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ABSTRACT

Schema mappings are high-level specifications that desthére-
lationship between two database schemas; they are coeditene
the essential building blocks in data exchange and datgratien,
and have been the object of extensive research investigat8ince
in real-life applications schema mappings can be quite ¢exng
is important to develop methods and tools for understandimg
plaining, and refining schema mappings. A promising apgrdac
this effect is to use “good" data examples that illustragestthema
mapping at hand.

We develop a foundation for the systematic investigatiodaté
examples and obtain a number of results on both the capedbilit
and the limitations of data examples in explaining and ustded-

ing schema mappings. We focus on schema mappings specifiedl-

by source-to-target tuple generating dependencies (s} tmd in-
vestigate the following problem: which classes of s-t tgas be
“uniquely characterized" by a finite set of data examples? iDu
vestigation begins by considering finite sets of positive: egative
examples, which are arguably the most natural choice ofedatan-
ples. However, we show that they are not powerful enoughetilyi
interesting unique characterizations. We then considite fiets of
universal examples, where a universal example is a paiistorg
of a source instance and a universal solution for that soumrce
stance. We unveil a tight connection between unique cheniaat
tions via universal examples and the existence of Armsthasgs
(a relaxation of the classical notion of Armstrong databas©n
the positive side, we show that every schema mapping spebifie
LAV s-t tgds is uniquely characterized by a finite set of ureat
examples with respect to the class of LAV s-t tgds. Moreotres,
positive result extends to the much broader classes-miodular
schema mappings; a positive integer. Finally, we show that, on
the negative side, there are schema mappings specified bysGAV
tgds that are not uniquely characterized by any finite setndf u
versal examples and negative examples with respect todls of
GAV s-t tgds (hence also with respect to the class of all si$)g
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Introduction and Summary of Results

Schema mappings are high-level specifications that desthido
relationship between two database schemas. Schema majping
considered to be the essential building blocks in data exgda
[18] and data integration [19] systems. The work on schema:ma
pings to date has branched into two different (and, to a lasge
tent, independent) directions of research. The first doads con-
cerned with the structural and algorithmic properties diesna
mappings as given objects, and with their uses in the exacofi
data exchange and data integration tasks. The secondialirést
concerned with the discovery of schema mappings between two
schemas, which is one of the first crucial steps taken towtuels
exchange or integration of data across database schemas.

Since real-life schemas can be complex, the discovery dfensa
mapping between two schemas can be a difficult task. Conse-
quently, several commercial systems, such as Altova Magpfor
Microsoft BizTalk Mapper, and Stylus Studio, as well as IBM’
research prototype Clio [13, 15], have been developed ititéde
the task of producing a schema mapping between two schertlas. A
these systems adopt a common architecture towards the eompl
tion of this task: First, a user interface that displays lmathemas
is used to facilitate the derivation of a set of corresporderbe-
tween attributes of relations of the two schemas. The sebwée
spondences is usually derived automatically or semi-aatioally
with the help of a schema-matching engine. After this, a sehe
mapping generation component derives a schema mapping&etw
the source schema and the target schema that is consistbrihevi
set of correspondences. Typically, there are multiple mehmap-
pings that are consistent with a set of correspondencesebata
source schema and a target schema, and most commerciahsyste
produce just one of them. Actually, different commerciadteyns
may produce semantically different schema mappings eveamwh
they are presented with the same set of correspondencesdretw
a source and a target schema [3]. In research prototypds,asuc
Clio, multiple schema mappings that are consistent witrstiteof



correspondences are generated, and one of them is desigisate
the default schema mapping.

Regardless of whether just a single schema mapping or multi-

tion symbol that isnot uniquely characterizable by any finite set
of positive and negative examples w.r.t. the class of LAVigds
(hence, also w.r.t. the class of all s-t tgds). Furthermoeeexhibit

ple schema mappings may be derived by these systems, there i@ GAV schema mapping for which a similar state of affairs bold

a clear and pressing need to illustrate the exact semarftite o
schema mappings that are generated. In fact, in real-lifdi-ap
cations, schema mappings can be quite complex even if they ar
derived manually. A promising approach to this effect is @ u
“good” data examples that illustrate the schema mappinguatlh
This approach is motivated from the long and venerable ticadi

of using test examples in understanding and debugging campu

with respect to the class of all GAV s-t tgds (hence, alsavttre
class of all s-t tgds).

In view of the failure of positive and negative examples telgi
unique characterizations beyond the very limited case lnérpas
consisting of unary relation symbols only, we consider théam
of auniversal examplewhere a data exampld, J) is a universal
example for a schema mappinig = (S, T, X) if J is a universal

programs. The use of data examples for schema mappings wassolution for I with respect taM. Universal solutions were intro-
advocated in [26], where the concept of a mapping example was duced in [9] and shown to be the preferred solutions to nelieei

introduced together with a set of operators for manipuptach
examples. More recently, data examples were used in [2]do ai
designers in refining various aspects of schema-mappirgificpe
tions; furthermore, in [5], the “behavior” of schema mapyswas
illustrated in the form of routes from source to target d&ayond
schema mappings, the problem of generating “illustrateedm-
ples for dataflow programs was recently investigated in.[22]

In this paper, we develop a foundation for the systematiesav
tigation of data examples for schema mappings and obtaima nu
ber of results that shed light on both the capabilities amdlith-
itations of data examples in explaining and understandihgsa

in data exchange because, among other reasons, they areshe m
general solutions and they represent (in a precise tedrsgoze)
the entire space of solutions for a given source instancees@h
properties of universal solutions suggest that universatmples
are indeed a natural type of data example to consider asdzadi
for unique characterizations of schema mappings.

Before delineating the capabilities and limitations ofuensal
examples, we unveil a very tight (and unexpected) connedies
tween the existence of unique characterizations of scheaa m
pingsM = (S,T,X) via universal examples and the existence
of an Armstrong basis fo, which is a relaxation of the classi-

mappings. We focus on schema mappings specified by source-to cal notion of an Armstrong database r As is well known, an

target tuple generating dependencies (s-t tgds, in sladst) known
as GLAV (global-and-local-as-view) dependencies; thasslof
schema mappings comprises the most extensively studiesinsch
mappings to date and contains, as important special chsadasses
of schema mappings specified by LAV (local-as-view) depande
cies and by GAV (global-as-view) dependencies.

Let S be a source schema afithe a target schema. We consider
schema mappingdt = (S, T, X), whereX is a finite set of s-t
tgds. A data example is a pdif, J) such thatl is a source instance
and J is a target instance. The central notion in our investigatio
is what it means to say that a schema mappMg= (S, T,X)
is uniquely characterized by a finite sétof data examples with
respect to (w.r.t.) a clags of s-t tgds of interest. InformallyM
is uniquely characterized h§ w.r.t. C if X is, up to logical equiv-
alence, the only finite sét’ of s-t tgds fromC such that each data
example inF has the “same relationship” witk as it has with
Y. This concept is formalized by making precise the notiorhef t
“relationship” between a data example and a set of s-t tgdsve\
shall see, this notion can be made precise in different akatays;
furthermore, the different notions obtained give rise féedent re-
sults concerning unique characterizations of schema mgppi

Our investigation of unique characterizations begins hysab
ering finite setsF of data examples that apositive examplesr
negative examplesvhere a data exampld, J) is a positive exam-
ple for a schema mappingyt = (S, T, %) if (I,J) = X, anditis
a negative example {fl, J) [~ X. Positive and negative examples
are arguably the most natural types of data examples todaemsi
in fact, these types of examples are the main objects of stuithe
context of computational learning (e.g., see [17]). We shioat if
the source schentd and the target schenil contain only unary
relation symbols, then every schema mapping = (S, T, Y),
whereX is a finite set of s-t tgds, can be uniquely characterized by
a finite set of positive and negative examples w.r.t. thesatdisll
s-t tgds. This result appears to be a promising first step,umit
fortunately, it does not extend to schema mappings ovecsand
target schemas that contain non-unary relation symboldeeld,

