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Abstract The growing popularity of graph databases
has generated interesting data management problems,
such as subgraph search, shortest path query, reacha-
bility verification, and pattern matching. Among these,
a pattern match query is more flexible compared to
a subgraph search and more informative compared to
a shortest path or a reachability query. In this paper,
we address distance-based pattern match queries over a
large data graph G. Due to the huge search space, we
adopt a filter-and-refine framework to answer a pattern
match query over a large graph. We first find a set of
candidate matches by a graph embedding technique and
then evaluate these to find the exact matches. Extensive
experiments confirm the superiority of our method.

1 Introduction

As one of the most popular and powerful representa-
tions, graphs have been used to model many appli-
cation data, such as social networks, biological net-
works, and World Wide Web. In order to conduct effec-
tive analysis over graphs, various types of queries have

Extended version of paper “Distance-Join: Pattern Match Query

In a Large Graph Database” that was presented in the Proceed-
ing of 35th International Conference on Very Large Databases

(VLDB), pages 886-897, 2009.

Lei Zou �, Dongyan Zhao

Peking University, Beijing, China

E-mail: {zoulei,zdy}@icst.pku.edu.cn

Lei Chen
Hong Kong University of Science and Technology, Hong Kong

E-mail: leichen@cse.ust.hk

M. Tamer Özsu
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been investigated, such as shortest path query [9,18,
7], reachability query [9,29,27,5], and subgraph query
[24,34,6,17,31,36,15,25]. These are all interesting, but
in this paper, we focus on pattern match queries, since
they are more flexible than subgraph queries and more
informative than simple shortest path or reachability
queries. Specifically, a pattern match query searches
over a large labeled graph to look for the existence
of a pattern graph in a large data graph. A pattern
match query is different from subgraph search in that
it only specifies the vertex labels and connection con-
straints between vertices. In other words, a pattern
match query emphasizes the connectivity between la-
beled vertices rather than checking subgraph isomor-
phism as subgraph search does.

In this paper, we propose a distance-based pattern
match query, which is defined as follows: given a large
graph G, a query graph Q with n vertices and a param-
eter δ, n vertices in G match Q iff: (1) these n vertices
in G have the same labels as the corresponding vertices
in Q, and (2) for any two adjacent vertices vi and vj

in Q (i.e., there is an edge between vi and vj in Q and
1 ≤ i, j ≤ n), the distance between two corresponding
vertices in G is no larger than δ. We need to find all
matches of Q in G. In this work, we use the shortest
path to measure the distance between two vertices, but
our approach is not restricted to this distance function,
and can be applied to other metric distance functions
as well. Note that, for ease of presentation, we use the
term “pattern match” instead of “distance-based pat-
tern match” in the rest of this paper, when the context
is clear.

A key problem of pattern match queries is huge
search space. Given a query Q with n vertices, for each
vertex vi in Q, we first find a list of vertices in data
graph G that have the same labels as that of vi. Then,
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for each pair of adjacent vertices vi and vj in Q, we
need to find all matching pairs in G whose distances
are less than δ. This is called an edge query. To an-
swer an edge query, we need to conduct a distance-
based join operation between two lists of matching ver-
tices corresponding to vi and vj in G. Therefore, finding
pattern Q in G requires a sequence of distance-based
join operations, which is very costly for large graphs.
In order to answer pattern match queries efficiently, we
adopt the filter-and-refine framework. Specifically, we
need efficient pruning strategies to reduce the search
space. Although many effective pruning techniques have
been proposed for subgraph search (e.g., [24,34,6,17,
31,36,15,25]), they can not be applied to pattern match
queries since these pruning rules are based on the nec-
essary condition of subgraph isomorphism. We propose
a novel and effective method to reduce the search space
significantly. Specifically, we transform vertices into points
in a vector space via graph embedding methods, con-
verting a pattern match query into a distance-based
multi-way join problem over the vector space to find
candidate matches. In order to reduce the join cost, we
propose several pruning rules to reduce the search space
further, and propose a cost model to guide the selection
of the join order to process multi-way join efficiently.

During the refinement process, we adopt 2-hop dis-
tance label [9] to compute the shortest path distance
for each candidate match. Unfortunately, finding the
optimal 2-hop distance-aware labeling (i.e., one where
the size of 2-hop distance-aware labels is minimized) is
a NP-hard problem [9]. Although a heuristic method to
compute 2-hop distance-aware labels in a large directed
graph has been proposed [7], this method cannot work
well in a large undirected graph. We will discuss this
method in detail in Section 2. In this paper, we propose
a betweenness (Definition 3) estimation-based method
to guide 2-hop distance-aware center selection. Exten-
sive experiments on both real and synthetic datasets
confirm the efficiency of our method.

To summarize, in this work, we make the following
contributions:

1) We propose a general framework for handling
pattern match queries over a large graph. Specifically,
we adopt a filter-and-refine framework to answer pat-
tern match queries. During filtering, we map vertices
into vectors via an embedding method and conduct
distance-based multi-way join over the vector space.

2) We design an efficient distance-based join algo-
rithm (D-join for short) for an edge query in the con-
verted vector space, which well utilizes the block nested
loop join and hash join techniques to handle the high
dimensional vector space. We also develop an effective
cost model to estimate the cost of each join operation,

based on which we can select the most efficient join
order to reduce the cost of multi-way join.

3) In order to address the high complexity of of-
fline processing, we propose a graph partitioning-based
method and bi-level version of D-join algorithm, called
bD-join.

4) In order to enable shortest path distance compu-
tation efficiently, we propose betweenness estimation-
based method to compute 2-hop distance labels in a
large graph.

5) In order to answer an approximate subgraph query
(Definition 9), we first transform it into a distance-
based pattern match query. Then, we find candidates by
D-join algorithm. Finally, for each candidate, we verify
whether it is an approximate subgraph match (Defini-
tion 8).

6) Finally, we conduct extensive experiments with
real and synthetic data to evaluate the proposed ap-
proaches.

The rest of this paper is organized as follows. We
discuss the related work in Section 2. Our framework
is presented in Section 3. We propose betweenness esti-
mation-based method to compute 2-hop distance labels
in Section 4. The offline process is discussed in Section
5. We discuss the neighbor area pruning technique in
Section 6, and a distance-based join algorithm for an
edge query and its cost model in Section 7. Section
7 also presents a distance-based multi-way join algo-
rithm for a pattern match query and join order selection
method. In Section 8, we propose a graph partition-
based method to reduce the cost of offline processing
and the bD-join algorithm. In Section 9, we propose
a distance-join based solution to answer approximate
subgraph queries. We study our methods by experi-
ments in Section 10. Section 11 concludes this paper.

2 Background and Related Work

Let G = 〈V,E〉 be a graph where V is the set of vertices
and E is the set of edges. Given two vertices u1 and u2

in G, a reachability query verifies if there exists a path
from u1 to u2, and a distance query returns the shortest
path distance between u1 and u2 [9]. These are well-
studied problems, with a number of vertex labeling-
based solutions [9]. A family of labeling techniques have
been proposed to answer both reachability and distance
queries. A 2-hop labeling method over a large graph
G assigns to each vertex u ∈ V (G) a label L(u) =
(Lin(u), Lout(u)), where Lin(u), Lout(u) ⊆ V (G). Ver-
tices in Lin(u) and Lout(u) are called centers. There are
two kinds of 2-hop labeling: 2-hop reachability label-
ing (reachability labeling for short) and 2-hop distance
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labeling (distance labeling for short). For reachability
labeling, given any two vertices u1, u2 ∈ V (G), there is
a path from u1 to u2 (denoted as u1 → u2), if and only
if Lout(u1)∩Lin(u2) 6= φ. For distance labeling, we can
compute Distsp(u1, u2) using the following equation.

Distsp(u1, u2) = min{Distsp(u1, w) + Distsp(u2, w)|
w ∈ (Lout(u1) ∩ Lin(u2))}

(1)

where Distsp(u1, u2) is the shortest path distance be-
tween vertices u1 and u2. The distances between ver-
tices and centers (i.e., Distsp(u1, w) and Distsp(u2, w))
are pre-computed and stored. The size of 2-hop labeling
is defined as

∑
u∈V (G) (|Lin(u)|+ |Lout(u)|), while the

size of 2-hop distance labeling is O(|V (G)||E(G)|1/2)
[8]. Thus, according to Equation 1, we need O(|E(G)|1/2)
time to compute the shortest path distance by distance
labeling because the average vertex distance label size
is O(|E(G)|1/2).

Note that, this work focuses on the shortest path
distance computation. Finding the optimal 2-hop dis-
tance labeling is NP-hard [9]. Therefore, a heuristic al-
gorithm based on the minimal set-cover problem is pro-
posed [9]. Initially, all pairwise shortest paths are com-
puted in G (denoted by DG). Then, in each iteration,
one vertex w in V (G) is selected as a 2-hop center to
maximize Equation 2.

|D(G,w) ∩DG|
|Aw|+ |Dw|

(2)

where D(G,w) denotes the shortest paths that are cov-
ered by w, and Aw contains all vertices that can reach
w and Dw contains all vertices that are reachable from
w. Note that, Aw and Dw are also called the ancestor
and descendant clusters of w.

Then, all paths in D(G,w) are removed from DG.
This process is iterated until DG = φ, and all selected
2-hop centers are returned. According to the 2-hop cen-
ters, the corresponding ancestor and descendant clus-
ters are built, according to which, a 2-hop label for each
vertex in G is generated. Note that, in order to evaluate
Equation 2, all pairwise shortest paths (i.e., DG) need
to be kept in memory. Obviously, this requirement is
prohibitive for a large graph due to high space com-
plexity O(|V (G)|2). Furthermore, also due to high time
complexity, it is impossible to pre-compute all pairwise
shortest paths in a large graph G in a reasonable time.

There are many proposals for computing reachabil-
ity labeling in a large graph (e.g., [27,29]). However,
2-hop distance-aware labeling computation in a large
graph has not attracted much attention except for the

work of Cheng and Yu [7], where a large directed graph
G is first converted into a directed acyclic graph (DAG)
G↓ by removing some vertices in each strongly con-
nected component (SCC) of G. These removed vertices
are selected as 2-hop centers. Obviously, all shortest
paths that pass through these removed vertices are cov-
ered by these selected 2-hop centers. Then, G↓ is par-
titioned into two subgraphs, denoted as G> and G⊥,
by a set of node-separators Vw. These vertices in Vw

are selected as 2-hop centers as well. All shortest paths
across G> and G⊥ must be covered by Vw. These two
partitions can be considered separately. If G> is small
enough, the method in [9] can be employed to compute
2-hop labels in G>; otherwise, the partition process is
repeated until the 2-hop label in each partition can be
computed by the method in [9] directly. The same pro-
cess is followed for G⊥.

Given a 2-hop center w, it is not necessary that Aw

(and Dw) contains all ancestor (and descendant) nodes
of w in a directed graph G, or all vertices in an undi-
rected graph G. Some pruning methods have been pro-
posed for this purpose based on the previously identified
2-hop clusters [7].

There are two problems in the method of [7]. Firstly,
if G is not a sparse directed graph, there may exist a
large number of strongly connected components (SCC)
in G. Consequently, a large number of vertices need to
be removed from G to generate a DAG. This means
that the size of 2-hop labeling in G is very large. Fur-
thermore, if G is an undirected graph, it is impossible
to generate a DAG by removing some vertices in G.
Secondly, the proposed pruning methods reduce the re-
dundancy and the labeling size, but the pruning strat-
egy is based on all previously identified 2-hop clusters.
Thus, all previously identified 2-hop clusters need to be
cached in memory; otherwise, frequent swap-ins/outs
will affect the performance dramatically. Furthermore,
the cost of redundancy checking is also expensive.

