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ABSTRACT 

Model differentiation techniques, which provide the capability to identify mappings and 

differences between models, are essential to many model development and management 

practices. There has been initial research toward model differentiation applied to UML diagrams, 

but differentiation of domain-specific models has not been explored deeply in the modeling 

community. Traditional modeling practice using the UML relies on a single fixed general-

purpose language (i.e., all UML diagrams conform to a single metamodel). In contrast, Domain-

Specific Modeling (DSM) is an emerging model-driven paradigm in which multiple metamodels 

are used to define various modeling languages that represent the key concepts and abstractions for 

particular domains. Therefore, domain-specific models may conform to various metamodels, 

which requires model differentiation algorithms be metamodel-independent and able to apply to 

multiple domain-specific modeling languages. This paper presents metamodel-independent 

algorithms and associated tools for detecting mappings and differences between domain-specific 

models, with facilities for graphical visualization of the detected differences. 



 

INTRODUCTION 

Model-Driven Engineering (MDE) is emerging as a software development paradigm that 

promotes models as first-class artifacts to specify properties of software systems at a higher level 

of abstraction. The capability to identify mappings and differences between models, which is 

called model differentiation or model comparison, is essential to many model development and 

management practices [Cicchetti et al., 2007]. For example, model differentiation is needed in a 

model versioning system to trace the changes between different model versions to understand the 

evolution history of the models. Model comparison techniques and tools may help maintain 

consistency between different views of a modeled system. Furthermore, model differentiation can 

also be applied to assist in testing the correctness of model transformations by comparing the 

expected model and the resulting model after applying a transformation ruleset. 

 Although there exist many techniques available for differentiating text files (e.g., source 

code and documentation) and for structured data (e.g., XML documents), such tools either 

operate under a linear file-based paradigm that is purely textual (e.g., the Unix diff tool [Hunt and 

McIlroy, 75]) or perform comparison on a tree structure (e.g., the XMLDiff tool [Wang et al., 

03]). However, models are structurally represented as graphs and are often rendered in a graphical 

notation. Thus, there is a structural mismatch between currently available text-based 

differentiation tools and the graphical nature of models. Furthermore, from our experience, large 

models can contain several thousand modeling elements, which makes a manual approach to 

model differentiation infeasible. To address these problems, more research is needed to explore 

automated differentiation algorithms and supporting tools that may be applied to models with 

graphical structures. 

 Theoretically, generic model comparison is similar to the graph isomorphism problem that 

can be defined as finding the correspondence between two given graphs, which is known to be 

NP-hard [Khuller and Raghavachari, 96]. Some research efforts aim to provide generic model 

comparison algorithms, such as the Bayesian approach, which initially provides diagram 



 

matching solutions to architectural models and data models [Mandelin et al., 06]. However, the 

computational complexity of general graph matching algorithms is the major hindrance to 

applying them to practical applications in modeling. Thus, it is necessary to loosen the constraints 

on graph matching to find solutions for model comparison. A typical solution is to provide 

differentiation techniques that are specific to a particular modeling language, where the syntax 

and semantics of this language help handle conflicts during model matching. 

 Currently, there exist many types of modeling languages. Particularly, the Unified Modeling 

Language (UML) is a popular object-oriented modeling language. The majority of investigations 

into model differentiation focus on UML diagrams [Ohst et al., 03], [Xing and Stroulia, 05]. 

Alternatively, Domain-Specific Modeling (DSM) [Gray et al., 07] is an emerging MDE 

methodology that generates customized modeling languages and environments from metamodels 

that define a narrow domain of interest. DSM has been adopted frequently in the development of 

computer-based systems, especially in the domain of embedded control software (e.g., avionics 

and automotive control). 

Distinguished from UML, which is a general-purpose modeling language, Domain-Specific 

Modeling Languages (DSMLs) aim to specify the solution directly using rules and concepts 

familiar to end-users of a particular application domain. There are two main differences between 

domain-specific models and UML diagrams: 1) UML diagrams have a single definition for 

syntax and static semantics (i.e., a single metamodel); however, domain-specific models vary 

significantly in their structures and properties when their syntax and static semantics are defined 

in different metamodels, which correspond to different DSMLs tailored for specific end-users; 2) 

domain-specific models are usually considered as instance-based models (e.g., large domain-

specific system models often have repetitive and nested hierarchical structures and may contain 

large quantities of objects of the same type), but traditional UML diagrams are primarily class-

based models. Thus, domain-specific models and UML diagrams differ in structure, syntax and 

semantics. New approaches are therefore required to analyze differences among domain-specific 



 

models. However, there has been little work reported in the literature on computing differences 

between domain-specific models that are visualized in a graphical concrete syntax. The main goal 

of this paper is to present our algorithms that are metamodel-independent and have been 

implemented in a tool called DSMDiff, which addresses the problem of computing the 

differences between domain-specific models by exploring the following issues: 

Q1. What are the essential characteristics of domain-specific models and how are they 

defined? 

Q2. What information within domain-specific models needs to be compared and what 

information is needed to support metamodel-independent model comparison? 

Q3. How is this information formalized within the model representation in a particular DSML? 

Q4. How are model mappings and differences defined to enable model comparison? 

Q5. What algorithms can be used to discover the mappings and differences between models? 

Q6. How to visualize the result of model comparison to assist in comprehending the 

mappings and differences between two models? 

