ), n ≥ 1,
whereM is n-modular if whenever(I, J) is a negative example
for Σ, then there is a sub-instanceI ′ of I of size at mostn such
that (I ′, J) is also a negative example forΣ. The notion ofn-
modularity was introduced in [24] and used to characterize schema-
mapping languages in terms of their structural properties.Finally,
on the negative side, we show that there are natural schema map-
pings specified by GAV s-t tgds that arenot uniquely characterized
by any finite set of universal examples and negative examplesw.r.t.
the class of GAV s-t tgds. The proof of this theorem makes use
of sophisticated results from graph theory, namely, a generalization
of Erdös’ celebrated result [6] asserting the existence of graphs of
arbitrarily large girth and chromatic number.

2. Preliminaries
A schemaR is a finite sequence(R1, . . . , Rk) of relation sym-

bols, each of a fixed arity. AninstanceI over R is a sequence
(RI

1, . . . , R
I
k), where eachRI

i is a relation of the same arity as
Ri. We shall often writeRi to denote both the relation symbol and
the relationRI

i that interprets it. Anatom (overR) is a formula
P (x1, . . . , xm), whereP is a relation symbol inR andx1, . . . , xm

are variables, not necessarily distinct. Afact of an instanceI (over
R) is an expressionP I(v1, . . . , vm), whereP is a relation symbol
in R andv1, . . . , vm are values such that(v1, . . . , vm) ∈ P I . We
assume that all instancesI considered are finite, which means that
every relationRI

i is finite, for1 ≤ i ≤ k.
Schema Mappings. A schema mappingis a tripleM = (S,T,Σ)
consisting of a source schemaS, a target schemaT, and a setΣ
of constraints. We say thatM is specified byΣ. In general, the
constraints inΣ are formulas in some logical formalism. Here, we
will focus on schema mappings specified by source-to-targettuple-
generating dependencies.

A source-to-target tuple-generating dependency (s-t tgd)is a first-
order sentenceϕ of the form

∀x(ϕ(x) → ∃yψ(x,y)),

whereϕ(x) is a conjunction of atoms overS, each variable inx oc-
curs in at least one atom inϕ(x), andψ(x,y) is a conjunction of
atoms overT with variables inx andy. For simplicity, we will of-
ten drop the universal quantifiers∀x in the above formula. Another
name for s-t tgds isglobal-and-local-as-view(GLAV) constraints
(see [19]). They contain GAV and LAV constraints as important
special cases.

A GAV (global-as-view)constraint is a s-t tgd in which the right-
hand side is a single atom, i.e., it is of the form

∀x(ϕ(x) → P (x)),

whereP (x) is an atom over the target schema. A LAV(local-as-
view) constraint is a s-t tgd in which the left-hand side is a single
atom, i.e., it is of the form

∀x(Q(x) → ∃yψ(x,y)),

whereQ(x) is an atom over the source schema.
Satisfaction and Logical Implication. The symbol|= will be used
to denote several different notions. IfΣ is a set of first-order sen-
tences andD is an instance, thenD |= Σ means thatD satisfies
every sentence inΣ. If σ is a first-order sentence, thenΣ |= σ
denoteslogical implication, i.e., it means that for every (finite or
infinite) instanceD such thatD |= Σ, we have thatD |= σ. If Σ′

is a set of first-order sentences, thenΣ |= Σ′ means that for every
σ′ ∈ Σ′, we have thatΣ |= σ′. Finally,Σ ≡ Σ′ denotes thatΣ and
Σ′ arelogically equivalent, i.e.,Σ |= Σ′ andΣ′ |= Σ.

The notion of logical implication is defined using all (finiteand
infinite) instances. There is a companion notion oflogical impli-
cation in the finite, denoted by|=Fin, whereΣ |=Fin σ means that
for every finite instanceD such thatD |= Σ, we have thatD |= σ.
In general,|= and |=Fin are different notions (clearly, ifΣ |= σ,
thenΣ |=Fin σ, but the converse need not be true). It is easy to see,
however, that these two notions coincide on finite sets of s-ttgds.
Specifically, assume thatΣ is a finite set of s-t tgds andσ is a s-t
tgd. ThenΣ |= σ if and only if Σ |=Fin σ. For the non-trivial di-
rection, assume thatΣ |=Fin σ butΣ 6|= σ. Let (I, J) be such that
(I, J) |= Σ, but(I, J) 6|= σ. Assume thatσ isϕ(x) → ∃zψ(x, z).
Then there is a tuplea such thatI |= ϕ(a) andJ |= ∀z¬ψ(a, z).
Let I0 be the sub-instance ofI consisting of the factsϕ(a). As-
sume thatΣ consists of the s-t tgdsσ1, . . . , σk. Then there are
finite sub-instancesJi of J such that(I0, Ji) |= σi, i = 1, . . . , k.
Let J0 be the union of allJi, 1 ≤ i ≤ k. Then(I0, J0) is a finite
instance that satisfiesΣ but notσ, which is a contradiction.
Solutions, Homomorphisms, and Universal Solutions. We now
review some basic notions and results from [9]. We assume that we
have a fixed infinite setConst of constants and a fixed infinite set
Var of nulls that is disjoint fromConst. We write adom(I) for the
active domainof an instanceI , that is, the set of all values occur-
ring in I . All values occurring in a source instanceI are assumed to
be constants, i.e., adom(I) ⊆ Const. In contrast, target instances
have values inConst ∪ Var. Let M = (S,T,Σ) be a schema
mapping. IfI is a source instance, then asolution forI w.r.t.M is
a target instanceJ such that(I, J) |= Σ. From a semantic point of
view, a schema mappingM = (S,T,Σ) can be identified with the
collection{(I, J) : I is a source instance andJ is a solution forI}.

Assume thatK, K′ are two instances over the target schemaT.
A functionh from Const∪Var to Const∪Var is ahomomorphism
fromK toK′ if for every c ∈ Const, we have thath(c) = c, and
for every relation symbolR in T and every tuple(a1, . . . , an) ∈

RK , we have that(h(a1), . . . , h(an)) ∈ RK′

. We writeK →
K′ to denote that there is a homomorphism fromK to K′. The
instancesK andK′ are said to behomomorphically equivalentif
K → K′ andK′ → K.

Given a schema mappingM = (S,T,Σ) and a source instance
I , a universal solution forI w.r.t. M is a solutionJ for I w.r.t.
M such that for every solutionJ ′ for I w.r.t. M, we have that
J → J ′. Intuitively, universal solutions are the “most general” so-
lutions among all solutions forI , hence the preferred solutions to
materialize in data exchange. Clearly, if bothJ1 andJ2 are univer-
sal solutions forI , thenJ1 andJ2 are homomorphically equivalent.
Chase. The chase procedureis an algorithm that was originally
designed to reason about database dependencies (see [1]), but it
turned out to have numerous applications to data exchange and data
integration. In particular, as shown in [9], ifM = (S,T,Σ) is a
schema mapping specified by s-t tgds, then the chase procedure can
be used to produce, given a source instanceI , a universal solution
chaseM(I) for I in time bounded by a polynomial in the size ofI .

There are several variants of the chase procedure. Here, we will
consider the simplest such variant, called thenaivechase. Given
a source instanceI , the naive chase produces a universal solution
chaseM(I) for I as follows. For every s-t tgd

∀x(ϕ(x) → ∃yψ(x,y))

in Σ and for every tuplea of constants from adom(I) such that
I |= ϕ(a), we add tochaseM(I) all facts inψ(a,b), whereb is
a tuple of new nulls interpreting the existential quantifiedvariables
y. Thus, nulls are created independently each time and without
considering whether the right-hand side of the s-t tgd at hand could
be satisfied using facts that involve nulls created earlier.