To the best of our knowledge, there exists little work
on pattern match queries over a large data graph, ex-
cept for [8,26]. In [8], based on the reachability con-
straint, authors propose a pattern match problem over
a large directed graph G. Specifically, given a query
pattern graph Q (that is a directed graph) that has n
vertices, n vertices in G can match Q if and only if
these corresponding vertices have the same reachabil-
ity connection as those specified in Q. This is the most
related work to ours, although our constraints are on
“distance” instead of “reachability”. We call our match
“distance pattern match”, and the match in [8] “reach-
ability pattern match”. We first illustrate the method
in [8] using Figure 1, and then discuss how it can be
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extended it to solve our problem and present the short-
comings of the extension.
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Fig. 1 R-join

Without loss of generality, assume that there is only
one directed edge e = (v1, v2) in query Q. Figure 1(a)
shows a base table to store all vertex distance labels.
For each center wi in graph G, Awi

and Dwi
are 2-

hop reachability clusters for wi. Awi and Dwi contain
all ancestor nodes and descendant nodes of wi in G,
respectively, where for every vertex u1 in Awi

, every
vertex u2 in Dwi can be reached via wi. Then, an in-
dex structure is built based on these clusters, as shown
in Figure 1(c). For each vertex label pair (l1, l2), all
centers wi are stored (in table W-Table), where there
exists at least one vertex labeled l1 (and l2) in A(wi)
(and D(wi)). Consider a directed edge e = (v1, v2) in
query Q and assume that the labels of vertices v1 and
v2 (in query Q) are ‘a’ and ‘b’, respectively. Accord-
ing to W-Table in Figure 1b, we can find centers wi,
in which there exists at least a vertex u1 labeled ‘a’ in
Awi , and there exists at least a vertex u2 labeled ‘b’
in Dwi . For each such center wi, the Cartesian product
of vertices labeled ‘a’ in Awi

and vertices labeled ‘b’ in
Dwi

can form the matches of Q. This operation is called
R-join [8]. In this example, there is only one center a0

that corresponds to vertex label pair (a, b), as shown
in Figure 1(b). According to index structure in Figure
1(c), F (a0) and T (a0) can be found. When the number
of edges in Q is larger than one, a reachability pattern
match query can be answered by a sequence of R-joins.

2-hop distance labeling has the structure similar to
2-hop reachability labeling, we can extend the method
proposed in [8] to answer distance pattern match query.
Specifically, in the last step, for each vertex pair (u1, u2)
in the Cartesian product, we need to compute dist =
Distsp(u1, wi) + Distsp(u2, wi). If dist ≤ δ, (u1, u2) is
a match. Note that this step is different from reacha-
bility pattern match in [8], in which no distance com-
putation is needed. Assume that there are n1 vertices

labeled ‘a’ and n2 vertices labeled ‘b’ in a graph G. It
is clear that the number of distance computations is at
least n1 × n2, which is exactly the same as naive join
processing. Therefore, this extension method will not
reduce the search space. Thus, the motivation of our
work is exactly this: is it possible to avoid unnecessary
distance computation to speed up the search efficiency?
Several efficient and effective pruning techniques are
proposed in this paper.

The best-effect algorithm [26] returns K matches
with large scores. That algorithm cannot guarantee that
the k result matches are the k largest over all matches.
We cannot extend this method to apply to our problem,
since it cannot guarantee the completeness of results. In
[11], authors propose ranked twig queries over a large
graph, however, a “twig pattern” is a directed graph,
not a general graph.

3 Framework

Definition 1 (Distance-based Pattern Match). Con-
sider a data graph G, a connected query graph Q that
has n vertices {v1, ..., vn} and m edges {e1, ..., em}, and
m parameters δ1, ..., δm. A set of n distinct vertices
{u1, ..., un} in G is said to be a Distance-based Pat-
tern Match of Q, if and only if the following conditions
hold:
1) ∀i, L(ui) = L(vi), where L(ui) (L(vi)) denotes ui’s
(vi’s) label; and
2) For each edge ej = (vi1 , vi2) in Q, j = 1, ...,m, the
shortest path distance between ui1 and ui2 in G is no
larger than δj . We denote the shortest path between
ui1 and ui2 as ui1ui2 .

For ease of presentation, we assume that all distance
constraint parameters have the same value, i.e., δ =
δ1 = ... = δm. The problem that we study in this paper
is defined as follows:

Definition 2 (Distance-based Pattern Match
Query). Consider a data graph G, a connected query
graph Q that has n vertices {v1, ..., vn}, and a parame-
ter δ. A pattern match query finds all matches (Defini-
tion 1) of Q over G.

In this paper, we use the terms “match” and “pat-
tern match query” instead of “distance-based pattern
match” and “distance-based pattern match query” for
simplicity, when the context is clear.

According to Definition 1, any match is always con-
tained in some connected component of G, since Q is
connected. Without loss of generality, we assume that
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G is connected. If not, we can sequentially perform pat-
tern match queries in each connected component of G
to find all matches.

One way of executing the pattern match query (that
we call naive join processing) is the following. Using the
vertex label predicates associated with each vertex vi of
a query graph Q, derive n lists of vertices (R1, . . . , Rn),
where each list Ri contains all vertices ui whose labels
are the same as vi’s label (list Ri is said to correspond
to a vertex vi in Q). Then, perform a shortest path
distance-based multi-way join over these lists. Join re-
quires the definition of a join order, which, in this case,
corresponds to a traversal order in Q. At each traversal
step, the subgraph induced by all visited edges (in Q) is
denoted as Q′. Figure 2 shows a join order (i.e., traver-
sal order in Q) of a sample query Q. In the first step,
there is only one edge in Q′, thus, the pattern match
query degrades into an edge query. After the first step,
we still need to answer an edge query for each new en-
countered edge. It is clear that different join orders will
lead to different performance.

a

b c

d
Query Q

NULL
a

ba
b c

a
b ca

b c
d

Fig. 2 A Join-Order

According to Definition 1, we have to perform short-
est path distance computation online. The straightfor-
ward solution to reduce the cost is to pre-compute and
store all pairwise shortest path distances (Pre-compute
method). The method is fast, but prohibitive in space
usage (it needs O(|V (G)|2) space). Graph labeling tech-
nique enables the computation of shortest path dis-
tance in O(|E(G)|1/2) time, while the space cost is only
O(|V (G)||E(G)|1/2) [9]. Thus, we adopt the graph la-
beling technique to perform shortest path distance com-
putation. However, computing the optimal 2-hop dis-
tance labels (i.e., the size of 2-hop distance labels is
minimized) is NP-hard [9]. In Section 4, we propose
a betweenness estimation-based method to compute 2-
hop distance-aware labels in a large graph G.

The key problem in naive join processing is its large
number of distance computations. In order to speed up
the query performance, we need to address two issues:
reducing the number of shortest path distance compu-
tations, and finding a distance computation method to
find all candidate matches that are more efficient than
shortest path distance computation.

In order to address these issues, we utilize the LLR
embedding technique [20,23] to map all vertices in G
into points in vector space <k, where k is the dimension-
ality of <k. We then compute L∞ distance between the
points in <k space, since it is much cheaper to compute
and it is the lower bound of the shortest path distance
between two corresponding vertices in G (see Theorem
2). Thus, we can utilize L∞ distance in vector space
<k to find candidate matches. We also propose several
pruning techniques based on the properties of L∞ dis-
tance to reduce the number of distance computations in
join processing. Furthermore, we propose a novel cost
model to guide the join order selection. Note that we
do not propose a general method for distance-join (also
called similarity join) in vector space [1,3]; we focus on
L∞ distance in the converted space simply because we
use L∞ distance to find candidate matches.

Figure 3 depicts the general framework to answer
a pattern match query. We first use LLR embedding
to map all vertices into points in vector space <k. We
adopt k-medoids algorithm [12] to group all points into
different clusters. Then, for each cluster, we map all
points u (in this cluster) into a 1-dimensional block.
According to the Hilbert curve in <k space, we can
define the total order for all clusters. According to this
total order, we link all blocks to form a flat file. We also
propose a heuristic method to compute 2-hop distance
labeling to enable fast shortest path distance compu-
tation, which is discussed in Section 4. When query Q

is received, according to join order selection algorithm,
we find the cheapest query plan (i.e., join order). As
discussed above, a join order corresponds to a traversal
order in query Q. At each step, we perform an edge
query for the new introduced edge. During edge query
processing, we first use L∞ distance to obtain all can-
didate matches (Definition 6), then, we compute the
shortest path distance for each candidate match to fix
final results. Join processing is iterated until all edges
in Q are visited.

4 Computing 2-Hop Distance-Aware Label

In this section, we propose a “betweenness” based meth-
od to compute 2-hop distance-aware labels in a large
graph. The relative importance of a vertex in a graph
can be evaluated using measures based on the centrality
of a vertex in graph theory, such as degree centrality,
betweenness, closeness, and eigenvector centrality [22].
Among these measures, “betweenness” measures the
relative importance of a vertex that is needed by others
when connecting along shortest paths [10], where ver-
tices that occur on many shortest paths between other
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vertices have higher betweenness value than those that
do not.

Definition 3 [10] Given a graph G and a vertex u, if
vertex u occurs on the shortest distance path between
u1 and u2 (u1 6= u2 6= u), we say that u covers the short-
est distance path between u1 and u2. The betweenness
of v is defined as follows:

Betweenness(u) =
∑

u1 6=u 6=u2∈V

σu1u2(u)
σu1u2

(3)

where σu1u2(u) denotes the number of different shortest
distance paths between u1 and u2 that are covered by
u; and σu1u2 denotes the number of different shortest
distance paths between u1 and u2.

This measure fits our requirements best. In order
to guarantee the completeness (defined in Section 2) of
2-hop labeling, we need to select some 2-hop centers to
cover all pairwise shortest paths. Meanwhile, in order to
minimize the space cost of 2-hop labeling, the number
of 2-hop centers should be minimized. Thus, it is better
to select some vertices that can cover a large number
of shortest paths as 2-hop centers, i.e., selecting some

vertices that have higher betweenness as 2-hop centers
in our method.

Given an undirected graph G in Figure 4a, u2 and
u3 are two vertices with the highest betweenness, where
Betweenness(u2) = Betweenness(u3) = 0.7. If we se-
lect u2 and u3 as 2-hop centers, all shortest paths in
G are covered by u2 or u3. Figure 4b shows the cor-
responding 2-hop labeling for G. However, if we select
other 2-hop centers, such as u0, u1, u4, Figure 4c shows
the corresponding 2-hop labeling. Obviously, the size of
the former 2-hop labeling is smaller than the latter.

Motivated by the above observation, we propose a
betweenness-based method to compute 2-hop labeling
for a graph G in Algorithm 1. Firstly, we select some
vertices with high betweenness values in G as 2-hop
centers (Line 1 in Algorithm 1). It is very expensive to
compute betweenness in a large graph, since it has the
same time complexity as computing all pairwise short-
est paths. Therefore, we propose to adopt a sampling
approach to estimate betweenness [2]. Specifically, we
first randomly select 1% of the vertices G as “pivots”.
The experimental results show that the random sam-
pling method has precision similar to some carefully-
designed sampling approaches [2]. Thus, we adopt the
random sampling method. More details about “pivot
selection” and “betweenness estimation” can be found
in [2].

According to the shortest paths between these piv-
ots and Equation 4, we can estimate betweenness for
each vertex in G as follows.

ESTBetweeness(u) =
∑

u1 6=u 6=u2,u1,u2∈V ′

σu1u2(u)
σu1u2

(4)

where V ′ denotes the set of pivot vertices, σu1u2(u) de-
notes the number of different shortest distance paths
between u1 and u2 that are covered by u; and σu1u2

denotes the number of different shortest distance paths
between u1 and u2.

We select the top-k vertices with the highest es-
timated betweenness values as 2-hop centers, denoted
as Wb = {wb}. As discussed earlier, we focus on a
connected undirected graph G. For each center wb in
Wb, the ancestor and descendant clusters (denoted as
Awb

and Dwb
) contain all vertices in a G, since all ver-

tices can reach the center wb and these vertices are also
reachable from wb in G.

We then remove all vertices (including their adja-
cent edges) in Wb from G to obtain G′, and partition G′

into n segments. The set of node separators is denoted
as Ws = {ws} (Lines 2-3 in Algorithm 1). We require
that the size of each partition is small enough to be pro-
cessed by the method in [9]. We employ METIS algo-
rithm [19] to perform graph partitioning. Since METIS
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performs an edge separator-based partition, we adopt
an approach similar to [13] to convert it into a node
separator-based partition. Considering one edge sepa-
rator e = (u1, u2) that connects two partitions P1 and
P2, we shift the partition boundary so that one of u1

and u2 is on the boundary and the other one is in the
partition. The node on the boundary is called a node
separator. The choice of node separator depends on the
size of partitions P1 and P2. In order to balance the
size of each partition, we always make the node from
the large partition a node separator.

We remove all vertices in Wb ∪ Ws and their adja-
cent edges from G to obtain G� (Line 4). Assume that
there are m connected components in G�. For purposes
of presentation, we assume that each connected compo-
nent is called a subgraph, denoted Si, i = 1, ...,m. It is
clear that m ≥ n, and each subgraph Si is small enough
to be processed by the method in [9], according to the
graph partition method in the second step.

