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Abstract

Linked Data is based on the idea that information from dif-
ferent sources can flexibly be connected to enable novel ap-
plications that individual datasets do not support on their
own. This hinges upon the existence of links between datasets
that would otherwise be isolated. The most notable form,
sameAs links, are intended to express that two identifiers
are equivalent in all respects. Unfortunately, many existing
ones do not reflect such genuine identity. This study pro-
vides a novel method to analyse this phenomenon, based on a
thorough theoretical analysis, as well as a novel graph-based
method to resolve such issues to some extent. Our experi-
ments on a representative Web-scale set of sameAs links
from the Web of Data show that our method can identify and
remove hundreds of thousands of constraint violations.

1 Introduction
The vision of a Web of Linked Data (Bizer, Heath, and
Berners-Lee 2009) is based on the idea of bringing various
forms of data to the Web in a standardized and highly inter-
connected way. In recent years, we have witnessed this origi-
nally mostly academic concept increasingly being embraced
by large institutions and corporations like the US and UK
governments, the British Library, the New York Times, and
Best Buy, as well as numerous smaller data publishers. How-
ever, as the number of contributors increases, it becomes in-
creasingly important to develop means of quality assurance.
This situation is comparable to the regular document-based
Web, where it would be quite utopian to assume that all
HTML files will adhere to the official standards and remain
free of outdated or inaccurate information such as spam.

Linked Data, as the name suggests, is fundamentally
based on the idea of interlinking data. The power of Linked
Data comes from the fact that information from differ-
ent sources can flexibly be combined to enable novel ap-
plications that individual datasets do not support on their
own. Apart from standardized protocols (Bizer, Heath,
and Berners-Lee 2009) and data representation formalisms
based on RDF and OWL (Manola and Miller 2004), this
hinges on the existence of links that connect datasets that
would otherwise be isolated, most importantly sameAs
links that are intended to express that the referents of two
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identifiers (URIs) are the same in all possible respects. This
paper shows that significant numbers of sameAs links on
the Web do not adhere to the strict official semantics. We
present a novel method to analyse large networks of iden-
tity links and automatically identify over 500,000 URI pairs
that violate identity constraints. We present a thorough theo-
retical analysis that motivates and justifies our methodology.
Finally, we present an algorithm showing that to some extent
the problem can be mitigated automatically.

Related Work. Previous studies presented anecdotal ob-
servations about the varying use of owl:sameAs in Linked
Data, as well as theoretical proposals (Halpin et al. 2010;
Halpin, Hayes, and Thompson 2011). Empirically, however,
they merely assessed 250 sameAs links in an Amazon Me-
chanical Turk experiment. Another line of research (Ding
et al. 2010b; 2010a) studied larger graphs of identity links,
but only determined general network properties such as de-
gree distributions and URI counts, without analysing their
quality. Cudré-Mauroux et al. (2009) presented a probabilis-
tic framework to assess the trustworthiness of publishers of
sameAs links. This paper presents the first Web-scale qual-
ity assessment of sameAs links in the wild, using a novel
constraint-based method.

There is a large body of work on using various forms
of similarity metrics to predict entirely new identity links
(Euzenat et al. 2011). The constraint method presented here
could be incorporated into such systems, enabling them to
avoid mistakes in certain cases.

2 Criteria for Identity
Definition. Identity is often described as the relation that
only holds between a thing and itself. The semantics of the
owl:sameAs predicate correspond to the classic definition
of identity, which requires

1. Reflexivity (x = x)
2. Indiscernibility of identicals: x = y −→ (p(x) −→ p(y))

for any property p

The indiscernibility of identicals is sometimes viewed as a
formalization of Leibniz’ classical statement about identity1.

1Eadem sunt quorum unum in alterius locum substitui potest,
salva veritate (those things are identical of which one can substi-
tute one in place of the other while preserving the truth). The term
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Given that p can also refer to the property of being equal to
some y, these two criteria together also imply symmetry and
transitivity, making identity an equivalence relation.

Still, these criteria do not make identity judgments trivial.
a) It is rarely unambiguously clear what entities one is refer-

ring to because of the general problems of identification
and reference. One example is the stability of identity over
time, especially if all parts have gradually been replaced,
as in the examples of the Ship of Theseus, or of the human
body, which undergoes a significant level of cell renewal.

b) It may not be clear what universe of properties to quantify
over when assessing whether all properties are shared.

