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Abstract. Robust mechanisms for ontology selection are crucial for the
evolving Semantic Web characterized by rapidly increasing numbers of
online ontologies and by applications that automatically use the asso-
ciated metadata. However, existing selection techniques have primarily
been designed in the context of human mediated tasks and fall short of
supporting automatic knowledge reuse. We address this gap by propos-
ing a selection algorithm that takes into account 1) the needs of two
applications that explore large scale, distributed markup and 2) some
properties of online ontology repositories. We conclude that the ambi-
tious context of automatic knowledge reuse imposes several challenging
requirements on selection.

1 Introduction

The effort of the Semantic Web community to migrate and apply its semantic
techniques in open, distributed and heterogeneous Web environments has paid
off: the Semantic Web is evolving towards a real Semantic Web. Not only has the
number of ontologies dramatically increased, but also the way that ontologies are
published and used has changed. Ontologies and semantic data are published on
the open Web, crawled by semantic search engines (e.g., Swoogle [3]) and reused
by third parties for other purposes than originally foreseen (e.g., Flink [9] de-
rives social networks from automatically crawled FOAF profiles). Many ontology
based tools are evolving from relying on a single, fixed ontology to harvesting
the rich ontological knowledge available on the Web [6].

Robust mechanisms for selecting ontologies are crucial to support knowledge
reuse in this large scale, open environment. The context of reuse has a major
influence on the requirements for the selection algorithm and should be taken
into account when developing such algorithms. We further discuss and contrast
the requirements imposed by the contexts of human mediated and automatic
reuse. As background for our discussion, consider the following news snippet1:

The Queen will be 80 on 21 April and she is celebrating her birthday with a
family dinner hosted by Prince Charles at Windsor Castle.2

1 Example inspired by Her Majesty’s birthday coinciding with the submission deadline.
2 http://news.billinge.com/1/hi/entertainment/4820796.stm
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Human mediated tasks. Imagine a person wishing to annotate this news
snippet and in search of an ontology containing the Queen, birthday and dinner
concepts. When queried for these terms, a selection mechanism is expected to
return an ontology that best covers them. It is not a problem if the returned
ontology contains only a subset of the terms (partial coverage) as the user can
extend the ontology according to his needs. It is also admissible for the system
to make mistakes when mapping between the query terms and ontology con-
cepts as the user can filter out such errors (imprecise coverage). For example,
ontologies containing the concept Queen as a subclass of Bee or dinner fork as
an approximation for dinner will be rejected as irrelevant for this user’s context.
Finally, users are willing to wait some minutes for reusable ontologies, since this
time is negligible compared to that needed to build an ontology from scratch.

Automatic knowledge reuse. As opposed to the previous scenario, imag-
ine that the output of the selection is automatically processed. For example, a
semantic browser such as Magpie [4] which identifies and highlights entities of
a certain type in Web pages needs to find an ontology according to which to
describe the page above. The requirements are much stricter than before. First,
a complete coverage of the query terms is needed to fully support the sense
making activity offered by the browser. If no completely covering ontology is
found, a set of ontologies that jointly cover the query could be returned. Or,
alternatively, an ontology with more generic concepts such as woman, event and
meal could be useful, provided that a machine interpretable explanation of the
relation between the query terms and the returned concepts is available (e.g.,
a dinner is a kind of meal). Indeed, another requirement relates to the quality
of mappings between terms and concepts. Errors such as those described in the
context of human mediated tasks are not admissible. Finally, a quick response
becomes more important when the selection is used at run time as in this case.

The four selection mechanisms that we are aware of (see [11] for a detailed
description and comparison) have been developed in the context of human medi-
ated tasks. OntoKhoj [10] and Swoogle [3] complement automatically populated
ontology libraries and use a PageRank-like algorithm on semantic relations be-
tween ontologies (e.g., imports) to select the most popular ontology containing
a certain term. OntoSelect [2], also part of an ontology library, combines mea-
sures about coverage, popularity and the richness of ontology structure. Finally,
the ActiveRank [1] algorithm is independent of an ontology library and uses a
set of ontology structure based metrics. These metrics were inspired by and re-
flect characteristics that human ontology builders find important, for example,
coverage, compactness, density (richness of knowledge structure).