All pairwise shortest paths in G can be classified
into two categories, denoted as PathSet1 and PathSet2,
where PathSet1 contains all paths that cross at least
two subgraphs, and PathSet2 contains the paths that
are constrained in each subgraph.

In order to guarantee the completeness of 2-hop la-
beling, the process should consist of two parts, namely
skeleton 2-hop labeling and local 2-hop labeling. The for-
mer covers all paths in PathSet1, and the latter covers
all paths in PathSet2. For each subgraph Si, we em-
ploy the method in [9] to compute local 2-hop labeling
(Lines 5-6). The key issue is how to compute skeleton 2-
hop labeling. Obviously, all paths in PathSet1 are cov-
ered by at least one vertex in Wb ∪Ws. For each vertex
w ∈ Wb ∪ Ws, we perform Dijkstra’s algorithm to ob-
tain the shortest path tree with root w. The ancestor
and descendant clusters for w (denoted as Aw and Dw)
contain all vertices in G and their corresponding dis-
tances. However, the space cost of this straightforward
approach is quite high. Some pruning methods based on
previously identified clusters are proposed in [7]. How-
ever, the key problem of this technique is that all previ-
ously identified clusters need to be kept in memory for
further checking. Otherwise, frequent swaps will affect
the performance dramatically, making it prohibitive in
a large graph.

An interesting observation is that a large fragment
of shortest paths in PathSet1 are covered by Wb, but
|Wb| = k << |Ws|. Therefore, we propose the following
method to reduce redundancies in 2-hop clusters: For
each vertex wb ∈ Wb, Awb

(and Dwb
) contains all ver-

tices in G and their corresponding distances (Lines 7-9).
However, it is not necessary for Aws

and Dws
(ws ∈ Ws)

to contain all vertices in G, since most paths have been
covered by some 2-hop centers in Wb.

Theorem 1 Given a 2-hop center ws ∈ Ws and a ver-
tex u in G, if the shortest path between ws and u (de-
noted as uws) passes through some vertex wb ∈ Wb, u
can be filtered out from Aws

and Dws
without affecting

the completeness of 2-hop labeling.

Proof See [37].

According to Theorem 1, we have the following steps.
For each 2-hop center wb ∈ Wb, we perform Dijkstra’s
algorithm to obtain the shortest path tree with root
wb. The 2-hop cluster for wb ∈ Wb contains all ver-
tices in G and the corresponding distances (Lines 7-9).
For each 2-hop center ws ∈ Ws, we also perform Dijk-
stra’s algorithm to obtain the shortest path tree with
root ws (Line 11). If the shortest path between ws and
some vertex u (denoted as wsu) passes through another
2-hop center wb, u can be filtered out from Aws and
Dws

(Lines 15-16). According to the 2-hop clusters, it
is straightforward to obtain the skeleton 2-hop labels
(Line 17).

As mentioned earlier, 2-hop label of each vertex con-
tains two parts, a local 2-hop label and a skeleton 2-hop,
which can be obtained in Lines 5-6 and Lines 7-17 of
Algorithm 1, respectively. Finally, for each vertex, we
combine the local 2-hop labels and the skeleton 2-hop
labels together (Line 18).

5 Offline Processing For Pattern Match Query

5.1 Graph Embedding Technique

According to LLR embedding technique [20,23], we have
the following embedding process to map all vertices in
G into points in a vector space <k, where k is the di-
mensionality of the vector space:

1) Let Sn,m be a subset of randomly selected vertices
in V (G). We define the distance from u to its closest
neighbor in Sn,m as follows:

Dist(u, Sn,m) = minu′∈Sn,m{Distsp(u, u′)} (5)

2) We select k = O(log2|V (G)|) subsets to form
the set R = {S1,1, ..., S1,κ, ..., Sβ,1, ..., Sβ,κ}. where κ =
O(log|V (G)|) and β = O(log|V (G)|) and k = κ · β =
O(log2|V (G)|). Each subset Sn,m (1 ≤ n ≤ β, 1 ≤ m ≤
κ) in R has 2n vertices in V (G).

3) The mapping function E : V (G) → <k is defined
as follows:

E(u) = [Dist(u, S1,1), ..., Dist(u, S1,κ), ..., Dist(u, Sβ,1),
..., Dist(u, Sβ,κ)]
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Algorithm 1 Betwneenness estimation-based 2-hop
Labeling Computing (BE for short)
Input: Input: graph G Output: 2-hop labeling for G.

1: Select k vertices in G with the highest estimated betweenness

as 2-hop centers, denoted as Wb.
2: Remove Wb from G to form G′.
3: Partition G′ into n segments by a set of node-separators,

denoted as Ws. The size of each partition is small enough to

be handled by the method in [9].

4: Remove Wb ∪Ws from G to form G�. Each connected com-
ponent is called a subgraph Si.

5: for each Si in G do

6: Employ the method in [9] to compute the local 2-hop la-
beling.

7: for each vertex w ∈ Wb do

8: Perform Dijkstra’s algorithm to find the shortest distance
path tree rooted at w.

9: The 2-hop cluster Aw and Dw contain all vertices in G

and the corresponding distance.
10: for each vertex w in Ws do

11: Perform Dijkstra’s algorithm to find the shortest distance

path tree rooted at w.
12: for each vertex u in G do

13: if the shortest distance path between w and u does not
pass through w′ ∈ Wb then

14: Insert u into the cluster Aw and Dw.

15: Generate skeleton 2-hop labeling according to 2-hop clusters.
16: Combine the local 2-hop labels and the skeleton 2-hop labels

together.

(6)

where κ · β = k.
In the converted vector space <k, we use L∞ metric

as distance function in <k, which is defined as follows:

L∞(E(u1), E(u2)) = maxn,m|Dist(u1, Sn,m)−Dist
(u2, Sn,m)|

where E(u1) is the point (in <k space) corresponding
to the vertex u1 in graph G. For notational simplicity,
we also use u1 to denote the point in <k space, when
the context is clear. Theorem 2 establishes L∞ distance
over <k as the lower bound of the shortest path distance
over G.

Theorem 2 [23] Given two vertices u1 and u2 in G,
L∞ distance between two corresponding points in the
converted vector space <k is the lower bound of the
shortest path distance between u1 and u2; that is L∞(E(u1)
, E(u2)) ≤ Distsp(u1, u2)

The time complexity and space cost of offline pro-
cessing are O(|E(G)| |V (G)| + |V (G)|2log|V (G)|) and
O(|V (G)||E(G)| 12 +|V (G)| log2|V (G)|), respectively. Pl-
ease refer to [37] for detailed analysis.
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Fig. 5 Table Format of The Converted Vector Space

5.2 Data Structures

Note that shortest path distance and L∞ distance are
both metric distances [12]; thus they satisfy the trian-
gle inequality. After LLR embedding, all vertices are
mapped into points in high dimensional space <k. We
use a relational table T (ID, I1, ..., Ik, L) (as shown in
Figure 5) to store all points in <k. The first ID column
is the vertex ID, columns I1, ..., Ik are k dimensions of
a mapped point in <k, and the last column L denotes
the vertex label. To avoid the sequential scan over table
T , we organize all points in T by the following method:
First, we divide the whole table into different partitions
according to vertex labels. The orders for partitions are
randomly defined, but we record the partition start and
end offsets in a secondary file. Second, for each parti-
tion, we group all points in this partition into different
clusters. For each cluster Ci, we find its cluster center
ci. For each point u in cluster Ci whose center is ci,
according to distance L∞(u, ci) (ci is cluster center of
Ci), u is mapped into 1-dimensional block Bi. Clearly,
different clusters are mapped into different blocks. We
define cluster radius r(Ci) as the maximal distance be-
tween center ci and vertex u in cluster Ci. Figure 5
depicts our method, where Euclidean distance is used
as the distance function for demonstration (the actual
distance function is L∞, but that is harder to show). We
define the total order for different clusters according to
Hilbert order in the high dimensional space. Consider
two clusters C1 and C2 whose cluster centers are c1 and
c2 respectively. Assuming c1 and c2 are in two different
cells S1 and S2 (in <k space, as shown in Figure 5)
respectively, if cell S1 is ahead of S2 in Hilbert order,
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cluster C1 is larger than C2. If c1 and c2 are in the same
cell, the order of C1 and C2 is arbitrarily defined.

Note that the maximal size for one cluster (i.e., one
block) is specified according to the allocated memory
size. In our implementation, we use K-medoids algo-
rithm [12] to find clusters. Also note that the clustering
algorithm is orthogonal to our approach. How to find
an optimal clustering in <k is beyond the scope of this
paper. In the following discussion, we assume that clus-
tering results are given.

6 Neighbor Area Pruning

To answer a distance pattern match query, we conduct
a distance-based join over the converted vector space,
not the original graph space. Thus, to reduce the cost
of join processing, the first step is to remove all the
points that do not qualify for join condition as early as
possible. In this section, we propose an efficient pruning
strategy called neighbor area pruning.

a

b

c
b

a

4u

3u
1u

2u 5u

c6u

4 2( , )spDist u u δ>

4 1( , )spDist u u δ>

6 3( , )spDist u u δ>

6 4( , )spDist u u δ<

(b) Query Q

1v

2v
3v

(a)   Shortest Path Distances in graph G

4  is pruned u

a

b c

Fig. 6 Area Neighbor Pruning

We first illustrate the rationale behind neighbor area
pruning using Figure 6. Consider query Q in Figure 6.
If a vertex u labeled ‘a’ (in G) can match v1 (in Q) ac-
cording to Definition 1, there must exist another vertex
u′ labeled ‘b’ (in G), where Distsp(u, u′) ≤ δ, since v1

has a neighbor vertex labeled ‘b’ in query Q. For vertex
u4 in Figure 6, there exists no vertex u′ labeled with
‘b’, where Distsp(u4, u

′) ≤ δ; thus, u4 can be pruned
safely. Vertex u6 has label ‘c’, thus, it is a candidate
match to vertex v3 in query Q. Although there exists a
vertex u4 labeled ‘a’, where Distsp(u6, u4) < δ, prun-
ing vertex u4 in the last step will lead to pruning u6 as
well. In other words, neighbor area pruning is an itera-
tive process that continues until convergence is reached
(i.e., no vertices in any list can be further pruned).

As a result of LLR embedding, all vertices in G
have been mapped into points in <k. Therefore, we
want to conduct neighbor area pruning over the con-
verted space. Since L∞ distance is the lower bound for

the shortest path distance, vertex u4 can be pruned
safely, if there exists no vertex u′ labeled with ‘b’ where
L∞(u4, u

′) ≤ δ. However, it is inefficient to check each
vertex one-by-one. Therefore, we propose the neighbor
area pruning to reduce the search space in <k.

Definition 4 Given a vertex v in query Q and its cor-
responding list R in data graph G, for each vertex ui

in R, according to the LLR embedding technique, each
vertex ui is mapped to a point in <k space, denoted
as u<

k

i . We define vertex neighbor area of ui as fol-
lows: Area(ui) = ([(u<

k

i .I1−δ, u<
k

i .I1 +δ), ..., (u<
k

i .Ik−
δ, u<

k

i .Ik +δ)]), where u<
k

i is a point in <k space, and Ii

is the i-th dimension at <k space. The list neighbor area
of Ri is defined as follows: Area(R) = [(Area(u1).I1 ∪
...∪Area(un).I1), ..., (Area(u1).Ik ∪ ...∪Area(un).Ik)],
where u1, ..., un ∈ R. Note that, Area(R).Ij = Area(u1)
.Ij ∪ ... ∪Area(un).Ij , j = 1, ..., k.

For notational simplicity, we also use “ui” to de-
note the corresponding point u<

k

i in <k space, when
the context is clear.

Definition 5 Given a list R and a vertex u, u ∈ Area(R)
if and only if, for every dimension Ij , u.Ij ∈ Area(R).Ij ,
where Area(R).Ij is defined in Definition 4.
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Fig. 7 Running Examples

Given a data graph G in Figure 6, assume that the
converted space <k is given in Figure 7(b) and list R2

contains all vertices labeled ‘b’. Since there are two ver-
tices u1 and u2 in R2, Area(u1).I3 and Area(u2).I3 are
shown in Figure 7(a). Area(R2).I3 = (Area(u1).I3 ∪
Area(u2).I3) is also shown in Figure 7(a). Obviously,
u3.I3 ∈ Area(R2).I3, since 45 ∈ [40, 65]. However, u4.I3 /∈
Area(R2).I3.