Linked Data. Hence, even experts sometimes have a hard
time agreeing on whether two identifiers (URIs) denote the
same entity. For instance, many sameAs links have been
published between abstract concepts as defined by the SKOS
standard and real-world entities as defined in DBpedia (Auer
et al. 2007). Some might even agree to a sameAs link con-
necting a beer brewery with the class of all beer bottles pro-
duced by that brewery. Certainly not every application re-
quires that sameAs links be strict in the Leibnizian sense.
However, transferring properties across equivalent URIs can
only safely be done if such a strict form of identity is guar-
anteed. Otherwise, the application may infer that your glass
of Jack Daniel’s whiskey is a person who was born in 1846
and currently has a net income of 120 million US dollars. To
make matters worse, many published sameAs links stem
from automatic tools that often make serious disambigua-
tion errors, e.g. confusing the US State of Georgia and the
sovereign state of Georgia in the Caucasus region.

3 Criteria for Near-Identity and Similarity
Some have proposed weakening the strict requirements of
genuine identity, instead only requiring that many but not
all properties be shared, leading to a form of near-identity
or strong similarity. In this section, we show that conflating
genuine identity and strong similarity is not a good idea.
Theorem 1. Any two distinct physical entities are (i) similar
in infinitely many respects, and (ii) dissimilar in infinitely
many respects.

Proof sketch. Let k be the sum of the mass of the two en-
tities (assuming their mass is 0 if they are not physical ob-
jects). Following Goodman (1972), they thus both have a
mass less than k+1kg, k+2kg, k+3kg, and so on. Similarly,
e.g. a given car and a given feather are both probably more
than 100 million km away from the sun, both are not liquids,
etc. Likewise, given a quality for which the two entities have
distinct values k1, k2, one can easily also infer an infinite
number of differences, e.g. unlike the car, the feather weighs
less than 1kg, less than 1.1kg, less than 1.11kg, etc.

Hence near-identity and similarity only makes sense with
respect to certain salient properties. However, there is very
strong evidence for the following.

Leibniz’ Law, however, is sometimes also used to refer to the op-
posite direction, the identity of indiscernibles, or to the conjunction
of both directions.

Claim 2. There is no universal agreed-upon way of deter-
mining which properties should count as salient in determin-
ing near-identity and similarity.
Numerous counterexamples show that the salience may de-
pend on a number of factors, including the following.

1. Context: Barsalou (1983) found that seemingly dissimilar
categories (e.g. children and jewellery) can be judged as
highly similar if contextualized with respect to the prop-
erty of being things to retrieve from a burning house.

2. Human assessors: The salience of properties has been
found to depend on factors like the age (Shepp and Swartz
1976) and expertise of the assessors. Experts may e.g.
use domain-specific knowledge rather than generic visual
similarities (Suzuki, Ohnishi, and Shigemasu 1992).

3. Assessment method: Similarity assessments are inconsis-
tent across different means (similarity vs. difference, rat-
ing scales vs. binary judgements, etc.) of eliciting them
from human subjects (Tversky and Gati 1978).

Moreover, asymmetric similarity judgements have been ob-
served as well (Tversky 1977). For these reasons, it remains
important to distinguish genuine identity from less well-
defined notions like near-identity and similarity.

4 Method
Unlike near-identity and similarity, genuine identity as de-
scribed earlier is a symmetric and transitive relationship,
which allows us to find inconsistencies using graph-theoretic
notions. As will be explained later in greater detail, Fig˙ 1
hints at how the transitively implied identity of two differ-
ent DBpedia entities may reveal the existence of potentially
incorrect sameAs links somewhere in the graph. In our
study, we aim at performing large-scale analyses of iden-
tity links on the Web of Data using constraints. These con-
straints surely cannot detect all forms of inaccurate links, a
task generally considered AI-hard. However, as we will see
later, they often are able to locate quite significant inconsis-
tency problems in the data.