The next section (Metamodeling and Domain-Specific Models) provides a foundation for 

discussing the key entities of domain-specific modeling that contribute to model comparison (i.e., 

questions Q1 through Q3). The section entitled Model Differences and Mappings offers a context 

for Q4, which addresses the mapping and difference sets used in model comparison. The core of 

the paper makes a contribution to model differentiation (see the section on Model Differentiation 

Algorithms, which addresses Q5) by describing the algorithms that we have developed and 

implemented for a model differentiation tool. This section also motivates the importance of 

visualizing the model differences in a manner that can be comprehended by a model engineer, 

which is the essence of Q6. The paper presents an evaluation of the algorithms (Evaluation and 

Discussion) and concludes with an overview of related work and a summary conclusion. 



 

METAMODELING AND DOMAIN-SPECIFIC MODELS 

To develop algorithms for model differentiation, one of the critical questions is whether to 

determine if the two models are syntactically equivalent or to determine if they are semantically 

equivalent. Because the semantics of most modeling languages are not formally defined, the 

algorithms presented in this paper only determine whether the two models are syntactically 

equivalent1. To achieve this, a model comparison algorithm must be informed by the syntax of a 

specific DSML. Thus, this section discusses how the syntax of a DSML is defined and what 

essential information is embodied in the syntax. 

 Metamodeling is a common technique for conceptualizing a domain by defining the abstract 

syntax and static semantics of a DSML. A metamodel defines a set of modeling elements and 

their valid relationships that represent certain properties for a specific domain. The Generic 

Modeling Environment (GME) [Lédeczi et al., 01] is a meta-configurable tool that allows a 

DSML to be defined from a metamodel. Domain-specific models can be created using this DSML 

and may be translated into source code, or synthesized into data to be sent to a simulation tool. 

The work described in this paper was performed within the context of the GME, but we believe 

the algorithms that are described can solve broader model comparison problems in other 

metamodeling tools that represent models as hierarchical graphs, such as the ATLAS Model 

Management Architecture (AMMA) [Kurtev et al., 06], Microsoft’s DSL tools [Microsoft, 05], 

MetaEdit+ [MetaCase, 07], and the Eclipse Modeling Framework (EMF) [Budinsky et al., 04]. 

 There are three basic types of entities used to define a DSML in GME: atom, model and 

connection. An atom is the most basic type of entity that cannot have any internal structures. A 

model is another type of entity that can contain other modeling entities such as child models and 

atoms. A connection represents the relationship between two entities. Generally, the constructs of 

a DSML defined in a metamodel consist of a set of model entities, a set of atom entities and a set 

                                                 
1 Please note that this is not a serious limitation when compared to other differentiation methods. The large 
majority of differentiation techniques offer syntactic comparison only, especially those focused on 
detecting textual differences. 



 

of connections. However, these three types of entities are generic to any DSML and provide 

domain-independent type information (i.e., called the type in GME terminology). Each entity 

(e.g., model, atom or connection) in a metamodel is given a name to specify the role that it plays 

in the domain. Correspondingly, the name that is defined for each entity in a metamodel 

represents the domain-specific type (i.e., called the kind in GME terminology), which end-users 

see when creating an instance model. Moreover, attributes are used to record state information 

and are bound to atoms, models, and connections. Thus, without considering its relationships to 

other elements, a model element is defined syntactically by its type, kind, name and a set of 

attributes. Specifically, type provides certain meta information to help determine the essential 

structure of a model element for any DSML (e.g., model, atom or connection) and is needed in 

metamodel-independent model differentiation algorithms. Meanwhile, kind and name are specific 

to a given DSML and provide non-structural syntactical information to further assist in model 

comparison. Other syntactical information of a model element includes its relationships to other 

elements (i.e., connections to its neighbours), which may also distinguish the identity of modeling 

elements. 

In summary, to determine whether two models are syntactically equivalent, model 

differentiation algorithms need to compare all the syntactical information between them. Such a 

set of syntactical information of a model element include: 1) its type, kind, name and attribute 

information; and 2) its connections to other model elements. There is other information associated 

with a model that either relates to the concrete syntax of a DSML (e.g., visualization 

specifications such as associated icon objects and their default layouts and positions) or to the 

static semantics of a DSML (e.g., constraints to define domain rules). The concrete syntax is not 

generally involved in model differentiation for the purpose of determining whether two models 

are syntactically equivalent (e.g., the associated icon of a model element is always determined by 

its kind information by the metamodel definition). Similarly, because the constraints are defined 

at the metamodel level in our case (i.e., models with the same kind hold the same constraints), 



 

they are not explicitly computed in model differentiation; instead, kind equivalence implies the 

equivalence of constraints. 

Graph Representation of Domain-Specific Models 

In order to design efficient algorithms to detect differences between two models, it is necessary to 

understand the structure of a model. Figure 1 shows a GME model and its hierarchical structure. 

According to its hierarchical containment structure, a model can be represented formally as a 

hierarchical graph that consists of a set of nodes and edges, which are typed, named and 

attributed. There are four kinds of elements in such a graph: 

• Node. A node is an element of a model, represented as a 4-tuple (name, type, kind, 

attributes), where name is the identifier of the node, type is the corresponding metamodeling 

element for the node, kind is the domain-specific type, and attributes is a set of attributes that 

are predefined by the metamodel. There are two kinds of nodes: 

 Model node: a containment node that can be expanded at a lower level as a graph 

that consists of a set of nodes and a set of edges (i.e., a container). This kind of node 

is used to represent submodels within a model, which leads to multiple-level 

hierarchies of a containment model. 

 Atom node: an atomic node that cannot contain any other nodes (i.e., a leaf). This 

kind of node is used to represent atomic elements of a model. 