All these approaches function well in the context of human mediated tasks,
but are insufficient when it comes to automatic knowledge reuse. Regarding the
level of coverage, none of the existing approaches enforces complete coverage.
Further, the quality of the mapping between query terms and concept labels
is quite low, as all these approaches rely only on syntactic matches. For exam-
ple, ActiveRank, currently the most advanced algorithm, uses a fuzzy match
between terms and concept names (i.e., project is mapped to projectile) but
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makes no provision to filter out obviously irrelevant hits. The meaning of the
concepts given by their position in the hierarchy is not considered by any of the
approaches. Finally, our only indication about performance is that ActiveRank
needs 2 minutes to evaluate each ontology - a baseline that needs improvement
in the case of automated tasks.

We consider that, while ambitious, the context of automatic reuse comple-
ments that of human mediated reuse and raises novel challenges that can lead
to further development of existing selection algorithms. In this paper we derive
a set of requirements imposed by two applications that are extended to perform
automatic knowledge reuse (Section 2) and we present an initial design of a selec-
tion algorithm that balances between obtaining a complete and precise coverage
and offering a good performance (Section 4). We also consider characteristics of
online ontologies explored through a set of indicative experiments (Section 3).

2 Requirements for Supporting Automatic Knowledge
Reuse Scenarios

While current ontology selection tools primarily target human users, we are
working on two Semantic Web tools (Sections 2.1 and 2.2) that are evolving from
using a single, rich and manually crafted ontology to exploring and combining
ontologies available on the Web. These tools rely on automatic ontology selection
on which they pose a set of requirements (Section 2.3).

2.1 Ontology based Question Answering

AquaLog [7] is an ontology based question answering system which relies on the
knowledge encoded in an underlying ontology to disambiguate the meaning of
questions asked using natural language and to provide answers. To shortly give
an impression about how the system operates, consider that it is aware of an
ontology about academic life3 which has been populated to describe KMi related
knowledge4. Also, suppose that the following question is asked5:

Which projects are related to researchers working with ontologies?

In a first stage the system interprets the natural language question and trans-
lates it to triple-like data structures. Then, these triples are compared to the
underlying ontology centered knowledge base using a set of string comparison
methods and WordNet. For example, the term projects is identified to refer to
the ontology concept Project and ontologies is assumed equivalent to the on-
tologies instance of the Research-Area concept. After the modifier attachment is
resolved by using domain knowledge, two triples are identified:

(projects, related to, researchers) and (researchers, working, ontologies)

3 http://kmi.open.ac.uk/projects/akt/ref-onto/.
4 See the populated ontology at http://semanticweb.kmi.open.ac.uk.
5 See the AquaLog demo at http://kmi.open.ac.uk/technologies/aqualog/.
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The relations of the triples are also mapped to the ontology. For example,
for the second triple, there is only one known relation in the ontology between
a Researcher and a Research-area, namely has-research-interest. This relation is
assumed to be the relevant one for the question. However, when disambiguating
the relation that is referred to by related to, the system cannot find any syntac-
tically similar relation between a Project and a Researcher (or between all more
generic and more specific classes of the two concepts). Nevertheless, there are
four, alternative relations between these two concepts: has-contact-person, has-
project-member, has-project-leader, uses-resource. The user is asked to choose
the relation that is closest to his interest. Once a choice is made, the question is
entirely mapped to the underlying ontological structure and the corresponding
instances can be retrieved as an answer.

While the current version of AquaLog is portable from one domain to an-
other, the scope of the system is limited by the amount of knowledge encoded
in the ontology used at that time. The new implementation of AquaLog, Power-
Aqua [6], overcomes this limitation by extending the system in the direction of
open question answering, i.e., allowing it to benefit from and combine knowledge
from the wide range of ontologies that exist on the Web. One of the challenges
is the selection of the right ontology for a given query from the Web.

2.2 Semantic Browsing

The goal of semantic browsing is to exploit the richness of semantic informa-
tion in order to facilitate Web browsing. The Magpie [4] Semantic Web browser
provides new mechanisms for browsing and making sense of information on the
Semantic Web. This tool makes use of the semantic annotation associated with
a Web page to help the user get a quicker and better understanding of the in-
formation on that page. Magpie is portable from one domain to another as it
allows the user to choose the appropriate ontology from a list of ontologies that
are known to the tool. However, similarly to AquaLog, the current version relies
on a single ontology being active at any moment in time. This limits the scope
of the sense making support to the content of the current ontology.