Such an analysis is particularly useful because constraint
violations can automatically be detected and avoided, not
just in the context of this study but also in applications that
consume Linked Data. The techniques can likewise be in-
corporated into automatic linking and data integration tools
as additional heuristics of when two clusters should not be
linked. Our method is based on the following definition.
Definition 3. Given an undirected graph G = (V,E)
with nodes representing entities and edges representing
identity, a distinctness constraint is a collection Di =
(Di,1, . . . , Di,li) of pairwise disjoint (i.e. Di,j ∩ Di,k = ∅
for j 6= k) subsets Di,j ⊂ V that expresses that any two
nodes u ∈ Di,j , v ∈ Di,k from different subsets (j 6= k) are
asserted to correspond to distinct entities.

An index i is used because, in general, there will often be
more than one relevant distinctness constraint.

Unique Name Constraints
We formulate such constraints by making unique name as-
sumptions within datasets. The classical Unique Name As-
sumption in a given knowledge representation formalism
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postulates that any two ground terms t1, t2 with distinct
names are non-identical. Many knowledge bases and ontolo-
gies have been formalized in a way such that we can safely
assume that two distinct identifiers Alice and Bob cannot
refer to the same person.

The Semantic Web is very different from traditional
closed scenarios, because multiple parties can publish data
about the same entity using different identifiers. The OWL
standard thus does not make a Unique Name Assumption,
but instead provides the owl:differentFrom property.
In practice, however, most publishers do not take the trouble
of publishing owl:differentFrom statements between
every pair of entities. Hence, formally we may not have any
fool-proof way of knowing that dbpedia:Berlin is dif-
ferent from dbpedia:London. Strictly speaking, the pos-
sibility remains that all or many of the returned identifiers
refer to the same entity.

Fortunately, many data publishers do have a policy of
avoiding any duplicates within their datasets. In such cases,
we can thus assume that their dataset adheres to an inter-
nal unique name assumption in the sense that there are no
duplicate identifiers within it. For each such dataset, we
can thus formulate a separate distinctness constraint Di =
(Di,1, . . . , Di,li), where each Di,j is a singleton set contain-
ing a different URI from that same dataset.

DBpedia Constraints. Based on Wikipedia, DBpedia
(Auer et al. 2007) contains entries for a wide range of differ-
ent domains and thus is regularly considered one of the main
focal points of the Linked Data cloud. Wikipedia uses redi-
rect pages to divert readers from non-existing articles to the
most relevant existing articles. Services like sameas.org have
gone ahead and created sameAs links between all redirects
and their targets in DBpedia. This arguably makes sense for
name variants (e.g. from “Einstein (physicist)” and “A. Ein-
stein” to “Albert Einstein”). Although many redirect titles
actually denote subtopics or related topics (e.g. “Einstein’s
theory”, “God does not play dice” for “Albert Einstein”) (de
Melo and Weikum 2010a), we opt for a quasi-unique name
constraint to focus on the truly incorrect cases.

We assume that two DBpedia resources with different ti-

Figure 1: Example of a DBpedia constraint Di =
({dbpedia:Paul, dbpedia:Paulie(redirect)},
{dbpedia:Paula}) helping us detect the spurious link
from musicbrainz:Paulie to dblp:Paula

tles are distinct, unless one is a redirect of the other or one of
the two resources is not a valid DBpedia URI. Any redirects
are placed in the same Di,j as their redirect target and thus
neither distinctness nor identity is assumed between them.
URIs that use the DBpedia namespace but do not actually
exist in DBpedia are not included in any Di,j at all, for rea-
sons we explain in Section 5.

Combinatorial Optimization Problem
If we know that two entities subject to a unique name con-
straint cannot be identical, we can attempt to remove iden-
tity links to disconnect them. In Fig˙ 1, the unique name
constraint implies that there are some bad links transitively
connecting dbpedia:Paul to dbpedia:Paula. These
two nodes can easily be separated by removing some edges
somewhere along the way.

Definition 4. Given an undirected graph G = (V,E) of
identity links and distinctness constraints Di1, . . . , Dn as
in Definition 3, a cut is a set of edges C ⊂ E that makes
G consistent with the Di if and only if the modified graph
G′ = (V,E \C) does not contain any path between any two
nodes from two different Di,j for any given Di.