3. Positive and Negative Examples
Let S be a source schema andT a target schema. Adata ex-

ampleis a pair(I, J) such thatI is a source instance andJ is a
target instance. Assume now thatM = (S,T,Σ) is a schema
mapping, whereΣ is a finite set of s-t tgds. This is a finite syntac-
tic description of a schema mapping. As mentioned in Section2,
from a semantic point of view,M can be identified with the infi-
nite collection{(I, J) : (I, J) |= Σ}. Our main goal in this paper
is to address the following question: can this infinite collection of
data examples be “captured" by a finite set of data examples. In
other words, doesM have a finite semantic description in terms of
data examples. We make this question precise by consideringdif-
ferent “types” of data examples and stipulating that a finitesetF
of examplesuniquely characterizesM = (S,T,Σ) w.r.t. a class
C of s-t tgdsif the following holds: for every finite setΣ′ of s-t
tgds fromC such that each example inF has the same “type” w.r.t.
Σ as it has w.r.t.Σ′, we have thatΣ ≡ Σ′. It should be noted
that, in addition to the concept of logical equivalence (≡), two
other notions of equivalence between schema mappings have been
considered, namelydata-exchange equivalenceand conjunctive-
query equivalence[10]. In general, these three notions of equiv-
alence are distinct; however, they are known to coincide fors-t tgds
[10]. Thus, the preceding concept of unique characterization of a
schema mapping amounts to asserting that for every setΣ′ of s-t
tgds fromC such that each example inF has the same “type” w.r.t.
Σ as it has w.r.t.Σ′, we have thatΣ is data-exchange equivalent or
conjunctive-query equivalent toΣ′.

We begin by considering positive and negative examples, two
natural types of examples that have been widely used in computa-
tional learning [17].

DEFINITION 3.1. LetM = (S,T,Σ) be a schema mapping.
A positive examplefor M is a data example(I, J) such that

(I, J) |= Σ.
A negative examplefor M is a data example(I, J) such that

(I, J) 6|= Σ.

DEFINITION 3.2. LetM = (S,T,Σ) be a schema mapping,
letP andN be two finite sets of positive and, respectively, negative
examples forM, and letC be a class of s-t tgds.

We say thatM is uniquely characterized byP andN w.r.t. C
if for every finite setΣ′ ⊆ C such thatP andN are sets of pos-
itive and, respectively, negative examples for the schema mapping
M′ = (S,T,Σ′), we have thatΣ is logically equivalent toΣ′ (in
symbols,Σ ≡ Σ′).

3.1 Unary Schemas and Unique Characterizations

A schemaR = (R1, . . . , Rk) is said to beunary if every re-
lation symbolRi in R is unary (has arity 1). In this section, we
show that if both the source and the target schemas are unary,then
every schema mapping specified by a finite set of s-t tgds can be
uniquely characterized by finite sets of positive and negative exam-
ples w.r.t. the class of all s-t tgds. The proof makes essential use of
the following lemma.

LEMMA 3.3. Let S be a unary source schema andT a unary
target schema. Then, up to logical equivalence, there are finitely
many schema mappingsM = (S,T,Σ) such thatΣ is a finite set
of s-t tgds.

PROOF. (Hint) Assume thatS andT are unary schemas. We
show that every finite setΣ of s-t tgds overS andT is logically
equivalent to a finite set of s-t tgds in a certaincanonical form, and

that there are finitely many finite sets of s-t tgds in canonical form.
This canonical form is defined as follows. We say that a s-t tgdis
in canonical formif either it is a GAV s-t tgd of the form

φ1(x1) ∧ ... ∧ φk(xk) → T (xj),

or a (non-GAV) s-t tgd of the form

φ1(x1) ∧ ... ∧ φk(xk) → ∃y ψ(y),

where (a) each formulaφi(xi) is a conjunction of distinct source
relational atoms that share the same variablexi; (b) if i 6= l, then
the set of relational symbols inφi(xi) is different from the set of
relational symbols inφl(xl); (c) T is a relation symbol inT; and
(d) ψ(y) is a conjunction of distinct atoms overT that share the
same variabley. SinceS andT are unary schemas, it is easy to
see that there are finitely many finite sets of s-t tgds in canonical
form. Furthermore, using suitable rewrite rules, it can be shown
that every finite setΣ of s-t tgds is logically equivalent to a finite
set of s-t tgds in canonical form.

In effect, the proof of the preceding Lemma 3.3 has the flavor
of a quantifier-elimination result about the class of s-t tgds over
unary source and target schemas. It is well known that first-order
logic over unary schemas admits quantifier elimination (forex-
ample, see [16, page 66]). However, Lemma 3.3 is a more re-
fined result that cannot be derived (at least in a straightforward
way) from the quantifier-elimination result for first-orderlogic over
unary schemas.

THEOREM 3.4. LetS be a unary source schema andT a unary
target schema. IfM = (S,T,Σ) is a schema mapping such that
Σ is a finite set of s-t tgds, thenM can be uniquely characterized
by finite sets of positive and negative examples with respectto the
class of all s-t tgds.

PROOF. By Lemma 3.3, there are, up to logical equivalence,
finitely many schema mappings specified by finite sets of s-t tgds.
Consequently, there are finitely many schema mappingsM′ =
(S,T,Σ′) specified by a finite set of s-t tgds such thatΣ 6≡ Σ′. Let
M1 = (S,T,Σ1), . . . ,Mk = (S,T,Σk) be an exhaustive list of
all (up to logical equivalence) such schema mappings. Therefore,
for eachi ≤ k, we have thatΣ 6|= Σi or Σi 6|= Σ. We construct a
finite setP of positive examples forM and a finite setN of nega-
tive examples forM as follows. Initially, bothP andN are empty.
For eachMi, i ≤ k, there are two cases to consider.

Case 1.Σ 6|= Σi. In this case, let(I, J) be a data example such
that(I, J) |= Σ and(I, J) 6|= Σi. We add(I, J) toP .

Case 2.Σi 6|= Σ. In this case, let(I, J) be a data example such
that(I, J) |= Σi and(I, J) 6|= Σ. We add(I, J) toN .

By construction,P is a finite set of positive examples forM,
andN is a finite set of negative examples forM. Moreover, it
easy to verify that the setsP andN uniquely characterizeM w.r.t.
the class of all s-t tgds.

3.2 Limitations of Positive and Negative Examples

The preceding Theorem 3.4 does not extend to schema map-
pings over source and target schemas that contain non-unaryre-
lation symbols. As a matter of fact, if the source and the target
schema contain binary relation symbols, then there is a schema
mappingM specified by a LAV s-t tgd such thatno finite sets of
positive and negative examples uniquely characterizeM w.r.t. to
the class of all LAV s-t tgds. Furthermore, a similar result holds for
GAV s-t tgds.



THEOREM 3.5. LetS be a source schema consisting of a single
binary relation symbolP and letT be a target schema consisting
of a single binary relation symbolP ′.

1. There is a schema mappingM specified by a single LAV s-t tgd
such thatM is not uniquely characterizable by any finite sets
of positive and negative examples with respect to the class of
all LAV s-t tgds.