Our current research focuses on extending Magpie towards open browsing.
This means that the tool should be able to bring to the user the appropriate
semantic information relevant for his browsing context from any ontology on
the Web. This extension relies on a component that can select, at run time, the
appropriate ontologies for the given browsing context.

In the case of Magpie, the query for the ontology selection is more complex
than for AquaLog as it is defined by the current browsing context. This includes
the content of the currently accessed Web pages and, optionally, the browsing
history and the profile of the user. Web pages typically span several different
topics. For example, the following short news story6 is both about trips to exotic
locations and talks. Therefore, the query sent to the selection mechanism is likely
to contain terms drawn from different domains.
6 http://stadium.open.ac.uk/stadia/preview.php?s=29&whichevent=657
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“For April and May 2005, adventurer Lorenzo Gariano was part of a ten-
man collaborative expedition between 7summits.com and the 7summits club from
Russia, led by Alex Abramov and Harry Kikstra, to the North Face of Everest.
This evening he will present a talk on his experiences, together with some of the
fantastic photos he took.”

2.3 Requirements for Ontology Selection

Hereby we formulate the requirements imposed by our applications on ontology
selection and discuss to which extent they are addressed by current approaches.
These requirements drove the design of our selection algorithm (Section 4).

1. Complete coverage. A complete coverage is probably the most important
requirement for our applications (though it might not be so important for
other tools). Because in these applications the retrieved knowledge is auto-
matically processed, they require that all the needed knowledge should be
retrieved. While existing approaches rank ontologies that cover most terms
as best, they do not enforce a complete coverage.

2. Precise coverage. Automatic knowledge reuse requires a rigorous mapping
between query terms and ontology concepts as well as a formal representation
of the mapping relation (e.g., more generic). Assuming that a human user
would filter out (and eventually enrich) the returned ontologies, current tools
treat the comparison between query terms and ontology concepts rather
superficially, relying only on (often approximate) lexical comparisons.

3. Returning ontology combinations. Our preliminary experiments indicate
that the sparseness of knowledge on the Web often makes it impossible to
find a single ontology that covers all terms (Section 3). However, it is more
likely to find ontology combinations that jointly cover the query terms. Ex-
isting tools return lists of single ontologies rather than their collections.

4. Performance. Our applications rely on the results of selection at run time
and therefore require a good performance. While simple selection tools per-
form rather well, the more complex ActiveRank needs 2 minutes per ontol-
ogy to compute all its metrics. This is acceptable for supporting ontology
building, but needs to be improved in an automatic scenario.

5. Dealing with relations. Our applications, especially PowerAqua, illustrate
a need for considering relations and not just concepts when selecting an
ontology. Currently, only OntoSelect considers relations.

6. Dealing with instances. Our applications help users in their information
gathering activities. Most often, people are interested in finding out things
about certain entities rather than generic concepts. This requires that se-
lection should consider instances as well (i.e., match between instances in a
query and those in online ontologies). Matching instances is a difficult prob-
lem in itself given the large number and high level of ambiguity when dealing
with instances (e.g., many instances can share the same or similar names).

7. Modularization. Knowledge reuse is closely related to ontology modular-
ization. Indeed, our tools would require selection mechanisms to return a
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relevant ontology module rather than a whole ontology. Note that the work
in [1] has already considered this issue when introducing a metric to mea-
sure how close the hits in an ontology are (assuming that this indicates the
existence of a module). As with instance mappings, ontology modularization
is a difficult and as yet unsolved issue, though a large amount of work in this
area [13] could be reused to some extent.

3 Preliminary Experiments

To better design our algorithm, we wanted to get an insight in the characteris-
tics of the ontological data available online. Since the requirement of complete
and precise coverage of the query terms was identified as the most important
one in the context of automatic knowledge reuse, our experiments are centered
towards 1) exploring the factors that hamper obtaining a complete coverage and
2) getting an insight in the nature of compound concept labels in preparation to
provide a more precise mapping to query terms. We performed both experiments
on top of Swoogle7 because it is currently the largest ontology repository. It is
important to note that our experiments have an exploratory role rather than
trying to rigourously test our hypotheses.