• Edge. An edge is a 5-tuple (name, type, kind, src, dst), where name is the identifier of the 

edge, type is the corresponding metamodeling element for the edge, kind is the domain-

specific type, src is the source node, and dst is the destination node. A connection can be 

represented as an edge. 

• Graph. A directed graph consists of a set of nodes and a set of edges where the source node 

and the destination node of each edge belong to the set of nodes. A graph is used to represent 

an expanded model node. 



 

• Root. A root is the graph at the top level of a multiple-level hierarchy that represents a root 

model. 

 

 

MODEL DIFFERENCES AND MAPPINGS 

The task of model differentiation is to identify the mappings and differences between two 

containment models at all hierarchical levels. In general, the comparison starts from the top levels 

of the two containment models and then continues to the child submodels. At each level, the 

comparison between two corresponding models (i.e., one is defined as the host model, denoted as 

M1, and the other is defined as the candidate model, denoted as M2), always produces two sets: 

the mapping set (denoted as MS) and the difference set (denoted as DS). The mapping set 

contains all pairs of model elements that are mapped to each other between two models. The 

Figure 1. A GME model and its hierarchical structure 



 

difference set contains all detected discrepancies between the two models. Before the details of 

the algorithms are presented, the definition of model mappings and differences is discussed. 

A pair of mappings is denoted as Map (elem1, elem2), where elem1 is in M1 and elem2 is in 

M2, and may be a pair of nodes or a pair of edges. Map (elem1, elem2) is a bidirectional 

relationship that implies elem2 is the only mapped correspondence in M2 for elem1 in M1 based 

on certain matching metrics, and vice versa. The difference relationship between two models is 

more complicated than the mapping relationship. The notations used to represent the differences 

between two models are editing operational terms that are considered more intuitive [Alanen and 

Porres, 03]. For example, a New operation implies creating a model element, a Delete operation 

implies removing a model element and a Change operation implies changing the value of an 

attribute. We define DS = M2 – M1, where M2 is compared to M1. DS consists of a set of 

operations that yields M2 when applied to M1. The “-” operator is not commutative. 

There are several situations that could cause two models to differ. The first situation of 

model difference occurs when some modeling elements (e.g., nodes or edges in the graph 

representation) are in M2, but not in M1. We denote this kind of difference as New (e2) where e2 

is in M2, but not in M1. The converse is another situation that could cause a difference (i.e., 

elements in M1 are missing in M2). We denote this kind of difference as Delete (e1) where e1 is 

in M1, but not in M2. These two situations occur from structural differences between the two 

models. A third difference can occur when all of the structural elements are the same, but a 

particular value of an attribute is different. We denote this difference as Change (e1, e2, f, v1, v2), 

where e1 in M1 and e2 in M2 are a pair of mapping elements, f is the feature name (e.g., name of 

an attribute), v1 is the value of e1.f, and v2 is the value of e2.f. Thus, the difference set actually 

includes three sets: DS = {N, D, C} where N is a set that contains all the New differences, D is a 

set that contains all the Delete differences, and C is a set that contains all the Change differences. 

These definitions were initially presented in [Lin et al., 05]. 



 

MODEL DIFFERENTIATION ALGORITHMS 

Our model comparison algorithms identify the mappings and differences between two 

containment models by comparing all the elements and their abstract syntactical information 

within these models. In general, the comparison starts from the two root models and then 

continues to the child submodels. At each level, two metrics (i.e., signature matching and 

structural similarity) are combined to detect the mapped nodes between a pair of models and the 

remaining nodes are examined to determine all the node differences. Based on the results of node 

comparison, all the edges are computed to discover all the edge mappings and differences. 

To store the two models that need to be compared and the results of model comparison, a 

data structure called DiffModel is used. The structure of DiffModel contains a pair of models to 

be compared, a mapping set to store all the matched child pairs, and three difference sets to 

record New, Delete, and Change differences. 

Detection of Model Mappings 

It is well-known that some model comparison algorithms are greatly simplified by requiring that 

each element have a persistent identifier, such as a universally unique identifier (UUID), which is 

assigned to a newly created element and will not be changed unless the element is removed [Ohst 

et al., 03]. However, such traceable links only apply to two models that are subsequent versions. 

In many modeling activities, model comparison is needed between two models that are not 

subsequent versions. A pair of corresponding model elements need to share a set of properties, 

which can be a subset of their syntactical information. Such properties may include type 

information, which can be used to select the model elements of the same type from the candidates 

to be matched because only model elements with the same type need to be compared. For 

example, in a Petri net model, a “place” node will not match a “transition” node. In addition to 

type information, identification information such as name is also important to determine 

mappings for domain-specific models. Therefore, a combination of syntactical properties for a 



 

node or an edge can be used to identify different model elements. Such properties are called the 

signature in DSMDiff, and are used as the first criterion to match model elements. Signature is a 

widely used term in much of the literature on structural data matching and may have different 

definitions [Wang et al., 03]. In our context, the signature of a node or an edge is a subset of its 

syntactical information, which is defined as follows: 

• Node Signature is the concatenation of the type, kind and name of a node. Suppose v is a 

node in a graph. Signature (v) = /Type (v)/Kind (v)/Name (v). If a node is nameless, its 

name is set as an empty string. 

• Edge Signature is the concatenation of the type, kind and name of the edge as well as of 

the signatures of its source node and destination node. Suppose e is an edge in a graph, 

src is its source node and dst is its destination node. Signature (e) = Signature (src)/Type 

(e)/Kind (e)/Name (e)/Signature (dst). If an edge is nameless, its name is set as an empty 

string. 

