
EAGLE: Efficient Active Learning of Link
Specifications using Genetic Programming

Axel-Cyrille Ngonga Ngomo1 and Klaus Lyko1

Department of Computer Science
University of Leipzig

Johannisgasse 26, 04103 Leipzig
ngonga@informatik.uni-leipzig.de|lyko.klaus@gmail.com,

WWW home page: http://limes.sf.net

Abstract. With the growth of the Linked Data Web, time-efficient ap-
proaches for computing links between data sources have become indis-
pensable. Most Link Discovery frameworks implement approaches that
require two main computational steps. First, a link specification has to be
explicated by the user. Then, this specification must be executed. While
several approaches for the time-efficient execution of link specifications
have been developed over the last few years, the discovery of accurate
link specifications remains a tedious problem. In this paper, we present
EAGLE, an active learning approach based on genetic programming.
EAGLE generates highly accurate link specifications while reducing the
annotation burden for the user. We present EAGLE and the framework
within which it is implemented. We evaluate EAGLE against batch learn-
ing on three different data sets and show that it can detect specifications
with an F-measure superior to 90% while requiring a small number of
questions.

1 Introduction

The growth of the Linked Data Web over the last years has led to a compendium
of currently more than 30 billion triples [3]. Yet, it still contains a relatively low
number of links between knowledge bases (less than 2% at the moment). Devis-
ing approaches that address this problem still remains a very demanding task.
This is mainly due to the difficulty behind Link Discovery being twofold: First,
the quadratic complexity of Link Discovery requires time-efficient approaches
that can efficiently compute links when given a specification of the conditions
under which a link is to be built [13, 20] (i.e., a so-called link specification). Such
specifications can be of arbitrary complexity, ranging from a simple comparison
of labels (e.g., for finding links between countries) to the comparison of a large
set of features of different types (e.g., using population, elevation and labels to
link villages across the globe). In previous work, we have addressed this task by
developing the LIMES1 framework. LIMES provides time-efficient approaches

1 http://limes.sf.net

for Link Discovery and has been shown to outperform other frameworks signifi-
cantly [22].

The second difficulty behind Link Discovery lies in the detection of accu-
rate link specifications. Most state-of-the-art Link Discovery frameworks such
as LIMES and SILK [13] adopt a property-based computation of links between
entities. To ensure that links can be computed with a high accuracy, these frame-
works provide (a) a large number of similarity measures (i.e., Levenshtein, Jac-
card for strings) for comparing property values and (b) manifold means for com-
bining the results of these measures to an overall similarity value for a given
pair of entities. When faced with this overwhelming space of possible combina-
tions, users often adapt a time-demanding trial-and-error approach to detect an
accurate link specification for the task at hand. There is consequently blatant
need for approaches that support the user in the endeavor of finding accurate
link specifications. From a user’s perspective, approaches for the semi-automatic
generation of link specification must support the user by

1. reducing the time frame needed to detect a link specification (time efficiency),
2. generating link specifications that generate a small number of false positives

and negatives (accuracy) and
3. providing the user with easily readable and modifiable specifications (read-

ability).

In this paper, we present the EAGLE algorithm, a supervised machine-
learning algorithm for the detection of link specifications that abides by the
three criteria presented above. One of the main drawbacks of machine-learning
approaches is that they usually require a large amount of training data to achieve
a high accuracy. Yet, the generation of training data can be a very tedious
process. EAGLE surmounts this problem by implementing an active learning
approach [27]. Active learning allows the interactive annotation of highly infor-
mative training data. Therewith, active learning approaches can minimize the
amount of training data necessary to compute highly accurate link specifications.

Overall, the contributions of this paper are as follows:

– We present a novel active learning approach to learning link specifications
based on genetic programming.

– We evaluate our approach on three different data sets and show that we
reach F-measures of above 90% by asking between 10 and 20 questions even
on difficult data sets.

– We compare our approach with state-of-the-art approaches on the DBLP-
ACM dataset and show that we outperform them with respect to runtime
while reaching a comparable accuracy.

The advantages of our approach are manifold. In addition to its high accuracy,
it generates readable link specifications which can be altered by the user at
will. Furthermore, given the superior runtime of LIMES on string and numeric
properties, our approach fulfills the requirements for use in an interactive setting.
Finally, our approach only requires very small human effort to discover link
specifications of high accuracy as shown by our evaluation.