2. There is a schema mappingM′ specified by a single GAV s-t
tgd such thatM′ is not uniquely characterizable by any finite
sets of positive and negative examples with respect to the class
of all GAV s-t tgds.

PROOF. For the first part, letσ be the LAV s-t tgd

P (x, y) → ∃zP ′(z, z).

Assume thatP andN are finite sets of positive and, respectively,
for M = (S,T, {σ}). We will show that there is a LAV s-t tgdσ′

such thatσ 6≡ σ′, yetP andN are sets of positive and, respectively,
negative examples forσ′. Let n be a positive integer bigger than
the maximum size of the active domains of the data examples in
N , and letσ′ be the s-t tgd

P (x, y) → ∃x1...∃xnKn,

whereKn asserts thatx1, . . . , xn form ann-clique inP ′. To see
thatσ 6≡ σ′, let (I, J) be the data example such thatI = {(1, 2)}
andJ is a n-clique. Then(I, J) |= σ′, but (I, J) 6|= σ, hence
σ′ 6|= σ.

We now show that every(I, J) ∈ P satisfiesσ′. SupposeI |=
P (a, b) for some (not necessarily distinct) valuesa andb. Since
(I, J) |= σ, it follows thatJ must contain a factP ′(c, c) for some
value c. Hence,J |= ∃x1...∃xnKn (by mapping every variable
xi, 1 ≤ i ≤ n, to c). Next, we show that every member ofN is
a negative example forσ′. If (I, J) ∈ N , then,(I, J) 6|= σ, there
are valuesa andb such thatI |= P (a, b). Towards a contradiction,
assume that there is a homomorphismh : ∃x1...∃xnKn → J .
Sincen is greater than the number of distinct values inJ , there
must be two variablesxi andxjsuch thati 6= j andh(xi) = h(xj).
Hence,P ′(h(xi), h(xj)) ∈ J and so the mappingg, whereg(z) =
h(xi), is a homomorphism from∃zP ′(z, z) to J . Thus,(I, J) |=
σ, which is a contradiction.

The second part of this theorem follows from the proof of Theo-
rem 6.4.

4. Universal Examples and Armstrong Bases
The limitations of positive and negative examples suggest that a

stronger type of data example should be considered. In this section,
we introduceuniversal examplesand show them to be intimately
connected withArmstrong bases, a relaxation of the classical no-
tion of an Armstrong database studied in the context of dependency
theory a long time ago.

4.1 Universal Examples

DEFINITION 4.1. LetM = (S,T,Σ) be a schema mapping
in which Σ is a finite set of s-t tgds. A data example(I, J) is a
universal example forM if J is a universal solution forI w.r.t.
M.

As discussed in Section 2, universal solutions are the preferred
solutions to materialize in data exchange because (by way ofhav-
ing homomorphisms to every solution) they are the “most general”
solutions. Furthermore, as shown in [9], universal solutions rep-
resent the entire space of solutions in the following sense.Let
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Figure 1: Three universal examples that uniquely characterize
E(x, y) → F (x, y) w.r.t. GAV s-t tgds.

M = (S,T,Σ) be a schema mapping in whichΣ is a set of s-t
tgds, and let(I1, J1) and (I2, J2) be two universal examples for
M. Then the space of solutions forI1 coincides with the space
of solutions forI2 if and only if J1 andJ2 are homomorphically
equivalent. These properties motivate universal examplesas candi-
dates for unique characterizations of schema mappings.

DEFINITION 4.2. LetM = (S,T,Σ) be a schema mapping in
which Σ is a finite set of s-t tgds, letU be a finite set of universal
examples forM, and letC be a class of s-t tgds.

We say thatM is uniquely characterized byU w.r.t.C if for every
finite setΣ′ ⊆ C such thatU is a set of universal examples for the
schema mappingM′ = (S,T,Σ′), we have thatΣ ≡ Σ′.

Let M = (S,T, {σ}) be the schema mapping whereσ is the
LAV s-t tgd P (x, y) → ∃zP ′(z, z). As seen in the proof of The-
orem 3.5, no finite sets of positive and negative examples uniquely
characterizeM w.r.t. the class of all LAV s-t tgds. In contrast,
there is a finite set of universal examples that uniquely charac-
terizesM w.r.t. the class of all LAV s-t tgds. Indeed, it is not
hard to verify that the set{(I1, J1), (I2, J2)} has this property,
whereI1 = {P (a, b)}, J1 = {P ′(N,N)}, I2 = {P (a, a)},
J2 = {P ′(N,N)}, andN is a null. Thus, universal examples go
beyond what positive and negative examples can offer. Lateron,
however, we will see that universal examples have their own limi-
tations. For now, we illustrate further the capabilities ofuniversal
examples by establishing unique characterizations for thebinary
copys-t tgd, which is both a LAV and a GAV s-t tgd.

PROPOSITION 4.3. LetM be the schema mapping specified by
the binary copy s-t tgdE(x, y) → F (x, y).

1. M is uniquely characterizable by a finite set of universal ex-
amples w.r.t. the class of all LAV s-t tgds.

2. M is uniquely characterizable by a finite set of universal ex-
amples w.r.t. the class of all GAV s-t tgds.

PROOF. (Sketch)For the first part, it can be shown that the set
consisting of the universal examples{(I1, J1), (I2, J2)}, where
I1 = {E(a, b)}, J1 = {F (a, b)}, I2 = {E(a, a)}, J2 = {F (a, a)},
uniquely characterizesM w.r.t. the class of all LAV s-t tgds. Ac-
tually, as we will see later on, this will also follow from a general
result to the effect that every schema mapping specified by a fi-
nite set of LAV s-t tgds is uniquely characterized by a finite set of
universal examples w.r.t. the class of all LAV s-t tgds.

For the second part, letU be the set consisting of the three uni-
versal examples(I1, J1), (I2, J2), (I3, J3) depicted in Figure 1.
With some work, it can be shown thatU uniquely characterizesM



w.r.t. the class of all GAV s-t tgds. A detailed proof will be given in
the full version of the paper; here we limit ourselves into providing
an informal explanation. LetM′ = (S,T,Σ′) be a schema map-
ping such thatΣ′ is a finite set of GAV s-t tgds and the examples in
Figure 1 are universal examples forM′. The first example(I1, J1)
is used to show thatΣ |= Σ′. Indeed, ifΣ 6|= Σ′, then one can eas-
ily show thatJ1 is not a solution forI1 w.r.t. M′. The remaining
two examples(I2, J2) and(I3, J3) are used to show thatΣ′ |= Σ;
this is based on the observation that every source fact that is copied
over to the target by the copy tgd is isomorphic toI2 or I3.

The results in the preceding Proposition 4.3 inevitably raise the
question as to whether or not the schema mappingM specified
by the binary copy s-t tgd can also be uniquely characterizedvia
universal examples w.r.t. the class ofall s-t tgds. In Section 6, we
will show that such a unique characterization is not true forM.

4.2 Armstrong Databases and Armstrong Bases

Database dependencies are integrity constraints, typically ex-
pressed as formulas in some fragment of first-order logic. The
study of database dependencies was the focus of extensive research
activity during the 1970s and the early 1980s (see [12] for a sur-
vey). A central problem in this area is theimplication problemfor
dependencies, which is the problem of determining whether or not
a given finite set of dependencies logically implies anothergiven
dependency. Armstrong databases turned out to be a useful tool in
attacking this problem; they were introduced explicitly and stud-
ied in their own right by Fagin [8], but, in the case of functional
dependencies, were implicit in Armstrong’s earlier work [4].