Signature Matching 
Signature matching can be defined as: 

• Node Signature Matching: Given two models, M1 and M2, suppose v1 is a node in M1 

and v2 is a node in M2. There is a node signature matching between v1 and v2 if Signature 

(v1) = Signature (v2), which means the two strings (i.e., the signature of v1 and the 

signature of v2) are textually equivalent. 

• Edge Signature Matching: Given two models, M1 and M2, suppose e1 is an edge in M1 

and e2 is an edge in M2. There is an edge signature matching between e1 and e2 if 

Signature (e1) = Signature (e2), which means the two strings (i.e., the signature of e1 and 

the signature of e2) are textually equivalent. 



 

A node v1 in M1 mapping to a node v2 in M2 implies their name, type and kind are matched. An 

edge e1 in M1 mapping to an edge e2 in M2 implies their name, type, kind, source node and 

destination node are all matched. 

Usually, nodes are the most significant elements in a model and edge mappings also depend 

on whether their source and destination nodes match. Thus, DSMDiff first tries to match nodes 

that have the same signature. For example, to decide whether there is a node in M2 mapped to a 

node in M1 (denoted as v1), the algorithm first needs to find all the candidate nodes in M2 that 

have the same signature as v1 in M1. If there is only one candidate found in M2, the identified 

candidate is considered as a unique mapping for v1 and they are considered as syntactically 

equivalent. If there is more than one candidate that has been found, the signature cannot identify a 

node uniquely. Therefore, v1 and its candidates in M2 will be sent for further analysis where 

structural matching is performed. 

Structural Matching 
In some cases, signature matching alone cannot find the exact mapping for a given model 

element. During signature matching, one node in M1 may have multiple candidates in M2. To 

find a unique mapping from these candidates, DSMDiff uses structural similarity as another 

criterion. The metric used for determining structural similarity between a node and its candidates 

is called edge similarity, which is defined as follows: 

Edge Similarity: Given two models, M1 and M2, suppose v1 is a node in M1 and v2 is one 

of its candidate nodes in M2. The edge similarity of v2 to v1 is the number of edges 

connecting to v2, with each signature matched to one of the edges connecting to v1. 

During structural matching, if DSMDiff can find a candidate that has the maximal edge similarity, 

this candidate becomes the unique mapping for the given node. If it cannot find this unique 

mapping using edge similarity, one of the candidates will be selected as the host node’s mapping, 

following the assumption that there may exist a set of identical model elements. 



 

Listing 1 presents the algorithm to find the candidate node with maximal edge similarity for 

a given host node from a set of candidate nodes. It takes the host node (i.e., hostNode) and a set 

of candidate nodes of M2 (i.e., candidateNodes) as input, computes the edge similarity of 

every candidate node and returns a candidate with maximal edge similarity. Listing 2 gives the 

algorithm for computing edge similarity between a candidate node and a host node. It takes two 

maps as input – hostConns stores all the incoming and outgoing edges of the host node 

indexed by their edge signature, and candConns stores all the incoming and outgoing edges of 

the candidate node indexed by their edge signature. By examining the mapped edge pairs between 

these two maps, the algorithm computes the edge similarity as output. 

The algorithm in Listing 1 determines that the unique correspondence found using edge 

similarity has the most identical connections and neighbors to the host node. The algorithm also 

implies one candidate with the maximal edge similarity is selected as the unique correspondence 

when there is more than one candidate with the same maximal edge similarity; however, it may 

be incorrect in some cases and needs to be improved as discussed later in the Limitations and 

Improvement section. DSMDiff only examines structural similarity within a specific local region 

where the host node is the center and its neighbor nodes form the border. In our experience, using 

Listing 1. Finding the candidate of maximal edge similarity  

Name: findMaximalEdgeSimilarity 
Input: hostNode, candidateNodes 
Output: maximalCandidate 
 

1. Initialize three maps: hostConns, candConns and set 
maxSimilarity = 0, maximalCandidate = null; 

2. Store each edge signature and the number of associated 
edges of the hostNode in the map hostConns; 

3. For each candidate c in candidateNodes 
1) Store each of its edge signatures and the number of 

associated edges in the map candConns; 
2) Call computeEdgeSimilarity(hostConns, candConns)to 

compute the edge similarity of c to hostNode; 
3) if( the computed similarity > maxSimilarity) 

maxSimilarity = the computed similarity; 
maxmalCandidate = c; 

4. Return maximalCandidate; 



 

signature matching and edge similarity to find model mappings not only speeds up the model 

differentiation process, but also generates results with acceptable accuracy in general practice. 

After all the nodes in M1 have been examined by signature and structural matching, all the 

possible node mappings between M1 and M2 are found. 

Determination of Model Differences 

As mentioned previously, there are three basic types of model differences: New, Delete and 

Change. To identify these various types of differences is another major task of DSMDiff. In 

order to increase the performance of DSMDiff, some of the processes to detect model differences 

may be integrated into the previously discussed processes to find mappings. 

 To discover all the Delete differences, DSMDiff must find all the model elements in M1 that 

do not have any signature matched candidates in M2. In signature matching, DSMDiff examines 

how many candidates can be found in M2 that have the same signature as each element in M1. If 

only one is found, a pair of mappings is constructed and added to the mapping set. If more than 

one is found, the host element and the found candidates are sent to structural matching. If no 

candidate can be identified, the host element is considered as a Delete difference, which means it 

exists in M1 but does not exist in M2. Listing 3 summarizes the algorithm. 