Armstrong database fof w.r.t. a clasC of database dependen-
cies is a databasP that satisfies all the dependencie<ithat are
logical consequences &f, and no other dependenciesdn Arm-
strong databases were extensively studied in the contelettabase
dependency theory in the 1970s and 1980s (see [7] for a Survey
Clearly, if X and ¥’ are two sets of s-t tgds and (f, J) is an
Armstrong database for bofi and X’ w.r.t. a clas<C of s-t tgds
containing® andY’, thenX is logically equivalent ta’. Thus,
Armstrong databases are ideal data examples for uniquaatkar
izations of schema mappings. Nevertheless, it is rare thelhema
mapping specified by s-t tgds possesses an Armstrong databas
For this reason, we introduce and study the following retiaxeof
the notion of an Armstrong database. B&be a set of s-t tgds and
letD = {(I1,J1),-..,(In, Jn)} be afinite set of data examples.
We say thatD is an Armstrong basis fo w.r.t. a classC of s-t
tgdsif for every s-t tgdo in C, we have that logically implies
o if and only if (I;, J;) = o, foreveryi = 1,...,n. Thisis a
strict relaxation of the notion of an Armstrong databaseabse
we show that there are LAV s-t tgds that have an Armstrongsbasi
w.r.t. the class of all LAV s-t tgds, but not an Armstrong detse.
Also, it is quite easy to see that#l is an Armstrong basis for both
¥ andY’ w.r.t. a clasgC containing: andY’, then is logically
equivalent toX’. Thus, when they exist, Armstrong bases readily
yield unique characterizations of schema mappings. We shatv
a schema mappingt = (S, T, %), whereX is a set of s-t tgds,
is uniquely characterized by a finite set of universal exasipl.r.t.
a classC of s-t tgds containingt if and only if 3 possesses an
Armstrong basis w.r.t. t@. This result reinforces the “goodness”
of universal examples and, at the same time, reveals an ra ymio
expected connection between (a natural relaxation of) ankégn
in database dependency theory and a key notion in data exehan
The following question naturally arises. Which classesbbsa
mappings specified by s-t tgds possess unique charactenzata
universal examples? Equivalently, which schema mappipgs-s
ified by s-t tgds possess Armstrong bases? On the positiee sid
we show that every schema mapping specified by LAV s-t tgds is

we exhibit a LAV schema mapping over a source schema with one uniquely characterized by a finite set of universal examples.

binary relation symbol and a target schema with one bindgy re

the class of LAV s-t tgds. We then extend this positive result



the class of:-modular schema mappingst = (S, T,X), n > 1,
where M is n-modular if wheneve(I, J) is a negative example
for 3, then there is a sub-instandé of I of size at most: such
that (I, J) is also a negative example fa. The notion ofn-
modularity was introduced in [24] and used to characteithema-
mapping languages in terms of their structural propertisally,

on the negative side, we show that there are natural schempa ma
pings specified by GAV s-t tgds that amet uniquely characterized
by any finite set of universal examples and negative examples

the class of GAV s-t tgds. The proof of this theorem makes use

of sophisticated results from graph theory, namely, a géization
of Erdds’ celebrated result [6] asserting the existenceraplgs of
arbitrarily large girth and chromatic number.

2. Preiminaries

A schemaR is a finite sequencéRy, ..., Ry) of relation sym-
bols, each of a fixed arity. Amstancel over R is a sequence
(RI,...,R}), where eachR! is a relation of the same arity as
R;. We shall often writeR; to denote both the relation symbol and
the relationR! that interprets it. Aratom (over R) is a formula
P(z1,...,xm), whereP is arelation symbol iR andz1, ..., zm
are variables, not necessarily distinctfa&t of an instancd (over
R) is an expressiot’ (v1, . .., v ), whereP is a relation symbol
in R andwy, ..., v, are values such théb, ..., v.,) € PT. We
assume that all instancésconsidered are finite, which means that
every relationR! is finite, for1 < i < k.

Schema M appings. A schema mappin a triple M = (S, T, X)
consisting of a source scher8a a target schemd’, and a sett

of constraints. We say that1 is specified by~. In general, the
constraints ir2 are formulas in some logical formalism. Here, we
will focus on schema mappings specified by source-to-tdugpde-
generating dependencies.

A source-to-target tuple-generating dependency (s-tigaYirst-
order sentence of the form

Vx(p(x) = Iy (x,¥)),

wherep(x) is a conjunction of atoms ov&, each variable ix oc-
curs in at least one atom ip(x), andy(x, y) is a conjunction of
atoms ovefT with variables inx andy. For simplicity, we will of-
ten drop the universal quantifievs in the above formula. Another
name for s-t tgds iglobal-and-local-as-vieWGLAV) constraints
(see [19]). They contain GAV and LAV constraints as importan
special cases.

A GAV (global-as-viewonstraint is a s-t tgd in which the right-
hand side is a single atom, i.e., it is of the form

x(p(x) = P(x)),

where P(x) is an atom over the target schema. A Lfdcal-as-
view) constraint is a s-t tgd in which the left-hand side is a single
atom, i.e., it is of the form

VX (Q(x) — Fyy(x,y)),

whereQ(x) is an atom over the source schema.

Satisfaction and Logical Implication. The symbol= will be used
to denote several different notions. Jfis a set of first-order sen-
tences and is an instance, the® = 3 means thaD satisfies
every sentence ix. If o is a first-order sentence, théh = o
denotedogical implication i.e., it means that for every (finite or
infinite) instanceD such thatD = 3, we have thaD = o. If &'

is a set of first-order sentences, tier= 3’ means that for every
o’ € ¥, we have that: |= ¢’. Finally,¥ = ¥’ denotes that and
Y arelogically equivalenti.e.,> = X' andY’ | 3.

The notion of logical implication is defined using all (finkead
infinite) instances. There is a companion notioragfical impli-
cation in the finitedenoted by=rin, whereX |=rin o means that
for every finite instancé such thatD = X, we have thaD = o.

In general,= and =ri, are different notions (clearly, £ E o,
thenX |=rin o, but the converse need not be true). Itis easy to see,
however, that these two notions coincide on finite sets aigsid.
Specifically, assume that is a finite set of s-t tgds and is a s-t
tgd. ThenX |= o if and only if ¥ =rin o. For the non-trivial di-
rection, assume that =ri, o butX |~ o. Let (I, J) be such that
(I,J) =X, but(1,J) ~ o. Assume thatr is o(x) — Jzi(x, z).
Then there is a tupla such thatl = ¢(a) andJ = Vz—y(a, z).
Let Iy be the sub-instance df consisting of the factg(a). As-
sume thatt consists of the s-t tgds1,...,o0r. Then there are
finite sub-instanced; of J such that(Zo, J ) Eoi,i=1,...,k
Let Jo be the union of all/;, 1 < i < k. Then(lo, Jo) is aflnlte
instance that satisfiés but noto, which is a contradiction.
Solutions, Homomor phisms, and Universal Solutions. We now
review some basic notions and results from [9]. We assumenina
have a fixed infinite se€onst of constants and a fixed infinite set
Var of nulls that is disjoint fronConst. We write adoniI) for the
active domairof an instancd, that is, the set of all values occur-
ring in I. All values occurring in a source instanEare assumed to
be constants, i.e., addif) C Const. In contrast, target instances
have values irConst U Var. Let M = (S,T,X) be a schema
mapping. IfI is a source instance, thersalution forl w.rt. M is
atarget instancd such tha{7, J) = X. From a semantic point of
view, a schema mappinyt = (S, T, X) can be identified with the
collection{(1, J) : I is a source instance anklis a solution for/ }.

Assume that<, K’ are two instances over the target schéima
A function h from ConstUVar to Constu Var is ahomomorphism
from K to K’ if for every ¢ € Const, we have that(c) = ¢, and
for every relation symboR in T and every tupldas,...,an) €
R¥, we have thath(a1),...,h(an)) € RX. We write K —
K’ to denote that there is a homomorphism frémto K’. The
instancesK and K’ are said to behomomorphically equivalerit
K — K andK' — K.