3.1 Experiment 1 - Obtaining Complete Coverage

The goal of this experiment is to get an indication about how difficult it is to
find a completely covering ontology when using Swoogle. One of the motivations
for this experiment was that, while important, complete coverage has not been
investigated in any previous work (although best covering ontologies are rated
best). In fact, with the exception of OntoSelect, all selection algorithms are
tested for the rather trivial case of one or two query terms. On the contrary,
our tools require ontologies that cover at least three query terms (e.g., AquaLog
translates each question in one or more triples).

Our intuition was that the number, topic relatedness and type of the query
terms will influence the success of obtaining an all covering ontology. Namely, a
single, all covering ontology is difficult to find if 1) there are many query terms,
2) if query terms are drawn from different topic domains or 3) relations are
considered. According to these considerations, we devised four sets of queries.
The first three queries represent an optimal scenario where few concepts are
drawn from the same domain (we chose a well covered domain in terms of online
ontologies, the academic domain). The second set of queries (4 - 6) have terms
drawn from different (and less covered) topic domains. They were inspired by the
actual text snippets in Section 1 and Section 2.2, therefore being representative
for real life scenarios encountered with Magpie. The queries in set three (7 -
10) have terms drawn from the same domain but, unlike the first set, contain a
relation as well (these are typical AquaLog queries). Our final queries (11 - 14)

7 We use Swoogle 2005 as our software was written before Swoogle 2006 was released.
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explore overcoming failure of finding a completely covering ontology by replacing
query terms in queries 4, 6, 9 and 10 with their hypernyms.

The experimental software queries Swoogle for ontologies that contain con-
cepts/properties that exactly match the query terms (variations in capitalization
are allowed)8. For each query, the software outputs the number of ontologies that
cover each term, their pairwise combinations and all terms.

Query (t1, t2, t3) (t1) (t2) (t3) (t1, t2) (t1, t3) (t2, t3) (t1, t2, t3)

1 (project, article, researcher) 84 90 24 19 13 9 8

2 (researcher, student, university) 24 101 64 16 15 38 13

3 (research, publication, author) 15 77 138 8 5 36 4

4 (adventurer, expedition, photo) 1 0 32 0 1 0 0

5 (mountain, team, talk) 12 25 9 2 1 1 1

6 (queen, birthday, dinner) 0 9 2 0 0 1 0

7 (project, relatedTo, researcher) 84 11 24 0 13 0 0

8 (researcher, worksWith, Ontology) 24 9 52 0 3 0 0

9 (academic, memberOf, project) 21 36 84 0 3 5 0

10 (article, hasAuthor, person) 90 14 371 8 32 2 0

11 (4+) (person, trip, photo) 371 7 32 1 20 1 1

12 (6+) (woman, birthday, dinner) 32 9 2 1 1 1 1

13 (9+) (person, memberOf, project) 371 36 84 16 46 5 5

14 (10+) (publication, hasAuthor, person) 77 14 371 2 52 2 2

Table 1. Number of ontologies retrieved for a set of queries. (X+ refines X.)

The results are summarized in Table 1. Notice that as the number of terms
increases less completely covering ontologies are found. The drop in the num-
ber of returned ontologies is significant when adding even one extra term. This
phenomena is evident throughout the table even in our optimal scenario where
terms were chosen from the same, well covered domain.

Our second set of queries containing terms drawn from different topic do-
mains return less ontologies than previously (mostly zero). At a closer look,
however, one might argue that the null results are caused by the fact that the
domains from which the terms were drawn are weakly covered in Swoogle in
the first place (indicated by the low number of ontologies returned for individ-
ual terms). While this observation does not necessarily undermine the intuition
that topic heterogeneity has negative effects, it indicates that the knowledge cur-
rently available online is sparse, as many domains are weakly covered (or not at
all). Therefore, null results can be expected even when query terms are topically
related but refer to a weakly covered topic.

8 Exact matching is an extreme case (e.g., hasAuthor, authorOf, authored all mean
the same thing) and as it will be evident from the results, it is too limiting.
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The third set of experiments indicates that the presence of relations seriously
hampers retrieving an all covering ontology even when the query terms are chosen
from the same, well represented domain.

In the last four queries, by refining query terms through hypernym replace-
ment, better results were obtained. An obvious worry is that if the refinement
uses too generic terms (e.g., Entity) the returned ontologies will be too generic
to be of any use for the concrete knowledge reuse task at hand.