The rest of this paper is organized as follows: First, we give a brief overview
of the state of the art. Thereafter, we present the formal framework within which
EAGLE is defined. This framework is the basis for the subsequent specification of
our approach. We then evaluate our approach with several parameters on three
different data sets. We demonstrate the accuracy of our approach by computing
its F-measure. Moreover, we show that EAGLE is time-efficient by comparing
its runtime with that of other approaches on the ACM-DBLP dataset. We also
compare our approach with its non-active counterpart and study when the use
of active learning leads to better results.

2 Related Work

Over the last years, several approaches have been developed to address the time
complexity of link discovery. Some of these approaches focus on particular do-
mains of applications. For example, the approach implemented in RKB knowl-
edge base (RKB-CRS) [10] focuses on computing links between universities and
conferences while GNAT [25] discovers links between music data sets. Further
simple or domain-specific approaches can be found in [8, 23, 12, 28, 24]. In addi-
tion, domain-independent approaches have been developed, that aim to facilitate
link discovery all across the Web. For example, RDF-AI [26] implements a five-
step approach that comprises the preprocessing, matching, fusion, interlinking
and post-processing of data sets. SILK [13] is a time-optimized tool for link dis-
covery. It implements a multi-dimensional blocking approach that is guaranteed
to be lossless thanks to the overlapping blocks it generates. Another lossless Link
Discovery framework is LIMES [19], which addresses the scalability problem by
implementing time-efficient similarity computation approaches for different data
types and combining those using set theory. Note that the task of discovering
links between knowledge bases is closely related with record linkage [30, 9, 5, 16].

To the best of our knowledge, the problem of discovering accurate link spec-
ifications has only been addressed in very recent literature by a small number
of approaches: The SILK framework [13] now implements a batch learning ap-
proach to discovery link specifications based on genetic programming. It also
treats link specifications as trees but relies on a large amount of annotated data
to discover high-accuracy link specifications. The RAVEN algorithm [22] on the
other hand is an active learning approach that treats the discovery of specifica-
tions as a classification problem. It discovers link specifications by first finding
class and property mappings between knowledge bases automatically. RAVEN
then uses these mappings to compute linear and boolean classifiers that can be
used as link specifications. A related approach that aims to detect discriminative
properties for linking is that presented by [29]. In addition to these approaches,
several machine-learning approaches have been developed to learn classifiers for
record linkage. For example, machine-learning frameworks such as FEBRL [6]
and MARLIN [4] rely on models such as Support Vector Machines [15, 7], de-
cision trees [31] and rule mining [1] to detect classifiers for record linkage. Our
approach, EAGLE, goes beyond previous work in three main ways. First, it is

an active learning approach. Thus, it does not require the large amount of train-
ing data required by batch learning approaches such as FEBRL, MARLIN and
SILK. Furthermore, it allows to use the full spectrum of operations implemented
in LIMES. Thus, it is not limited to linear and boolean classifiers such as those
generated by FeBRL and RAVEN. Finally, it can detect property and class map-
pings automatically. Thus, it does not need to be seeded to converge efficiently
like SILK [13].

3 Preliminaries

In the following, we present the core of the formalization and notation necessary
to implement EAGLE. We first formalize the Link Discovery problem. Then, we
give an overview of the grammar that underlies links specifications in LIMES
and show how it can be represented by trees. We show how the discovery of link
specifications can consequently be modeled as a genetic programming problem.
Subsequently, we give some insight in active learning and then present the active
learning model that underlies our work.

3.1 Link Discovery

The link discovery problem, which is similar to the record linkage problem, is an
ill-defined problem and is consequently difficult to model formally [2]. In general,
link discovery aims to discover pairs (s, t) ∈ S × T related via a relation R.

Definition 1 (Link Discovery). Given two sets S (source) and T (target) of
entities, compute the set M of pairs of instances (s, t) ∈ S×T such that R(s, t).

The sets S resp. T are usually (not necessarily disjoint) subsets of the in-
stances contained in two (not necessarily disjoint) knowledge bases KS resp. KT .
One way to automate this discovery is to compare the s ∈ S and t ∈ T based on
their properties using a (complex) similarity measure σ. Two entities s ∈ S and
t ∈ T are then considered to be linked via R if σ(s, t) ≥ θ [20]. The specification
of the sets S and T and of this similarity condition is usually carried out within
a link specification.

