
Formalizing the XML Schema Matching Problem

as a Constraint Optimization Problem

Marko Smiljanić1, Maurice van Keulen1, and Willem Jonker1,2

1 University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2 Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

{m.smiljanic, m.vankeulen, w.jonker}@utwente.nl

Abstract. The first step in finding an efficient way to solve any difficult
problem is making a complete, possibly formal, problem specification.
This paper introduces a formal specification for the problem of semantic
XML schema matching . Semantic schema matching has been extensively
researched, and many matching systems have been developed. However,
formal specifications of problems being solved by these systems do not
exist, or are partial. In this paper, we analyze the problem of seman-
tic schema matching, identify its main components and deliver a formal
specification based on the constraint optimization problem formalism.
Throughout the paper, we consider the schema matching problem as
encountered in the context of a large scale XML schema matching appli-
cation.

1 Introduction

Schema matching is a process of identifying semantically similar components
within two schemas. Schemas, e.g., database schemas, are designed by humans;
they are the product of human creativity. Therefore, it is said that a schema
matching problem is an AI-complete problem [3], i.e., to solve this problem a
system must implement human intelligence. The demand for schema matching
is great in data exchange, and data analysis applications. Many semi-automatic
schema matching systems have been developed [12] claiming various levels of
usefulness [4]. These systems use heuristics to combine various syntactic features
of schemas in order to estimate which schema components are similar. Machine
learning, reuse of previous results, and user interaction, to name a few, are
techniques used to improve the quality of matching.

In current schema matching systems, focus is placed on effectiveness. Heuris-
tics are being used only to provide semantically relevant results. On the other
hand, the efficiency of schema matching is mostly ignored. Systems are designed
and tested on small scale problems in which efficiency is not an issue. New large
scale schema matching applications emerge making the need for efficient schema
matching imminent. Large scale schema matching approaches are being devel-
oped [13]. To understand and handle the complexity of the schema matching
problem and to be able to devise an efficient algorithm to solve the matching
problem, a formal problem specification must be acquired. To the best of our

knowledge, none of the existing schema matching system was built on the basis
of a complete formal specification of the schema matching problem.

In this paper, we focus on understanding, modeling and formalizing the prob-
lem of semantic XML schema matching. The scope of this paper, within the main
line of our research, is indicated in Fig. 1.

modeling/formalization
of s/m problem

analysis of s/m
applications/prob-
lems/systems

analysis/selection
of algorithms for sol-
ving the s/m problem

experimental
validation

scope of this paper

Fig. 1. The scope of this paper within the main line of schema matching (s/m) research

Our research is guided by a large scale schema matching application – a
structured-data search engine called Bellflower . In Bellflower, the user defines
his own XML schema called personal schema. A personal schema embodies the
user’s current information need and expectation with respect to the structure of
the desired information. For example, a user looking for information on books
would create a personal schema as the one shown in Fig. 2 A©. The task of
Bellflower is to match the personal schema against a large schema repository ,
possibly containing all the XML schemas found on the Internet. A fragment
of such a repository is shown in Fig. 2. Mappings that Bellflower retrieves are
shown as shadowed subgraphs B© and C© in the repository. These mappings are
presented to the user. The user then selects one mapping to be used by Bellflower
to retrieve the actual data. Additionally, Bellflower allows the user to ask XPath
queries over his personal schema, e.g., book[contains(author,”Verne”)]/title, to
filter the retrieved data.

book

title author

publisher

author

e-mail nameitem

book article

title title

*

*

lib

address book

data

title authorName

shelf

*

*

..
.

..
.

fragment of the
schema repositorypersonal schema

id re/id f

A

B C

Fig. 2. Personal schema and a fragment of schema repository

The main contribution of this paper is a first thorough formal specification of
the semantic XML schema matching problem. Another contribution is a compre-
hensive framework for the analysis and modeling of the semantic XML schema
matching problem, which includes the description of the approximation of se-
mantic matching that must be performed in order to build a system for schema
matching.