While only preliminary, our experiments do indicate that query size, topic
heterogeneity and type might influence the chance to find an all covering on-
tology. They have also revealed the sparseness of the online knowledge. As a
bottom line, independently of having verified our intuitions, we can observe that
the chance to find an all covering ontology is rather low, especially in scenarios
such as those provided by Magpie (many terms, drawn from different, possibly
weakly represented domains) and AquaLog (properties as query terms).

3.2 Experiment 2 - Dealing with Compound Labels

Considering the results of the previous experiment, some mechanisms might
be needed to expand the search for potentially relevant ontologies. Besides the
synonym/hypernym extension, the more lexical oriented strategy of selecting
concepts whose labels partially match the query terms can be explored. For ex-
ample, Swoogle’s fuzzy search functionality returns concept labels that contain
the query term as a substring. This mechanism is rather brittle, and, while it re-
turns several important hits (e.g., GraduateStudent when searching for Student),
it also generates clearly invalid hits (e.g., update when searching for date).

To ensure our second requirement referring to precise coverage, all the com-
pound labels returned by fuzzy search need to be interpreted in order to un-
derstand their relation with the query term. A special case of compound labels
are those containing conjunctions (e.g., BlackAndWhite). Some researchers have
proposed a set of rules to interpret such labels [8]. Naturally, reading, splitting
and interpreting all these labels can seriously hamper the time performance, thus
questioning the usefulness of performing a fuzzy search at all.

In this experiment we explore the feasibility of performing fuzzy search. We
illustrate some cases when it pays off and some when it does not. We also evaluate
how frequently conjunctions are used in compound labels.

To support our experiments we implemented a program (LabelSplitter) that
splits compound labels according to the most common naming conventions and
checks if a given term is a well formed part of that label (i.e., its base form is
the same as the base form of one of the components of the label). For example,
TeachingCourse is a relevant compound label (CL) for the term teach, but an
irrelevant one for the term tea. In Table 2 we summarize the results obtained
when querying some random terms and then some conjunctions showing the total
number of hits returned by Swoogle, which is broken down into the number of
exact matches, relevant and irrelevant CLs.

As expected, fuzzy search is a good mechanism to broaden the search space
as it can return a lot of broader hits that contain the term. In general, in the
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Word Total Exact Relevant CLs Irrelevant CLs

project - project PastProject Projectile
(clarifying example) ProjectPartner Projector

project 644 90 413 141

student 190 84 97 9

tea 492 3 23 466

mountain 36 12 21 4

university 86 64 22 0

and 2363 37 444 1882

or 18178 11 184 17983

of 6353 4 4743 1606

not 840 23 77 740

except 45 0 0 45

but not 0 0 0 0

Table 2. Analysis of the appearances of some conjunctions and other terms.

case of longer words (less likely to be substrings of other words) more relevant
than irrelevant compound labels are found. This is not true in the case of shorter
words such as tea where an overwhelming number of irrelevant hits are returned.
Therefore, taking into account that fuzzy search is rather expensive, it should
be used only when all other alternatives fail.

Regarding the frequency of conjunctions, in current online ontologies “or”
appears the most frequently but in the large majority of cases as a substring
and not a well formed part. While the “of” conjunction appears less often than
“or” it is the most frequently used as a proper part of the compounds (mostly
as part of property labels). “And” appears quite frequently as well in its role of
well formed part (444). Surprisingly, negation and disjunction indicators appear
infrequently or at all in the collection that we have queried. We conclude that
interpretation rules for some conjunctions have to be written.

4 The Algorithm

In this section we present the design of an algorithm which aims to address
some of the requirements stated in Section 2.3 and also draws on our conclusions
regarding the nature of online ontologies detailed in the previous section. We first
give an overview of the method in which we motivate our main design choices
and then explore each major step of the algorithm in detail. The algorithm has
been entirely specified and partially implemented (with the exception of the
ideas reported in Sections 4.4 and 4.6) .

4.1 Overview

For our first implementation we wish to satisfy the first five requirements: we
aim to identify ontologies (or combinations of ontologies - R3) that completely
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and precisely cover our query (R1 and R2). The query can contain both concepts
and relations (R5). The performance of the algorithm should be such that it can
be used by other applications at run time (R4). The final two requirements,
related to instances and modularization, are not addressed yet.