Listing 2. Computing edge similarity of a candidate 

Name: computeEdgeSimilarity 
Input: hostConns, candConns 
Output: similarity 
 

1. Initialize similarity as zero; 
2. For each edge signature in the map hostConns 

1) Get the number of the edges associated with the 
edge signature as hostCount; 

2) Get the number of the edges from the map candConns 
associated with the edge signature as candCount; 

3) If candCount <= hostCount 
  Similarity = similarity + candCount; 

4) Else 
  Similarity = similarity + hostCount; 

3. Return similarity; 



 

 After all the mappings are discovered between M1 and M2, the mapped elements are filtered 

out. The remaining elements in M2 are then taken as the New differences (i.e., a New difference 

indicates that there is an element in M2 that is missing in M1). 

 The Change differences are used to indicate varying attributes between any pair of mappings. 

Both model nodes and atom nodes may have a set of attributes, thus a pair of matched model 

nodes or atom nodes may have Change differences. DSMDiff compares the values of each 

attribute of each pair of model or atom mappings. If the values are different, the attribute name is 

added to the Change difference set. 

After all the node mappings and differences are determined, DSMDiff then tries to find the 

edge mappings and differences between M1 and M2 using these strategies: 1) all the edges 

connecting to a Delete node are Delete edges; 2) all the edges connecting to a New node are New 

edges; 3) the edge signature matching is applied to find out the edge mappings; and 4) the 

remaining edges in M1 are taken as additional Delete edges and those in M2 are taken as 

additional New edges. 

Listing 3. Finding signature mappings and the Delete differences 

Name: findSignatureMappingsAndDeleteDiffs 
Input: diffModel 
Output: hostSet, candMap, diffModel 
 

1. Initialize a set hostSet and a map candMap; 
2. Get M1 from diffModel and store all nodes of M1 in 

hostSet 
3. Get M2 from diffModel and store all nodes of M2 in 

candMap associated with their signature; 
4. For each node e1 in hostSet 

1) Get the count of the nodes from candMap that are 
signature matched to e1; 

2) If count == 1 
  Get the candidate from candMap as e2; 
  Add Map(e1, e2) to the mapping set of diffModel; 
  Erase e1 from hostSet; 
  Erase e2 from candMap; 

3) If count == 0 
  Add e1 to the Delete set of diffModel; 
  Erase e1 from hostSet; 

4) If count > 1 
  Do nothing; 



 

Depth-first Detection 

The traversal strategy of DSMDiff is depth-first, which traverses from the root level of a model 

hierarchy and then walks down to the lower levels to compare all the child submodels until it 

reaches the bottom level, where there are no submodels that can be expanded. Supporting such 

depth-first detection requires that all the node mappings found at a current level be categorized 

into two groups: model node mappings and atom node mappings. DSMDiff then performs model 

comparison on each pair of model node mappings. Each atom node mapping is examined for 

attribute equivalence. If there are some attributes with different values, these represent Change 

differences between the models. If all the attributes are matched, it is inferred that two nodes are 

equivalent because there is no Change, Delete or New difference. 

To summarize, Listing 4 presents the overall algorithm of DSMDiff to calculate the 

mappings and the differences between two models. It takes diffModel as input, which is a 

typed DiffModel and initially stores two models (M1 and M2). DSMDiff produces two sets: the 

mapping set (MS) and the difference set (DS) that consists of three types of differences (N: the 

set of New differences, D: the set of Delete differences, and C: the set of Change differences). All 

of these mapping and difference sets are stored in the diffModel during execution of 

DSMDiff. 

 



 

Visualization of Model Differences 

Visualization of the result of model differentiation (i.e., structural model differences) is critical to 

assist in comprehending the mappings and differences between two models. To help 

communicate the comparison results intuitively within a host modeling environment, a tree 

browser has been developed to visualize the structural differences and to support navigation 

among the analyzed model differences. 

 This browser looks similar to the model browser of GME, using the same graphical 

icons to represent items with types of model, atom and connection. To indicate the various types 

Listing 4. DSMDiff Algorithm 

Name: DSMDiff 
Input: diffModel 
Output: diffModel 
 

1. Initialize a set hostSet and a map candMap; 
2. Get the host model from diffModel as M1 and the 

candidate model as M2; 
3. Detect attribute differences between M1 and M2 and add 

them to the Change set of diffModel; 
4. //Find node mappings by signature matching 

findSignatureMappingsAndDeleteDiffs (diffModel, 
                                     hostSet, candMap); 

5. If(hostSet is not empty && candMap is not empty) 
//Find node mappings by structural matching 
For each element e1 in hostSet 

1) Get its candidates from candMap into a set 
called candSet; 

2) e2 = findMaximalEdgeSimilarity(e1,candSet); 
3) Add Pair(e1, e2) to the Mapping set of 

diffModel; 
4) Erase e1 from hostSet; 
5) Erase e2 from candMap; 

6. If(candMap is not empty)   
Add all the remained members of candMap to the New 
set of diffModel; 

7. For each mapped elements that are not submodels 
Detect attribute differences and add them to the 
Change set of diffModel; 

8. Compute edge mappings and differences 
9. //Walk into child submodels 

For each childDiffModel that stores a pair mapped 
submodels 

DSMDiff(childDiffModel); 
 



 

of differences, the browser uses three colors: red for a Delete difference, gray for a New 

difference, and green for a Change difference. The model difference browser displays two 

symmetric difference sets in two containment change trees: one indicates the difference set DS = 

M2 – M1 by annotating M1 with colors; and the other indicates the difference set DS' = M1 - M2 

= -DS by annotating M2 with colors. If DS = {New = N, Delete = D, Change = C} then DS' = 

{New = D, Delete = N, Change = C}. For example, if there is a Delete difference in M1, 

correspondingly there is a New difference in M2. Such a symmetric visualization helps 

comprehend the corresponding relationships between two hierarchical models. 