The paper is organized as follows. Sec. 2 presents the model of semantic
matching. Sec. 3 introduces the approximations of semantic matching in an XML
schema matching system. Sec. 4 formalizes the matching problem using the con-
straint optimization problem formalism. Related research is discussed in Sec. 5
followed by the conclusion in Sec. 6.

2 Model of a semantic matching problem

To come to a formal specification of a semantic XML schema matching problem,
we devised a model of a semantic matching problem [14]. This section describes
the main components of the model.

In a generic matching problem, a template object T is matched against a
set of target objects R = {τ1, . . . , τk}. If a template object is related to a target
object through some desired relation, i.e., T ≈ τi, it is said that they match and
the (T , τi) pair forms one mapping . The solution of a matching problem is a list
of mappings. In some matching problems, an objective function ∆(T , τi) can
be defined. The objective function evaluates to what extent the desired relation
between the matching objects is met. In such problems, the objective function
is used to rank, i.e., order, the mappings in the solution.

A semantic matching problem differs from the generic matching problem in
that objects are matched based on their semantics. Semantics is commonly de-
fined as the meaning of data. Therefore, in semantic matching the template and
the target objects are matched based on their meanings. The desired semantic
relation is a relation between meanings.

For example, in a semantic matching problem a person is looking for a book
similar to Verne’s book “20,000 Leagues Under the Sea”. The person is matching
its mental perception of Verne’s book against a set of mental impressions about
target books, e.g., books in his personal library. In this problem, the desired
semantic relation is similarity of mental impressions about books.

The semantics, i.e., the ability to generate meanings about objects and to
reason about these meanings, is the privilege of humans. Building a computer
system that performs true semantic matching is in principle impossible. In prac-
tice, computer systems only approximate semantic matching [6].

The model of semantic matching that we are to show is a practical simpli-
fication of what is really happening in human mind. In our model of semantic
matching, the desired relation is divided into a semantic predicate function and
the semantic objective function.

Parts of the desired semantic relation that must necessarily be satisfied are
captured within the semantic predicate function. For example, a person is looking
for a book; it must be true that the target object is what this person thinks is
a book. Further, the person might reason that books are similar if they have
the same author; another predicate. The semantic objective function is a model
of human’s ability to establish ranking among meanings. E.g., the person will
think that book A is more similar to Verne’s book than book B if book A has a
more similar topic; the person’s opinion on topic similarity ranks the books.

desired semantic relation

semantic predicate function

semantic objective function

meaning of the
template object

meaning of the
target object

Fig. 3. Decl. components of a
semantic matching problem

We have described a model of semantic
matching in terms of four declarative compo-
nents (rectangles in Fig. 3). In order to specify
a semantic matching problem in a way that can
be used by an automated computer system, all
the components of the semantic model must be
approximated. With approximation, semantic
problem components are expressed using syn-
tactic constructs. Sec. 3 describes these approx-
imations in the context of a semantic XML
schema matching problem.

3 Approximations in semantic XML schema matching

The approximation of the components of the model of semantic matching is not
a straightforward process. It is a design process burdened with trade-off deci-
sions. In this section we describe approximations which are tailored to meet the
needs of the XML schema matching encountered in the Bellflower system. Other
schema matching systems would decide to approximate components differently.
Nevertheless, the common point of all systems is that these semantic components
are approximated.

3.1 Approximating the meaning of template and target objects

In semantic XML schema matching , the meanings of XML schemas are being
matched against each other. XML schemas are created by humans in a design
process. This design process creates a syntactic representation of some seman-
tic concept. For example, a librarian designs an XML schema that models his
understanding, i.e., semantics, of a library. This means that every XML schema
is already an approximation, a model, of some meaning, i.e., XML schemas are
approximations of their own meaning . Given an XML schema, no further ap-
proximation of its meaning is needed.

In practice, problems come from a different direction; from the heterogeneity
of languages and techniques used by men to create schemas. To tame this syntac-
tic diversity, schema matching systems always provide a generic, unified, data
model. Different schema representations are then captured within this model.
For XML schema matching in Bellflower, we use directed graphs enriched with
node and edge properties; a model similar to ones used in other schema matching
systems.