DEFINITION 4.4. LetΣ andC be two sets of database depen-
dencies over the same schema.

An Armstrong database forΣ w.r.t.C is an instanceD such that
for everyσ ∈ C, we haveΣ |= σ if and only if D |= σ. In
other words, an Armstrong database forΣ w.r.t. C is an instance
that satisfies all the dependencies inC that are logically implied by
Σ, and no other dependencies inC.

An Armstrong database for a schema mappingM = (S,T,Σ)
w.r.t.C is an Armstrong database forΣ w.r.t.C.

A moment’s reflection tells that Armstrong databases give rise to
a new type of data examples for unique characterizations of schema
mappings. Indeed, letM = (S,T,Σ) andM′ = (S,T,Σ′) be
two schema mappings whereΣ andΣ′ are finite sets of s-t tgds,
and letC be a class of s-t tgds containingΣ andΣ′. An immediate
consequence of Definition 4.4 is that if a data example(I, J) is
an Armstrong database for bothM andM′ w.r.t. C, thenΣ ≡
Σ′. Thus, the existence of an Armstrong database yields a unique
characterization via a single data example.

In spite of their desirable properties, Armstrong databases need
not exist, even for fairly simple sets of database dependencies (see,
e.g., [11]). We now introduce a relaxation of the notion of anArm-
strong database.

DEFINITION 4.5. LetΣ andC be two sets of database depen-
dencies over the same schema.

An Armstrong basis forΣ w.r.t. C is a finite setD of instances
such that for every dependencyσ ∈ C, we have thatΣ |= σ if and
only if D |= σ, for every instanceD ∈ D.

An Armstrong basis for a schema mappingM = (S,T,Σ) w.r.t.
C is an Armstrong basis forΣ w.r.t.C.

It is clear that the existence of an Armstrong database implies
the existence of an Armstrong basis, since, ifD is an Armstrong
database forΣ w.r.t. C, then the singleton{D} is an Armstrong
basis forΣ w.r.t. C. The next result shows that the converse need
not be true.

PROPOSITION 4.6. LetM = (S,T,Σ) be a schema mapping,
whereΣ = {P (x) → P ′(x), Q(x) → Q′(x)}.

1. There does not exist an Armstrong database forM w.r.t. the
class of all LAV s-t tgds.

2. There is an Armstrong basis forM w.r.t. the class of all LAV s-t
tgds.

PROOF. For the first part and towards a contradiction, suppose
that(I, J) is an Armstrong database forM w.r.t. the class of LAV
s-t tgds. Consider the setΣ′ = {σ1, σ2}, whereσ1 is the LAV
s-t tgdP (x) → ∃yQ′(y), andσ2 is the LAV s-t tgdQ(x) →
∃yP ′(y). SinceΣ 6|= σ1 andΣ 6|= σ2, it follows that(I, J) 6|= σ1

and (I, J) 6|= σ2. This implies thatP (a) ∈ I andQ(b) ∈ I ,
for some valuesa and b. Since(I, J) |= Σ, we must have that
P ′(a) ∈ J andQ′(b) ∈ J . But this means that(I, J) |= Σ′,
which is a contradiction.

For the second part, letD = {D1,D2}, whereD1 = ({P (a)},
{P ′(a)}) andD2 = ({Q(a)}, {Q′(a)}). We will show thatD is an
Armstrong basis forM. Clearly,D1 |= Σ andD2 |= Σ. Next, let
σ be a LAV s-t tgd. We will show that ifΣ 6|= σ, thenD1 6|= σ or
D2 6|= σ. There are two cases to consider. First, suppose thatσ is of
the formP (x) → ∃yψ(x,y). SinceΣ 6|= σ, there must exist a data
example(I, J) such that(I, J) |= Σ and(I, J) 6|= σ. Hence,I |=
P (b), for some valueb, andJ |= ¬∃yψ(b,y). Since(I, J) |=
Σ, it follows thatP ′(b) ∈ J . Hence,({P (b)}, {P ′(b)}) 6|= σ.
Therefore,D1 6|= σ, sinceD1 is isomorphic to({P (b)}, {P ′(b)}).
Finally, suppose thatσ is of the formQ(x) → ∃yψ(x,y). A
similar argument is used to show thatD2 6|= σ.

As far as we can tell from perusing the literature, the notionof
an Armstrong basis is new; in particular, it has not been consid-
ered during the investigation of Armstrong databases. One plausi-
ble explanation for this is that much of the research on Armstrong
databases focused onunirelational databases (i.e., on databases
over a schema consisting of a single relation) and ontyped tgds(see
[8, 7] for the precise definition). It turns out that, in that context, an
Armstrong database exists if and only if an Armstrong basis exists.
The reason is that results in [8] imply that ifD = {D1, . . . ,Dk}
is an Armstrong basis for a setΣ of typed tgds w.r.t. the set of
all typed tgds over a unirelational schema, then the direct product
D1 × · · · ×Dk is an Armstrong database forΣ.

LetM = (S,T,Σ) andM′ = (S,T,Σ′) be two schema map-
pings whereΣ andΣ′ are finite sets of s-t tgds, and letC be a class
of s-t tgds containingΣ andΣ′. From Definition 4.5, it follows eas-
ily that if D = {D1, . . . ,Dk} is an Armstrong basis for bothM
andM′ w.r.t.C, thenΣ ≡ Σ′. Thus, the existence of an Armstrong
basis yields a unique characterization of the schema mapping via a
finite set of data examples.

The next simple proposition gives a connection between unique
characterizations via positive examples and Armstrong bases.

PROPOSITION 4.7. Assume thatM = (S,T,Σ) is a schema
mapping, whereΣ is a finite set of s-t tgds, andP is a finite set
of positive examples that uniquely characterizesM w.r.t. a class
C of s-t tgds. ThenP is an Armstrong basis forM w.r.t. C. The
converse is not true in general.

PROOF. To show thatP is an Armstrong basis forM w.r.t. C,
we need to show that for everyσ ∈ C, we haveΣ |= σ if and only
if D |= σ for everyD ∈ P . It is easy to see that ifΣ |= σ, then
D |= σ for everyD ∈ P , sinceP is a set of positive examples for
Σ. The converse direction follows immediately from the fact thatP
uniquely characterizesΣ. Assume thatD |= σ for everyD ∈ P .
Hence,P consists of positive examples forσ. SinceP uniquely



characterizesΣ w.r.t. C, it follows thatΣ ≡ σ and, in particular,
Σ |= σ.

As seen in Theorem 3.5, there is a schema mapping specified
by a single LAV s-t tgd that is not uniquely characterizable by any
finite set of positive and negative examples w.r.t. the classof all
LAV s-t tgds. In Section 5, however, we shall show that every finite
set of LAV s-t tgds has an Armstrong basis w.r.t. the class of all
LAV s-t tgds.

In the next section, we establish a necessary and sufficient con-
dition for the existence of an Armstrong basis.

4.3 Armstrong Bases and Universal Examples

In this section, we show that the existence of an Armstrong basis
is equivalent to unique characterizability by a finite set ofuniversal
examples. We begin with a lemma that will be used repeatedly in
the proofs.

LEMMA 4.8. Let C be a class of s-t tgds, letM = (S,T,Σ)
be a schema mapping whereΣ is a finite set of s-t tgds, and let
(I1, J1), . . . , (Ik, Jk) be data examples.