Figure 2 shows screenshots of two models and the detected differences in the model 

difference browser2. The host model M1 is shown in Figure 2-a, and the candidate model M2 is 

shown in Figure 2-b. The corresponding model elements within the encircled regions in these two 

models are the mappings, which are filtered and not displayed in the browser. The browser only 

visualizes the detected differences, as shown in Figure 2-c. The root of the upper tree is M1, its 

subtrees and leaf nodes are all the differences compared to M2, which is represented by the 

bottom tree. For example, the first child of the upper tree is a Delete difference, which is in red. 

This difference means the LogOnRead element is in M1, but is missing in M2. Correspondingly, 

there is a New difference in the bottom tree, which is in gray. It indicates that M2 misses the 

LogOnRead element when it is compared to M1. A Change difference is detected for the 

LogOnMethodEntry element; although this element exists in both models, one of its 

attributes, called kind, has different values:  “On Write” in M1 but “On Method Entry” in M2. 

Such a Change difference item is in green. When the two trees do not have any subtree or leaf 

node, we can infer there is no difference between these two models. To focus on any model 

element, a user can navigate across the tree and double-click an item of interest, and the 

corresponding model element is brought into focus within the editing window. 

                                                 
2 Because the actual color shown in the browser can not be rendered in print, the figure has annotations that 
indicate the appropriate color. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EVALUATION AND DISCUSSION 

This section first briefly analyzes the complexity of the algorithm and illustrates an example 

application. The current limitations and proposed improvements for DSMDiff are also discussed. 

Algorithm Analysis 

Generally, DSMDiff is a level-wise model differentiation approach. It begins with the two root 

models at the top levels and then continues to their child models at the lower levels. At each level, 

node comparison is performed to detect the node mappings by using signature matching and edge 

(c) Model differences 

Figure 2. Visualization of model differences 

(a) The host model: M1 

(b) The candidate model: M2 

In gray:  
New

In red:  
Delete 

In green:  
Change 

In gray:  
New

In red:  
Delete 

In green:  
Change 



 

similarity, followed by edge comparison to detect the edge mappings and differences. These steps 

are repeated on the mapped child models until the bottom level is reached. 

The core of the DSMDiff algorithms includes signature matching (Step 4 in Listing 4) and 

edge similarity matching (Step 5 in Listing 4), which significantly influence the execution time. 

To estimate the complexity of signature matching and edge similarity matching, we assume the 

two models have similar structures and sizes. Given a model, L denotes the depth of the model 

hierarchy; N denotes the average number of nodes; and, M denotes the average number of the 

edges of a model node. The size of a model node is denoted as S, where S = N + M. Considering 

the case that every node at all levels except for the lowest level are model nodes, the total number 

of model nodes is denoted as T, where T = ∑
−

=

2

0

L

i

iN   ≈  NL-1. 

In the best case, all the mappings and differences between two model nodes can be found by 

signature matching, in which the complexity depends on the size of the model nodes. In 

findSignatureMappingsAndDeleteDiffs (Listing 3), where signature matching is 

performed to detect node mappings and differences, all the candidate nodes and their signatures 

are stored in a sorted map; the upper bound for the complexity of this step is O(N x  logN). To 

find correspondences from this map for all the node elements of M1, the complexity is also O(N x  

logN ). Later, similar computation is taken to compute the edge mappings and differences (i.e., 

Step 8 of Listing 4); such complexity is neglected here because the number of edges is less than 

the number of nodes. Overall, because all the model nodes within the model hierarchy need to be 

compared, the complexity for this best case is O(N x logN x T).  

In the worst case, no exact mapping is found for a pair of model nodes during the signature 

matching. Thus, all the nodes need to be examined by edge similarity matching (i.e., Step 5 in 

Listing 4), which is the most complicated step in Listing 4. Assume that there is an edge between 

any pair of nodes, then a node has N-1 edges, which is the worst case regarding the complexity. 

In edge similarity matching, the most complicated step is findMaximalEdgeSimilarity 



 

(Listing 1) that computes the edge similarity of all the candidate nodes for a host node, where all 

edge signatures of each candidate node and the number of the associated edges are stored in a 

map (i.e., Substep 3.1 in Listing 1). The complexity for building this map is O({N-1} x  log{N-

1}). To compute the edge similarity of every candidate node (i.e., Step 3 of Listing 1), the 

computing cost is bound by O(R x {N-1} x log{N-1}), where R is the number of candidate 

nodes with R ≤ N. Because Step 3 is the most complicated step in Listing 1, the upper bound of 

findMaximalEdgeSimilarity is also O(R x {N-1} x  log{N-1}). To find the candidate 

with maximal edge similarity for each host node (i.e., Step 5 in Listing 4), the cost is bounded by 

O(N x R x {N-1} x log{N-1}). To compute all the node mappings at all the levels in a model 

hierarchy using edge similar matching, the upper bound of the complexity for this worst case is 

O(T x N x R x {N-1}  x log{N-1}), which is in the polynomial class. For the same reason (i.e., 

the number of edges is less than the number of nodes), the complexity of detecting edge 

mappings and differences is neglected. 

Although the complexity of constant-time signature comparison and associated string 

comparison is not counted here, the algorithm achieves polynomial time in complexity according 

to the above analysis. 