From our experiments we have learned that in cases when query terms are
drawn from different domains or when they represent relations it is challenging to
find ontologies that would cover all terms (therefore R1 is not so easy to fulfill).
We have also seen that in such cases the search space can be expanded either 1)
by query expansion with semantically related terms or 2) by searching for labels
that incorporate the query term. However, our second experiment indicates that
fuzzy search should be used only when absolutely needed.

Given these considerations, we have designed an algorithm that adapts itself
to the particular context and can employ increasingly complex methods in order
to achieve a complete coverage. The algorithm in Figure 1 executes increas-
ingly complex combinations of a couple of main steps until complete coverage is
achieved. We will first explain the role of each step and then describe how they
are combined in increasingly complex stages.

Step1: Query Expansion. This step supplements the query terms with their
semantically related terms such as synonyms and hypernyms.

Step2: Ontology identification. In this step we identify ontologies that cover
to some extent the query terms. After an initial syntactic mapping between
query terms (either exact or fuzzy) and ontology concepts, we perform a
more in depth analysis of these mappings and define their semantic type
(i.e., exact, generic or more specific). We call this task semantic match.

Step3: Identify ontology combinations. Using the output of the previous
step, here we decide on the ontology combinations that provide a complete
coverage of the query terms.

Step4: Generality Ranking. The ontologies that are returned contain hits
that can be more generic or more specific than the query terms. In this step
we evaluate the ontology combinations according to their level of generality
and choose those with the appropriate level of abstraction.

These basic steps are combined in the following increasingly complex and
expensive stages. The algorithm enters in a new stage only if the previous stage
has failed:

Stage I relies on the simplest combination of the main steps. It uses an exact
match to identify relevant ontologies thus circumventing complex semantic
matching and the generality ranking step. This stage is likely to succeed only
if the query terms are few or drawn from the same, well covered domain.

Stage II is used only if Stage I fails (no ontology was found for at least one
term) and some kind of broadening of the search space is needed. Query
expansion is used for the problematic terms and then the same ontology
identification and combination steps as in stage I are performed. Notice that
at this stage we can already use the generality ranking step because query
broadening is likely to identify hypernyms for some of the query terms.
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Fig. 1. The main tasks and stages of the selection algorithm.

Stage III is the most complex one, as besides query expansion, it also relies
on more flexible syntactic matching to identify even more concepts poten-
tially related to the query terms. This fuzzy match complicates the semantic
matching step as the retrieved compound labels need to be split and in-
terpreted. After the semantic match has identified the semantic relations
between query terms and ontology concepts we apply the ontology combi-
nation and generality ranking steps.

4.2 Step1: Query Expansion

Query expansion is needed in order to broaden the search space for ontologies
in cases when no or few ontologies are returned for a term. Our experiments
indicate that such cases will be often encountered given the knowledge sparseness
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of online ontology collections. Term expansion allows searching not just for the
term but for all its semantically related terms (e.g., synonyms, hypernyms). This
can be allowed because we aim to perform a semantic rather than a syntactic
selection and therefore synonyms that denote the same concept as the query
term are relevant. Currently, we use WordNet to augment each query term with
their synonyms and hypernyms The only system that uses a similar expansion
approach is OntoKhoj [10].

4.3 Step2: Ontology Identification

In this step we identify ontologies that contain the concepts specified in our
query. This is in essence a mapping stage between the query terms and the
concepts of the ontologies. We distinguish two substages:

Step 2.1. Syntactic Match. The syntactic match identifies lexically similar
concept labels. It can be either exact (the query term is exactly the same as the
concept label) or fuzzy (the query term is a substring of the concept label, e.g.,
the term Student is part of GraduateStudent). In the case when a fuzzy match
is performed, this step is also responsible for splitting the compound labels and
returning only the compound labels that are relevant for the given term (as done
by the LabelSplitter module described in Section 3.2). Current ontology selection
techniques only use syntactic matches when identifying relevant ontologies.

Step 2.2 Semantic Match. Semantic matching goes beyond the state of the
art in ontology selection as it checks the soundness and the semantic nature of
the previously identified syntactic mappings. Concretely, the input to this step
is a term and a concept in an ontology that is lexically related to the term. The
task is to find out the semantic relation between the term and the concept. This
can be equivalence, more specific or more general.