1. Assume that{(I1, J1), . . . , (Ik, Jk)} is a set of universal ex-
amples forM that uniquely characterizesM w.r.t. C, and let
J ′

1, . . . , J
′
k be target instances such thatJi is homomorphically

equivalent toJ ′
i , for all i ≤ k. Then the set{(I1, J ′

1), . . .,
(Ik, J

′
k)} is a set of universal examples that uniquely charac-

terizesM w.r.t.C.

2. Assume that{(I1, J1), . . . , (Ik, Jk)} is an Armstrong basis for
M w.r.t. C, and letJ ′

1, . . . , J
′
k be target instances such thatJ ′

i

is a solution forIi w.r.t.M andJ ′
i → Ji, for all i ≤ k. Then

the set{(I1, J ′
1), . . . , (Ik, J

′
k)} is an Armstrong basis forM

w.r.t.C.

In particular, if {(I1, J1), . . . , (Ik, Jk)} is an Armstrong basis
for M w.r.t.C, andJ ′

i is a universal solution forIi w.r.t.M, for
all i ≤ k, then the set{(I1, J ′

1), . . . , (Ik, J
′
k)} is an Armstrong

basis forM w.r.t.C.

PROOF. The proofs of both parts follow easily from the fact that
s-t tgds are preserved under target homomorphisms, that is,if σ is
a s-t tgd,(I, J) is a data example such that(I, J) |= σ, andK is a
target instance such thatJ → K, then(I,K) |= σ. We leave the
details of the first part to the reader. For the second part, observe
first that if Σ |= σ, then for everyi ≤ k, we have that(Ii, J

′
i) |=

σ because(I,J
′
i) |= Σ (sinceJ ′

i is a solution forIi w.r.t. M).
Assume now thatΣ 6|= σ, for someσ ∈ C. Then, by the definition
of an Armstrong basis, there is somei ≤ k such that(Ii, Ji) 6|= σ.
Since s-t tgds are preserved under target homomorphisms andsince
J ′

i → Ji, it follows that(Ii, J
′
i) 6|= σ.

THEOREM 4.9. Assume thatM = (S,T,Σ) is a schema map-
ping, whereΣ is a finite set of s-t tgds, andU is a finite set of uni-
versal examples that uniquely characterizesM w.r.t. to a classC
of s-t tgds. ThenU is an Armstrong basis forM w.r.t.C.

PROOF. Assume thatU = {(I1, J1), ..., (Ik, Jk)}. For each
i ≤ k, let chaseM(Ii) be the universal solution forIi w.r.t. M
obtained applying the naive chase procedure toIi. SinceJi is ho-
momorphically equivalent tochaseM(Ii) for all i ≤ k, by the
first part of Lemma 4.8, it immediately follows that the setU ′=
{(I1, chaseM(I1)), . . .,(Ik, chaseM(Ik))} is a set of universal ex-
amples that uniquely characterizesM w.r.t.C. Next, we will show
thatU ′ is an Armstrong basis forM w.r.t.C, which, by the second
part of Lemma 4.8 will imply thatU is an Armstrong basis forM
w.r.t.C.

Clearly,(Ii, chaseM(Ii)) |= Σ, for everyi ≤ k, hence ifσ ∈ C
and Σ |= σ, then (Ii, chaseM(Ii)) |= σ, for every i ≤ k. It
remains to show that ifσ ∈ C and Σ 6|= σ, then there is some
i ≤ k such that(Ii, chaseM(Ii)) 6|= σ. SinceΣ 6|= σ, it fol-
lows thatΣ 6|= Σ ∪ {σ}. Consequently, there is somei ≤ k
such thatchaseM(Ii) is not a universal solution forIi w.r.t. to
the schema mappingM′ = (S,T,Σ ∪ {σ}). We claim that
(Ii, chaseM(Ii)) 6|= σ. Towards a contradiction, suppose that
(Ii, chaseM(Ii)) |= σ. Hence,chaseM(Ii) is a solution forIi

w.r.t.M′. Consider the universal solutionchaseM′(Ii) for Ii w.r.t.
M′ obtained by chasingIi with Σ ∪ {σ}. ThenchaseM′(Ii) →
chaseM(Ii). At the same time, by the construction of the result of
the naive chase, we have thatchaseM(Ii) ⊆ chaseM′(Ii), hence
chaseM(Ii) → chaseM′(Ii). It follows that chaseM(Ii) is ho-
momorphically equivalent tochaseM′(Ii), hencechaseM(Ii) is a
universal solution forIi w.r.t.M′, which is a contradiction.

THEOREM 4.10. Assume thatM = (S,T,Σ) is a schema
mapping, whereΣ is a finite set of s-t tgds, andA is an Armstrong
basis forM w.r.t. a classC of s-t tgds. Then there is a finite setU
of universal examples that uniquely characterizesM w.r.t.C.

PROOF. Assume thatA = {(I1, J1), . . . , (Ik, Jk)} is an Arm-
strong basis forM w.r.t. C. By Lemma 4.8, the set
U1 = {(I1, chaseM(I1)), . . . , (Ik, chaseM(Ik))} is an Armstrong
basis forM w.r.t. C. LetU2 be the set of all pairs(I, chaseM(I))
such that|adom(I)| ≤ n, wheren is the maximum number of vari-
ables in the antecedents of s-t tgds inΣ. We will show thatU1 ∪U2

is a set of universal examples forM that uniquely characterizes
M w.r.t C, i.e., ifM′ = (S,T,Σ′) is a schema mapping such that
U1 ∪ U2 is a set of universal examples forM′, thenΣ ≡ Σ′.

We first show thatΣ |= Σ′. Let σ′ ∈ Σ′. SinceU1 is an Arm-
strong basis forM w.r.t. C, if Σ 6|= σ′, there exists1 ≤ i ≤ k
such that(Ii, chaseM(Ii)) 6|= σ′. This, however, contradicts our
assumption thatU1 ∪ U2 is a set of universal examples forM′.

Next, we show thatΣ′ |= Σ, that is, if (I ′, J ′) |= Σ′, then
(I ′, J ′) |= Σ. Let σ ∈ Σ be a s-t tgd of the formφ(x) →
∃yψ(x,y) and suppose thatI ′ |= φ(a), which means thatI ′

contains all the facts inφ(a). Since the number of distinct vari-
ables in the antecedent ofσ is at mostn, there must be a pair
(I, J) ∈ U2 such that (the instance consisting of the facts in)φ(a)
is isomorphic toI . If h is an isomorphism fromI to φ(a), then
I |= φ(h−1(a)). Sinceh is an isomorphism fromI to φ(a) and
sinceI ′ contains all the facts inφ(a), it follows thath is a homo-
morphism fromI to I ′. From Theorem 3.9 of [24], we know that
M′ reflects source homomorphisms. By definition, this means that
for all source instancesK, K′ and for all target instancesL, L′

such thatL is a universal solution forK andL′ is a solution for
K′, we have that every homomorphismh : K → K′ extends to
a homomorphism fromL to L′. (Note that in this definition, we
do not require the homomorphisms to be constant on adom(K).)
Thus, sincechaseM(I) is a universal solution forI w.r.t. M′, and
J ′ is a solution forI ′ w.r.t. M′, h can be extended to a homo-
morphismh′ : chaseM(I) → J ′. Since(I, chaseM(I)) |= σ and
I |= φ(h−1(a)), we have thatchaseM(I) |= ψ(h−1(a),b) for
someb, henceJ ′ |= ψ(h′(h−1(a)), h′(b)). Thus,J ′ |= ψ(a,b′),
for some valuesb′, which was to be shown.