Definition 5. Given additional edge weights w(e), an opti-
mal cut C is a cut with with minimal

∑
e∈C w(e).

Edge weights w(e) can be defined to quantify the number
of sameAs links between the two URIs in either direction,
or alternatively one could also plug in similarity measures to
account for label string similarities and other evidence.

Given the link structure and edge weights, the optimal
cut in Fig˙ 1 is the one that deletes the edge between
musicbrainz:Paulie and dblp:Paula. If we only
have two nodes s, t to be separated, this corresponds to com-
puting a minimal s-t graph cut C, a problem in P , solvable
for instance using the Edmonds-Karp algorithm (Edmonds
and Karp 1972).

However, when we have a set Di,j with more than one
item, as here for DBpedia, or when a constraint Di contains
more than two sets Di,j , or even worse, when we have mul-
tiple constraints D1, . . . , Dk that all apply simultaneously,
each with different sets of nodes Di,j , the problem is much
more complicated.

Theorem 6. Computing an optimal C ⊆ E is NP-hard and
APX-hard.

Proof sketch. The minimum multicut problem involves an
undirected graph G = (V,E) with edge weights w(e) and
a set {(si, ti) | i = 1 . . . k} of k demand pairs. The objec-
tive is to find a graph cut C that separates each si from the
respective ti. Given such a minimum multicut problem, we
simply convert each demand pair (si, ti) into a distinctness
constraint Di = ({si}, {ti}).

A gap-preserving problem reduction of this form shows
that our problem is at least as hard as the minimum multicut
problem, which has been shown to be NP-hard and APX-
hard (Chawla et al. 2005).
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Linear Program Relaxation Algorithm
Optimal solutions can be found by transforming the problem
into mixed integer linear programs of the following form.

minimize
∑
e∈E

dew(e) subject to

si,j,v = 0 ∀i, j<li, v ∈ Di,j (1)
si,j,v ≥ 1 ∀i, j<li, v ∈

⋃
k>j

Di,k (2)

si,j,v ≤ si,j,u + de ∀i, j<li, e ∈ E, u,v 6=u ∈ e (3)
de ∈ {0, 1} ∀e ∈ E (4)
si,j,v ≥ 0 ∀i, j<li, v∈V (5)

Decision variables de indicate whether e ∈ C, i.e. the iden-
tity link represented by e should be removed. Variables si,j,v
indicate the degree of separation of a node v from nodes in
Di,j . Line (3) ensures that si,j,v can only be greater/equal
1 if edges along paths are placed in C, and hence line (2)
ensures that the solution satisfies all constraints.

Mixed integer linear programming is NP-hard. If we re-
lax (4) to de ∈ [0, 1], we obtain a linear program that can
be solved in polynomial time. We then use the region grow-
ing technique of Garg, Vazirani, and Yannakakis (1996) and
de Melo and Weikum (2010b) to efficiently obtain a set of
de ∈ {0, 1} that satisfy logarithmic approximation guaran-
tees with respect to the optimal solution.

Relationship to the Hungarian Algorithm
In the context of aligning two sources using automatic ontol-
ogy matching algorithms (Euzenat and Shvaiko 2007), the
Kuhn-Munkres algorithm (Munkres 1957), also known as
the “Hungarian algorithm”, has found wide use in improv-
ing matching results and ensuring their consistency. Given
a weighted bipartite graph, a matching or independent edge
set is a set of pairwise non-adjacent edges, i.e. a set of edges
such that no two edges share a common node. In ontology
alignment, a matching thus corresponds to a subset of poten-
tial sameAs links such that no entity in one dataset is linked
to two entities in the other.

The stable marriage problem is the problem of finding a
stable matching, where edges are chosen based on prefer-
ence rankings, without weights. The Kuhn-Munkres algo-
rithm finds optimal solutions for the assignment problem
(LSAP, linear sum assignment problem), the task of find-
ing a maximum weight matching, where the total weight of
the retained edges is maximized and the total weight of the
removed edges is minimized.

Theorem 7. If G = (V,E) is bipartite with respect
to disjoint node subsets VA, VB ⊂ V , then comput-
ing the minimal cut C ⊂ E to satisfy two constraints,
D1 = {{u1}, . . . , {ul1}} (for ui ∈ VA) and D2 =
{{v1}, . . . , {vl2}} (for vi ∈ VB), is equivalent to solving the
LSAP.