Definition 2 (Link Specification). A link specification consists of three parts:
(1) two sets of restrictions RS

1 ... RS
m resp. RT

1 ... RT
k that specify the sets S

resp. T , (2) a specification of a complex similarity metric σ via the combination
of several atomic similarity measures σ1, ..., σn and (3) a set of thresholds θ1,
..., θn such that θi is the threshold for σi.

A restriction R is generally a logical predicate. Typically, restrictions in link
specifications state the rdf:type of the elements of the set they describe, i.e.,
R(x) ↔ x rdf:type someClass or the features that the elements of the set
must have, e.g., R(x) ↔ (∃y : x someProperty y). Each s ∈ S must abide by
each of the restrictions RS

1 ... RS
m, while each t ∈ T must abide by each of the

restrictions RT
1 ... RT

k . Each similarity σi is used to compare pairs of property
values of instances s and t. EAGLE relies on the approach presented in [21] to
detect the class and property mappings. Consequently, in the remainder of this
paper, the term link specification will be used to denote the complex similarity
condition used to determine whether two entities should be linked.

3.2 Link Specifications as Trees

Our definition of a link specification relies on the definition of atomic similarity
measures and similarity measures. Generally, a similarity measurem is a function
such that m : S×T → [0, 1]. We call a measure atomic (dubbed atomicMeasure)
when it relies on exactly one similarity measure σ (e.g., trigrams similarity for
strings) to compute the similarity of a pair (s, t) ∈ S × T . A similarity measure
m is either an atomic similarity measure atomicMeasure or the combination of
two similarity measures via a metric operator metricOp such as MAX, MIN
and linear combinations ADD.

1. m atomicMeasure
2. m metricOp(m1,m2)

We call a link specification atomic (atomicSpec) if it compares the value of
a measure m with a threshold θ, thus returning the pairs (s, t) that satisfy
the condition σ(s, t) ≥ θ . A link specification spec(m, θ) is either an atomic
link specification or the combination of two link specifications via specification
operators specOp such as AND (intersection of the set of results of two specs),
OR (union of the result sets), XOR (symmetric set difference), or DIFF (set
difference). Thus, the following grammar for specifications holds :

1. spec(m, θ) atomicSpec(m, θ)
2. spec(m, θ) specOp(spec(m1, θ1), spec(m2, θ2))

Each link specification that abides by the grammar specified above can be
consistently transformed into a tree that contains the following central con-
structs.

4 Approach

As we have formalized link specifications as trees, we can use Genetic Program-
ming (GP) to solve the problem of finding the most appropriate complex link
specification for a given pair of knowledge bases. Given a problem, the basic idea
behind genetic programming [17] is to generate increasingly better solutions of
the given problem by applying a number of genetic operators to the current
population. In the following, we will denore the poulation at time t by gt. These
operators simulate natural selection mechanisms such as mutation and repro-
duction to enable the creation of individuals that best abide by a given fitness
function. One of the key problems of genetic programming is that it is a non-
deterministic procedure. In addition, it usually requires a large training data set

m

σ

Fig. 1. Atomic measure

m

metricOp

m1 m2

Fig. 2. Complex measure

spec

m θ

Fig. 3. Atomic specification

spec

specOp

spec1 spec2 θ

Fig. 4. Complex specification

to detect accurate solutions. In this paper, we propose the combination of GP
and active learning [27]. Our intuition is that by merging these approaches, we
can infuse some determinism in the GP procedure by allowing it to select the
most informative data for the population. Thus, we can improve the convergence
of GP approaches while reducing the labeling effort necessary to use them. In
the following, we present our implementation of the different GP operators on
link specifications and how we combine GP and active learning.

4.1 Overview

Algorithm 1 EAGLE

Require: Specification of the two knowledge bases KS and KT
Get set S and set T of instances as specified in KS respectively KT .
Get property mapping (KS, KT)
Get reference mapping by asking user to label n random pairs (s, t) ∈ S × T
repeat

Evolve population(population,size) generations times.
Compute n most informative link candidates and ask user to label them.

until stop condition reached

Algorithm 1 gives an overview of the approach implemented by EAGLE. We
begin with the detection of matching classes and properties using the approach
explication in [22], we begin by generating a random population of individual
link specifications. To evolve a population to the next one a number of steps
is required: First, all existing individuals must be assigned a fitness score. This
score reflects how well a link specification performs on the training data at hand.
Subsequently, the genetic operators reproduction, mutation and crossover are
applied to the individuals of the current population in order to let the individuals
adapt to the problem. The reproduction determines which individual is carried

into the next generation. Note that throughout this paper, we use a tournament
setting of two randomly chosen individuals. Mutation is an operator that can
applied to a single individual and that randomly changes parts of its tree with
the aim of creating a new individual. With the crossover operator also new
individuals are created by crossing over branches of the program trees of two
parent individuals.