By combining Theorems 4.9 and 4.10, we conclude that the ex-
istence of an Armstrong basis is equivalent to unique characteriz-
ability by universal examples.

COROLLARY 4.11. Assume thatM = (S,T,Σ) is a schema
mapping, whereΣ is a finite set of s-t tgds, andC is a set of s-t tgds.
Then the following statements are equivalent.



1. There is a finite setU of universal examples forM such thatU
uniquely characterizesM w.r.t.C.

2. There is an Armstrong basis forM w.r.t.C.

5. Characterizations via Universal Examples
In this section, we explore the capabilities of universal examples

in yielding unique characterizations of schema mappings specified
by s-t tgds.

THEOREM 5.1. If M is a schema mapping specified by a finite
set of LAV s-t tgds, then there is a finite setU of universal examples
for M such thatU uniquely characterizesM w.r.t. the class of all
LAV s-t tgds.

PROOF. Let M = (S,T,Σ) be a schema mapping, whereΣ
is a finite set of LAV s-t tgds. We will construct a finite setU of
universal examples and will show thatM is uniquely characterized
by U w.r.t. the class of all LAV s-t tgds.

Suppose that the source schemaS consists of the relation sym-
bolsR1, ..., Rs. For eachi ≤ s, let ri be the arity ofRi, and
let k be the maximum ofr1, . . . , rs. LetD be a set ofk distinct
elements, say,D = {d1, ..., dk}. For each relation symbolRi,
1 ≤ i ≤ s, and eachri-ary tupled of elements fromD, construct
the data example({Ri(d)}, chaseM({Ri(d)})). LetU be the set
of all data examples obtained via this construction. Clearly, every
member ofU is a universal example forM. In what follows, we
will show thatM is uniquely characterized byU w.r.t. the class
of all LAV s-t tgds. LetM′ = (S,T,Σ′) be a schema mapping,
whereΣ′ is a finite set of LAV s-t tgds, and assume that every
member ofU is a universal example forM′. We have to show that
Σ ≡ Σ′.

We first show thatΣ |= Σ′. Let (I, J) be a data example such
that (I, J) |= Σ and letRj(x) → ∃yφ(x,y) be a LAV s-t tgd
in Σ′ such thatI |= Rj(a), for some tuplea. We will show
that J |= ∃yφ(a,y). Observe that, by the construction ofU ,
the singleton instance{Rj(a)} must be isomorphic to a single-
ton instance{Rj(a

′)} used in the construction of the setU . For
notational simplicity, we will denote these singleton instances by
Rj(a) andRj(a

′), respectively. It follows that the naive chase
procedure on these instances produces isomorphic results,that is,
we have thatchaseM(Rj(a

′)) is isomorphic tochaseM(Rj(a))
via an isomorphism that mapsa′ to a. Also, by the construc-
tion of U , we have that(Rj(a

′), chaseM(Rj(a
′))) ∈ U . Since

(Rj(a
′), chaseM(Rj(a

′))) is a universal example forM′, it fol-
lows thatchaseM(Rj(a

′)) |= ∃yφ(a′,y), hence it must be that
chaseM(Rj(a)) |= ∃yφ(a,y). On the other hand, since(I, J) |=
Σ andRj(a) is a sub-instance ofI , we have thatJ is a solution
for Rj(a) w.r.t.M. SincechaseM(Rj(a)) is a universal solution
for Rj(a) w.r.t. M, this implies thatchaseM(Rj(a)) → J ; con-
sequently,J |= ∃yφ(a,y).

Next, we show thatΣ′ |= Σ. Suppose(I, J) |= Σ′. We will
show that(I, J) |= Σ. LetRj(x) → ∃yφ(x,y) be a LAV s-t tgd
in Σ and assume thatI |= Rj(a) for somea. We will show that
J |= ∃yφ(a,y). As before, by the construction ofU , we have that
Rj(a) must be isomorphic to a source instanceRj(a

′) such that
(Rj(a

′), chaseM(Rj(a
′))) ∈ U . Moreover,chaseM(Rj(a

′)) is
isomorphic tochaseM(Rj(a)) via an isomorphism that mapsa′

to a. Since the pair(Rj(a
′), chaseM(Rj(a

′))) is a universal ex-
ample forM′, it follows thatchaseM(Rj(a))) is a universal so-
lution for Rj(a) w.r.t. M′. On the other hand,J is a solution
for Rj(a) w.r.t.M ′ (sinceJ is a solution forI w.r.t. M′), hence
chaseM(Rj(a)) → J . At the same time, sincechaseM(Rj(a)) is

a universal solution forRj(a) w.r.t.M, we knowchaseM(Rj(a)) |=
∃yφ(a,y); consequently,J |= ∃yφ(a,y).

As an immediate consequence of Theorems 4.9 and 5.1, we ob-
tain the following result that every LAV schema mapping has an
Armstrong basis w.r.t. LAV s-t tgds.

COROLLARY 5.2. If M is a schema mapping specified by a
finite set of LAV s-t tgds, thenM has an Armstrong basis w.r.t. the
class of all LAV s-t tgds.

Recall that, by Proposition 4.6, there is a schema mapping spec-
ified by two LAV s-t tgds that has no Armstrong database w.r.t.the
class of all LAV s-t tgds. Thus, the preceding Corollary 5.2 cannot
be strengthened to assert that every schema mapping specified by a
finite set of LAV s-t tgds has an Armstrong database w.r.t. theclass
of all LAV s-t tgds.

Are there broader classes of schema mappings that have unique
characterizations via universal examples? Equivalently,are there
broader classes of schema mappings possessing Armstrong bases?

DEFINITION 5.3. ([24, Definition 2.6]) Letn be a positive in-
teger. We say that a schema mappingM = (S,T,Σ), whereΣ
is a finite set of s-t tgds, isn-modular if for every data example
(I, J) such that(I, J) 6|= Σ, there is a sub-instanceI ′ of I such
that |adom(I ′)| ≤ n and(I ′, J) 6|= Σ.

The concept ofn-modularity was introduced and studied in [24],
where schema-mapping languages were characterized in terms of
their structural properties. Intuitively,n-modularity means that ev-
ery negative example has an “explanation” of size at mostn. Ev-
ery schema mappingM = (S,T,Σ) specified by a finite set of
s-t tgds isn-modular for somen; in fact, n can be taken to be
the maximum number of variables occurring in the s-t tgds inΣ
(see [24, Proposition 2.7]). Note, however, that, ifS andT are
non-unary schemas, then there is no fixed numberk such that ev-
ery schema mappingM = (S,T,Σ) specified by a finite setΣ
of s-t tgds isk-modular. To see this, letE be a binary source re-
lation, letF be a binary target relation, and letσn be the GAV
s-t tgd∀x∀y(Pn(x, y) → F (x, y)), wherePn(x, y) asserts that
there is a path alongE-edges of lengthn from x to y. Then,σn

is (n + 1)-modular, but notn-modular. In contrast, every schema
mappingM = (S,T,Σ) specified by a finite set of LAV s-t tgds is
k-modular, wherek is the maximum arity of the relation symbols
in S.

Our next result shows that Theorem 5.1 can be extended to the
class of alln-modular schema mappings,n a positive integer. The
proof, which is a generalization of the proof of Theorem 5.1,will
be given in the full version of the paper.