Proof sketch. Pairwise non-adjacency implies requiring that
connected components never contain more than one node
from VA or more than one node from VB. This is precisely
what the two constraints accomplish.

Versatility of Algorithm
In comparison to the Hungarian algorithm, our method al-
lows for generalizing the constraints imposed by a bipartite
matching between two data sources to an arbitrary number
of data sources and additionally explicitly allows for excep-
tions (e.g. that a URI from one dataset can be linked to two
different DBpedia URIs if those two DBpedia URIs are just
aliases of each other).

Our algorithm can also incorporate distinctness con-
straints between specific individual nodes inferred from ex-
isting ontological assertions (cf. also Hogan et al. 2012).

1. Explicit distinctness: The OWL differentFrom pred-
icate explicitly captures distinctness but is rarely used.
Predicates like disjointWith and complementOf
also imply distinctness of the involved classes.

2. Membership in disjoint classes: When two entities have
types that are considered disjoint classes, we should be
able to infer that they are distinct. Such constraints also
help uncover subtle distinctions, e.g. if one entity is the
class of all automobiles, another is an individual automo-
bile, and the third is a SKOS conceptual entry.

3. Irreflexive properties (like flowsInto for rivers) im-
ply distinctness of the respective s,o in relevant triples
(s, p, o), because (s, p, s) and (o, p, o) should not hold.

4. Asymmetric properties (like properPartOf) imply
distinctness of the respective s, o in relevant triples
(s, p, o) because (o, p, s) should not hold.

5 Experiments
Data Preparation and Analysis
Data Sources. We experimented with two real-world data
collections:

1. BTC2011: The Billion Triple Challenge 20112 Dataset is
a large collection of triples crawled from the Web.

2. sameas.org: The sameas.org web site hosts the most well-
known collection of coreference links for Linked Data.
These have been gathered from many different sources.
We used a 2011-05-23 dump of the sameas.org site3

Predicates. Table 1 lists relevant properties that we
found in the data with unique triple counts (excluding
duplicates from different sources). The sameas.org service
only publishes sameAs links. The BTC 2011 data con-
tains significantly fewer sameAs links, which motivates
the need for aggregation sites like sameas.org. We see
that the more specific forms of identity defined by the
OWL standard (sameIndividualAs, sameClassAs,
samePropertyAs) are very rare. The properties
equivalentClass and equivalentProperty
are more frequent. Their semantics does not require full
identity with respect to all properties but only extensional
equivalence. Some other related properties that we found
include SKOS properties for different degrees of matches
and bad URIs like references to a non-existent RDFS
sameAs property and other misspellings.

2We chose the 2011 version to roughly match the version of the
sameas.org data that was available to us.

3Kindly provided to us by the site’s maintainer, Hugh Glaser.
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Table 1: Selection of Relevant Properties in BTC 2011
Predicate1 Count

BTC2011
owl:sameAs 3,450,497
w3:2004/02/skos/core#closeMatch 125,313
owl:equivalentClass 25,827
w3:2004/02/skos/core#exactMatch 22,398
owl:disjointWith 3,266
w3:2004/02/skos/core#broadMatch 1,318
w3:2000/01/rdf-schema#sameAs 1,065
owl:complementOf 759
owl:differentFrom 691
owl:equivalentProperty 168
owl:sameIndividualAs 59
biordf:bio2rdf resource:sameAs 59
w3:2004/02/skos/core#narrowMatch 38
owl:sameClassAs 15
w3:2002/07/owlsameAs 10
owl:samePropertyAs 4

sameas.org
owl:sameAs 22,411,437

1: where owl: stands for http://www.w3.org/2002/07/owl#,
w3: stands for http://www.w3.org/,

and biordf: stands for http://bio2rdf.org/.

We could make use of inverse functional properties to
infer additional supposed identities. However, in practice,
many such properties are not used in a sufficiently clean way.
For instance, the homepage property of the FOAF vocabu-
lary is defined to be inverse functional, but it has been noted
that people often provide the home page of their company,
leading to incorrect identifications.