Algorithm 2 Evolves a population

if population is empty then
create size random individuals

end if
Compute fitness of population
Apply genetic operators to population
return population

In the following, we will explicate each of the steps of our algorithm in more
detail. Each of these steps will be exemplified by using the link specification
shown in Figure 5.

spec

AND

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

Fig. 5. Examplary link specification

4.2 Evolution of population

Evolution is the primary process which enables GP to solve problems and drives
the development of efficient solutions for a given problem. On start-up the pop-
ulation is empty and must be built by random generated individuals. This is
carried out by generating random trees whose nodes are filled with functions or
terminals as required. For this paper, we defined the operators (functions and
terminals) in the genotype for the problem to generate link specifications as fol-
lows: all metricOp and specOp were set to be functions. Terminal symbols were
thresholds and measures. Note that these operators can be extended at will.

To randomly generate individuals all operators are mapped to certain con-
straints so as to ensure that EAGLE only generates valid program trees. For
example, the operator to compare numeric properties only accepts such ter-
minals representing numeric properties of the knowledge bases. Let gt be the
population at the ieration t. To evolve a population to the generation gt+1 we
first determine the fitness of all individuals of generation gt (see Section 4.3).
These fitness values build the basis for selecting individuals for the genetic oper-
ator reproduction. We use a tournament setting between two selected individuals
to decide which one is copied to the next generation gt+1. On randomly selected
individuals the operator mutation is applied according with a probability called
the mutation rate. The mutation operator changes single nodes in the program
tree of the individuals. Thereby, thresholds can be set to a new value, properties
changed or measures can be modified (see Figure 6). The third genetic opera-
tor, crossover, operates on two parent individuals and builds a new offspring by
swapping two random subtrees of the parent genotypes. Figure 7 exemplifies the
functionality of the crossover operator.

(a) spec

AND

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

−→ (b) spec

OR

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

Fig. 6. Mutation example. Mutation changes boolean operator.

(a) spec

AND

spec

m

trigrams

0.8

0.9 spec

m

Jaccard

0.5

−→ (b) spec

AND

spec

m

Jaccard

0.5

0.9 spec

m

Jaccard

0.5

Fig. 7. Crossover example. Consider we have two individuals with a program tree like
in (a). A crossover operation can replace subtrees to produce an offspring like (b).

From the set of newly created and individuals of gt the n fittest individuals
are selected to build the population of gt+1. Thereby, we iteratively generate
populations of potential fitter individuals.

4.3 Fitness

The aim of the fitness function is to approximate how well a solution (i.e., a link
specification) solves the problem at hand. In the supervised machine learning
setting, this is equivalent to computing how well a link specification maps the
training data at hand. To determine the fitness of an individual we first build the
link specification that is described by the tree at hand. Given the set of available
training data O = {(xi, yi) ∈ S × T}, we then run the specification by using the
sets S(O) = {s ∈ S : ∃t ∈ T : (s, t) ∈ O} and T (O) = {t ∈ T : ∃s ∈ S : (s, t) ∈
O}. The result of this process is a mappingM that is then evaluated against O
by the means of the standard F-measure defined as

2PR

P +R
where P =

|M ∩O|
|M|

and R =
|M ∩O|
|O|

. (1)

Note that by running the linking on S(O) and T (O), we can significantly reduce
EAGLE’s runtime.

4.4 Computation of most informative link candidates

The main idea behind the reduced of the amount of labeling effort required by
active learning approaches is that they only required highly informative training
data from the user. Finding these most informative pieces of information is
usually carried out by measuring the amount of information that the labeling of
a training data item would bear. Given the setting of EAGLE in which several
possible solutions co-exist, we opted for applying the idea of active learning by
committees as explicated in [18]. The idea here is to consistently entertain a finite
and incomplete set of solutions to the problem at hand. The most informative
link candidates are then considered to be the pairs (s, t) ∈ S×T upon which the
different solutions disagree the most. In our case, these are the link candidates
that maximize the disagreement function δ((s, t)):

δ((s, t)) = (n− |{Mt
i : (s, t) ∈Mi}|)(n− |{Mt

i : (s, t) /∈Mi}|), (2)

whereMi are the mappings generated by the population gt. The pairs (s, t) that
lead to the highest disagreement score are presented to the user, who provides
the system with the correct labels. This training set is finally updated and used
to compute the next generations of solutions.