Given a schema mappinyt = (S, T, X) and a source instance
I, auniversal solution forl w.rt. M is a solutionJ for I w.r.t.
M such that for every solutiod” for I w.r.t. M, we have that
J — J'. Intuitively, universal solutions are the “most general® s
lutions among all solutions faf, hence the preferred solutions to
materialize in data exchange. Clearly, if bothand.J> are univer-
sal solutions fod, thenJ; andJ> are homomorphically equivalent.
Chase. The chase procedurés an algorithm that was originally
designed to reason about database dependencies (seeufl), b
turned out to have numerous applications to data exchambdaaa
integration. In particular, as shown in [9], ¥ = (S, T,X)is a
schema mapping specified by s-t tgds, then the chase preceaiur
be used to produce, given a source instahce universal solution
chase((I) for I in time bounded by a polynomial in the size of

There are several variants of the chase procedure. Herejlive w
consider the simplest such variant, called tiaéve chase. Given
a source instancg, the naive chase produces a universal solution
chase\(([I) for I as follows. For every s-t tgd

Vx(p(x) = Iy (x,y))

in X and for every tuplea of constants from ado(d) such that

I | ¢(a), we add tochasey (1) all facts iny(a, b), whereb is

a tuple of new nulls interpreting the existential quantifradiables

y. Thus, nulls are created independently each time and wtithou
considering whether the right-hand side of the s-t tgd atlftauld

be satisfied using facts that involve nulls created earlier.




3. Positive and Negative Examples that there are finitely many finite sets of s-t tgds in candrfaan.
This canonical form is defined as follows. We say that a s-isgd

Let S be a source schema afida target schema. Alata ex- in canonical formif either it is a GAV s-t tgd of the form

ampleis a pair(I, J) such thatl is a source instance antlis a
target instance. Assume now th&t = (S, T,X) is a schema G1(z1) A oo A dr(zr) — T(z5),
mapping, where: is a finite set of s-t tgds. This is a finite syntac-

tic description of a schema mapping. As mentioned in Se@jon  Or a (non-GAV) s-t tgd of the form

from a semantic point of viewM can be identified with the infi-

nite collection{(I, J) : (I, J) = X}. Our main goal in this paper S1(@) A A drl@e) = 3y v (y),
is to address the following question: can this infinite adilen of where (a) each formula; (z;) is a conjunction of distinct source
data examples be “captured" by a finite set of data examples. | relational atoms that share the same variableb) if i # [, then
other words, doed1 have a finite semantic description in terms of  the set of relational symbols ip; (x;) is different from the set of
data examples. We make this question precise by consideifing  relational symbols iny; (z;); (c) T is a relation symbol ifT’; and

ferent “types” of data examples and stipulating that a fingeF (d) ¥(y) is a conjunction of distinct atoms ovér that share the
of examplesuniquely characterizest = (S, T, X) w.r.t. a class same variabley. SinceS and'T are unary schemas, it is easy to
C of s-t tgdsif the following holds: for every finite set’ of s-t see that there are finitely many finite sets of s-t tgds in ciaabn

tgds fromC such that each example jf has the same “type” w.r.t. form. Furthermore, using suitable rewrite rules, it can bewsn
¥ as it has w.r.tY’, we have thats = ¥'. It should be noted  that every finite seE of s-t tgds is logically equivalent to a finite

that, in addition to the concept of logical equivaleneg),(two set of s-t tgds in canonical form.[J

other notions of equivalence between schema mappings lesre b

considered, namelgata-exchange equivalen@nd conjunctive- In effect, the proof of the preceding Lemma 3.3 has the flavor
query equivalencl0]. In general, these three notions of equiv- of a quantifier-elimination result about the class of s-tstgaer
alence are distinct; however, they are known to coincide-foigds unary source and target schemas. It is well known that fidro
[10]. Thus, the preceding concept of unique charactednatf a logic over unary schemas admits quantifier elimination @r¥
schema mapping amounts to asserting that for everyysef s-t ample, see [16, page 66]). However, Lemma 3.3 is a more re-

tgds fromC such that each example jfi has the same “type” w.r.t.  fined result that cannot be derived (at least in a straigiveiod
¥ as it has w.r.t>’, we have thak is data-exchange equivalent or  way) from the quantifier-elimination result for first-ordegic over

conjunctive-query equivalent o', unary schemas.

We begin by considering positive and negative examples, two
natural types of examples that have been widely used in campu THEOREM 3.4. LetS be a unary source schema afia unary
tional learning [17]. target schema. I\ = (S, T, X) is a schema mapping such that

3 is afinite set of s-t tgds, thet can be uniquely characterized

DEFINITION 3.1. LetM = (S, T, X) be a schema mapping.
M=(ST,%) PPIng by finite sets of positive and negative examples with respeabe

A positive exampldor M is a data examplél, J) such that

(I,J) X class of all s-t tgds.
A negative exampléor M is a data examplg/, J) such that PROOF. By Lemma 3.3, there are, up to logical equivalence,
(I,J) 2. U finitely many schema mappings specified by finite sets of sd.tg

Consequently, there are finitely many schema mappikgs =
DEFINITION 3.2. LetM = (S, T, ) be a schema mapping, (S, T, %’) specified by a finite set of s-t tgds such thag ¥'. Let
let’ ? and A be two finite sets of positive and, respectively, negative M; = (S, T,1),..., M;, = (S, T, Z;) be an exhaustive list of

examples forM, and letC be a class of s-t tgds. all (up to logical equivalence) such schema mappings. Toere

We say thatM is uniquely characterized by and N w.r.t. C for eachi < k, we have thak [~ X; or 3; [~ X. We construct a
if for every finite set2’ C C such thatP and\ are sets of pos-  finite setP of positive examples faM and a finite setV” of nega-
itive and, respectively, negative examples for the schemaping tive examples for as follows. Initially, both® and\ are empty.
M’ = (S, T,Y), we have that is logically equivalent t&’ (in For eachM;, i < k, there are two cases to consider.
symbols,> = ). O

Case 1.X [= ;. In this case, let!, J) be a data example such
that(Z,J) = X and(Z, J) [~ ;. We add(Z, J) to P.
3.1 Unary Schemasand Unique Characterizations Case 2.3; £ X. Inthis case, le{I, J) be a data example such
that(Z,J) E %, and(Z,J) £ =. We add(I, J) to V.

By construction,P is a finite set of positive examples fav1,
and\V is a finite set of negative examples farf. Moreover, it
easy to verify that the sef8 and " uniquely characterizat w.r.t.
the class of all s-t tgds. ]

A schemaR = (Ri,..., Rk) is said to beunary if every re-
lation symbolR; in R is unary (has arity 1). In this section, we
show that if both the source and the target schemas are thary,
every schema mapping specified by a finite set of s-t tgds can be
uniquely characterized by finite sets of positive and negatkam-
ples w.r.t. the class of all s-t tgds. The proof makes essamnte of
the following lemma. 3.2 Limitationsof Positive and Negative Examples

The preceding Theorem 3.4 does not extend to schema map-
pings over source and target schemas that contain non-ueary
lation symbols. As a matter of fact, if the source and thedtrg
schema contain binary relation symbols, then there is ansahe
mapping M specified by a LAV s-t tgd such thab finite sets of

PrROOF (Hint) Assume tha$S andT are unary schemas. We positive and negative examples uniquely charactefizev.r.t. to
show that every finite set of s-t tgds overS and T is logically the class of all LAV s-ttgds. Furthermore, a similar resolds for
equivalent to a finite set of s-t tgds in a certaanonical formand GAV s-t tgds.

LEMMA 3.3. LetS be a unary source schema afitla unary
target schema. Then, up to logical equivalence, there aitelfin
many schema mappings! = (S, T, ) such that® is a finite set
of s-t tgds.



THEOREM 3.5. LetS be a source schema consisting of a single

binary relation symbolP and letT be a target schema consisting
of a single binary relation symbd?’.

1. There is a schema mapping specified by a single LAV s-t tgd
such thatM is not uniquely characterizable by any finite sets

of positive and negative examples with respect to the class o

all LAV s-t tgds.

2. There is a schema mappidg!’ specified by a single GAV s-t
tgd such thatM'’ is not uniquely characterizable by any finite
sets of positive and negative examples with respect to &s cl
of all GAV s-t tgds.

PROOF. For the first part, let be the LAV s-t tgd
P(z,y) — 32P'(z, 2).