Theorem 3 Given a vertex v in query Q, its corre-
sponding list is R in G. Assume that v has m neighbor



10

vertices vj (i.e., (v, vj) is an edge), j = 1, ...,m, and for
each vertex vj, its corresponding list is Rj in G. Given
a vertex ui ∈ R, if ∃j, ui /∈ Area(Rj), then ui can be
safely pruned from the list R.

In Figure 7(b), according to Theorem 3, no vertices
can be filtered out from R2 and R3. However, for vertex
u4 in R1, u4.I3 /∈ Area(R2).I3 = [40, 60]∪ [45, 65] =
[40, 65]. Thus, u4 is pruned safely from R1 in the first
step. The more interesting thing is that pruning R1

leads to shrinking of Area(R1).I3. In this way, u6 is
pruned in the second step from R3. Now, R1, R2 and
R3 converge.

Algorithm 2 Neighbor Area Pruning
Input: Query Q that has n vertices vi; and each vi has a corre-

sponding list Ri.
Output: n lists Ri after pruning.

1: while numLoop < MAXNUM do

2: for each list Ri do
3: Scan Ri to find Area(Ri).

4: for each list Ri do
5: Scan Ri to filter out false positives by Area(Rj), where

vj is a neighbor vertex w.r.t vi.

6: if all list Ri has not been change in this loop then
7: Break

Based on Theorem 3, Algorithm 2 lists the steps to
perform pruning on each list Ri. Notice that, as dis-
cussed above, the pruning process is iterative. Lines 2-
5 are repeated until either the convergence is reached
(Lines 6-7), or iteration step exceeds the maximal num-
ber of iterations (Line 1).
Time Complexity. It is straightforward that the time
complexity of Lines 2-5 is linear with respect with the
number of vertices in Ri, i.e., O(

∑
i |Ri|). According

to Line 1 in Algorithm 2, the algorithm iterates until
that the convergence is reached, or at most MAXNUM
times. In each iteration, there is at least one vertex
to be pruned. There are (

∑
i |Ri|) vertices in total.

Therefore, the total time complexity of Algorithm 2 is
O((

∑
i |Ri|)2). Note that, in practice, the complexity is

far less than the complexity in the worst case.

7 Answering Pattern Query via Edge Join

In this section, we propose “edge join” and answer a
pattern match query by a series of edge joins. To com-
plete this task, we need to define a join order. In fact,
a join order in our problem corresponds to a traversal
order in Q. In each traversal step, the subgraph induced
by all visited edges (in Q) is denoted as Q′. We can find
all matches of Q′ in each step. Figure 2 shows a join or-
der (i.e., traversal order in Q) of a sample query Q. In

the first step, there is only one edge in Q′, thus, the
pattern match query degrades into an edge query. Af-
ter the first step, we still need to answer an edge query
for each new encountered edge.

7.1 Edge Join

As discussed above, at each step, we need to answer an
edge query. In this subsection, we propose an efficient
edge join algorithm. We first use L∞ distance in the
converted vector space <k to find a candidate match
set CL, where candidate match is defined as follows:

Definition 6 Given an edge query Qe = (v1, v2) over
a graph G and a parameter δ, vertex pair (u1, u2) is a
candidate match of Qe if and only if:
(1) L(v1) = L(u1) and L(v2) = L(u2) where L(ui)
(L(vi)) indicates label of ui (vi); and
(2) L∞(u1, u2) ≤ δ.

Each candidate match in CL is a pair of vertices
(ui, uj) (i 6= j), where L∞(ui, uj) ≤ δ. Then, for each
candidate (ui, uj), we utilize 2-hop distance labels to
compute the exact shortest path distance Distsp(ui, uj)
[9,7]. All pairs (ui, uj) where Distsp(ui, uj) ≤ δ are
collected to form the final result RS. Theorem 4 proves
that the above process guarantees no false negatives.

Theorem 4 Given an edge query Qe = (v1, v2) over a
graph G, and a parameter δ, let CL denote the set of
candidate matches of Qe, and RS denote the set of all
matches of Qe. Then, RS ⊆ CL.

Proof Straightforward from Theorem 2.

Essentially, an edge join is a similarity join over vec-
tor space. Existing similarity join algorithms (such as
RSJ [3] and EGO [1]) can be utilized to find candi-
date matches over the vector space <k. However, there
are two important issues to be addressed in answer-
ing an edge query. First, the converted space <k is
a high dimensional space, where k = O(log2|V (G)|).
In our experiments, we choose 15-30 dimensions when
|V (G)| = 10K ∼ 100K. R-tree based similarity join al-
gorithms (such as RSJ [3]) cannot work well due to the
dimensionality curse [16]. Second, although some high-
dimensional similarity join algorithms have been pro-
posed, they are not optimized for L∞ distance, which
we use to find candidate matches. To address these key
issues, we first propose the following edge join algorithm
to reduce both I/O and CPU costs.

We adopt block nested loop join strategy in edge
join algorithm. Given an edge query Qe = (v1, v2), let
R1 and R2 be the lists of candidate vertices (in G) that
satisfy vertex label predicates associated with v1 and
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v2, respectively. Let R1 be the “outer” and R2 be the
“inner” join operand. Edge join algorithm reads one
block B1 from R1 in each step. In the inner loop, it is
not necessary to perform join processing between B1

and all blocks in R2. We only load “promising” blocks
B2 into memory in the inner loop. Then, we perform
memory join algorithm between B1 and B2. Theorem
5 shows the necessary condition that B2 is a promising
block with regard to B1. Due to memory size constraint,
we only load one promising block in each step.

Theorem 5 Given two blocks B1 and B2 (the “outer”
and “inner” join operands, respectively), edge join be-
tween B1 and B2 produces a non-empty result only if

L∞(c1, c2) ≤ r(C1) + r(C2) + δ

where C1 (C2) is the corresponding cluster of block B1

(B2), c1 (c2) is C1’s (C2)’s cluster center, and r(C1)
(r(C2)) is C1’s (C2’s) cluster radius.

Proof See [37].

After the nested loop join, we can find all candidate
matches for edge query. Then, for each candidate match
(u1, u2), we use 2-hop distance labeling technique to
compute the shortest path distance between u1 and u2,
that is, Distsp(u1, u2). If Distsp(u1, u2) ≤ δ, (u1, u2)
will be inserted into answer set RS. The detailed steps
of edge join algorithm are shown in Algorithm 3.

Algorithm 3 Distance-based Edge Join Algorithm
Input: : An edge e = (v1, v2) in query Q, where L(v1) (and

L(v2)) denotes the vertex label of vertex v1 (and v2). The

distance constraint is δ. R1, the set of candidate vertices for
matching v1 in e. R2, the set of candidate vertices for match-
ing v2 in e.

Output: Answer set RS = {(u1, u2)}, where L(u1) = L(v1)
AND L(u2) = L(v2) AND Distsp(u1, u2) ≤ δ.

1: Initialize candidate set CL and answer set RS.

2: for each cluster C1 in R1 do
3: Load C1 into memory

4: According to Theorem 5, find all promising clusters w.r.t

C1 in flat file F to form cluster set PC.
5: Order all clusters in PC according to physical position in

table T .
6: for each promising cluster C2 in PC do
7: Load cluster C2 into memory.

8: Perform memory-based edge join algorithm (call Algo-
rithm 4) on C1 and C2 to find candidate set CL1.

9: Insert CL1 into CL.

10: for each candidate match (u1, u2) in CL do
11: Compute Distsp(u1, u2) by graph labeling techniques.

12: if Distsp(u1, u2) ≤ δ then

13: Insert (u1, u2) into answer set RS
14: Report RS

For a pair of blocks B1 and B2 that are loaded
in memory, we need to perform a join efficiently. We

Search Space

(a) (b)
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Fig. 8 Search Space after pruning based on Theorem 6

achieve this by pruning using triangle inequality and
by applying hash join.

7.1.1 Triangle Inequality Pruning

The following theorem specifies how the number of dis-
tance computations can be reduced based on triangle
inequality.

Theorem 6 Given a point p in block B2 (the inner
join operand) and a point q in block B1 (the outer join
operand), the distance between p and q needs to be com-
puted only when the following condition holds:

Max(L∞(p, c1)− δ, 0) ≤ L∞(q, c1) ≤ Min(L∞(p, c1)+
δ, r(C1))

where C1 (C2) is the cluster corresponding to B1 (B2),
c1 (c2) is the center of C1 (C2), and r(C1) is the radius
of C1.

Proof See [37].

Figure 8 visualizes the search space in cluster C1

with regard to point p in C2 after pruning according to
Theorem 6.

7.1.2 Hash Join

... ......
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Fig. 9 Hash Join

Hash join in a well-known join algorithm with good
performance. The classical hash join does not work for
edge join processing, since it can only handle equi-join.



12

Consider two blocks B1 and B2 (the outer and inner join
operands). For purposes of presentation, we first assume
that there is only one dimension (I1) in <k, i.e., k = 1.
The maximal value in I1 is defined as I1.Max. We di-
vide the interval [0, I1.Max] into d I1.Max

δ e buckets for
dimension I1. Given a point q in block B1 (the outer
operand), we define hash function H(q) = n1 = b q.I1

δ c.
Then, instead of hashing q into a single bucket, we put
q into three buckets, (n1 − 1)th, nth

1 , and (n1 + 1)th

buckets. To save space, we only store q’s ID in differ-
ent buckets. Based on this revised hashing strategy, we
can reduce the search space, which is described by the
following theorem.

Theorem 7 Given a point p in block B2 (inner join
operand), according to hash function H(p) = ni = bp.Ii

δ c,
p is located at the nth

i bucket. It is only necessary to
perform join processing between p and all points of Bi

located in the nth
i bucket. The candidate search space for

point p is Cani(p) = bni , where bni denotes all points
in the nth

i bucket.

Proof It can be proven using L∞ distance definition.

Figure 9 demonstrates our proposed hash join method.
When k > 1 (i.e., higher dimensionality), we build
buckets for each dimension Ii (i = 1, ..., k). Consider
a point p (the inner join operand) from block B2 and
obtain candidate search space Cani(p) in dimension Ii,
i = 1, ..., k. Theorem 8 establishes the final search space
of p using hash join.

Theorem 8 The overall search space for vertex p is
Can(p) = Can1(p) ∩ Can2(p) ∩ ... ∩ Cank(p), where
Cani(p) (i = 1, ..., k) is defined in Theorem 7.

Theorem 9 shows that, for a join pair (q, p) (p from
B1 and q from B2, respectively), if Dist∞(q, p) > 2δ,
the join pair (q, p) can be safely pruned by the hash
join.

Theorem 9 Consider two blocks B1 and B2 (the outer
and inner join operands) to be joined in memory. For
any point p in B2, the necessary and sufficient condition
that a point q is in p’s search space (i.e., q ∈ C(p)) is
L∞(p, q) ≤ 2δ.

Proof It can be proven according to Theorems 7 and 8.

The memory edge join algorithm is proposed in Al-
gorithm 4, which uses triangle inequality pruning and
hash join to reduce join space.

Algorithm 4 Memory edge join Algorithm
Input: : An edge e = (v1, v2) in query Q. Two clusters are C1

and C2. The distance constraint is δ. R1 is the set of candidate

vertices that match v1; R2 is the set of candidate vertices that
match v2.

Output: Answer set CL = {(u1, u2)}, where L(u1) = L(v1)

AND L(u2) = L(v2) AND L∞(u1, u2) ≤ δ.
1: for each vertex p in C2 do

2: if p ∈ R2 then

3: According to Theorem 6, find search space in C1 with
regard to p, denoted as SP (p).

4: Using hash join in Theorem 8, find search space Can(p).

5: Final search space with regard to p is SP (p) = SP (p)∩
Can(p).

6: for each point q in the search space SP (p) do
7: if L∞(q, p) ≤ δ then

8: Insert (q, p) into candidate set CL

9: Report CL.

7.2 Pattern Match Query via Edge Join

We start with the assumption that the join order is
specified; we relax this in the next section. As discussed
in Section 3, a join order corresponds to a traversal
order in query graph Q. According to given traversal
order, we visit one edge e = (vi, vj) in Q in each step. If
vertex vj is the new encountered vertex (i.e., vj has not
been visited yet), edge e = (vi, vj) is called a forward
edge; if vj has been visited before, e is called a backward
edge. The processing of a forward edge query and a
backward edge query are different. Essentially, forward
edge processing is performed by an edge join algorithm
(i.e., Algorithm 3), while backward edge processing is
a selection operation, which will be discussed shortly.