THEOREM 5.4. Letn be a positive integer and letM = (S,T,Σ)
be a schema mapping, whereΣ is a finite set of s-t tgds. IfM is
n-modular, then there is a finite setU of universal examples such
thatU uniquely characterizesM w.r.t. the class of allm-modular
schema mappings,m ≥ n.

Consequently, everyn-modular schema mapping specified by a
finite set of s-t tgds has an Armstrong basis w.r.t. the class of all
m-modular schema mappings,m ≥ n.

The preceding Theorem 5.4, has a number of applications, in-
cluding the following one that covers many schema mappings oc-
curring in practice.

DEFINITION 5.5. An s-t tgdφ(x) → ∃yψ(x,y) is said to be
self-join-free on the sourceif none of the relation symbols inφ(x)
is repeated.



COROLLARY 5.6. Let M = (S,T,Σ) be a schema mapping
where Σ is a finite set of s-t tgds that are self-join-free on the
source. Then there is a finite setU of universal examples such that
U uniquely characterizesM w.r.t. the class of all s-t tgds that are
self-join-free on the source.

PROOF. It is easy to see that ifΣ consists of s-t tgds that are self-
join-free on the source, then the schema mappingM = (S,T,Σ)
is n-modular, wheren is the sum of the arities of all relation sym-
bols inS. Hence, by Theorem 5.4, there is a finite setU of universal
examples such thatU uniquely characterizesM w.r.t. the class of
all n-modular schema mappings and, in particular, w.r.t. the class
of s-t tgds that are self-join-free on the source.

6. Limitations of Universal Examples
So far, we have shown that several important classes of schema

mappings possess unique characterizations via universal examples.
In this section, we establish that, although superior to positive and
negative examples, universal examples have their own limitations.

By Proposition 4.3, the schema mappingM specified by the bi-
nary copy s-t tgdE(x, y) → F (x, y) can be uniquely characterized
via universal examples w.r.t. to both the class of all LAV s-ttgds
and the class of all GAV s-t tgds. Moreover, since the binary copy
s-t tgd is2-modular, Theorem 5.4 implies that, for everym ≥ 2,
M can be uniquely characterized via universal examples w.r.t. the
class of allm-modular s-t tgds. The next proposition reveals that
these results ofM do not extend to a unique characterization of
M via universal examples w.r.t. the class ofall s-t tgds. Its proof
illustrates the use of the connection between Armstrong databases
and unique characterizations via universal examples.

PROPOSITION 6.1. LetM be the schema mapping specified by
the binary copy s-t tgdE(x, y) → F (x, y). Then there is no finite
set of universal examples that uniquely characterizesM w.r.t. the
class of all s-t tgds.

PROOF. By Theorem 4.9, it suffices to show thatM does not
have an Armstrong basis w.r.t. the class of all s-t tgds. Towards
a contradiction, assume that{(I1, J1), . . . , (Ik, Jk)} is such an
Armstrong basis. Letn be a positive integer bigger than the max-
imum of |adom(Ii)|, for 1 ≤ i ≤ k. Also, letci be the length of
some cycle inIi, if Ii contains at least one cycle; ifIi contains no
cycle, then letci = 1. Take the productm = n · c1 · . . . · ck of these
quantities and consider the following s-t tgdσ′:

Pathm(x1, . . . , xm+1) → ∃y1 . . .∃ymCyclem(y1, . . . , ym),

where Pathm is a conjunction ofE-atoms asserting that the vari-
ablesx1, . . . , xm+1 form a path of lengthm in E, and Cyclem is
a conjunction ofF atoms asserting that the variablesy1, . . . , ym

form cycle of lengthm in F . Note thatσ′ is neither a LAV, nor
a GAV s-t tgd. Clearly,Σ 6|= σ′. In what follows, we will show
that (Ii, Ji) |= σ′, for all i ≤ k, which will contradict the as-
sumption that(I1, J1), ..., (Ik, Jk) form an Armstrong basis for
M w.r.t. the class of all s-t tgds. Indeed, take some(Ii, Ji), where
i ≤ k. If Ii contains no cycle, then(Ii, Ji) |= σ′ trivially, because
m > |adom(Ii)|. If Ii contains a cycle, thenJi must contain all
cycles ofIi (since(Ii, Ji) satisfies the binary copy s-t tgd). Now,
Ii clearly contains a path of lengthm. SinceJi contains all cycles
of Ii and sincem is a multiple of the length of one of the cycles in
Ii, it must be the case thatJi contains a cycle of lengthm; hence
(Ii, Ji) |= σ′.

We now address the question of whether or not schema mappings
specified by GAV s-t tgds possess unique characterizations via uni-
versal examples w.r.t. the class of all GAV s-t tgds. Note again that

the schema mappingM specified by the binary copy s-t tgd, which
is a GAV s-t tgd, possesses such a characterization. Our mainre-
sult in this section is that there are schema mappings specified by
quite natural and simple-to-describe GAV s-t tgds for whichthis is
not true, even if negative examples are also used. The proof of this
result will make use of sophisticated machinery from graph theory
that we describe next.

Back in 1959, Erdös [6] showed that there are graphs of arbitrar-
ily large girth and chromatic number, where the girth of a graph
is the size of its smallest cycle (cycles are assumed to have length
at least 3), and the chromatic number of a graph is the minimum
number of colors needed to color it. This result was proved via one
of the first applications of theprobabilistic method, that is, such
graphs were not constructed explicitly but, instead, were shown to
have a positive probability. Explicit constructions were given much
later; in particular, there is a family of explicitly constructed graphs,
known asRamanujan graphs, that have arbitrarily large girth and
chromatic number [20]. Later on, Nešetřil and Rödl [21] vastly
generalized Erdös’ result using the probabilistic method.Next, we
describe this generalization following the exposition in [14, Chap-
ter 3]. We begin with a definition.

DEFINITION 6.2. Letk be a positive integer. Two graphsG and
H are said to bek-equivalentif for every graphK with at mostk
vertices, there is a homomorphism fromG toK if and only if there
is a homomorphism fromH toK.

In Definition 6.2, the notion ofhomomorphismis the standard
one in graph theory: a homomorphism from a graphG = (V1, E1)
to a graphH = (V2, E2) is a functionh from V1 to V2 that
maps edges inE1 to edges inE2, i.e., ifE1(a, b) holds, then also
E2(h(a), h(b)) holds (thus, homomorphisms are not required to be
constant on some nodes)

THEOREM 6.3. ([14, Theorem 3.15])Letk andm be two pos-
itive integers. Then every graphG has ak-equivalent graphH of
girth at leastm.

The preceding Theorem 6.3 provides us with the ideal tool for
establishing the main result of this section. Before stating the main
result, we need to introduce one more concept.

Let S be a source schema consisting of a unary relation symbol
P and a binary relation symbolE, and letT be a target schema
consisting of a unary relation symbolR. If G = (V1, E1) is a
graph, then we writeQG to denote thecanonical conjunctive query
ofG, that is,QG is a Boolean conjunctive query asserting that there
are|V1| nodes connected the same way as the nodes ofG are. For
example, ifG is the complete graphKn onn nodes, thenQG is

∃x1 . . .∃xn

^

i6=j

E(xi, xj).