An obviously relevant body of work is that on mapping techniques. However,
according to a recent survey of mapping techniques [12] most matchers return
a probability coefficient to describe the significance of a mapping rather than
its semantic interpretation. A notable exception is the S-Match algorithm which
returns the semantic category of each mapping in terms of (among others) the
exact, more generic or more specific operators [5]. Following the general model of
the S-Match algorithm, we distinguish two steps to obtain a semantic matching:

A. Acquiring the sense of the concept label also taking into account its
position in the hierarchy (i.e., parent and children nodes).

B. Deriving the semantic relations between the term and the concept.

A. Acquiring the sense of the concept label. We use information about the posi-
tion of a concept in the ontology to determine its sense according to a method
originally presented in [8]. In a nutshell, given a concept c and either one of its
ancestors or descendants r all WordNet synsets for both labels are retrieved.
Then, if any of the senses for c is related to any of the senses of r either by being
a synonym, hypernym, holonym, hyponym or a meronym, then that sense of c
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is considered the right one. For example, if Apple (which can have two senses:
tree and fruit) has Food as its ancestor, then there exists a hyponym relation
between apple#1 (fruit) and food#1, so we retain this sense and discard the one
referring to apple being a tree.

B. Deriving Semantic Relations. After identifying the sense of the concept, we
derive semantic relations between the terms and the concepts such as equiva-
lence, more generic or more specific. We use a WordNet based comparison be-
tween the senses of the term and that of the concept label. Therefore, equivalence
is established when two terms share a synset, and more general/more specific
relations are indicated when hyponym/holonym (or even meronym/holonym) re-
lations exist between their senses. In cases when none of these relations hold we
investigate whether there is any similarity at all between the terms (and return
a weaker “related” relationship). For this we investigate whether there exists
an allowable “is-a” path in WordNet connecting their synsets by relying on the
depth and common parent index (C.P.I) measures described in [7].

Matching relations. Our previous experience in AquaLog [7] was that map-
ping relations is more difficult than mapping concepts. One of the reasons is
that many relations are vaguely defined (a classical example is relatedTo which
can have a variety of meanings) and therefore can have a large number, hard to
automatically predict lexical variations. Also, the meaning of a relation is given
by the type of its domain and its range so the precondition of a mapping between
two relations is that their domain and range classes match to some extent.

Inspired by our previous work [7], we treat relations as “second class citizens”
and concentrate on finding matches for the classes that denote their domain and
range first. Then, if only one relation exists between these classes we adopt it
as such. If more relations exist we attempt a lexical based disambiguation of
the one that is closest to the relation that we seek. An interesting case is when
some relations are present in other ontologies as concepts (e.g., hasAuthor can
be modeled as a concept Author in another ontology). This case is also explored.

4.4 Step3: Identifying relevant ontology combinations.

Ideally, one would expect that the selection mechanism finds a single ontology
which contains all the query terms. However, in practice this is seldom the case.
Most often query terms are spread over two or more ontologies. Unfortunately,
previous approaches provide a set of ontologies ranked by the coverage of each
individual ontology. Our task therefore is to identify the best combinations of
ontologies that cover the query.

There are two criteria to rank ontology combinations. On one hand, the
number of ontologies should be minimal. On the other hand, the number of
terms that they cover should be maximal. The ultimate best is one ontology
covering all terms, and the worst is a collection of ontologies each covering a
single term. We are currently working on an optimal implementation of this
multiple criteria optimization problem.
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4.5 Step4: Generality Ranking

Due to our semantic matching, the returned concepts can be more generic or
more specific than the query terms. In this step we identify the ontology combi-
nations that are closest in terms of abstraction level to the query terms.

We are not aware of any work that directly addresses the issue of measuring
the generality of an ontology or evaluating the generality of an ontology with
respect to a set of terms. A recent publication investigates evaluating the gen-
erality of a document with respect to a query [14]. After concluding that most
of the generality related work in the field of IR is based on statistical measures,
they propose a method to compute the generality of a document with respect to
a domain ontology (in that case, Mesh) by relying on the depth and proximity
of the concepts in the domain ontology (i.e., the deeper and closer the concepts
are in the ontology the more specific the document/query is). Generality is com-
puted both for the query and the document and then the obtained scores are
compared. The major drawbacks of this approach are that (1) it is time con-
suming because all terms need to be looked up in the oracle and their positions
have to be computed and (2) it depends on the coverage of the used oracle.