Definition 7 Given a query graph Q, a subgraph Q′

induced by all visited edges in Q is called a status. All
matches of Q (and Q′) are stored in a relational table
MR(Q) (and MR(Q′)), in which columns correspond
to vertices vi in Q (and Q′).

The pattern match query via edge join algorithm
(Algorithm 5) performs a sequential move from the ini-
tial status NULL to final status Q, as shown in Figure
2. Consider two adjacent statuses Q′

i and Q′
i+1, where

Q′
i is a subgraph of Q′

i+1 and |E(Q′
i+1)| − |E(Q′

i)| = 1.
Let e = (Q′

i+1 \Q′
i) denote an edge in Q′

i+1 but not in
Q′

i. If e is the first edge to be visited in query Q, we can
get the matches of e (denoted as MR(e)) by edge join
processing (Line 4 in Algorithm 5). Otherwise, there
are two cases to be considered.

Forward edge processing: If e = (vi, vj) is a for-
ward edge, we can obtain MR(Q′

j) as follows: 1) we
first project table MR(Q′) over column vi to obtain list
Ri (Line 9 in Algorithm 5). We can obtain list Rj (by
scanning the original table T before joining processing
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in Line 1) that corresponds to vertex vj , according to
vj ’s label. Note that, Rj is a shrunk list after neighbor
area pruning (Line 2); 2) According to the edge join
algorithm (Algorithm 3), we find the matches for edge
e, denoted as MR(e) (Line 10); 3) We perform tradi-
tional natural join over MR(Q′

i) and MR(e) to obtain
MR(Q′

j) based on column vi (Line 11).
Backward edge processing: If e = (vi, vj) is a

backward edge, we scan the intermediate table MR(Q′
i)

to filter out all vertex pairs (ui, uj), where ui and uj cor-
respond to vertices vi and vj in query Q, and Distsp(ui, uj)
> δ. After filtering MR(Q′

i), we obtain the matches of
Q′

i+1, i.e., MR(Q′
i+1). Essentially, it is a selection oper-

ation based on the distance constraint (Line 13), defined
as follows: MR(Q′

i+1) = σ(Distsp(r.vi,r.vj)≤δ)(MR(Q′
i)).

The above steps are iterated until the final status Q
is reached (Lines 6-13).

7.3 Cost Model

It is well-known that each join order in Algorithm 5
will lead to a different performance. The join order se-
lection is based on the cost estimation of edge query.
The cost of edge join algorithm has three components:
the cost of block nested loop join (Lines 2-10 in Algo-
rithm 3), the cost of computing the exact shortest path
distance (Lines 12-14), and the cost of storing answer
set RS (Line 15). Note that the matches of an edge
query are intermediate results for graph pattern query.
Therefore, similar to cost analysis for structural join
in XML databases [32], we also assume that interme-
diate results are stored in a temporary table on disk.
We use a set of factors to normalize the cost of edge
join algorithm. These factors are fR: the average cost
of loading one block into memory; fD: the average cost
of L∞ distance computation; fS : the average cost of
shortest path distance computation; and fIO: the aver-
age cost of storing one match on disk. Given an edge
query Qe = (v1, v2) and a parameter δ, R1 (R2) is the
list of candidate vertices for matching v1 (v2). All ver-
tices in R1 (R2) are stored in |B1| (|B2|) blocks in a
flat file F . The cost of Algorithm 3 can be computed as
follows:

Cost(e) =
|B1| × |B2| × γ1 × fR + |R1| × |R2| × γ2 × fD+
|CL| × fS + |CL| × γ3 × fIO

(7)

where γ1, γ2, and γ3 are defined as follows.

γ1 =
|AccessedBlocks|

|B1| × |B2|
, γ2 =

|DisComp|
|R1| × |R2|

, γ3 =
|RS|
|CL|

(8)

and where |AccessedBlocks| is the number of accessed
blocks in Algorithm 3; |DisComp| is the number of L∞
distance computations and |RS| (and |CL|) is the car-
dinality of answer set RS (and candidate set CL). We
use the following methods to estimate γ1, γ2 and γ3.

1) Offline: We pre-compute γ1, γ2 and γ3. Notice
that γ1, γ2 and γ3 are related to vertex labels and the
distance constraint δ. Thus, according to historical query
logs, the maximal value of δ is δ. We partition [0, δ] into
z intervals, each with width d = d δ

z e. In order to com-
pute the statistics γ1, γ2 and γ3 for vertex label pair
(l1, l2) and the distance constraint δ in the ith interval
[(i − 1)d, i ∗ d] (1 ≤ i ≤ z), we set δ = (i − 1/2)d, and
there is only one edge e = (v1, v2) in query graph Q
where L(v1) = l1 and L(v2) = l2. We perform edge join
and compute γ1, γ2 and γ3 using Equation 8.

2) Online: Given an edge query Qe = (v1, v2), we
look up the estimates for γ1, γ2 and γ3 that were com-
puted offline using the vertex label (L(v1), L(v2)) and
δ.

Algorithm 5 Multiway Distance-Join Algorithm (MD-
Join)
Input: Input: A query graph Q that has n vertices and a pa-

rameter δ and a large graph G and a table T for the converted

vector space <k, and the join order MDJ .

Output: MR(Q): All matches of Q in G.
1: for each vertex vi in query Q, find its corresponding list Ri,

according to vi’s label.

2: Obtain Shrunk lists Ri (i = 1, ..., n) by neighbor area prun-
ing.

3: Set e = (v1, v2).

4: Obtain MR(e) by edge join algorithm (call Algorithm 3).
5: set Q′i = e.

6: while Q′i! = Q do
7: According to join order MDJ , e is the next traversal edge.

8: if e is forward edge, denoted as e = (vi, vj) then

9: Ri = σt.ID∈(
∏

vi
MR(Q′

i))
(T ) .

10: MR(e) =
∏

(Ri.ID,Rj .ID) ( Ri ./ Rj
Distsp(ri,rj)≤δ

) (call

Algorithm 3)
11: MR(Q′

i+1) = MR(Q′
i) ./ MR(e)

vi

12: else
13: MR(Q′i+1) = σ(Distsp(r.vi,r.vj)≤δ)(MR(Q′i))
14: Report MR(Q).

Given an edge query Qe = (v1, v2), the cardinal-
ity of candidate match set CL can be computed as
|CL| = |R1| × |R2| × θ where θ is the selectivity of D-
join based on L∞ distance. Therefore, the key issue is
how to estimate θ. We propose two methods, one based
on probability-model and the other on sampling.
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7.4 Probability Model For Estimating θ

Given an edge query Qe = (v1, v2), according to vertex
label, we can find two vertex lists R1 and R2. For the
purposes of presentation, let us first assume that k = 1,
i.e., there is one dimension in the converted space. We
can regard R1.I1 and R2.I1 as two random variables x
and y. Let z = |x−y| denote the joint random variable.
Selectivity θ equals to the probability of z ≤ δ. Figure
10(a) visualizes the joint random variable z and the
area Ω between two curves y = x + δ and y = x − δ.
We can compute selectivity θ as follows:

θ = Pr(z ≤ δ) =
∫ ∫

|x−y|≤δ

f(x, y)d(x, y) =∫ ∫
(x,y)∈Ω

f(x, y)d(x, y)

where f(x, y) denotes z’s density function. We use two-
dimensional histogram method to estimate f(x, y). Specif-
ically, we use equi-width histograms that partition (x, y)
data space into t2 regular buckets (where t is a constant
called the histogram resolution), as shown in Figure
10(b). Similar to other histogram methods, we also as-
sume that the distribution in each bucket is uniform.
Then, we use a systematic sampling technique [14] to
estimate the density function in each bucket.

The basic idea of systematic sampling is the fol-
lowing: Given a relation R with N tuples that can be
accessed in ascending/descending order on the join at-
tribute of R, we select n sample tuples as follows: select
a tuple at random from the first dN

n e tuples of R and
every dN

n eth tuple thereafter [14]. The relations here
are R1 and R2, and the join attributes are R1.I1 and
R2.I1, where R1 and R2 are both from table T . We
assume that there exists a B+-tree index on each di-
mension Ii in table T , allowing tuples to be accessed in
ascending/descending order. We select |R1|×λ vertices
from R1, and all these selected vertices are collected to
form subset SR1, where λ is a sampling ratio. The same
is done for subset SR2 from the list R2.
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22f
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Fig. 10 Selectivity Estimation

We map SR1 × SR2 into different two-dimensional
buckets. For each bucket A, we use |A| to denote the
number of points (from SR1×SR2) that fall into bucket
A. The joint density function of points in bucket A is
denoted as

f(A) =
|A|

|SR1| × |SR2|
. (9)

Some buckets are partially contained in the shared
area Ω. The number of points (from R1 ×R2) that fall
into both bucket A and the shared area Ω (denoted as
|A ∩Ω|) can be estimated as:

|A ∩Ω| = R1 ×R1 × f(A)× area(A ∩Ω)
area(A)

where area(A∩Ω) denotes the area of intersection be-
tween A and Ω and area(A) denotes the area of A.

We adopt Monte-Carlo methods to estimate area(A∩Ω)
area(A) .

Specifically, we first randomly generate a set of points
in bucket A (the number of generated records is a). The
number of points that fall in Ω is b. Then, we estimate
area(A∩Ω)

area(A) to be a
b .

Therefore, we have |CL| =
∑

ij |Aij ∩Ω| = |R1| ×
|R2| ×

∑
ij (f(Aij)× area(Aij∩Ω)

area(Aij)
)

The selectivity of θ can be estimated as follows

θ = Pr(z ≤ δ) =
∑

ij |Aij ∩Ω| =∑
ij (f(Aij)× area(Aij∩Ω)

area(Aij)
)

(10)

where f(Aij) is estimated by Equation 9.
If k > 1, according to Theorem 4, we have

CL = R1 onMax1≤i≤k(|R1.Ii−R2.Ii|≤δ) R2

The cardinality of |CL| is |CL| = |R1| × |R2| ×
θ,where θ is the selectivity of D-join based on L∞ dis-
tance. We can regard R1.Ii and R2.Ii (i = 1, ..., k) as
random variables xi and yi. Let zi = |xi − yi| denote
the joint random variable.
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2.I Max
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Fig. 11 Multi-Dimension Selectivity Estimation

θ = Pr(Max(z1, ..., zk) ≤ δ)) = Pr((z1 ≤ δ) ∧ ...(zk ≤ δ))
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(11)

In order to compute Equation 11, we assume that
every dimension Ii in vector space <k is independent of
each other. Thus, we have

Pr((z1 ≤ δ)∧...∧(zk ≤ δ)) = Pr(z1 ≤ δ)×...×Pr(zk ≤ δ).

(12)

where Pr(zi ≤ δ) (i = 1, ..., k) can be computed using
Equation 11.

7.5 Sampling-based Method

Consider two lists R1 and R2 to be joined. Assume, for
simplicity, k = 2. In Figure 11, Pr(Max(z1, z2) ≤ δ)) is
the probability that a vertex pair falls into both shared
areas Ω1 and Ω2. We adopt sampling-based methods
to estimate Pr(Max(z1, ..., zk) ≤ δ)). For example, we
have two sample sets SR1 and SR2 from two sets R1

and R2, respectively. If there are M join pairs (u1, u2)
such that Max(|u1.Ii−u2.Ii|) ≤ δ, (1 ≤ i ≤ k), Pr(Max
(z1, ..., zk) ≤ δ) = M

|SR1|×|SR2| . The specific technique
for computing the optimal sampling technique in high-
dimensional space is beyond the scope of this paper.
Without loss of generality, we choose random samples,
i.e., each point has equal probability of being chosen as
a sample.

7.6 Join Order Selection

The join order selection can be performed by adopting
the traditional dynamic programming algorithm [32]
using the cost model introduced in the previous section.
However, this solution is inefficient due to the very large
solution space, especially when |E(Q)| is large. There-
fore, we propose a simple yet efficient greedy solution
to find a good join order. As mentioned earlier, one join
order corresponds to one traversal order in query graph
Q, according to which, one edge (of Q) is visited in each
step. In each step, the subgraph Q′ that is formed by
collecting all edges that have been visited is called a
status (Definition 7). Obviously, status Q′ moves from
NULL to Q according to the specified join order. There
are two important heuristic rules in our join order se-
lection.

1) Given a status Q′
i, if there is a backward edge e

attached to Q′
i, the next status is Q′

i+1 = Q′
i ∪ e, i.e.,

we perform back edge processing as early as possible.
If there are more than one backward edges attached to
Q′

i, we perform all back edge processing simultaneously,
which will reduce the I/O cost.