Properties like disjointWith could be used to define
constraints. Unfortunately, on the Web we also find many
incorrect uses of classes, e.g. humans described as being of
type OWL ontology, so in many cases the property asser-
tions are wrong rather than the sameAs links.

Lastly, we see that differentFrom is very rarely ever
used, at least too rarely in order to be able to infer that the
URIs one usually deals with refer to distinct entities. This is
a strong indication that data consumers are implicitly mak-
ing dataset-specific unique names assumptions.

Graph Construction. For the rest of the study, we focus
only on the OWL sameAs predicate. We create undirected
graphs by determining the symmetric closure of the existing
sameAs links in the two respective data collections. A third
graph was created by combining both data collections. As
edge weights, we consider the number of directions in which
the sameAs link was encountered (1 or 2).

In the resulting graph for the BTC 2011 sameAs triples,
the most frequent domains of entity URIs (with respect
to the number of edges) belonged to DBpedia, Free-
base, lastfm.rdfize.com, linkeddata.uriburner.com, Bibson-
omy, and the Max Planck Institute for Informatics, each in-
volved in over 250,000 undirected edges.

Table 2: Constraint Conditions
Dataset URI Prefix

DBLP http://dblp.rkbexplorer.com/id/
DBpedia∗ http://dbpedia.org/resource/
Freebase http://rdf.freebase.com/ns/m/
GeoNames http://sws.geonames.org/
MusicBrainz http://dbtune.org/musicbrainz/

resource/
UniProt http://bio2rdf.org/uniprot:

∗: Quasi-unique name constraints with redirect awareness,
valid URI checking (DBpedia 3.7) as special conditions

Constraint-Based Analysis
Constraints. We decided to focus on constraint violations
with respect to unique names for a small number of major
hubs in the Linked Data cloud, listed in Table 2 (additional
datasets could easily be added). All URIs matching the given
prefix were categorized as belonging to a specific dataset and
being subject to its unique name constraint.

DBpedia. Our initial analysis without valid URI check-
ing revealed an enormous amount of constraint violations.
In the BTC2011 sameAs triples, 205,231 out of 1,055,626
unique DBpedia URIs do not exist in the current DBpedia
3.7 dataset, mainly for the following two reasons.

1. URIs with bad article title escaping: Many datasets con-
tain DBpedia URIs with incorrectly escaped titles, i.e.
using a different escaping scheme than DBpedia itself,
which results in URIs that do not exist in DBpedia.

2. URIs that no longer exist in DBpedia: As Wikipedia is
a living resource, its dynamics may result in changes in
article titles as well as deletion of redirects and articles.

This highlights just two examples of the fragility of Linked
Data. Given DBpedia’s important role in the Linked Data
cloud, measures should be taken to address these problems.
For instance, an API could be provided to ensure that tools
create valid DBpedia URIs and datasets could be released
to capture changes to identifiers over time. Since it is not
always clear which real DBpedia URI a given invalid URI
corresponds to, our DBpedia constraints do not make any
claims about such invalid URIs at all.

Constraint Violations. Table 3 presents the detected con-
straint violations based on the unique name constraints. The
total counts of URIs and connected components refer to
the preprocessed data consisting only of sameAs links and
hence do not include singleton URIs that have not been
linked to other URIs. Each connected component in the in-
put graph is checked separately for possible constraint vio-
lations by intersecting the constraint sets Di,j with the set of
nodes in the connected component. If any constraint Di has
more than one non-empty Di,j after intersecting, then the
constraint must be violated. In Fig˙ 1, for example, two Dij
of the DBpedia constraint would remain non-empty, indi-
cating that this connected component connects entities from
two different Dij that should be distinct.
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Table 3: Constraint Analysis
BTC2011

+sameas.org
BTC2011 sameas.org

URIs 34,419,740 4,074,166 31,355,505
Connected
components

12,735,767 1,387,660 11,853,882

– Average size 2.70 2.94 2.65

Constraint violations
– node pairs 519,170 138,906 377,057
– node sets 82,309 13,210 71,901
– node sets (DBLP) 25,599 3 25,449
– node sets (DBpedia) 40,691 12,702 31,150
– node sets (Freebase) 407 248 0
– node sets 15,167 68 0