Assume thafP and.\ are finite sets of positive and, respectively,
for M = (S, T, {c}). We will show that there is a LAV s-t tgd’

such that # o', yetP and\ are sets of positive and, respectively,
negative examples fat’. Letn be a positive integer bigger than

the maximum size of the active domains of the data examples in

N, and lete’ be the s-t tgd
P(z,y) — 3z1...32,. Ky,

whereK,, asserts thati, ..., z, form ann-clique in P’. To see
thato # o', let (1, J) be the data example such that {(1,2)}
and J is an-clique. Then(I,J) & o', but(1,J) ¥ o, hence
o o

We now show that everyl, J) € P satisfiess’. Supposd =
P(a,b) for some (not necessarily distinct) valugsandb. Since
(I,J) = o, it follows that.J must contain a facP’(c, c¢) for some
valuec. Hence,J |= Jz;...3z, K, (by mapping every variable
z;, 1 < i < n, toc). Next, we show that every member A&f is
a negative example far’. If (I,J) € N, then,(I, J) }~ o, there
are values: andb such thatl = P(a,b). Towards a contradiction,
assume that there is a homomorphigm 3z;...3z, K, — J.
Sincen is greater than the number of distinct valuesJinthere
must be two variables; andz;such that # j andh(z;) = h(z;).
Hence,P’ (h(x;), h(x;)) € J and so the mapping, whereg(z) =
h(z;), is a homomorphism frordzP’(z, z) to J. Thus,(I, J) =
o, which is a contradiction.

The second part of this theorem follows from the proof of Theo
rem6.4. [

4. Universal Examples and Armstrong Bases

The limitations of positive and negative examples sugdextta
stronger type of data example should be considered. Indhttos,
we introduceuniversal exampleand show them to be intimately
connected withArmstrong basesa relaxation of the classical no-
tion of an Armstrong database studied in the context of degecy
theory a long time ago.

4.1 Universal Examples

DEFINITION 4.1. LetM = (S, T, ) be a schema mapping
in which X is a finite set of s-t tgds. A data examplg, J) is a
universal example fopM if J is a universal solution fof w.r.t.
M. O

As discussed in Section 2, universal solutions are the peafe
solutions to materialize in data exchange because (by whga\of
ing homomorphisms to every solution) they are the “most gahe
solutions. Furthermore, as shown in [9], universal sohgioep-
resent the entire space of solutions in the following seniset

Figure 1: Three universal examplesthat uniquely characterize
E(z,y) — F(z,y) w.rt. GAV st tgds.

M = (S, T,X) be a schema mapping in whic¢his a set of s-t
tgds, and let(,, Ji) and (12, J2) be two universal examples for
M. Then the space of solutions fér coincides with the space
of solutions forI if and only if J; and J> are homomorphically
equivalent. These properties motivate universal exangdesandi-
dates for unique characterizations of schema mappings.

DEFINITION 4.2. LetM = (S, T, ) be a schema mapping in
which X is a finite set of s-t tgds, Iét be a finite set of universal
examples forM, and letC be a class of s-t tgds.

We say thatM is uniquely characterized by w.r.t.C if for every
finite set™’ C C such that/ is a set of universal examples for the
schema mappingt’ = (S, T, Y’), we have thak = 3'. O

Let M = (S, T, {o}) be the schema mapping wheres the
LAV s-ttgd P(z,y) — 32P’(z,2). As seen in the proof of The-
orem 3.5, no finite sets of positive and negative examplesueaty
characterizeM w.r.t. the class of all LAV s-t tgds. In contrast,
there is a finite set of universal examples that uniquely atyar
terizes M w.r.t. the class of all LAV s-t tgds. Indeed, it is not
hard to verify that the sef(I1, J1), (I2,J2)} has this property,
wherel; = {P(a,b)}, 1 = {P'(N,N)}, I = {P(a,a)},

Jo = {P'(N,N)}, andN is a null. Thus, universal examples go
beyond what positive and negative examples can offer. later
however, we will see that universal examples have their dmi |
tations. For now, we illustrate further the capabilitiesuofversal
examples by establishing unique characterizations forbthary
copys-t tgd, which is both a LAV and a GAV s-t tgd.

PROPOSITION 4.3. Let M be the schema mapping specified by
the binary copy s-ttgd(z,y) — F(x,y).
1. M is uniquely characterizable by a finite set of universal ex-
amples w.r.t. the class of all LAV s-t tgds.

2. M is uniquely characterizable by a finite set of universal ex-
amples w.r.t. the class of all GAV s-t tgds.

PROOF (Sketch)For the first part, it can be shown that the set
consisting of the universal examplé$li, J.), (I2, J2)}, where
L = {E(a7b)}7 J1 = {F(a7 b)}7 I = {E(a7 CL)}, J2 = {F(a7 a)}’
uniquely characterizedt w.r.t. the class of all LAV s-t tgds. Ac-
tually, as we will see later on, this will also follow from arggral
result to the effect that every schema mapping specified by a fi
nite set of LAV s-t tgds is uniquely characterized by a finib¢ af
universal examples w.r.t. the class of all LAV s-t tgds.

For the second part, |t be the set consisting of the three uni-
versal example$!y, J1), (12, J2), (I3, Js) depicted in Figure 1.
With some work, it can be shown thdtuniquely characterize1



w.r.t. the class of all GAV s-ttgds. A detailed proof will bvgn in
the full version of the paper; here we limit ourselves intoyiding

an informal explanation. Let’ = (S, T, Y’) be a schema map-
ping such that)' is a finite set of GAV s-t tgds and the examples in
Figure 1 are universal examples &’ The first examplé!:, Ji)

is used to show that |= ¥'. Indeed, ifS [£ X', then one can eas-
ily show thatJ; is not a solution forl; w.r.t. M’. The remaining
two exampleg I, J2) and(Is, J3) are used to show that’ = ;
this is based on the observation that every source factsltafied
over to the target by the copy tgd is isomorphidioor Is. [

The results in the preceding Proposition 4.3 inevitablgedhe
question as to whether or not the schema mappitgspecified
by the binary copy s-t tgd can also be uniquely charactenzad
universal examples w.r.t. the classalf s-t tgds. In Section 6, we
will show that such a unique characterization is not truefér

4.2 Armstrong Databases and Armstrong Bases

Database dependencies are integrity constraints, typieat
pressed as formulas in some fragment of first-order logice Th
study of database dependencies was the focus of extensearch
activity during the 1970s and the early 1980s (see [12] foura s
vey). A central problem in this area is tivaplication problenfor
dependencies, which is the problem of determining whethaob
a given finite set of dependencies logically implies anotfieen
dependency. Armstrong databases turned out to be a usefimhto
attacking this problem; they were introduced explicitlydastud-
ied in their own right by Fagin [8], but, in the case of functé
dependencies, were implicit in Armstrong’s earlier work [4

DEFINITION 4.4. LetX andC be two sets of database depen-
dencies over the same schema.

An Armstrong database fot w.r.t.C is an instanceD such that
for everyo € C, we haveX |= o ifand only if D = o. In
other words, an Armstrong database ¥omwv.r.t. C is an instance
that satisfies all the dependencie£ithat are logically implied by
¥, and no other dependenciesdn

An Armstrong database for a schema mappiRt= (S, T, X)
w.r.t.C is an Armstrong database farw.r.t.C. O

A moment’s reflection tells that Armstrong databases gse to
a new type of data examples for unique characterizationshafraa
mappings. Indeed, levt = (S, T,X) and M’ = (S, T,’) be
two schema mappings wheke and ¥’ are finite sets of s-t tgds,
and letC be a class of s-t tgds containidgand®’. An immediate
consequence of Definition 4.4 is that if a data examle/) is
an Armstrong database for boft and M’ w.r.t. C, thenX =
Y. Thus, the existence of an Armstrong database yields a @niqu
characterization via a single data example.

In spite of their desirable properties, Armstrong datapased
not exist, even for fairly simple sets of database deperidsifsee,
e.g., [11]). We now introduce a relaxation of the notion offam-
strong database.

DEFINITION 4.5. LetX andC be two sets of database depen-
dencies over the same schema.

An Armstrong basis foX w.r.t. C is a finite setD of instances
such that for every dependeneyc C, we have thakt |= o if and
only if D = o, for every instancé € D.

An Armstrong basis for a schema mappitng = (S, T, X) w.r.t.