The intuition behind this heuristic rule is similar to
“selection push-down” in relational query optimization.
Performing back edge query will reduce the cardinality
of intermediate join results.

2) Given a status Q′
i, if there is no backward edge

attached to Q′
i, the next status is Q′

i+1 = Q′
i ∪ e, where

e is a forward edge and Cost(e) (defined in Equation 7)
is minimum of all forward edges.

8 Bi-Level Distance Join

In this section, we will address the scalability of our
method by graph partitioning. Given a graph G, we
first partition G into several connected subgraphs {Si}
by node separators, which are called boundary nodes.
We use the same partition strategy given in Lines 1-4
of Algorithm 1, and select all 2-hop centers in Wb ∪Ws

as boundary nodes. Then, for each subgraph Si, we per-
form graph embedding according to the method in Sec-
tion 5.1. Consequently, each subgraph Si is converted
into a high dimensional space <k

i .

At runtime, given a query Q, we can first employ
Algorithm 3 to find all matches in each subgraph Si.
Obviously, some matches may cross several subgraphs.
In order to find such matches, we build a super graph
that contains all boundary nodes. The details are given
in Section 8.1.

Figure 12(a) shows an example of graph partition G,
where the letters inside vertices are vertex labels and
the letters beside the vertices are vertex IDs that we
introduce to simplify description of the graph and the
black vertices are boundary vertices, and the numbers
beside the edges are edge weights.
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8.1 Offline Processing

Algorithm 6 depicts the whole offline processing frame-
work. First, we partition G into some subgraphs {Si}
(Line 1 in Algorithm 6). Then, for each subgraph Si,
we employ graph embedding to convert Si into a multi-
dimensional space <k

i (Line 3). According to the method
in Algorithm 1, we can compute 2-hop labeling for each
subgraph Si (Line 4). In order to address the matches
that cross several subgraphs, we build a super graph
Gs, that will be discussed shortly. We also employ graph
embedding to convert Gs into the converted space <k

super,
and compute the 2-hop labeling for Gs (Lines 6-7).

We employ the method in [4] to construct a su-
per graph Gs. Specifically, a super graph consists of all
boundary nodes as vertices and two vertices are con-
nected by an edge directly when they are in the same
subgraph Si. The edge in a super graph is called a super
edge whose weight is the shortest path distance between
two vertices in the subgraph involved. Given the graph
partition in Figure 12(a), Figure 12(b) shows the corre-
sponding super graph Gs, which contains all bound-
ary nodes. In each subgraph Si, we introduce super
edges between all pairwise boundary nodes, where the
edge weight denotes the corresponding pairwise short-
est path distance in Si. For example, since vertices u9

and u10 are boundary vertices in segment S0, we in-
troduce an edge e1 = (u9, u10) in Gs, whose weight
is the shortest path distance between u9 and u10 in
subgraph S0. Note that, u9 and u10 are also boundary
nodes in subgraph S2, thus, we introduce another edge
e2 = (u9, u10) in Gs, whose weight denotes the short-
est path distance between u9 and u10 in subgraph S2.
Therefore, there are two edges with different weights
between u9 and u10 in Gs, meaning that Gs is a multi-
graph. Actually, if there is more than one edge between
two vertices, we can keep only the edge (u9, u10) with
the minimal weight and remove others by postprocess-
ing. Therefore, in the following discussion, we can still
assume that Gs is a graph, not a multigraph. Then, we
also utilize graph embedding technique to convert Gs

into a multi-dimensional space <k
super.

In summary, at the end of offline processing, we
have the following pre-computed results: 1) For each
subgraph Si, there is a table Ti that stores all multi-
dimensional points in the converted space <k

i ; 2) There
is a table Tsuper to store all multi-dimensional points
that in the converted space <k

super; 3) For each sub-
graph Si and the super graph Gs, there is also a table
to store 2-hop labels for Si and Gs.

Algorithm 6 Offline Processing in Bi-Level Method
Input: Input:Graph G.

Output: Ti(Tsuper): the converted multi-dimensional space

for each subgraph Si and Gs; 2HopLabel(Si) and
2HopLabel(Gs): the 2-hop labeling for each subgraph Si and

Gs.

1: Partition G into m subgraphs {S1, ..., Sm}.
2: for each subgraph Si do

3: Employ graph embedding to map Si into the converted

space Ti.
4: Employ Algorithm 1 to compute 2-hop labeling for Si,

denoted as 2HopLabel(Si).

5: Build the super graph Gs.
6: Employ graph embedding to map Gs into the converted space

Tsuper.

7: Employ Algorithm 1 to compute 2-hop labeling for Gs, de-
noted as 2HopLabel(Gs).
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8.2 Optimization for Super Graph Construction

The key problem in the above method is that the super
graph Gs is very dense. Although |V (Gs)| is small com-
pared with |V (G)|, |E(Gs)| is quite large. As discussed
in Section 5.1, we need to employ Dijkstra’s algorithm
to perform graph embedding. If |E(Gs)| is too large to
be cached in memory, it will affect graph embedding
performance dramatically, even though we can employ
DiskSP algorithm [4] for shortest path distance com-
putation. Actually, most super edges in Gs can be re-
moved, since there are lots of redundancy in Gs. Figure
13 shows a fragment of super graph for partition S0.
There are 4 boundary nodes in S0, thus, we introduce
C2

4 = 6 super edges to connect each pairwise boundary
nodes, as shown in Figure 13a. Since vertex u18 covers
all super edges (i.e., the pairwise shortest paths between
boundary nodes), we can introduce u18 into the super
graph and connect u18 with each boundary vertex. The
number of super edges is 4 in Figure 13b rather than 6
in Figure 13a.

Motivated by the above example, we propose Algo-
rithm 7 to construct Gs. First, we set V (Gs) = Boundary
(G), which means that Gs contains all boundary ver-
tices in G. Then, we consider each subgraph Si sepa-
rately. Given a subgraph Si, the boundary vertices in Si

are denoted as Boundary(Si). We pre-compute all pair-
wise shortest paths between vertices in Boundary(Si)
in subgraph Si, denoted as DBoundary(Si). Then, we se-
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lect a vertex u (in Si) to maximize |DBoundary(Si,u)|,
where DBoundary(Si,u) denotes all paths in DBoundary(Si)

that pass through u. We introduce edges between u
and each path endpoint in DBoundary(Si,u). We remove
DBoundary(Si,u) from DBoundary(Si). The above process
is iterated until |DBoundary(Si)| < 2×|DBoundary(Si,u)|.
The intuition behind the stop condition is as follows.
Assume that one vertex u is selected to maximize |D
Boundary(Si,u)| in some iteration step. We need to intro-
duce extra 2× |DBoundary(Si,u)| edges to connect u and
path endpoints DBoundary(Si,u) in Gs. If |DBoundary(Si)|
< 2×|DBoundary(Si,u)|, it means that the number of the
uncovered pairwise shortest paths is less than the num-
ber of introduced extra edges. Thus, we can introduce
an edge between two path endpoints in DBoundary(Si)

directly, and the edge weight is the corresponding short-
est path distance. Finally, if there are multi-edges be-
tween two vertices in Gs, we only keep one edge with
the minimal weight.

Algorithm 7 Optimization For Subgraph Graph Con-
struction
Input: Input: Boundary(G): the boundary vertices in G; Si:

each subgraph in G.
Output: The subgraph G′.

1: set V (G′) = Boundary(G).

2: for each subgraph Si do
3: Set DBoundary(Si)

= {u1u2|u1, u2 ∈ Boundary(Si)},
where u1u2 denotes the shortest path between u1 and u2.

4: repeat
5: Select a vertex u in Si to maximize |DBoundary(Si,u)|,

where DBoundary(Si,u) = {u1u2|(u1, u2 ∈
Boundary(Si)) ∧ (u ∈ u1u2)}.

6: Introduce edges between u and endpoints in

DBoundary(Si,u).
7: DBoundary(Si)

= DBoundary(Si)
−DBoundary(Si,u).

8: Introduce an edge between u1 and u2, where u1u2 ∈
DBoundary(Si)

.
9: until |DBoundary(Si)

| < 2× |DBoundary(Si,u)|
10: for each vertex pair (u1, u2), where u1, u2 ∈ Boundary(G)

do
11: if there are multi edges between u1 and u2 then

12: Only keep the edge with the minimal weight.

8.3 Online Processing

At run time, given a query graph Q, we also employ
the framework described in Section 3 to find matches
of Q, i.e., answering Q by a series of edge queries. Con-
sequently, the key problem in answering Q is how to
answer the edge query efficiently. To distinguish from
the method in Section 7, we call the following algorithm
bi-level distance join (bD-join for short) algorithm.

Algorithm 9 shows a nested-loop join algorithm to
answer edge query. In each loop, we join vertices from

Algorithm 8 bD-Join Algorithm
Input: Input: an edge query e = (v0, v1) and a parameter δ and

two subgraph S1 and S2.

Output: Answer set RS(S1, S2).
1: According to vertex labels, we find two vertex lists R1 (from

S1) and R2 (from S2) that corresponds to v1 and v2, respec-

tively.
2: Employ Algorithm 3 to find RS1α1 = R1 ./ Boundary(P1)

Distsp(u1,u2)≤δ

,

where Boundary(P1) denotes all boundary vertices in P1.

3: Employ Algorithm 3 to find RSα22 = Boundary(P2) ./ R2
Distsp(u1,u2)≤δ

.

4: Employ Algorithm 3 to find RSα1α2 =

Boundary(S1) ./ Boundary(S2)
Distsp(u1,u2)≤δ

.

5: RS(S1, S2) = σ(RS1α1 .dist+RSα1a2 .dist+RSα22.dist≤δ)(RS1α1./

RSα1α2 ./ RSα22).

6: Return RS(S1, S2).
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S1 and S2. Specifically, according to vertex labels, we
can find two vertex lists R1 (from S1) and R2 (from
S2) that correspond to v1 and v2, respectively. There
are two cases namely, S1 6= S2 and S1 = S2.

1) S1 6= S2: We first propose how to join R1 (from
S1) and R2 (from S2) in Algorithm 8, where S1 6= S2.
Considering two vertices u1 and u2 in S1 and S2, re-
spectively, the shortest path between u1 and u2 must
go through a boundary vertex in Boundary(S1) and a
boundary vertex in Boundary(S2). Based on distance
constraint δ, we can employ Algorithm 3 to join R1 and
Boundary(S1) to obtain RS1α1 = R1 onDistsp(u1,u2)≤δ

Boundary(S1) (Line 2 in Algorithm 8). We also join
Boundary(S2) and R2 to obtain RSα22, where RSα22 =
Boundary(S2) onDistsp(u1,u2)≤δ R2 (Line 3). In the su-
per graph Gs, we also employ Algorithm 3 to join Bound
ary(S1) and Boundary(S2), i.e., RSα1α2 = Boundary(S1)
onDistsp(u1,u2)≤δ Boundary(S2) (Line 3). The three tem-
porary table formats (RS1α1 , RSα1α2 and RSα22) are
shown in Figure 15. Finally, we perform natural joins
between three tables to obtain final matches for edge
query e = (v1, v2) by the following SQL query (Line 5).
Select Distinct(RS1α1 .u1, RSα22.u2)

From RS1α1 ,RSα22, RS2α2

Where RS1α1 .α1 = RSα1α2 .α1

AND RSα1α2 .α2 = RS2α2 .α2 AND (RS1α1 .dist+

RSα1α2 .dist + RSα22.dist <= δ)
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2) S1 = S2: Next, we discuss how to join two ver-
tex lists R1 and R2 that are from the same subgraph.
The shortest path between two vertices u1 and u2 in
the same subgraph may be contained in the subgraph
(see Figure 14(b)), or the path also goes through some
boundary vertices (see Figure 14(c)). We need to con-
sider both cases. In the former case, we can employ
Algorithm 3 to find matches for edge query e. In the
latter one, we adopt the same method in Algorithm
8. Specifically, we first employ Algorithm 3 to obtain
RS1α1 = R1 onDistsp(u1,u2)≤δ Boundary(S1) and RSα22

= Boundary(S2) onDistsp(u1,u2)≤δ R2. Then, we also
employ Algorithm 3 to join Boundary(S1) and Bound-
ary(S2) in Gs. Finally, we perform natural joins be-
tween RS1α1 and RSα22 and RSα1α2 to obtain final
matches. Note that S1 is the same as S2 in this case.

Dist
… … …

11RS α

α Dist
… … …

α
2 2RSα

Dist
… … …

1α
1 2

RSα α

2α1u 2u

Fig. 15 Three temporary table formats

Algorithm 9 Bi-Level Edge Query
Input: Input: an edge query e = (v0, v1) and a parameter δ.