Let G = (V1, E1) be a graph and consider the first-order sen-
tence

∀x(P (x)∧QG → R(x)),

where the variablex is different from all variables occurring in
QG. This sentence is logically equivalent to a GAV s-t tgdσG

obtained by pulling the existential quantifiers inQG to the front
and turning them into universal quantifiers. In effect,σG is a unary
copy s-t tgd with a “trigger”. Specifically, assume thatI is a source
instance consisting of a unary relationP I and a binary relationEI .
Then the relationP I is copied to the target relation interpretingR,
providedEI satisfies the Boolean conjunctive queryQG, that is,
provided there is a homomorphism fromE1 to EI . We will refer
to the GAV s-t tgdσG as theunary copy s-t tgd with triggerG.



THEOREM 6.4. LetG = (V1, E1) be a graph containing a cy-
cle and letMG be the schema mapping specified by the unary copy
s-t tgd with triggerG.

1. There are no finite sets of universal examples and negativeex-
amples that uniquely characterizeMG w.r.t. the class of all
GAV s-t tgds.

2. There are no finite sets of positive examples and negative exam-
ples that uniquely characterizeMG w.r.t. the class of all GAV
s-t tgds.

PROOF. We will prove the first part; the proof of the second
part is similar. Assume that(I1, J1), . . . , (Is, Js) are universal ex-
amples forMG and (I ′1, J

′
1), . . . , (I

′
t, J

′
t) are negative examples

for MG. Let k be the maximum of|adom(Ii)|, 1 ≤ i ≤ s, and
of |adom(I ′j)|, 1 ≤ j ≤ t, and letm = girth(G) + 1, where
girth(G) stands for the girth ofG. By Theorem 6.3, there is a
graphH = (V2, E2) that isk-equivalent toG and has girth at least
m. Let σH be the unary copy s-t tgd with triggerH , and letMH

be the schema mapping specified byσH . We claim that the follow-
ing hold: (a)σG 6|= σH ; (b) each(Ii, Ji) is a universal example for
MH , 1 ≤ i ≤ s; and (c) each(I ′j , J

′
j) is a negative example for

MH , 1 ≤ j ≤ t.
We first show thatσG 6|= σH . Let I be the source instance in

which the unary relationP is interpreted by some non-empty setA
and the binary relation is interpreted by the edge relationE2 of H .
Sincegirth(H) > girth(G), there cannot be a homomorphism
from G to H . This implies that (the antecedent of)σG is never
“triggered” onI ; consequently,(I, ∅) |= σG. In contrast,(I, ∅) 6|=
σH , sinceσH is “triggered” onI , but the setA is not contained in
∅ (i.e., the emptyset).

Next, we show that each(Ii, Ji) is a universal example forσH .
There are two cases to consider. In the first case, assume thatthere
is an assignmenth from the variables ofσH to values in adom(Ii)
so that the antecedent ofσH becomes true. In particular,h is a
homomorphism fromE2 to the binary relationEIi of Ii. To show
thatJi is a universal solution forIi w.r.t. MH , we have to show
thatRJi = P Ii , because in this caseσH is “triggered” onIi. Since
|adom(Ii)| ≤ k andH is k-equivalent ofG, it follows that there
is a homomorphismg from E1 to the binary relationEIi of Ii,
Consequently,σG is “triggered” onIi and, sinceJi is a universal
solution forIi w.r.t. MG, we must have thatRJi = P Ii . In the
second case, assume that there is no assignment from the variables
of σH to values in adom(Ii) so that the antecedent ofσH becomes
true. In particular, there is no homomorphism fromE2 to the bi-
nary relationEIi of Ii. In this case, to show thatJi is a universal
solution for Ii w.r.t. MH , we must show thatRJi = ∅. Since
|adom(Ii)| ≤ k andH is k-equivalent ofG, it follows that there
is no homomorphism fromE1 to the binary relationEIi of Ii (ob-
serve that here we are using the other direction ofk-equivalence).
Consequently,σG is not “triggered” onIi and, sinceJi is a univer-
sal solution forIi w.r.t.MG, we must have thatRJi = ∅.

Finally, we show that each(I ′j , J
′
j) is a negative example for

MH . Since(I ′j , J
′
j) is a negative example forMG, there is an

assignmentg from the variables of the antecedent ofσG to Ii so
that the following hold: (a)g is a homomorphism fromE1 to the
binary relationEI′

j of I ′j ; (b) there is a valuea sucha ∈ P I′

j and

a 6∈ RJ′

j . Since|adom(I ′j)| ≤ k andH is k-equivalent ofG, it

follows that there is a homomorphismh from E2 to EI′

j . Hence,
σH is “triggered” onI ′j and so(I ′j , J

′
j) 6|= σH , becausea ∈ P I′

j

buta 6∈ RJ′

j .

COROLLARY 6.5. LetG = (V1, E1) be a graph containing a
cycle. The schema mappingMG specified by the unary copy s-t tgd

with triggerG has no Armstrong basis w.r.t. the class of all GAV s-t
tgds.

Our negative result about schema mappings specified by GAV
s-t tgds raises the following natural question: is the unique charac-
terizability via universal examples of GAV schema mappingsw.r.t.
the class of all GAV s-t tgds a decidable problem? More precisely,
is there an algorithm that solves the following decision problem:
given a schema mappingM = (S,T,Σ) specified by finite setΣ
of GAV s-t tgds, does there exist a finite set of universal examples
for M that uniquely characterizesM w.r.t. the class of all GAV
s-t tgds? In a followup paper [25], it is shown that this problem is
indeed decidable.

7. Concluding Remarks
Schema mappings specified by finite sets of s-t tgds are the most

extensively studied and widely used schema mappings in dataex-
change and data integration. A schema mappingM = (S,T,Σ),
whereΣ is a finite set of s-t tgds, constitutes a finite syntactic repre-
sentation of the infinite space of all data examples(I, J) such that
(I, J) |= Σ. In this paper, we addressed the following question:
Can this infinite space of data examples be “captured” by a finite
set of data examples? We formalized this question by considering
notions of unique characterizations of schema mappings viaa finite
set of examples of a certain “type” (or of certain “types”) w.r.t. a
class of s-t tgds. We showed that, although very natural, positive
and negative examples do not yield interesting unique characteri-
zations. For this reason, we focused on universal examples as can-
didates for unique characterizations of schema mappings. We de-
lineated the capabilities and limitations of universal examples, and,
in the process, unveiled an a priori unexpected connection with the
classical notion of an Armstrong database.

In this paper, we have considered positive and negative exam-
ples, and universal examples as natural candidates for unique char-
acterizations of schema mappings. Naturally, the following ques-
tion arises: Are there other “types” of data examples or combi-
nations of such “types” of examples that yield interesting unique
characterizations of rich classes of schema mappings?

It is worth pointing out that we regard the results reported here
as the first step towards a broader program aiming to develop a
methodology and a set of tools for understanding and refiningschema
mappings. Beyond unique characterizations, we plan to investigate
weaker ways in which a finite set of data examples “captures” a
schema mapping. In particular, given a finite set of data examples
of various “types”, is there a schema mapping that is “consistent”
with the given data examples? This problem is analogous to prob-
lems in computational learning, where the goal is to find a concept
that is compatible with a finite set of examples that are labeled pos-
itive or negative. It should also be noted that a framework and an
accompanying cost model for discovering a schema mapping based
on a single example were recently introduced and studied in [23].

In the long term, we envision the development of a system that
would be capable of generating data examples that illustrate a schema
mapping. Furthermore, after the data examples have been gener-
ated, a mapping designer would be allowed to modify the data ex-
amples at hand, and then the system would automatically fine-tune
the existing schema mapping based on the modified data examples.
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