Definition 1. A directed graph G with properties is a 4-tuple G = (N,E, I,H)
where
• N = {n1, n2, ..., ni} is a nonempty finite set of nodes,
• E = {e1, e2, ..., ej} is a finite set of edges,
• I : E → N × N is an incidence function that associates each edge with a pair

of nodes to which the edge is incident. For e ∈ E, we write I(e) = (u, v) where
u is called the source node and v the target node.

• H : {N∪E}×P → V is a property set function where P is a set of properties,
and V is a set of values including the null value. For n ∈ {N ∪ E}, π ∈ P,
and v ∈ V we write π(n) = v (e.g., name(n1) = ‘book’).

A walk p in a directed graph is any alternating sequence of nodes and edges,
i.e., p = (n1, e1, n2, e2, . . . , ek−1, nk) such that an edge in p is incident to its
neighboring nodes. Nodes n1 and nk are said to be the source and the target
nodes of the walk p. In this paper, path and walk are synonyms.

A graph G′ is a partial subgraph of graph G (i.e., G′
⊏ G), if G′ can be

constructed by removing edges and nodes from graph G.

(book)

(title) (author)

n1

n2 n3

e1 e2

Fig. 4. Model of
personal schema

The book personal schema from Fig. 2 is modeled as
shown in Fig. 4.

• N = {n1, n2, n3}
• E = {e1, e2}
• I(e1) = (n1, n2), I(e2) = (n1, n3)
• name(n1) = ‘book’, name(n2) = ‘title’, . . .

We call a graph that models an XML schema a schema
graph. In schema graphs, XML schema components are rep-
resented with either a node, an edge, or a node’s or an edge’s

property. For example, relationships defined in XML schema by means of id/idref
pairs, or similar mechanisms, are modeled as edges that we call explicit edges
(edges with an arrow in Fig. 2). More details on how we represent an XML
schema using a directed graph can be found in [14]. Schema graphs are a com-
plete representation of an XML schema, i.e., the one can be converted into the
other and vice versa without loss of information.

3.2 Approximating the semantic predicate function

In semantic matching, the desired semantic relation is a relation between the
meanings of a template and a target object. As shown in Sec. 3.1, schema graphs
are used to approximate these meanings. Consequently, the desired semantic
relation will be approximated as a relation between schema graphs.

We approximate the semantic predicate function with a predicate function
C(T , τ), where T , τ are the template and the target schema graphs. C is a
composition of a number predicates ci, e.g., a conjugation.

C(T , τ) =

k∧

i=1

ci(T , τ)

Functions ci specify various aspects of the relation between the template and
the target schema graph that must be true in a mapping. We describe a few in
the sequel.

Our schema repository comprises many XML schemas, or rather schema
graphs, collected from the Internet. Such a repository can be treated in two
different ways: as a set of independent schema graphs, or as one large schema
graph. This distinction influences the definition of the target object in a matching
task. The matching task is either:

1. for a template schema T , find the most similar target schema graph τi in the
repository R = {τ1, . . . , τk}. The output of this matching approach is a list
of concrete schemas from R, namely the ones most similar to T , or

2. for a template schema T , find the most similar partial subgraphs τi in R
(i.e., τi ⊏ R, see Def. 1). The output of this matching approach is a list of
subgraphs of the repository schema graph R. Such subgraphs can in gen-
eral be composed of nodes and edges from different concrete schema graphs
participating in R.

In our research, we adopt the second matching goal. This allows a personal
schema to be matched to a target schema obtained by joining fragments of several
distinct schemas, or to be matched to a fragment of only one schema, as well.
A predicate function c1(T , τ) := (τ ⊏ R), where R is the schema repository,
can be used to specify this matching goal. Predicate c1 is not very strict and
does not consider the properties of the personal schema. For the book personal
schema in Fig. 2, the c1 predicate would be satisfied, for example, for τ being
any single node of the repository. This seldom makes any sense. We therefore
provide a stricter relation between the template and the target schema graph as
follows.