Output: Answer set RS(e).
1: for each subgraph S1 do

2: for each subgraph S2 do

3: According to vertex labels, we find two vertex lists R1

(from S1) and R2 (from S2) that corresponds to v1 and

v2, respectively.
4: if S1 6= S2 then

5: Employ Algorithm 8 to find RS(S1S2).

6: Insert RS(S1S2) into RS.
7: else

8: Employ Algorithm 3 to find RS(S1S2) =

S1 ./ S2
Distsp(u1,u2)≤δ

in subgraph S1.

9: Insert RS(S1S2) into RS.
10: Employ Algorithm 8 to find RSS1S2 .

11: Insert RS(S1S2) into RS.

12: Report RS.

In order to answer a graph query Q, we can perform
a series of edge queries, which is exactly the same as the
proposed method in Section 7.2.

9 Approximate Subgraph Search

Given a query graph Q and a data graph G, subgraph
search locates all subgraph isomorphisms of Q over
G. We can simply set distance constraint δ = 1 and
employ distance-join algorithm to find all (distance-
based) matches of Q over G. Then, for each match, we

check its subgraph isomorphism to Q. We omit the de-
tails, which are straightforward. Furthermore, distance-
join algorithm can also support “approximate subgraph
search”. In this section, we discuss how to use distance-
based join algorithm to answer approximate subgraph
query.

Definition 8 (Approximate Subgraph Match). Consider
a data graph G, a connected query graph Q that has
n vertices {v1, ..., vn} and a parameter ∆. A connected
subgraph S that has n distinct vertices {u1, ..., un} in
G is said to an approximate subgraph match of Q, if and
only if the following conditions hold:
1) ∀i, L(ui) = L(vi), where L(ui) (L(vi)) denotes ui’s
(vi’s) label; and
2)|{(vi, vj)|(vi, vj) ∈ E(Q) ∧ (ui, uj) /∈ E(S)}| ≤ ∆
3)|{(vi, vj)|(vi, vj) /∈ E(Q) ∧ (ui, uj) ∈ E(S)}| = 0.
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Fig. 16 Approximate Subgraph Search

Definition 9 (Approximate Subgraph Query). Consider
a data graph G, a connected query graph Q that has
n vertices {v1, ..., vn}, and a parameter ∆, an approx-
imate subgraph query finds all approximate subgraph
matches (Definition 8) of Q over G.

Given a query graph Q in Figure 16(a) and ∆ = 2,
Figure 16(b) shows an approximate subgraph match S
of Q. The rationale of our proposed solution is that:
given two adjacent vertices vi1 and vi2 in Q, removing
∆ edges in Q may enlarge the distance between vi1 and
vi2 . For example, Distsp(v1, v5) = 1 in Figure 16(a).
If edge (v1, v5) is deleted, Distsp(v1, v5) = 2, as shown
in Figure 16. Therefore, if we set up distance constant
δ = 2, S (in Figure 16(b)) is also a (distance-based)
match of Q according to Definition 1.

Given a query graph Q and a parameter ∆, for
each edge (vi1 , vi2) in query Q, we first compute an
upper bound for the shortest path distance between vi1

and vi2 (denoted as Distmax(vi1 , vi2)), if ∆ edges are
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deleted from Q. Then, for each edge (vi1 , vi2) in Q, we
introduce a distance constraint δij = Distmax(vi, vj).
Based on distance constraints, we employ Algorithm 5
to find all (distance-based) matches of Q. Finally, for
each (distance-based) match, we check whether it is an
approximate subgraph match of Q within G.

Given a query Q in Figure 16(a), for edge (v1, v5),
if ∆ = 1, Distmax(v1, v5) = 2. Analogously, if ∆ = 2,
Distmax(v1, v5) = 4. We propose a set-cover based solu-
tion to evaluate ∆. Initially, we precompute and rank all
pairwise paths between v1 and v5. We use SPk(v1, v5)
to denote all the k-th shortest distance paths between
v1 and v5. Let DistSPk

(v1, v2) be the corresponding dis-
tance. For example, SP1(v1, v5) = {v1v5} and SP2(v1, v5)
= {v1v7v5}. DistSP1(v1, v5) = 1 and DistSP2(v1, v5) =
2. Then, we build an edge-path table, as shown in Fig-
ure 16(d). Given ∆, we need to find k, where SP1,k−1

(v1, v5) = {SP1(v1, v5) ∪ ... ∪ SPk−1(v1, v5)} can be
covered by ∆ edges, but SP1,k(v1, v5) = {SP1(v1, v5)
∪... ∪ SPk(v1, v5)} cannot be covered by ∆ edges. For
example, in Figure 16, if ∆ = 2, we can find k = 4, since
all paths in SP1,3(v1, v5) can be covered by 2 edges, but
SP1,4(v1, v5) cannot be covered by 2 edges. Therefore,
Distmax(v1, v5) = DistSP4(v1, v5) = 4. We can find the
value of k by enumerating all possible combinations
of ∆ edges in Q. Obviously, there are

(|E(Q)|
∆

)
possi-

ble combinations. In order to avoid exponential time
complexity, we propose a solution based on the greedy
set-cover method.

Given a path set SP , we first find an edge that can
cover the maximal number of paths in SP . Then, we
remove these paths from SP . The process is iterated ∆
times. Finally, there are Wgreedy paths that are covered
by ∆ edges. Let Wmax be the maximal number of paths
that can be covered by ∆ edges.

Theorem 10 Given a path set SP , let Wgreedy be the
number of paths covered by ∆ edges following the greedy
solution. If Wmax = 1.6 × Wgreedy < |SP |, SP cannot
be covered by ∆ edges.

Proof (Sketch) Wmax = 1.6×Wgreedy [35]. If Wmax <
|SP |, it means that ∆ edges cannot cover all paths in
SP .

Considering an edge (v1, v5) in Figure 16, we need
to find the minimal value of k′, such that SP1,k′ (v1, v5)
cannot be covered by ∆ edges according to Theorem 10
(Lines 3-6 in Bound function in Algorithm 10). Then,
we set distance constraint δv1v5 = Distmax(v1, v5) =
DistSPk′ (v1,v5) (Line 2 in Algorithm 10). Let us consider
an extreme case. If ∆ = 3, all paths between v1 and v5

can be covered by ∆ edges. According to Definition 8,
it is not allowed to disconnect query Q by removing ∆

edges. Therefore, we set up δv1v5 = Max(v1, v5) = 4,
where Max(v1, v5) denotes the longest path distance
between v1 and v5 in Q (Line 8 in Bound function of
Algorithm 10). Then, based on distance constraints, we
employ Algorithm 5 to find all matches of Q over G
(Line 3 in Algorithm 10). Finally, for each match, we
check whether it is an approximate subgraph match
(Lines 4-7).

Algorithm 10 Approximate Subgraph Query
Input: : Query graph Q and Data graph G and a parameter ∆.

Output: All approximate subgraph matches.

1: for each edge ei = (vi1 , vi2 ) do

2: δi = Distmax(vi1 , vi2 )=Bound(ei, ∆).
3: Call Algorithm 5 to find all (distance-based) matches in G.

4: for each (distance-based) match M do

5: if M is approximate subgraph isomorphism to Q then
6: insert M into answer set RS

7: Report RS

Bound(ei = (vi1 , vi2 ), ∆)

1: Compute and rank all paths between vi1 and vi2 in Q.
2: Let SPk′ (vi1 , vi2 ) denote all the k′-th pairwise paths between

vi1 and vi2 .

3: if all paths cannot be covered by ∆ edges according to The-
orem 10 then

4: for k′ = 1, ... do
5: if all paths in SP1(vi1 , vi2 )∪ ...∪SPk′ (vi1 , vi2 ) cannot

be covered by ∆ edges according to Theorem 10 then

6: Return k′

7: else
8: Return Max(vi1 , vi2 )

10 Experiments

We evaluate our methods using both synthetic and real
data sets. All of the methods have been implemented
using standard C++. The experiments are conducted
on a P4 3.0GHz machine with 1G RAM running Win-
dows XP.

Synthetic Datasets a) Erdos Renyi Model : This
is a classical random graph model. It defines a ran-
dom graph as N vertices connected by M edges, chosen
randomly from the N(N − 1)/2 possible edges. We set
N = 100K and M = 500K. This graph is connected,
and it is denoted as “ER data”.
b) Scale-Free Model : We use the graph generator gengraph
win (http://fabien.viger.free.fr/liafa/generation/)[28]. We
generate a large graph G with 100K vertices satisfying
power-law distribution. Usually, 2 < γ < 3 [21]. Thus,
default value of parameter α is set to 2.5 in this work.
There are 89198 vertices and 115526 edges in the max-
imal connected component of G. We can sequentially
perform our method in each connected component of
G. This dataset is denoted “SF data”.
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Table 1 Performance of BE Method Over Real Unweighted Datasets

BE SC GP TEDI BE SC GP TEDI BE SC GP TEDI Dijkstra
Arxiv 27400 352021 1556 # 3523 65 104 # 211 10.3 2.00 # 2.51 0.53 300
As-Rel 22442 91100 304 # 1203 32 9.66 # 12.4 5.78 0.10 # 0.2 0.02 54
California 5925 15770 35.74 1035 327 21 8.25 6.55 11.8 3.2 0.23 0.21 0.31 0.01 14
Epa 4253 8897 48.7 2050 421 5 5.08 4.32 6.85 1.9 0.12 0.1 0.13 0.01 8
Erdo 6927 11850 33.5 1205 230 4 5.95 3.26 7.56 3.21 0.16 0.12 0.2 0.03 12
Eva 4475 4652 10.625 560 216 3 3.6 3 4.02 0.9 0.17 0.12 0.18 0.02 5
UspowerGrid 4941 6594 23.76 230 319 2 4.21 2.5 3.5 2.89 0.10 0.1 0.12 0.02 7
DBLP (unweighted) 592983 591977 22606 # 42560 2530 588 # 1230 129 2.10 # 3.15 0.9 520
 #: SC cannot work when |V(G)|>10K

Offline Performance
Online Performance (milliseconds)Graph |V(G)| |E(G)| Index Time (sec) Labeling Size (MB)

Table 2 |Ri| in Different Datasets

ER 200 SF 200 Citeseer 388

Yeast 46 - 586 DBLP 197

In the above two datasets, the edge weights in G
satisfy a random distribution between [1, 1000]. Vertex
labels are randomly assigned between [1, 500].

Real Datasets c) Citeseer: We generate co-author
network G from citeseer dataset (http://cs1.ist.psu.edu/
public/oai/). We generate co-author network G as fol-
lows: We treat each author as a vertex u in G and intro-
duce an edge to connect two vertices if and only if there
is at least one paper co-authored by the two correspond-
ing authors. We assign vertex labels and edge weights
as follows: according to text clustering algorithms, we
group all author affiliations into 1000 clusters. For each
author, we assign the cluster ID as its vertex label. The
weight of edge e = (u1, u2) in G is assigned as 100

co(u1,u2)
,

where co(u1, u2) denotes the number of co-authored pa-
pers between authors u1 and u2. There are 387954 ver-
tices and 1143390 edges in the generated G. There are
273458 vertices and 1021194 edges in the maximal con-
nected component of G.

d) Yeast. This is a protein-to-protein interaction
network in budding yeast (http://vlado.fmf.uni-lj.si/
pub/networks/data/). Each vertex denotes a protein
and an edge denotes the interaction between two cor-
responding proteins. We delete ‘self-loop’ edges in the
original dataset. There are 13 types of protein clusters
in this dataset. Therefore, we assign vertex labels based
on the corresponding protein clusters. The edge weights
are all set to ‘1’. There are 2361 vertices and 6646 edges
in G. There are 2223 vertices and 6608 edges in the
maximal connected component of G.

e) DBLP. In order to test the scalability of our
method, we utilize the DBLP dataset [30]. The dataset
is generated from the DBLP N-triple dump (www4.wiwi-

ss.fu-berlin.de/bizer/d2rq/benchmarks). It contains all
the “inproceeding” records and all “proceedings” records,
with all their persons, publishers, series and relations
between persons and inproceedings. There are about
592983 vertices and 591977 edges in graph G. There
are 353779 vertices and 427092 edges in the maximal
connected component of G. Since the dataset has no
vertex labels and edge weights, we perform the follow-
ing method to assign them. According to text clustering
algorithms, we group all vertices into 3000 clusters. We
assign the same vertex label to all vertices in a given
cluster. The edge weights in G satisfy a random distri-
bution between [1, 1000].