5 Evaluation

5.1 Experimental Setup

We evaluated our approach in three experiments. In our experiments, our main
goal not only to show that we can discover link specifications of different com-
plexity with high accuracy. In addition, we also aimed to study the effect of the

population size and of active learning on the quality of link specifications. For this
purpose, we devised three experiments whose characteristics are shown in Table
1. The goal of the first experiment, called Drugs, was to measure how well we can

Label S T |S| × |T | Oracle size

Drugs Dailymed Drugbank 1.09× 106 1046

Movies DBpedia LinkedMDB 1.12× 106 1056

Publications ACM DBLP 6.01× 106 2224
Table 1. Characteristics of the datasets used for evaluation. S stands for source, T for
target.

detect a manually created LIMES specification. For this purpose, we generated
owl:sameAs link candidates between Drugs in DailyMed and Drugbank by using
their rdfs:label. The second experiment, Movies, was carried out by using the
reslults of a LATC2 link specification. Here, we fetched the links generated by a
link specification that linked movies in DBpedia to movies in LinkedMDB [11],
gathered the rdfs:label of the movies as well as the rdfs:label of their direc-
tors of in the source and target knowledge bases and computed a specification
that aimed to reproduce the set of links at hand as exactly as possible. Note
that this specification is hard to reproduce as the experts who created this link
specification applied several transformations to the property values before car-
rying out the similarity computation that led to the results at hand. Finally, in
our third experiment (Publications), we used the ACM-DBLP dataset described
in [16]. Our aim here was to compare our approach with other approaches with
respect to both runtime and F-measure.

All experiments were carried out on one kernel of an AMD Opteron Quad-
Core processor (2GHz) with the followings settings: the population size was
set to 20 or 100. The maximal number of generations was set to 50. In all
active learning experiments, we carried out 10 inquiries per iteration cycle. In
addition, we had the population evolve for 10 generations between all inquiries.
The mutation and crossover rates were set to 0.6. For the batch learners, we
set the number of generations to the size of the training data. Note that this
setup is of disadvantage for active learning as the batch learners then have more
data and more iterations on the data to learn the best possible specification.
We used this setting as complementary for the questions that can be asked by
the active learning approach. During our experiments, the Java Virtual Machine
was allocated 1GB RAM. All experiments were repeated 5 times.

5.2 Results

The results of our experiments are shown in the Figures below. In all figures,
Batch stands for the batch learners while AL stands for the active learners. The

2 http://lact-project.ec

numbers in brackets are the sizes of the populations used. The results of the
Drugs experiments clearly show that our approach can easily detect simple link
specifications. In this experiment, 10 questions were sufficient for the batch and
active learning versions of EAGLE to generate link specifications with an F-
measure equivalent to the baseline of 99.9% F-measure. The standard deviation
lied around 0.1% for all experiments with both batch and active learner.

10 20 30 40 50 60 70 80 90 100

labeling effort

0.99

0.992

0.994

0.996

0.998

1

m
e
a
n
 f

-s
co

re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Fig. 8. Results of the Drugs experiment. Mean F-Measure of five runs of batch and
active learner, both using population sizes of 20 and 100 individuals. Baseline is at
99.9% F-measure.

On the more complex Movies experiments, we required 50 inquiries to dis-
cover the best link specification that led to an F-measure of 94.1%. This ex-
periment clearly shows the effect of active learning on genetic programming
algorithms. While the batch learners fed with any data size tend to diverge sig-
nificantly across the different experiments as shown by their standard deviation
bars, the active learning approaches do not only perform better, they are also
more stable as shown by the smaller standard deviation values. Similar results
are shown on the most complex and largest data set at hand, ACM-DBLP.

In addition to being accurate, our approach is very time-efficient. For exam-
ple, it only required approximately 250ms to run a specification on the first and
second data sets when all the data is in memory. On average, it requires less
than 700ms on the last data sets. It is important to notice that the features of
this datasets include real numbers, which considerably augment the runtime of
link specifications.