C is an Armstrong basis fot w.r.t.C. O

It is clear that the existence of an Armstrong database @npli
the existence of an Armstrong basis, sinceDifis an Armstrong
database fob w.r.t. C, then the singleto{ D} is an Armstrong
basis forX w.r.t. C. The next result shows that the converse need
not be true.

PROPOSITION 4.6. Let M = (S, T, X) be a schema mapping,
whereX = {P(z) — P'(z), Q(z) — Q'(z)}.
1. There does not exist an Armstrong databaseférw.r.t. the
class of all LAV s-t tgds.

2. There is an Armstrong basis fovrl w.r.t. the class of all LAV s-t
tgds.

PrROOF For the first part and towards a contradiction, suppose
that(Z, J) is an Armstrong database favf w.r.t. the class of LAV
s-t tgds. Consider the s&' = {01, 02}, whereo; is the LAV
s-t tgd P(z) — JyQ'(y), andos is the LAV s-t tgdQ(z) —
JyP’(y). SinceX £ o1 andX £ oo, it follows that (1, J) £ o1
and (I,J) ¥ o2. This implies thatP(a) € I andQ(b) € I,
for some values: andb. Since(I,J) = X, we must have that
P'(a) € JandQ'(b) € J. But this means thatl,J) = ¥/,
which is a contradiction.

For the second part, 1€ = {D1, D>}, whereD; = ({P(a)},
{P'(a)})andD: = ({Q(a)}, {Q’(a)}). We will show thatD is an
Armstrong basis folM. Clearly, D, = X andD- = X. Next, let
o be a LAV s-t tgd. We will show that i (£ o, thenD; £ o or
D» [~ 0. There are two cases to consider. First, supposertisatf
the formP(z) — Jyy(z,y). SinceX }= o, there must exist a data
example(1, J) such that(1, J) = X and(I, J) [~ o. Hence,l =
P(b), for some valueh, andJ = —3yy(b,y). Since(I,J)
¥, it follows that P'(b) € J. Hence,({P(b)}, {P'(b)}) = o.
Therefore,D; = o, sinceD is isomorphic ta{P(b)}, {P'(b)}).
Finally, suppose that is of the formQ(z) — Jyy(z,y). A
similar argument is used to show thas = 0. O

As far as we can tell from perusing the literature, the notibn
an Armstrong basis is new; in particular, it has not been idens
ered during the investigation of Armstrong databases. Qaesp
ble explanation for this is that much of the research on Aromgt
databases focused amirelational databases (i.e., on databases
over a schema consisting of a single relation) ant/pad tgdgsee
[8, 7] for the precise definition). It turns out that, in thahtext, an
Armstrong database exists if and only if an Armstrong badst®
The reason is that results in [8] imply thatlif = {D,..., Dy}
is an Armstrong basis for a sét of typed tgds w.r.t. the set of
all typed tgds over a unirelational schema, then the diremyrct
D; x --- x Dy is an Armstrong database far.

Let M = (S, T,X) andM’ = (S, T,¥’) be two schema map-
pings whereZ andX’ are finite sets of s-t tgds, and [ebe a class
of s-ttgds containing@ andX’. From Definition 4.5, it follows eas-
ily that if D = {D., ..., Di} is an Armstrong basis for both1
and M’ w.r.t.C, then = X', Thus, the existence of an Armstrong
basis yields a unique characterization of the schema mgmra
finite set of data examples.

The next simple proposition gives a connection betweenugniq
characterizations via positive examples and Armstrong$as

PROPOSITION 4.7. Assume thai\ = (S, T, X) is a schema
mapping, wherex is a finite set of s-t tgds, ang® is a finite set
of positive examples that uniquely characteriZesw.r.t. a class
C of s-t tgds. TherP is an Armstrong basis foM w.rt. C. The
converse is not true in general.

PROOF To show thatP is an Armstrong basis faM w.r.t. C,
we need to show that for evety € C, we haveX = ¢ if and only
if D |= o foreveryD € P. Itis easy to see that i£ |= o, then
D = o foreveryD € P, sinceP is a set of positive examples for
3. The converse direction follows immediately from the fduettt?
uniquely characterizes. Assume thatD |= o for everyD € P.
Hence, P consists of positive examples fet. SinceP uniquely



characterize& w.r.t. C, it follows thatYX = ¢ and, in particular,

YEo.

Clearly, (1;, chasew(1:)) = %, for everyi < k, hence ifc € C
andX | o, then(l;,chaseu(l;)) = o, for every: < k. It

As seen in Theorem 3.5, there is a schema mapping specifiedremains to show that i € C andX (£ o, then there is some

by a single LAV s-t tgd that is not uniquely characterizabjeany
finite set of positive and negative examples w.r.t. the ctdsall
LAV s-ttgds. In Section 5, however, we shall show that evanidi
set of LAV s-t tgds has an Armstrong basis w.r.t. the classllof a
LAV s-ttgds. O

In the next section, we establish a necessary and sufficbent ¢
dition for the existence of an Armstrong basis.

4.3 Armstrong Bases and Universal Examples

In this section, we show that the existence of an Armstroisisba
is equivalent to unique characterizability by a finite setioizersal
examples. We begin with a lemma that will be used repeatedly i
the proofs.

LEMMA 4.8. LetC be a class of s-t tgds, let = (S, T, X)
be a schema mapping whekis a finite set of s-t tgds, and let
(I1,J1),. .., (Ix, Ji) be data examples.

1. Assume thaf(I1, J1),..., Ik, Ji)} is a set of universal ex-
amples forM that uniquely characterized1 w.r.t. C, and let
Ji,...,Jj, betarget instances such thatis homomorphically
equivalent toJ;, for all i < k. Then the se{(I1, J1),...,
(I, J;,)} is a set of universal examples that uniquely charac-
terizesM w.r.t.C.

2. Assume thaf(I1, J1),. .., (Ix, Jk)} is an Armstrong basis for
Mw.rt.C, and letJs, ..., J; be target instances such thaf
is a solution forl; w.r.t. M and J] — J;, for all i < k. Then
the set{(I1, J1),..., (Ix, J;)} is an Armstrong basis faM
w.rt.C.

In particular, if {(I1, J1), ..., (Ix, Jk)} is an Armstrong basis
for M w.r.t.C, andJ; is a universal solution fof; w.r.t. M, for
all i < k, then the sef(I1, J1), ..., (I, J;,) } is an Armstrong
basis forM w.r.t.C.

PROOF The proofs of both parts follow easily from the fact that
s-t tgds are preserved under target homomorphisms, thabiss
as-ttgd,(1,J) is a data example such that, J) = o, andK is a
target instance such thdt— K, then(I, K) = 0. We leave the
details of the first part to the reader. For the second paserok
first that if = |= o, then for everyi < k, we have thatl;, J;) E
o because(l,J;) = I (sinceJ; is a solution forl; w.r.t. M).
Assume now thakt j~ o, for somes € C. Then, by the definition
of an Armstrong basis, there is some k such that(l;, J;) |~ o.
Since s-t tgds are preserved under target homomorphissirarel
Ji — J;, itfollows that(I;, J;) ¥ 0. [

THEOREM 4.9. Assume thatM = (S, T, X) is a schema map-
ping, whereX is a finite set of s-t tgds, arid is a finite set of uni-
versal examples that uniquely characterizes w.r.t. to a classC
of s-t tgds. Theid is an Armstrong basis faM w.r.t.C.

PrROOF Assume thal/ = {(I1,J1),..., (Ix, Jx)}. For each
i < k, let chasev((I;) be the universal solution fof; w.r.t. M
obtained applying the naive chase proceduré; t&SinceJ; is ho-
momorphically equivalent tehase.(Z;) for all ¢ < k, by the
first part of Lemma 4.8, it immediately follows that the €t
{(I1,chasew(I1)),....(Ix,chaseu(Ix))} is a set of universal ex-
amples that uniquely characteriz&4 w.r.t.C. Next, we will show
thatl/’ is an Armstrong basis fat1 w.r.t. C, which, by the second
part of Lemma 4.8 will imply thai/ is an Armstrong basis faf1
w.r.t.C.