(GeoNames)
– node sets 437 181 15,090

(MusicBrainz)
– node sets (UniProt) 8 8 212
– affected connected 81,801 12,974 0

components

We see that our method is able to detect over half a million
node pairs that have been identified although they stem from
the same data source and are thus subject to unique name as-
sumptions. The node pairs figures count the number of dis-
tinct unordered pairs of nodes that occur within the same
connected component, yet are subject to one of the unique
name constraints described earlier. In a few instances, con-
straint violations may stem not from incorrect links but from
inadvertent duplicates within a dataset. Fortunately, only in
very rare cases would e.g. two duplicate Wikipedia articles
and hence DBpedia URIs with different titles exist that de-
scribe exactly the same entity in the strict Leibnizian sense.

We additionally list the number of node sets, counting
each Di,j for each connected component in which it is ac-
tively involved in constraint violations. We include a break-
down by data source, as well as the total number of affected
connected components that included constraint violations.

Cleaning. Table 4 presents results regarding the automatic
removal of edges to satisfy the constraints used above. To
compute the minimal weight graph cuts, we We see that
several hundred thousand sameAs edges are removed au-
tomatically. Note that the number of edges removed is actu-
ally lower than the number of constraint violations, because
the algorithm explicitly aims at deleting a minimal number
of edges in order to ensure that the constraints are no longer
violated. When e.g. two densely connected sets of nodes are
connected by only a single bad sameAs link, detecting and
removing that sameAs link may satisfy several constraints
at once (e.g. between DBpedia entities as well as between
GeoNames entities, or e.g. between one DBpedia entity a
and several other DBpedia entities b, c, d). In future and re-
lated work (Böhm et al. 2012), we are investigating edge
weights based on advanced similarity measures to help the
algorithm ensure that the correct edges are deleted.

Table 4: Constraint-Based Cleaning
BTC2011

+sameas.org
BTC2011 sameas.org

Undirected edges
removed

280,086 32,753 245,987

Violations per
removed edge

1.85 4.24 1.53

6 Implications and Suggestions
Explicit property for strict identity: sameAs as it appears in
the wild frequently cannot be interpreted as strict identity,
and there are no signs of this changing. A separate predicate
for genuine identity (e.g. lvont:strictlySameAs in
the Lexvo.org Ontology (de Melo and Weikum 2008)), while
formally declared equivalent to sameAs, allows knowing
whether a sameAs link was indeed intended in the strict
sense. or in a looser near-identity sense.

Properties for near-identity/similarity: From a pragmatic
perspective, links between entities that are not identical in
the strict sense are still important. Despite their apparent
vagueness and subjectivity, general notions of near-identity
and similarity are useful in many practical applications. Ex-
isting examples include SKOS closeMatch, the Identity
Ontology (Halpin et al. 2010), and the Lexvo.org Ontology
(de Melo and Weikum 2008).

Specific relational properties instead of sameAs: Due to
the subjectivity of near-identity and similarity, we suggest
that additional properties be used to describe the exact na-
ture of the relationship holding between different entities
when possible. For instance, the relationship between New
York City and the New York metropolitan area can be de-
scribed using a metropolitanAreaOf predicate. Stud-
ies on polysemy of words have identified fairly common
patterns, e.g. the difference between a university as an in-
stitution vs. a geospatial entity can perhaps be reflected in
a hasPrincipalGeospatialLocation property that
also applies to companies, schools, etc.

7 Conclusion
Clearly, sameAs links play an important role in connect-
ing data sets and making the Web of Data more useful. Our
study, however, has revealed significant amounts of sameAs
links that do not adhere to the strict semantics of the OWL
standard and hence do not reflect genuine identity. To ad-
dress this, we have developed a novel method for recogniz-
ing and resolving many such cases, based on unique names
constraints and a linear program relaxation algorithm.

Additionally, we discussed criteria for identity, near-
identity, and similarity from a more theoretical perspective.
Moving forward, we propose means of ensuring that both
types of use cases – those requiring the strict semantics and
those relying on weaker forms – can simultaneously be ac-
commodated in the Linked Data world. Overall, these con-
tributions support applications in benefitting from the Web
of Data as it continues to grow.
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