10 20 30 40 50 60 70 80 90 100
−0,2

0

0,2

0,4

0,6

0,8

1

1,2

Baseline Batch (20) Batch (100) AL (20) AL (100)

Fig. 9. Results of the Movies experiment. Mean F-measures of five runs of batch and
active learner, both using population sizes of 20 and 100 individuals. Baseline is at
97.6% F-measure.

10 20 30 40 50 60 70 80 90 100

labeling effort

0.6

0.7

0.8

0.9

1

1.1

m
e
a
n
 f

-s
o
re

Baseline Batch (20) Batch (100) AL (20) AL (100)

Fig. 10. Results of the Publications experiment. Mean F-measures of five runs of batch
and active learner, both using population sizes of 20 and 100 individuals. Baseline is
at 97.2% F-measure.

Our results suggest that use of small populations affects the outcome of the
learning process significantly, especially when the specification to be learned
is complex. For example, on the Publications data set, the learners that rely
on solely 20 individuals per generation are up to 9.8% worse than the learners
which use populations of 100 individuals. Setting the population to 100 seems to
generate sufficiently good results without requiring a large amount of memory.
Yet, when trying to link very complex datasets, an even larger setting would be
advisable.

5.3 Comparison with other approaches

As stated above, we chose the ACM-DBLP data set because it has been used in
previous work to compare the accuracy and learning curve of different machine
learning approaches for deduplication. As our results show (see Table 2), we
reach an accuracy comparable to that of the other approaches. One of the main
advantages of our approach is that it is considerably more time-efficient that
all other approaches. Especially, while we are approximately 3 to 7 times faster
than MARLIN, we are more than 14 times faster than FeBRL on this data set.

EAGLE FEBRL MARLIN MARLIN
(SVM) (SVM) (AD-Tree)

F-Measure 97.2% 97.5% 97.6% 96.9%

Runtime 337s 4320s 2196s 1553s
Table 2. Comparison of best performances of different machine learning approaches
on ACM-DBLP

So far, only a few other approaches have been developed for learning link
specifications from data. RAVEN [22] is an active learning approach that view
the learning of link specifications as a classification task. While it bears the ad-
vantage of being deterministic, it is limited to learning certain types of classifiers
(boolean or linear). Thus, it is only able to learn a subset of the specifications that
can be generated by EAGLE. Another genetic programming-based approach to
link discovery is implemented in the SILK framework [14]. This approach is yet
a batch learning approach and it consequently suffers of drawbacks of all batch
learning approaches as it requires a very large number of human annotations to
learn link specifications of a quality comparable to that of EAGLE.

6 Conclusion and Future Work

In this paper we presented EAGLE, an active learning approach for genetic
programming that can learn highly accurate link specifications. We compared
EAGLE with its batch learning counterpart. We showed that by using active
learning, we can tackle complex datasets with more ease and generate solutions

that are more stable (i.e., that display a smaller standard deviation over differ-
ent runs). We also compared EAGLE with other approaches such as FeBRL and
MARLIN on the ACM-DBLP dataset. We showed that for we achieve a similar
F-measure while requiring a significantly smaller runtime. We also demonstrated
that the runtime of our approach makes it suitable for interactive scenarios. In fu-
ture work, we will study the effect of different parameterizations in more details.
Especially, we will utilize different fitness functions and study the correlation of
fitness functions with the overall F-score. Furthermore, we will aim at devising
automatic configuration approaches for EAGLE.

References

1. Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules
between sets of items in large databases. SIGMOD Record, 22:207–216, 1993.

2. Arvind Arasu, Michaela Götz, and Raghav Kaushik. On active learning of record
matching packages. In SIGMOD Conference, pages 783–794, 2010.

3. Sören Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo. Introduction to
linked data and its lifecycle on the web. In Reasoning Web, pages 1–75, 2011.

4. Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using
learnable string similarity measures. In KDD, pages 39–48, 2003.

5. Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41(1):1–41,
2008.

6. Peter Christen. Febrl -: an open source data cleaning, deduplication and record
linkage system with a graphical user interface. In KDD ’08, pages 1065–1068, 2008.