1 < k such that(l;, chaseu(l;)) ¥~ o. SinceX - o, it fol-
lows thatX =~ ¥ U {o}. Consequently, there is some< k
such thatchasey(I;) is not a universal solution fof; w.r.t. to
the schema mappingt’ = (S, T, U {c}). We claim that
(I;,chase(I;)) = o. Towards a contradiction, suppose that
(I;,chase(I;)) = o. Hence,chaseu(I;) is a solution forl;
w.r.t. M’. Consider the universal soluti@hase, (I;) for I; w.r.t.
M’ obtained by chasing; with ¥ U {o}. Thenchase (I;) —
chase((I;). At the same time, by the construction of the result of
the naive chase, we have thadtase.(I;) C chase, (I;), hence
chasev((I;) — chasey (I;). It follows thatchasev(I;) is ho-
momorphically equivalent tohase,, (I;), hencechase(I;) is a
universal solution fod; w.r.t. M’, which is a contradiction. [J

THEOREM 4.10. Assume thatM = (S, T,X) is a schema
mapping, where&: is a finite set of s-t tgds, and is an Armstrong
basis forM w.r.t. a clas<C of s-t tgds. Then there is a finite 3¢t
of universal examples that uniquely characteriZdsw.r.t.C.

PROOF Assume thatd = {(I1, 1), ..., (Ik, Jk)} is an Arm-
strong basis foM w.r.t. C. By Lemma 4.8, the set
U, = {(11,chase (1)), ..., (Ix,chasew(Ix))} is an Armstrong
basis forM w.r.t. C. Leti- be the set of all pairél, chase (1))
such thatadom(I)| < n, wheren is the maximum number of vari-
ables in the antecedents of s-t tgd&inWe will show that/; Uit>
is a set of universal examples f@vet that uniquely characterizes
Mw.rtC,ie., if M’ = (S, T,Y) is a schema mapping such that
U, UlUs is a set of universal examples fan’, thent = Y.

We first show that> = ¥'. Leto’ € ¥'. Sincelf; is an Arm-
strong basis forM w.r.t. C, if ¥ (£ o', there existd < i < k
such that(I;, chase(I;)) # o’. This, however, contradicts our
assumption that/; U - is a set of universal examples far’.

Next, we show that’ = %, that is, if (I',J') = ¥, then
(I''J') E . Leto € X be a s-t tgd of the formp(x) —
Jyv(x,y) and suppose that’ = ¢(a), which means thaf’
contains all the facts ig(a). Since the number of distinct vari-
ables in the antecedent of is at mostn, there must be a pair
(I,J) € U such that (the instance consisting of the factsify)
is isomorphic tol. If h is an isomorphism frond to ¢(a), then
I = ¢(h™'(a)). Sinceh is an isomorphism frond to ¢(a) and
sincel’ contains all the facts ig(a), it follows thath is a homo-
morphism from/ to I’. From Theorem 3.9 of [24], we know that
M’ reflects source homomorphisnBy definition, this means that
for all source instance&’, K’ and for all target instances, L’
such thatL is a universal solution foX and L’ is a solution for
K’, we have that every homomorphism: K — K’ extends to
a homomorphism froni, to L’. (Note that in this definition, we
do not require the homomorphisms to be constant on &80
Thus, sincechasey (1) is a universal solution fof w.r.t. M’, and
J' is a solution for/’ w.r.t. M’, h can be extended to a homo-
morphismh’ : chasev(I) — J'. Since(I,chasew (1)) = o and
I = ¢(h™'(a)), we have thathase(I) = ¥(h~'(a),b) for
someb, henceJ’ = (k' (h~*(a)), ' (b)). Thus,J’ = ¥ (a,b’),
for some value®’, which was to be shown. ]

By combining Theorems 4.9 and 4.10, we conclude that the ex-
istence of an Armstrong basis is equivalent to unique clariae
ability by universal examples.

COROLLARY 4.11. Assume that\! = (S, T, X) is a schema
mapping, where: is a finite set of s-t tgds, ard@is a set of s-t tgds.
Then the following statements are equivalent.



1. There is a finite sé¥ of universal examples fok1 such thai/
uniquely characterizes 1 w.r.t.C.

2. There is an Armstrong basis favl w.r.t. C.

5. Characterizationsvia Universal Examples

In this section, we explore the capabilities of universaraples
in yielding unique characterizations of schema mappingsifipd
by s-ttgds.

THEOREM 5.1. If M is a schema mapping specified by a finite
set of LAV s-t tgds, then there is a finite &edf universal examples
for M such that{ uniquely characterized1 w.r.t. the class of all
LAV s-t tgds.

PROOF Let M = (S, T,X) be a schema mapping, whexe
is a finite set of LAV s-t tgds. We will construct a finite gétof
universal examples and will show th&t is uniquely characterized
by U w.r.t. the class of all LAV s-t tgds.

Suppose that the source schethaonsists of the relation sym-
bols Ry, ..., Rs. For eachi < s, letr; be the arity ofR;, and
let &k be the maximum of4,...,rs. Let D be a set oft distinct
elements, sayD = {di,...,dx}. For each relation symbak;,

1 < < s, and eachr;-ary tupled of elements fromD, construct
the data examplé{R;(d)}, chasev({R:(d)})). Leti/ be the set

of all data examples obtained via this construction. Cleastery
member of/ is a universal example fat1. In what follows, we
will show that M is uniquely characterized by w.r.t. the class
of all LAV s-t tgds. LetM’ = (S, T,X’) be a schema mapping,
whereY’ is a finite set of LAV s-t tgds, and assume that every
member of/ is a universal example fok1’. We have to show that
=3

We first show that: = ¥'. Let (7, J) be a data example such
that (1, J) = X and letR;(x) — Jy¢(x,y) be a LAV s-t tgd
in 3’ such thatl = Rj(a), for some tuplea. We will show
that / = Jy¢(a,y). Observe that, by the construction &f
the singleton instancéR;(a)} must be isomorphic to a single-
ton instance{ R;(a’)} used in the construction of the dét For
notational simplicity, we will denote these singleton arstes by
Rj(a) and R;(a’), respectively. It follows that the naive chase
procedure on these instances produces isomorphic rethatss,
we have thathase((R;(a’)) is isomorphic tochase.(R;(a))
via an isomorphism that maps to a. Also, by the construc-
tion of ¢/, we have tha{R;(a’), chasew(R;(a’))) € U. Since
(R;(a"),chaseu(R;(a’))) is a universal example fakt’, it fol-
lows thatchase(R;(a’)) E Jyg¢(a’,y), hence it must be that
chase(R;(a)) E Jy¢(a,y). On the other hand, sindé, J) =
¥ andR;(a) is a sub-instance af, we have that/ is a solution
for R;(a) w.r.t. M. Sincechase.((R;(a)) is a universal solution
for R;(a) w.r.t. M, this implies thathase.((R;(a)) — J; con-
sequently, = Jyd(a,y).

Next, we show thal’ = . Supposel,J) E X'. We will
show that(1, J) = X. Let Rj(x) — Jy¢(x,y) be a LAV s-ttgd
in ¥ and assume thdat = R;(a) for somea. We will show that
J E Jy¢(a,y). As before, by the construction &f, we have that
Rj(a) must be isomorphic to a source instargg(a’) such that
(R;(a’),chasey(R;(a’))) € U. Moreover,chasey(R;(a’)) is
isomorphic tochase.((R,(a)) via an isomorphism that maps
to a. Since the pai{R;(a’), chasew(R;(a’))) is a universal ex-
ample forM’, it follows thatchase(R;(a))) is a universal so-
lution for R;(a) w.rt. M’. On the other hand/J is a solution
for R;(a) w.r.t. M’ (sinceJ is a solution forl w.r.t. M’), hence
chase.(R;(a)) — J. Atthe same time, sincehase.(R;(a)) is

auniversal solution foR; (a) w.r.t. M, we knowchase(R;(a)) =
3y¢(a,y); consequently/ = Jys(a,y). O

As an immediate consequence of Theorems 4.9 and 5.1, we ob-
tain the following result that every LAV schema mapping has a
Armstrong basis w.r.t. LAV s-t tgds.

COROLLARY 5.2. If M is a schema mapping specified by a
finite set of LAV s-t tgds, the! has an Armstrong basis w.r.t. the
class of all LAV s-t tgds.