Application Example 

Model-to-model transformation is one of the core activities to facilitate change evolution within 

MDE [Sendall and Kozaczynski, 03]. To ensure the correctness of model transformation, 

executable testing can help detect errors in a model transformation specification. The 

development of DSMDiff was originally motivated by research on model transformation testing 

[Lin et al., 05]. 

Inside the framework of model transformation testing, a testing engine is constructed to 

support execution of a finite set of test cases against a specific model and associated 

transformations. There are two components inside such a testing engine: one is the executor, the 



 

other is the model comparator. The executor is responsible for executing the to-be-tested 

transformation specifications. The functionality of the model comparator includes comparison of 

the actual output model and the expected model, and visualization of the test results. If there is no 

difference between the actual output and expected models, it can be inferred that the model 

transformation is correct with respect to the given test specification. If there are differences 

between the output and expected models, the errors in the transformation specification need to be 

isolated and removed. 

To realize the vision of model transformation testing, differentiation is performed between 

an expected model and an output model that are not subsequent versions. The potential traceable 

links between two subsequent model versions, which are used in most differentiation algorithms 

to reduce the computation complexity, are not available between an expected model specified by 

a test engineer and an output model produced by a transformation tool. In this application, 

DSMDiff serves as a model comparator to perform the model comparison and visualize the 

produced differences. 

Limitations and Improvement 

DSMDiff is based on the assumption that domain-specific models are defined precisely and 

unambiguously. That is, domain-specific models are instances of a metamodel that can be 

distinguished from each other by comparing a set of properties of the elements and the 

connections to their neighbors. However, when there are several candidates with the same 

maximal edge similarity, DSMDiff may produce inaccurate results. A typical case occurs when 

there are nodes connected to each other but their mappings have not been determined yet. As 

shown in Figure 3, there is an A node connected to three nodes: B, C and D. In M2, the A’ node 

connects to three other nodes (B’, C’ and D’) and A’’ is connected to B’’. Given that nodes with 

the same letter label have the same signatures (e.g., all the A nodes have the same signature and 

all the B nodes have the same signature), then the connections between an A node and a B node 



 

have the same edge signature. According to the algorithm in Listing 1, suppose the A node is 

examined first for structural matching and the A’ node in M2 is selected as the mapping of the A 

node in M1. When the B node is examined, the algorithm may select either B’ or B’’ in M2 as the 

mapping of the B node in M1 because both B nodes in M2 have the same edge similarity as the B 

node in M1. If the B’’ node in M2 is selected as the mapping to the B node in M1, the result is 

incorrect because B’ is the correct mapping. In such cases, DSMDiff needs to use new rules or 

criteria to help find the correct mapping. For example, a new rule needs to be added to the 

algorithm in Listing 1 to require selecting first the unmapped node in M1 that has maximal 

already-mapped neighbors. Another improvement will allow interaction between DSMDiff and 

users, who can select the mappings from multiple candidates manually. 
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Figure 3. A nondeterministic case that DSMDiff may produce incorrect result 
 

Besides the performance and the correctness of the results, it is also important for model 

differentiation algorithms to produce a small set of model differences (ideally a minimal set) 

rather than providing a large set of model differences. In other words, the conciseness of the 

produced result is another metric contributing to the overall quality of model differentiation 

algorithms. Currently, DSMDiff compares two models M1 and M2 by traversing their 

composition trees in parallel. When an element from a model cannot be matched to an element of 

the other model at some level, the algorithm does not traverse the children of this element. One 



 

issue with this scheme is that DSMDiff is not able to detect when a subtree has been moved from 

one container to another between M1 and M2. The algorithm will only report that a whole subtree 

has been deleted from M1, and that a whole subtree has been added to M2, without noting that 

these are identical subtrees. This implies that the reported difference set is less concise than it 

could be. To solve this problem, a new type of model difference needs to be introduced: Move, 

which may reference the subtree in M1, and its new container in M2. An additional step is also 

required in the algorithms to compare all the elements of M1 and M2 that have not been matched 

when first traversing them. However, this step is expensive in the general case because many 

elements may need to be compared. This cost is actually avoided in the current version of the 

algorithm by assuming a similar composition structure in M1 and M2. 

DSMDiff visualizes all the possible differences as a containment tree in a browser, but does 

not directly highlight the differences upon the associated model elements within the editing 

window. To indicate the differences directly on the model diagrams and attribute panels within 

the modeling environment, a set of graphical decorators, which may be shapes or icons, could be 

attached to the corresponding model elements or attributes in order to change their look according 

to the type of model differences. In addition, our solution using coloring to highlight all possible 

types of model differences may fail to work when users are color-blind, or when a screenshot of 

the model difference tree view is printed in black-and-white (e.g., the need to add annotations to 

Figure 2-c). A visualization mechanism to complement the coloring would indicate the Delete 

differences by striking through them, the Change ones by underlining them, and marking the 

New ones bold. This could be a more efficient solution that needs to be investigated in the future. 

RELATED WORK 

This work is related to differentiation techniques for various software artifacts such as source 

code, documents, diagrams and models. There are two important categories of related work: 1) 



 

the algorithms to compute model differences, and 2) the visualization techniques to highlight 

those differences. 

Model Differentiation Algorithms 

There exist a number of general-purpose differentiation tools for comparing two or more text files 

(e.g., code or documentation). As an example, Unix diff [Hunt and McIlroy, 75] is a popular tool 

for comparing two text files. Diff compares files and indicates a set of additions and deletions. 