The target schema graph τ = (Nτ , Eτ , Iτ ,Hτ), where τ ⊏ R for repository
R, can form a mapping with a template schema graph T = (NT , ET , IT ,HT) if
the following set of rules is satisfied.

1. for each node n ∈ NT , there exists one and only one match node n′ ∈ Nτ ,
depicted as n′ = Match(n). E.g., in Fig. 2 the node ‘authorName’ in B© is
the match node for the node ‘author’ in A©.

2. for each edge e ∈ ET , there exists one and only one match path p′ ∈
τ , depicted as p′ = Match(e), where source(p′) = Match(source(e)), and
target(p′) = Match(target(e)). E.g., in Fig. 2 the path ‘book-data-title’ in B©
is the match path for the edge ‘book-title’ in A©.

3. the fact that schemas in a mapping (T , τ) meet the conditions 1 and 2 is
depicted as τ = Match(T).

A new predicate can be defined as c2(T , τ) := (τ = Match(T)).
Note that the first rule restricts node mappings to what is known as 1 : 1 node

mapping, i.e., each personal schema node is mapped to only one target node.
Other systems [7] need different set of restrictions to be able to accommodate
the 1 : N or M : N node mappings.

In principle, the set of predicate functions is complete when it precisely de-
fines the search space within which the match for the template object is to
be found. For example, a schema matching system that does not handle cyclic
data structures should include the predicate c3(T , τ) := (T is non cyclic) ∧
(τ is non cyclic).

3.3 Approximating the semantic objective function

The semantic objective function is approximated with an objective function
∆(T , τ) ∈ R, where T is a template schema graph, τ is a target schema graph

taken from the repository R. It is common to normalize the value of the objective
function to the [0, 1] range. Furthermore, ∆(T , τ) is undefined if the predicate
function C(T , τ) = false.

It has been shown that a number of different heuristics have to be used in
order to acquire higher matching quality [5, 12]. The heuristics exploit differ-
ent schema properties as datatypes, structural relations, and documentation, to
name a few. Each of the heuristics is implemented using a separate ranking func-
tion δi(T , τ) ∈ R. These ranking functions are composed to define the objective
function ∆. This composition can be algebraic, AI based, or hybrid, often in-
volving additional heuristics. A comprehensive survey by Rahm and Bernstein
[12] discusses different approaches for building the ∆ function.

In this section, we have shown how to approximate declarative components
of semantic XML schema matching problem. The result is a set of declarative
syntactic components. In our research, we came to understand that these com-
ponents are almost identical to components of a known class of problems called
constraint optimization problems (COP) [1, 10]. In the sequel, we show one way
to specify a schema matching problem in the COP framework. We also discuss
benefits that schema matching can draw from being treated as a COP.

4 Formal specification of the problem

In this section, we first describe the formalism for representing constraint op-
timization problems. We then show one way to specify semantic XML schema
matching problem using this formalism.

4.1 Constraint optimization problems

Constraint programming (i.e., CP) is a generic framework for problem descrip-
tion and solving [1, 10]. CP separates the declarative and operational aspects
of problem solving. CP defines different classes of problems, of which we solely
focus on the declarative aspects of constraint optimization problems.

Definition 2. A constraint optimization problem (i.e., COP) P is a 4-tuple
P = (X,D,C,∆) where
• X = (x1, . . . , xn) is a list of variables,
• D = (D1, . . . ,Dn) is a list of finite domains, such that variable xi takes values

from domain Di. D is called the search space for problem P .
• C = {c1, . . . , ck} is a set of constraints, where ci : D → {true, false} are

predicates over one or more variables in X, written as ci(X).
• ∆ : D → R is a the objective function assigning a numerical quality value to

a solution (solution is defined below).