Recall that, by Proposition 4.6, there is a schema mappiag-sp
ified by two LAV s-t tgds that has no Armstrong database vitre.
class of all LAV s-t tgds. Thus, the preceding Corollary 5aRmot
be strengthened to assert that every schema mapping spéwgife
finite set of LAV s-t tgds has an Armstrong database w.r.tcthss
of all LAV s-t tgds.

Are there broader classes of schema mappings that haveeuniqu
characterizations via universal examples? Equivaleatly,there
broader classes of schema mappings possessing Armstreaga

DEFINITION 5.3. ([24, Definition 2.6]) Let: be a positive in-
teger. We say that a schema mappikg = (S, T, X), whereX
is a finite set of s-t tgds, ia-modular if for every data example
(I, J) such that(1, J) = X, there is a sub-instancg of I such
thatjadom(I’)| < nand(I’, J) }~ . O

The concept ofi-modularity was introduced and studied in [24],
where schema-mapping languages were characterized is tdrm
their structural properties. Intuitively,-modularity means that ev-
ery negative example has an “explanation” of size at mosEv-
ery schema mappingt = (S, T, X) specified by a finite set of
s-t tgds isn-modular for somen; in fact, n can be taken to be
the maximum number of variables occurring in the s-t tgd&in
(see [24, Proposition 2.7]). Note, however, thatSiand T are
non-unary schemas, then there is no fixed nuntbsuch that ev-
ery schema mappingt = (S, T, %) specified by a finite set
of s-t tgds isk-modular. To see this, lIeF be a binary source re-
lation, let F' be a binary target relation, and let, be the GAV
s-t tgdVaVy (P (z,y) — F(z,y)), whereP,(z,y) asserts that
there is a path along-edges of lengtm from x to y. Then,o,,
is (n + 1)-modular, but notz-modular. In contrast, every schema
mappingM = (S, T, X) specified by a finite set of LAV s-ttgds is
k-modular, wherek is the maximum arity of the relation symbols
inS.

Our next result shows that Theorem 5.1 can be extended to the
class of alln-modular schema mappings,a positive integer. The
proof, which is a generalization of the proof of Theorem %vil|
be given in the full version of the paper.

THEOREM 5.4. Letn be a positive integer and It = (S, T, X)
be a schema mapping, wheXeis a finite set of s-t tgds. IM is
n-modular, then there is a finite sét of universal examples such
thatZ{ uniquely characterizedA w.r.t. the class of alln-modular
schema mappingsp > n.

Consequently, eveny-modular schema mapping specified by a
finite set of s-t tgds has an Armstrong basis w.r.t. the cldsalo
m-modular schema mappings; > n.

The preceding Theorem 5.4, has a number of applications, in-
cluding the following one that covers many schema mappirgs o
curring in practice.

DEFINITION 5.5. An s-ttgde(x) — Jyy(x,y) is said to be
self-join-free on the sourdénone of the relation symbols it(x)
is repeated. O



COROLLARY 5.6. Let M = (S, T, X) be a schema mapping
where X is a finite set of s-t tgds that are self-join-free on the
source. Then there is a finite 9étof universal examples such that
U uniquely characterized1 w.r.t. the class of all s-t tgds that are
self-join-free on the source.

PROOF lItis easy to see that ¥ consists of s-t tgds that are self-
join-free on the source, then the schema mappirtg= (S, T, X)
is n-modular, where: is the sum of the arities of all relation sym-
bols inS. Hence, by Theorem 5.4, there is a finitelgedf universal
examples such that uniquely characterizes1 w.r.t. the class of
all n-modular schema mappings and, in particular, w.r.t. thescla
of s-t tgds that are self-join-free on the sourcél

6. Limitationsof Universal Examples

So far, we have shown that several important classes of sthem
mappings possess unique characterizations via univeaalges.

In this section, we establish that, although superior tétpesand
negative examples, universal examples have their owndtiaits.

By Proposition 4.3, the schema mappitg specified by the bi-
nary copy s-ttgdv(z, y) — F(x,y) can be uniquely characterized
via universal examples w.r.t. to both the class of all LAVtgds
and the class of all GAV s-t tgds. Moreover, since the binagyyc
s-t tgd is2-modular, Theorem 5.4 implies that, for every > 2,

M can be uniquely characterized via universal examples wet
class of allm-modular s-t tgds. The next proposition reveals that
these results of\ do not extend to a unique characterization of
M via universal examples w.r.t. the classatif s-t tgds. Its proof
illustrates the use of the connection between Armstrongbdestes
and unique characterizations via universal examples.

PROPOSITION 6.1. Let M be the schema mapping specified by
the binary copy s-t tgd(z,y) — F(z,y). Then there is no finite
set of universal examples that uniquely characterizésw.r.t. the
class of all s-t tgds.

PrROOF By Theorem 4.9, it suffices to show thatl does not
have an Armstrong basis w.r.t. the class of all s-t tgds. Tdsva
a contradiction, assume th@tli, J1),..., (I, Jx)} is such an
Armstrong basis. Let be a positive integer bigger than the max-
imum of |adon(7;)|, for 1 < ¢ < k. Also, letc; be the length of
some cycle inl;, if I; contains at least one cycle; if contains no

cycle, then let; = 1. Take the producth =n-¢; - .. .- ¢, of these
quantities and consider the following s-t tgtt
Path.(z1,...,2m+1) — Jy1 ... JymCycle,, (y1, ..., Ym),

where Path, is a conjunction ofE-atoms asserting that the vari-
ableszy, ..., zmy1 form a path of lengthn in £, and Cycle, is

a conjunction ofF" atoms asserting that the variables . . ., ym
form cycle of lengthm in F. Note thato’ is neither a LAV, nor
a GAV s-t tgd. Clearlyy £ o'. In what follows, we will show
that (I;, J;) = o, for all i < k, which will contradict the as-
sumption that(Iy, Ji), ..., (Ix, Ji) form an Armstrong basis for
Mw.r.t. the class of all s-t tgds. Indeed, take sqihe J;), where

i < k. If I, contains no cycle, thefi;, J;) |= o trivially, because
m > |adon(I;)|. If I; contains a cycle, thed; must contain all
cycles ofI; (since(l;, J;) satisfies the binary copy s-t tgd). Now,
I; clearly contains a path of length. SinceJ; contains all cycles
of I; and sincen is a multiple of the length of one of the cycles in
I;, it must be the case that contains a cycle of lengthu; hence
(I;,J;) =o'. O

the schema mappinyt specified by the binary copy s-t tgd, which
is a GAV s-t tgd, possesses such a characterization. Our r@ain
sult in this section is that there are schema mappings spedifi
quite natural and simple-to-describe GAV s-t tgds for whitils is
not true, even if negative examples are also used. The pfabiso
result will make use of sophisticated machinery from grdoty
that we describe next.

Back in 1959, Erdos [6] showed that there are graphs of arbitr
ily large girth and chromatic number, where the girth of apfra
is the size of its smallest cycle (cycles are assumed to teangth
at least 3), and the chromatic number of a graph is the minimum
number of colors needed to color it. This result was provedwie
of the first applications of therobabilistic methodthat is, such
graphs were not constructed explicitly but, instead, wamvs to
have a positive probability. Explicit constructions weheeg much
later; in particular, there is a family of explicitly constited graphs,
known asRamanujan graphshat have arbitrarily large girth and
chromatic number [20]. Later on, NeGetind Rodl [21] vastly
generalized Erdds’ result using the probabilistic metHdext, we
describe this generalization following the expositionid.[Chap-
ter 3]. We begin with a definition.

DEFINITION 6.2. Letk be a positive integer. Two graptisand
H are said to bé-equivalentif for every graphK with at mostk
vertices, there is a homomorphism fra@ito K if and only if there
is a homomorphism fronif to K. O

In Definition 6.2, the notion chomomorphisnis the standard
one in graph theory: a homomorphism from a grépk= (V1, E1)
to a graphH = (V2, E2) is a functionh from Vi to V; that
maps edges i, to edges inky, i.e., if £1(a,b) holds, then also
E3(h(a), h(b)) holds (thus, homomorphisms are not required to be
constant on some nodes)

THEOREM 6.3. ([14, Theorem 3.15])et k¥ andm be two pos-
itive integers. Then every graph has ak-equivalent graphH of
girth at leastm.