Many version control tools also provide functionality similar to diff to identify changes between 

versions of text documents [Eick et al., 01].  

Although many tools are available for differentiating text documents, limited support is 

currently available for differentiating graphical objects such as UML diagrams and domain-

specific models. As the importance of model differentiation techniques to system design and its 

evolution is well-recognized, there have been some research efforts focused on model difference 

calculation. 

Several metamodel-independent algorithms regarding difference calculation between models 

are presented in [Alanen and Porres, 03] and [Ohst et al., 03], which are developed primarily 

based on existing algorithms for detecting changes in structured data [Chawathe et al., 96] or 

XML documents [Wang et al., 03]. In these approaches, a set of change operations such as 

“create” and “delete” are used to represent and calculate model differences, which is similar to 

our approach. However, they are based on the assumption that the model versions are 

manipulated through the editing tool that assigns persistent identifiers to all model elements. Such 

capability is not available when two models are developed separately (e.g., by different 

developers in a non-collaborative context, or by different editing tools) or generated by execution 

of a model transformation. 

To provide algorithms independent of such identifiers, UMLDiff uses name similarity and 

structure similarity for detecting structural changes between the designs of subsequent versions of 



 

UML models [Xing and Stroulia, 05]. However, differentiation applied to domain-specific 

modeling is more challenging than difference analysis on UML diagrams. The main reason is that 

UML diagrams usually belong to a single common metamodel that can be represented formally as 

a containment-spanning tree starting at a virtual root and progressing down to packages, classes 

and interfaces. However, domain-specific models may belong to different metamodels according 

to their domains and are considered as hierarchical graphs. Also, a differentiation algorithm for 

domain-specific models needs to be metamodel-independent in order to work with multiple 

DSMLs. This required DSMDiff to consider the type information of instance models, as well as 

the type information of the corresponding metamodel. 

Visualization of Model Differences 

There has been some work toward visualizing model differences textually. IBM Rational Rose 

[Rose, 07] and Magic Draw UML [MagicDraw, 07] display model differences in a textual way. 

These tools convert the diagrams into hierarchical text and then perform differentiation on this 

hierarchy. Changes are shown using highlighting schemes on the text. Although this approach is 

relatively easy to implement, its main drawback is that changes are no longer visible in a 

graphical form within the actual modeling tool, which makes the difference results more difficult 

to comprehend.  

Other researchers have shown that the use of color and graphical symbols (e.g., icons) are 

more efficient in highlighting model differences. An approach is proposed in [Ohst et al., 03] 

where coloring is used to highlight the model differences in two overlapping diagrams. A 

differentiation tool described in [Mehra et al., 05] presents graphical changes by developing a 

core set of highlighting schemes and an API for depicting changes in a visual diagram. UMLDiff 

presents a change-tree visualization technique. It reuses the visualization of Eclipse’s Java DOM 

model for displaying different entities with diverse icons and separate visibility with various 



 

colors. Additionally, UMLDiff extends the visualization to use different icons to represent the 

differentiation results (e.g., “+” for add, “-” for remove).  

DSMDiff provides a model difference browser that displays the structural differences in a 

tree view, which is similar to the change-tree visualization technique of UMLDiff. To preserve 

the convention of the host modeling environment, many GME icons are used to represent the 

corresponding modeling types of the model difference items in the tree view. For example, a 

Delete atom or a New atom corresponds to an atom type. To avoid overuse of icons (e.g., “+” and 

“-” are commonly used for a collapsed folder and an expanded folder, respectively), DSMDiff 

uses colors to represent various types of model differences. 

Although it is intuitive to visualize model differences by coloring and iconic notations, these 

techniques are not specifically tied to modeling concepts and lack the ability to be integrated into 

MDE processes. To address this problem, a promising approach is to represent the result of model 

difference as a model itself. A recent work presented in [Cicchetti et al., 07] proposes a 

metamodel-independent approach to model difference representation. Within this approach, the 

detected model differences are represented as a difference model, which conforms to a 

metamodel that is automatically derived from the metamodel of the to-be-compared base models. 

Such a derivation process itself is a model transformation. Also, because the base models and the 

difference models are all model artifacts, other model-to-model transformations are induced to 

compose models (e.g., apply a difference model to a base model to produce the other base 

model). Thus, such an approach can be supported in a modeling platform and does not require 

other ad-hoc tool support. A possible future improvement to DSMDiff would be to integrate this 

approach to assist in representation of model differences. 

CONCLUSION 

In this paper, we have defined the model differentiation problem in the context of Domain-

Specific Modeling. The main points include: 1) domain-specific modeling is distinguished from 



 

traditional UML modeling because it is a variable-metamodel approach whereas UML is a fixed-

metamodel approach; 2) the underlying metamodeling mechanism used to define a DSML 

determines the properties and structures of domain-specific models; 3) domain-specific models 

may be formalized as hierarchical graphs annotated with a set of syntactical information. Based 

on these characteristics, model differentiation algorithms and an associated tool called DSMDiff 

were developed to discover the mappings and differences between any two domain-specific 

models. The paper also describes our investigation into a visualization technique to display model 

differences structurally and highlight them using color and icons. The applicability of DSMDiff 

has been discussed within the context of model transformation testing. To conclude, the major 

contribution of this work is to provide efficient algorithms and a practical tool that identifies 

differences between domain-specific models, which is critical to many model development and 

management activities. 

 The project website for DSMDiff, which contains video demonstrations and the GME plug-

in, can be found at http://www.cis.uab.edu/gray/Research/DSMDiff. 
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