Query Graphs We randomly generate connected
query graphs, which are tree-like structures. It means
that there are a few backward edges but many forward
edges. As discussed in Section 7.2, forward edge pro-
cessing is performed by an edge join algorithm (Algo-
rithm 3), but backward edge processing is a selection
operation, which is much cheaper than forward edge
processing. Given |E(Q)| edges, it is easy to know that
there are fewer forward edges in clique-like graphs than
that in tree-like graphs. Thus, for our approach, it is
much cheaper to answer clique-like graph queries than
tree-like graphs. Therefore, in order to test the perfor-
mance of our approach when query graphs have more
forward edges, we prefer using “tree-like” queries. In our
experiments, we vary |E(Q)| from 1 to 20, as shown in
Figure 25.

As discussed earlier, |Ri| denotes the number of ver-
tices that have the same label as vi in query Q. We
report |Ri| for different datasets in Table 2. The value
of distance constraints (δ) will be provided in different
experiments.

10.1 Evaluating 2-hop Distance Labeling Computation

We first test the method proposed in Section 4 for
2-hop distance-aware labeling computation, i.e., Algo-
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rithm 1, denoted as BE (betweenness estimation-based
method). As discussed in Section 2, there exists little
work for 2-hop distance-aware labeling computation ex-
cept for [9] and [7]. We compare BE with these, and
denote them as SC (set cover-based method) [9] and
GP(graph partition-based method)[7]. Since GP can
only work on directed graphs, we implement it as fol-
lows: We remove the first step in GP, and adopt the
graph partition method (the flexible strategy in Sec-
tion 6.2 of [7]) to compute 2-hop labeling and reduce
the 2-hop clusters according to Theorem 1 in Section
5.2 of [7]. Two other methods [30,33] can only work
on an un-weighted graph, and do not use the 2-hop la-
beling strategy, therefore, we do not use them in the
performance comparisons.

Figure 17(a) and Figure 17(b) show the running
time of SC, GP and BE on synthetic datasets (SF and
ER models) varying |V (G)| from 1K to 100K. When
|V (G)| >10K, SC runs out of memory. Our method
(BE) is significantly faster than GP, as shown in Fig-
ures 17(a) and 17(b). The reasons are: 1) the number of
selected 2-hop centers in our method is small than that
in GP; 2) We employ a light but effective redundancy
checking method. The maximum memory usage in BE
method is about 200M bytes when |V (G)| = 100K,
which confirms the good scalability of BE method.

Figure 17(c) and Figure 17(d) show the labeling
size of different methods on synthetic datasets (SF and
ER modes) varying |V (G)| from 1K to 100K. Although
SC has the minimal labeling size, it cannot work when
|V (G)| >10K. Since our method has smaller 2-hop cen-
ters than that in GP, the labeling size in our method is
also smaller than that in GP.

Comparing Figure 17(a) and Figure 17(b), and Fig-
ure 17(c) and Figure 17(d), we can make some interest-
ing observations: The performance of all three meth-
ods over SF data are much better than that over ER
data; they have faster running times and smaller la-
beling sizes. The reason behind that is as follows: The
vertex degrees in SF data follow the power-law distri-
bution. A few vertices have very large degrees, and they
cover a large fragment of pairwise shortest paths. Thus,
these vertices can be selected as the 2-hop centers to
minimize space labeling size. However, we cannot find
such vertices in ER data, since the vertices in ER have
similar vertex degrees. Thus, the number of 2-hop cen-
ters in ER data is much larger than that in SF data.

In order to test online response time for the short-
est path distance query, we randomly generate 1000
queries. The reported results in Figure 18 are the av-
erage online response times for a single query. We im-
plement Dijkstra’s algorithm using C++ Boost library
(www.boost.org). For shortest path query using 2-hop
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Fig. 18 The Online Performances of Shortest Path Query

labeling, we assume that all 2-hop labels are retained
on disk. This means that the online response time in-
cludes I/O cost (loading the corresponding 2-hop labels
into memory) and CPU cost (evaluating Equation 5).
Figure 18 shows that BE, SC and GP have similar on-
line performance, since they are all 2-hop labeling. The
average speed up by 2-hop labeling is 50∼100 over Di-
jkstra’s algorithm using SF and ER data.

In order to further study the performance of our
method GP, we compare it with TEDI [30], the ex-
isting state-of-the-art technique. Since TEDI can only
support unweighted graphs, we only evaluate them in
real unweighted graphs that are provided by authors of
[30] together with the codes of TEDI in Table 1. Al-
though GP has much better performance than other
2-hop labeling techniques, it is not as good as TEDI.
TEDI uses “tree-decomposition” to reduce the search
space, thus, it is faster than our 2-hop labeling method.
In the unweighted graphs, TEDI uses breath-first search
(BFS) to find the shortest paths. However, BFS cannot
be used to compute shortest paths in weighted graphs.
Therefore, TEDI can only support unweighted graphs,
but GP is a general solution for shortest path distance
queries. Furthermore, our solution focuses on weighted
graphs, thus, GP algorithm is still preferable for dis-
tance evaluation in Lines 11-14 in Algorithm 3. In fact,
if the graphs are unweighted graphs, we can use TEDI
in the verification step to speed up the query process-
ing.

10.2 Evaluating Single-Level Method

10.2.1 Offline Processing

Figure 19 reports the total offline processing time on SF
and ER data varying the vertex number from 10K to
100K. Figure 20 shows the total index sizes, including
the converted multi-dimensional space, the 2-hop label-
ing and the data structure that is discussed in Section
5.2. In this experiment, we consider D-join algorithm
to answer an edge query. For clustering, we use the
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Fig. 17 The Performances of Different 2-Hop Labeling Computing Methods

k-medoids algorithm. The value of the cluster number
depends on the available memory size for join process-
ing.
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Fig. 19 Total Offline Processing Time
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Fig. 20 Total Index Size

10.2.2 Online Processing

We first evaluate the effectiveness of LLR embedding
technique. We choose two alternative methods for per-
formance comparison: the extension of R-join algorithm
[8] and the D-join without embedding. In D-join with-
out embedding method, we conduct distance-based joins
directly over the graph, rather than first performing join
processing over converted space and verifying candidate
matches. We use cluster-based block nested loop join

and triangle pruning, but no ‘hash join’ pruning. We
report query response time in Figure 21, which shows
that the response time of D-join is lower than ‘D-Join
without Embedding’ by orders of magnitude. This is be-
cause of two reasons: first, L∞ distance computation is
faster than shortest path distance computation by 3 or-
ders of magnitude in our tests; second, LLR embedding
can filter out about 90% of search space. Finally, the
extension of R-join cannot work well for our problem,
since no pruning techniques are introduced to reduce
the search space.

Then, we evaluate the effectiveness of the proposed
pruning techniques for the D-join algorithm. We report
the number of distance computations (after pruning)
and query response time in Figures 22 and 23, respec-
tively. In order to evaluate the pruning power of differ-
ent pruning strategies, we do not utilize neighbor area
pruning that shrinks the two lists before join process-
ing. Neighbor area pruning is evaluated in Figure 23.

In ‘no-triangle-pruning’ (see Figure 23) method, we
only use the hash join technique. Consequently, in ‘no-
hash pruning’, we only use triangle inequality pruning.
We also compare our techniques with two alterative
similarity join algorithms: RSJ [3] and EGO [1]. Fig-
ure 22 shows that using two pruning techniques (trian-
gle pruning and hash join) together can provide better
pruning power, since they are orthogonal to each other.
Furthermore, since the dimensionality of the converted
vector space is large, R-tree based RSJ cannot work
well due to the dimensionality curse. As shown in Fig-
ures 22 and 23, D-join with both pruning methods out-
performs EGO significantly, because EGO algorithm is
not optimized for L∞ distance. Note that, the differ-
ence between the running time in D-join and EGO is
not clear in Figure 23(d), since Yeast dataset has only
about 2000 vertices.

We test the two cost estimation techniques. Estima-
tion error is defined as ||CL′|−|CL′||

|CL| , where |CL| is the
actual candidate size and |CL′| is estimation size. Since
there are some correlations in <k space, dimension in-
dependence assumption does not hold. Sampling-based
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(c) Citeseer Network

1 2 3 4 5 6
10

−1

10
0

10
1

Q
ue

ry
 R

es
po

ns
e 

T
im

e 
(s

ec
)

δ

 

 

D−Join
D−Join Without Embedding
Extension of R−join

(d) Yeast Network

Fig. 21 Evaluating Embedding Technique

100 200 300 400 500 1000

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

N
um

be
r 

of
 D

is
ta

nc
e 

C
om

pu
ta

tio
n

δ

 

 

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(a) ER Network

100 200 300 400 500 1000

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

4

N
um

be
r 

of
 D

is
ta

nc
e 

C
om

pu
ta

tio
n

δ

 

 

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(b) SF Network

10 20 30 40 50 100
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

5

N
um

be
r 

of
 D

is
ta

nc
e 

C
om

pu
ta

tio
n

δ

 

 

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(c) Citeseer Network

1 2 3 4 5 6
1

2

3

4

5

6

7

8

x 10
4

N
um

be
r 

of
 D

is
ta

nc
e 

C
om

pu
ta

tio
n

δ

 

 

D−join
No−triangle−pruning
No−hash−pruning
RSJ
EGO

(d) Yeast Network

Fig. 22 Number of Distance Computation
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Fig. 23 Edge Query Response Time
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Fig. 24 Cost Estimation

technique can capture data distribution in <k space,
thus, it can provide better estimation, as shown in Fig-
ure 24.

We test the performance of MD-join algorithm. We
also evaluate the effectiveness of neighbor-area prun-
ing technique and join order selection method. In this

experiment, we fix the distance constraint δ, and vary
|E(Q)| from 2 to 20. In ‘without neighbor area prun-
ing’, we do not reduce the search space by neighbor area
pruning, but we still use join order selection method
to select a cheap query plan. In ‘no join order selec-
tion’, we randomly define the join order for the MD-
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Fig. 25 Pattern Match Query Response Time VS. |E(Q)|

join processing, but we use neighbor area pruning. We
use both techniques in MD-join algorithm. Without
neighbor area pruning, the search space is much larger
than in MD-join algorithm using neighbor area pruning,
which is confirmed by the experimental results shown
in Figure 25. ‘No join order selection’ is much slower
than MD-join algorithm. Figure 25 also demonstrates
that randomly defining join order cannot work as well
as MD-join algorithm.

10.3 Evaluating Bi-Level Method

When |V (G)| is very large, the offline processing is very
expensive, especially in the graph embedding process
(recall Figures 19(a) and 19(b)). We evaluate bi-level of-
fline processing time on SF and ER data varying |V (G)|
from 10K to 100K. During the implementation, we par-
tition G into 10 subgraphs. Figures 19(a) and 19(b)
show that bi-level offline processing is much faster than
the single-level method. Furthermore, the index size in
the second-level method is also smaller than that in the
single-level method. Actually, the single-level method
cannot finish offline processing in 48 hours on DBLP
data. However, the bi-level method only spends 5 hours
on the same datasets.

However, the online performance of bi-level method
is not as good as the single-level version, as shown in
Figure 26. We only test bD-Join algorithm (Algorithm
9) over DBLP data in Figure 27, since the single-level
method cannot finish offline processing on such large
data. Figure 28(a) shows the query response time for
varying δ from 200 to 1000. We also fix δ = 200 and
vary query graph size from 2 to 6 on DBLP data in
Figure 28(b).

10.4 Evaluating Approximate Subgraph Search

In this section, we evaluate Algorithm 10 for approx-
imate subgraph search. We fix |E(Q)| = 20 and vary
relax ratio ∆ from 1 to 5 in Figure 28, which shows
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Fig. 26 Edge Query Response Time, δ = 200
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Fig. 27 Query Response Time Over DBLP data

that our method is faster than SAPPER by orders of
magnitude, especially when ∆ > 3. The key reason is
that SAPPER always transforms an approximate sub-
graph query allowing for missed edges to all possible
exact subgraph queries. Obviously, the number of pos-
sible exact subgraph queries is exponential with respect
to ∆. Thus, SAPPER cannot work well when ∆ is large.

11 Conclusions

In this paper, we propose a novel pattern matching
problem over a large graph G by graph embedding tech-
nique. In order to address the complexity of offline pro-
cessing, we design the bi-level version (i.e., bD-Join) of
D-Join algorithm. We also propose a solution to answer
approximate subgraph queries.
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Fig. 28 Approximate Subgraph Queries
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