The preceding Theorem 6.3 provides us with the ideal tool for
establishing the main result of this section. Before stgttie main
result, we need to introduce one more concept.

Let S be a source schema consisting of a unary relation symbol
P and a binary relation symbdt, and letT be a target schema
consisting of a unary relation symb@. If G = (V1,E1) is a
graph, then we writ€) to denote theanonical conjunctive query
of G, thatis,Q¢ is a Boolean conjunctive query asserting that there
are|V1| nodes connected the same way as the nodésarke. For
example, ifG is the complete grapK,, onn nodes, therQ® is

zq ... 3z /\ E(x:,x;).
i

LetG =
tence

(V1, E1) be a graph and consider the first-order sen-

Ve(P(z) A QY — R(x)),

where the variabler is different from all variables occurring in
Q€. This sentence is logically equivalent to a GAV s-t tgd
obtained by pulling the existential quantifiers @f* to the front
and turning them into universal quantifiers. In effegt, is a unary
copy s-t tgd with a “trigger”. Specifically, assume tlids a source
instance consisting of a unary relati®d and a binary relatiot’.
Then the relatiorP is copied to the target relation interpretify

We now address the question of whether or not schema mappingsprovided E” satisfies the Boolean conjunctive quepy’, that is,

specified by GAV s-t tgds possess unique characterizatiansn-
versal examples w.r.t. the class of all GAV s-t tgds. Notdrataat

provided there is a homomorphism fram to E. We will refer
to the GAV s-ttgdo as theunary copy s-t tgd with trigge€.



THEOREM 6.4. LetG = (V4, E1) be a graph containing a cy-

with trigger G' has no Armstrong basis w.r.t. the class of all GAV s-t

cle and letM ¢ be the schema mapping specified by the unary copy tgds.

s-t tgd with triggerG.

1. There are no finite sets of universal examples and negexive
amples that uniquely characteriz&!c w.r.t. the class of all
GAV s-ttgds.

2. There are no finite sets of positive examples and negatama-e
ples that uniquely characteriz&1¢ w.r.t. the class of all GAV

s-t tgds.

PrRooFr We will prove the first part; the proof of the second
part is similar. Assume th&t,, Ji1), ..., (Is, Js) are universal ex-
amples forM¢ and (11, J1), . .., (I{, J{) are negative examples
for M¢. Letk be the maximum ofadom(Z;)|, 1 < ¢ < s, and
of ladom(I})|, 1 < j < ¢, and letm = girth(G) + 1, where
girth(G) stands for the girth of7. By Theorem 6.3, there is a
graphH = (V3, E») that isk-equivalent taG and has girth at least
m. Letoy be the unary copy s-t tgd with triggéf, and letM g
be the schema mapping specifieddyy. We claim that the follow-
ing hold: (a)og [~ om; (b) each(l;, J;) is a universal example for
Mp,1 < i< s;and (c) eacl{l}, J;) is a negative example for
Mu,1<j5<t.

We first show thavg [~ om. Let I be the source instance in
which the unary relatio® is interpreted by some non-empty skt
and the binary relation is interpreted by the edge relafiorof H.
Sincegirth(H) > girth(G), there cannot be a homomorphism
from G to H. This implies that (the antecedent af); is never
“triggered” onI; consequently(/, ) = o¢. In contrast(1, ) j~
o, Sinceoy is “triggered” onl, but the setd is not contained in
0 (i.e., the emptyset).

Next, we show that eacfY;, J;) is a universal example far .
There are two cases to consider. In the first case, assunthéhat
is an assignmerit from the variables of x to values in adorty;)
so that the antecedent efy becomes true. In particulah, is a
homomorphism fronE, to the binary relatiorZ%: of I;. To show
that J; is a universal solution fof; w.r.t. Mg, we have to show
thatR’: = P!, because in this case; is “triggered” onI;. Since
ladom(I;)| < k and H is k-equivalent ofG, it follows that there
is a homomorphisny from E; to the binary relationE’ of I;,
Consequentlyp is “triggered” onl; and, sinceJ; is a universal
solution forI; w.r.t. M, we must have thaR”: = PTi. In the
second case, assume that there is no assignment from thbleari
of o to values in adorfV;) so that the antecedent 6f; becomes
true. In particular, there is no homomorphism frda to the bi-
nary relationE i of I;. In this case, to show that is a universal
solution for I; w.r.t. My, we must show thaR”s = . Since
ladom(I;)| < k and H is k-equivalent ofG, it follows that there
is no homomorphism fronf; to the binary relatiorE’: of I; (ob-
serve that here we are using the other directiok-efjuivalence).
Consequentlyg ¢ is not “triggered” on/; and, sinceJ; is a univer-
sal solution forl; w.r.t. M, we must have thaR”: = ().

Finally, we show that eacll}, J;) is a negative example for
My . Since(I}, J}) is a negative example fattq, there is an
assignmeny from the variables of the antecedentaf to I; so
that the following hold: (a) is a homomorphism fron#; to the

binary relationE’; of I/; (b) there is a value sucha € P% and
a ¢ R’ Sinceladon(I})| < k and H is k-equivalent ofG, it
follows that there is a homomorphisinfrom E to El. Hence,
on is “triggered” onI} and so(I}, J}) ~ o, because € PY
buta ¢ R%. O

COROLLARY 6.5. LetG = (V1, E1) be a graph containing a
cycle. The schema mappind ¢ specified by the unary copy s-t tgd

Our negative result about schema mappings specified by GAV
s-t tgds raises the following natural question: is the uaigbarac-
terizability via universal examples of GAV schema mappingst.
the class of all GAV s-t tgds a decidable problem? More pedgis
is there an algorithm that solves the following decisionbbem:
given a schema mappingyt = (S, T, X) specified by finite set
of GAV s-t tgds, does there exist a finite set of universal gxam
for M that uniquely characterize$1 w.r.t. the class of all GAV
s-t tgds? In a followup paper [25], it is shown that this pesblis
indeed decidable.

7. Concluding Remarks

Schema mappings specified by finite sets of s-t tgds are thie mos
extensively studied and widely used schema mappings inedata
change and data integration. A schema mappitg= (S, T, X),
whereX is a finite set of s-t tgds, constitutes a finite syntacticeepr
sentation of the infinite space of all data examles/) such that
(I,J) E X. In this paper, we addressed the following question:
Can this infinite space of data examples be “captured” by &efini
set of data examples? We formalized this question by cornisgle
notions of unique characterizations of schema mappinga firdate
set of examples of a certain “type” (or of certain “types”y.tv.a
class of s-t tgds. We showed that, although very naturaitipes
and negative examples do not yield interesting unique chenia
zations. For this reason, we focused on universal exampleara
didates for unique characterizations of schema mappingsdé&y
lineated the capabilities and limitations of universalrapées, and,
in the process, unveiled an a priori unexpected connectitmtine
classical notion of an Armstrong database.

In this paper, we have considered positive and negative exam
ples, and universal examples as natural candidates fou@mitar-
acterizations of schema mappings. Naturally, the foll@niues-
tion arises: Are there other “types” of data examples or demb
nations of such “types” of examples that yield interestimique
characterizations of rich classes of schema mappings?

It is worth pointing out that we regard the results reportecch
as the first step towards a broader program aiming to develop a
methodology and a set of tools for understanding and refsthgma
mappings. Beyond unique characterizations, we plan tctigege
weaker ways in which a finite set of data examples “captures” a
schema mapping. In particular, given a finite set of data @kasn
of various “types”, is there a schema mapping that is “cdests
with the given data examples? This problem is analogousdi-pr
lems in computational learning, where the goal is to find eceph
that is compatible with a finite set of examples that are kdbebs-
itive or negative. It should also be noted that a framewordk am
accompanying cost model for discovering a schema mappserba
on a single example were recently introduced and studie®dh [

In the long term, we envision the development of a system that
would be capable of generating data examples that illestrathema
mapping. Furthermore, after the data examples have beer-gen
ated, a mapping designer would be allowed to modify the data e
amples at hand, and then the system would automaticallytdime-
the existing schema mapping based on the modified data ezampl
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