7. Nello Cristianini and Elisa Ricci. Support vector machines. In Encyclopedia of
Algorithms. 2008.

8. Philippe Cudré-Mauroux, Parisa Haghani, Michael Jost, Karl Aberer, and Her-
mann de Meer. idmesh: graph-based disambiguation of linked data. In WWW,
pages 591–600, 2009.

9. Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate record detection: A survey. IEEE Transactions on Knowledge and Data
Engineering, 19:1–16, 2007.

10. Hugh Glaser, Ian C. Millard, Won-Kyung Sung, Seungwoo Lee, Pyung Kim, and
Beom-Jong You. Research on linked data and co-reference resolution. Technical
report, University of Southampton, 2009.

11. Oktie Hassanzadeh and Mariano Consens. Linked movie data base. In Christian
Bizer, Tom Heath, Tim Berners-Lee, and Kingsley Idehen, editors, Proceedings of
the WWW2009 Worshop on Linked Data on the Web (LDOW 2009), 2009.

12. Aidan Hogan, Axel Polleres, Jrgen Umbrich, and Antoine Zimmermann. Some en-
tities are more equal than others: statistical methods to consolidate linked data. In
Workshop on New Forms of Reasoning for the Semantic Web: Scalable & Dynamic
(NeFoRS2010), 2010.

13. R. Isele, A. Jentzsch, and C. Bizer. Efficient Multidimensional Blocking for Link
Discovery without losing Recall. In WebDB, 2011.

14. Robert Isele and Christian Bizer. Learning Linkage Rules using Genetic Program-
ming. In Sixth International Ontology Matching Workshop, 2011.

15. S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector
machines with Gaussian kernel. Neural Computation, 15(7):1667–1689, 2003.

16. Hanna Köpcke, Andreas Thor, and Erhard Rahm. Comparative evaluation of entity
resolution approaches with fever. Proc. VLDB Endow., 2(2):1574–1577, 2009.

17. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press, 1992.

18. Ray Liere and Prasad Tadepalli. Active learning with committees for text cate-
gorization. In In proceedings of the Fourteenth National Conference on Artificial
Intelligence, pages 591–596, 1997.

19. Axel-Cyrille Ngonga Ngomo. A Time-Efficient Hybrid Approach to Link Discovery.
In Sixth International Ontology Matching Workshop, 2011.

20. Axel-Cyrille Ngonga Ngomo and Sören Auer. LIMES - A Time-Efficient Approach
for Large-Scale Link Discovery on the Web of Data. In Proceedings of IJCAI, 2011.

21. Axel-Cyrille Ngonga Ngomo, Norman Heino, Klaus Lyko, René Speck, and Martin
Kaltenböck. Scms - semantifying content management systems. In ISWC 2011,
2011.

22. Axel-Cyrille Ngonga Ngomo, Jens Lehmann, Sören Auer, and Konrad Höffner.
RAVEN – Active Learning of Link Specifications. In Proceedings of OM@ISWC,
2011.

23. Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne N. De Roeck. Overcom-
ing schema heterogeneity between linked semantic repositories to improve corefer-
ence resolution. In ASWC, pages 332–346, 2009.

24. George Papadakis, Ekaterini Ioannou, Claudia Niedere, Themis Palpanasz, and
Wolfgang Nejdl. Eliminating the redundancy in blocking-based entity resolution
methods. In JCDL, 2011.

25. Yves Raimond, Christopher Sutton, and Mark Sandler. Automatic interlinking of
music datasets on the semantic web. In Proceedings of the 1st Workshop about
Linked Data on the Web, 2008.

26. Franois Scharffe, Yanbin Liu, and Chuguang Zhou. Rdf-ai: an architecture for rdf
datasets matching, fusion and interlink. In Proc. IJCAI 2009 workshop on Identity,
reference, and knowledge representation (IR-KR), Pasadena (CA US), 2009.

27. Burr Settles. Active learning literature survey. Technical Report 1648, University
of Wisconsin-Madison, 2009.

28. Jennifer Sleeman and Tim Finin. Computing foaf co-reference relations with rules
and machine learning. In Proceedings of the Third International Workshop on
Social Data on the Web, 2010.

29. Dezhao Song and Jeff Heflin. Automatically generating data linkages using a
domain-independent candidate selection approach. In ISWC, pages 649–664, 2011.

30. William Winkler. Overview of record linkage and current research directions. Tech-
nical report, Bureau of the Census - Research Report Series, 2006.

31. Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets
Systems, 69, 1995.