COP is defined in terms of variables X, taking values from search space D.
A complete variable assignment is called valuation, written as Θ. Θ is a vector
in D, thus assigning a value in Di to each variable xi, i = 1, n. A valuation Θ for
which constraints C(X) hold, i.e., C(Θ) = true, is called a solution. The quality
of a solution is determined by the value of the objective function, i.e., ∆(Θ).

4.2 Semantic XML schema matching as COP

This section presents one possible way for specifying an XML schema matching
problem as COP. The approach is based on rules defined as a part of the c2(T , τ)
predicate in Sec. 3.2. To support the explanation in this section, we will use the
book personal schema, and the schema repository shown in Fig. 2, as well as the
personal schema graph given in Fig. 4.

Definition 3. A semantic XML schema matching problem with a template sche-
ma graph T, a repository R = (NR, ER, IR,HR) of target schema graphs τi,
where τi ⊏ R, a predicate function C(T , τ), and an objective function ∆(T , τ) is
formalized as a constraint optimization problem P = (X,D,C,∆). The following
four rules construct P in a stepwise manner.

Rule-1. For a template schema graph T = (NT , ET , IT ,HT), the repository of
target schema graphs R is formalized in a COP problem P , as follows:
1. for each node ni ∈ NT , a node variable xni

and a domain NR are added to
P (see section 3.2, rule 1),

2. for each edge ei ∈ ET , a path variable xpi
and a domain LR are added to

P , where LR is the set of all paths in repository R (see section 3.2, rule 2),
3. for each edge ek ∈ ET , where IT (ek) = (ni, nj), a constraint ick(X) :=

source(xpi
) = Match(ni)∧target(xpi

) = Match(nj) is added to P . We denote
the conjunction of all such constraints as IC(X) – the incidence constraint.
This constraint ensures that target paths are connected in the same way as
template edges are connected.

n1

p1 p2

x

x x

n2
x n3

x

Fig. 5. Target ob-
ject variables

For the book example, P is, so far, defined as

X = (xn1
, xn2

, xn3
, xp1

, xp2
)

D = (NR, NR, NR,LR,LR)

C = {IC(X)}

∆(X) = not yet defined

Fig. 5 illustrates Rule-1 ; node and edge variables are as-
signed based on the shape of the book template schema graph.

Rule-2. The predicate function C(T , τ) is formalized in P by adding a constraint
C(X) – a constraint function identical to predicate C(T , τ). Function C(T , τ)
can be directly transformed to C(X); node and path variables found in X replace
τ , nodes and edges of T (n1, n2, n3, e1, and e2 in the book example) appear as
constants in C(X).

For example, c4(X) := (datatype(n2) = datatype(xn2
)) is a constraint respon-

sible for ensuring that the ‘title’ node and its match have the same datatype.

Rule-3. The objective function ∆(T , τ) is formalized in P using the objective
function ∆(X) – a function identical to ∆(T , τ).

Rule-4. Template schema graph T is constant in P , i.e., for two different schema
graphs T1 and T2, two different COP problems must be declared. As already
indicated, T is represented through constants in C(X) and ∆(X).

For the schema matching problem, the specification of P is now complete.

X = (xn1
, xn2

, xn3
, xp1

, xp2
)

D = (NR, NR, NR,LR,LR)

C = {IC(X),C(X)}

∆(X) = as defined in the approximation phase (see Sec. 3.3)

4.3 The benefits of using COP framework

The benefit of formalizing a schema matching problem as a COP is that a schema
matching problem can now be regarded as a combinatorial optimization prob-
lem with constraints. COP problems have been largely investigated and many
[non]exhaustive techniques for efficient solving have been proposed [11, 10].
Branch and bound, clustering methods, simulated annealing, tabu search, to
name a few, can be investigated and adopted to schema matching problems rep-
resented as COPs. Important issues that influence the efficiency, e.g., variable
ordering, value ordering, constraint simplification are also discussed in the COP
framework.

In Bellflower, we are currently investigating the combination of clustering
methods and the branch and bound algorithm for efficient search space traversal.