We agree with [14] that generality computation should be based on the mean-
ing of the terms rather than on statistical measures. Instead of computing gen-
erality both for the query and an ontology and then comparing them, we assume
that the query provides the baseline and we only compute the generality devi-
ation of the ontology from this baseline. Another optimization is that we cir-
cumvent the use of an external oracle by reusing the generality relation between
terms and concepts as established by the semantic mapping step (we consider a
function genRel between a term and its hit returning -1 if the concept is more
specific, 0 if it is equivalent and 1 if it is more generic than the query term).

RD(T,O) =
∑n

i=1
|genRel(ti,ci)|

n ;GS(T,O) = σ(
∑n

i=1 genRel(ti, ci))

Given a set of n query terms (t1,n) and their semantically related concepts
(c1,n) we compute the relative generality (RD(T,O)) of the ontology/ontologies
containing these concepts with respect to the query as the mean of the absolute
value of the genRel function. We also compute the sign of the generality devia-
tion as the sign of the sum of all the values of the genRel function.

4.6 Extending Semantic Match to Deal with Compound Labels

Compound labels derived in Stage III complicate semantic matching. Hereby we
describe some of the problems and the solutions that we are investigating.
A. Acquiring the sense of a compound concept label. Establishing the sense of
compound labels by using WordNet is difficult as WordNet does not have an ex-
tensive coverage of compound words. We are currently investigating the strategy
of interpreting the meaning of compound labels in terms of logical relations that
hold between the senses of their constituents (similarly to work in [8] and [5]).
According to this previous work, compound labels can be interpreted as the
conjunction of their constituents and according to these rules:
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Rule1. Commas and coordinate conjunctions are interpreted as a disjunction;
Rule2. Prepositions like in and of are interpreted as a conjunction;
Rule3. Exclusion expressions (e.g., except, but not) translate into negation.

However, we are not convinced that all these rules are useful in the context
of online ontologies. For example, only five labels returned by Swoogle contain
commas, so this is just an isolated case. Also, we found that no labels contain
“except” and “but not”, thus making the third rule redundant.
B. Deriving Semantic Relations between compound terms. The limited multi-
word coverage of WordNet also prohibits using it to derive semantic relations
between compound labels. We investigate a solution along the lines of that pre-
sented in [5] where compound labels, after being interpreted as logical formulas,
are compared with the help of a reasoner.

5 Discussion and Future Work

Taking a step back from the details of the algorithm, the key contribution of this
paper is that of exploring ontology selection in the context of automatic knowl-
edge reuse. Indeed, as discussed in the introduction, this complements current
selection techniques which have focused on human mediated tasks so far. While
both contexts are equally important, we think that exploring the automatic
context can lead to novel challenges and improvements of this technology.

We have analyzed the requirements of two Semantic Web tools, a question
answering tool and a semantic browser, and concluded that current approaches
only marginally address them. This is not a surprise in itself because these re-
quirements raise hard to address research issues. In fact, our proposed algorithm
limits itself to tackle only five of the seven requirements. These requirements
indicate that selection will need to adapt techniques from currently developing
research directions such as ontology evaluation, mapping and modularization.

Ontology mapping has been the focus of the proposed algorithm which bal-
ances between providing a complete, precise coverage and an acceptable perfor-
mance. Our strategy is to use a self-adaptation metaphor, the algorithm adapts
its complexity to the case of each query by invoking increasingly complex stages
as necessary. As such, the simplest stage is just a bit more complicated than state
of the art techniques, while the most complex stage raises yet unsolved research
issues. The major difference from existing approaches is the emphasis on the
correctness of the mapping between query terms and ontology concepts. We go
beyond current techniques which exclusively rely on lexical matches by perform-
ing a semantic match. Naturally, establishing a semantic mapping at run-time
without interpreting the entire ontology structure is a challenging issue by itself.

While, obviously, there are several complex issues to address, our immediate
future work will concentrate on finalizing the implementation of a first prototype.
In parallel, we will adapt our tools to use this selection algorithm. They will be
used as a case study for evaluating selection in an automatic knowledge reuse
scenario, thus paving the way towards a selection mechanism that fits the needs
of the real Semantic Web.
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