5 Related research

Schema matching attracts significant attention as it finds application in many
areas dealing with highly heterogeneous data. A survey by Rahm and Bernstein
[12] identifies semantic query processing as an application domain where schema
matching is used as a part of query evaluation. This is similar to how we use
schema matching in Bellflower.

Representatives of automated schema matching systems include COMA [5],
Cupid [9], and LSD [6], to name a few. These systems formalize only the be-
havior of the objective function, or use no problem formalization at all. The
COP framework and the approach that we have used in the formalization can
be used to complement the existing partial formalisms to a complete problem
specification. For our approach, we found inspiration in the work of Bergholz
[2]. Bergholz addresses the problem of querying semistructured data and pro-
vides a formal specification in the form of a constraint satisfaction problem. In
his work, querying is treated as strict database querying. Structural relaxations
(e.g., matching an edge to a path) have to be accounted for by the user, and
specified in the query. Ranking of results is not supported. As such, his formalism
is not suitable for describing a semantic schema matching problem.

To come to a full specification of a schema matching problem, we touch sev-
eral areas. First, we model semantic matching. In [8] a different way to model
semantic mappings and to reason about these is given. Second, we model XML
schemas as a graph data structure. This is similar to how most other systems
model schemas, e.g., Cupid [9]. Finally, we use the constraint optimization prob-
lem framework [10] as a base for the formalization.

6 Conclusion

In this paper, we have described an approach to formally specify semantic XML
schema matching problems. The formalism is developed to support research
related to a large scale schema matching system – Bellflower.

We gave a model of semantic matching followed by the approximations for
describing a semantic problem in a syntactic domain. Finally, the constraint
optimization framework was identified as a suitable framework for capturing all
the declarative syntactic components of the problem.

With this formalism, the goal of this part of our research (see Fig. 1) was
achieved: a clear and unambiguous specification of the problem – a good starting
point for the exploration of efficient algorithms for solving.

We are currently investigating the combination of clustering methods and
the branch and bound algorithm to achieve efficient schema matching in a large
scale schema matching application.

References

[1] R. Bartak. Constraint programming: In pursuit of the holy grail. In Proceedings
of the Week of Doctoral Students (WDS), pages 555–564, June 1999.

[2] A. Bergholz and J. C. Freytag. Querying Semistructured Data Based on Schema
Matching. Lecture Notes in Computer Science, 1949, 2000.

[3] P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-strength
schema matching. SIGMOD Rec., 33(4):38–43, 2004.

[4] H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In
Proceedings of the 2nd Int. Workshop on Web Databases, 2002.

[5] H. H. Do and E. Rahm. COMA — A system for flexible combination of schema
matching approaches. In P. A. Bernstein et al., editors, Proc. Intl. Conf. VLDB
2002. Morgan Kaufmann Publishers.

[6] A. Doan. Learning to Map between Structured Representations of Data. PhD
thesis, University of Washington, 2002.

[7] B. He and K. C.-C. Chang. A holistic paradigm for large scale schema matching.
SIGMOD Rec., 33(4):20–25, 2004.

[8] J. Madhavan, P. A. Bernstein, P. Domingos, and A. Y. Halevy. Representing and
reasoning about mappings between domain models. In Proc. Conf. (AAAI/IAAI-
02), pages 80–86.

[9] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with
cupid. In Proceedings of the 27th International Conference on Very Large Data
Bases(VLDB ’01), pages 49–58, Orlando, Sept. 2001. Morgan Kaufmann.

[10] K. Marriott and P. J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

[11] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer
Verlag, December 1999.

[12] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases, 10(4):334–350, Dec. 2001.

[13] E. Rahm, H.-H. Do, and S. Mamann. Matching large xml schemas. SIGMOD
Rec., 33(4):26–31, 2004.

[14] M. Smiljanić, M. van Keulen, and W. Jonker. Defining the XML Schema Matching
Problem for a Personal Schema Based Query Answering System. Technical Report
TR-CTIT-04-17, Centre for Telematics and Information Technology, Apr. 2004.

