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ABSTRACT
In this paper, we introduce U-MAP, a new system for schema map-
ping generation. U-MAP builds upon and extends existing schema
mapping techniques. However, it mitigates some key problems in this
area, which have not been previously addressed. The key tenet of
U-MAP is to exploit theusageinformation extracted from thequery
logsassociated with the schemas being mapped. We describe our ex-
perience in applying our proposed system to realistic datasets from the
retail and life sciences domains. Our results demonstrate the effective-
ness and efficiency of U-MAP compared to traditional approaches.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation

General Terms
Algorithms, Design

Keywords
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1. INTRODUCTION
One of the most common data management tasks is the transforma-

tion of data residing in one data source according to a given schema
into the schema of another source. The problem of automatically dis-
covering the necessary transformation rules to carry out this task is
known asschema mapping, and the discovered rules are usually re-
ferred to asmappings.

There are multiple scenarios in which schema mapping is neces-
sary. The first scenario isdata exchange(e.g., [23]), where the data
needs to be physically moved from one source to another, perhaps
for data migration purposes. The second scenario isdata integration
(e.g., [29]) where it is required to answer queries expressed based
on some mediated schema, while the result is obtained from some
underlying sources, usually with different schemas. The query re-
sult, in this case, needs to be transformed to conform to the mediated
schema before returning it to the user. Other application scenarios
include schema evolution (e.g., [30]), peer data management systems
(e.g., [15]), and model management [5].

It is evident, however, that the quality, and hence usefulness, of the
transformed data hinges on the quality of the mappings used for the
transformation. Therefore, it is crucial for the mapping generation
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process to be as accurate as possible, especially that any following
data cleaning operations are generally quite expensive.

To this end, several systems (e.g., [3, 7, 11, 16, 22]) have been
proposed in the literature for the generation of schema mappings.
Over the last decade, these research efforts, and in particular the Clio
project [11], played a great role in making the schema mapping field
reach higher levels of maturity. Nevertheless, there are still several is-
sues with the existing schema mapping tools, as their generated map-
pings do not take into consideration specific cases, which are very
common in real-world schemas.

These issues include: (1) the unawareness of those tables repre-
senting special case entities, which have anIS-A relationship with
higher-level entity types; (2) the inability to generate meaningful map-
pings, which involve joining tables with certainmany-to-manyre-
lationships; and (3) the inability to resolve attribute correspondence
conflicts which can arise during mapping generation. All of these
issues will be explained in detail later in the paper.

The semantic approach for schema mapping [3] attempts to ad-
dress some of these issues. However, it is only applicable when the
schemas’conceptual modelsare available – a hard requirement to sat-
isfy in many real-world scenarios. Moreover, we will also show that
even when the conceptual models are available, there are many com-
mon cases, in which the method proposed in [3] will not be ableto
accurately generate the desired mappings.

In this paper, we introduce the U-MAP system, which mitigates the
above problems by leveraging theusageinformation available in the
query logs of the data sources being mapped. We show that thisnew
resource, while not exploited before in the context of schema map-
ping, can be very valuable in generating significantly higher quality
mappings. We summarize our contributions as follows.

• We describe a new mechanism for handling tables havingIS-A
relationships. The mechanism takes into account how to detect
those tables, how to learn from the query log whether they are
overlapping or not, and finally how tomergethem appropriately
in the generated mappings.

• We describe a new version of the chase algorithm [17] (com-
monly used for mapping generation). The new version, called
theaggressive chase, enables the generation of mappings span-
ning all types ofmany-to-many relationships, as long as such
mappings are deemed “semantically meaningful” based on the
analysis of the query log.

• We describe a novelconflict resolutiontechnique, which identi-
fies the most likely mapping to resolve the attribute correspon-
dence conflicts across thelogical relationsof the two schemas.
At the core of this technique are two new methods: one for
context-based matchingof attributes between logical relations
and queries from the log; and another forcontext-based group-
ing of attributes to limit the search space of possible mappings.

• We describe an experimental study on a working prototype for
U-MAP using databases from the retail and life sciences do-
mains. Our results demonstrate the effectiveness of U-MAP in
dealing with the issues we raise in this paper as opposed to pre-
vious approaches.

The rest of the paper is organized as follows. Section 2 presents our
running example and also some necessary background on the schema
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mapping problem and the existing solutions for it. Section 3illustrates
some key outstanding issues with those existing solutions.The U-
MAP approach is explained in detail in Section 4. Our experimental
evaluation is given in Section 5. Section 6 describes the related work,
and Section 7 finally concludes the paper.

2. RUNNING EXAMPLE AND BACKGROUND

2.1 Running Example
In this subsection, we describe our running example, which we

will be referring to throughout the paper. The example shownin
Figure 1 is from the retail domain. In particular, it represents the
schemas of two bookstores. Each schema covers information on cus-
tomers, books, authors, and orders – but using two differentschema
structures. Although not shown in the figure, it is assumed that
attribute correspondences are also given. They could have either
been generated manually or using an automatic schema matching
tool (e.g., [24]). Any two attributes with the same name in both
schemas correspond to each other (e.g.,X Customer.c uname and
Y Customer.c uname). There are also correspondences between pairs
of attributes on both sides which do not have the exact same name
(e.g.,X Distributor.d uname andY Customer.c uname). Finally, only
non-key attributes are included in correspondences (e.g.,there is no
correspondence forc id).

2.2 The Schema Mapping Problem
Consider the situation where we have two database systems, each

with its own schema. It is required to develop declarative rules that
specify how data records can be transformed from one schema (the
source) to another (the target). The generated rules are generally
calledschema mappings.

We consider the most common formalism for schema mappings,
which issource-to-target tuple-generating dependencies, or simplys-
t tgds. Each mapping specifies how one or more records (with each
record coming from a different table) from the source schemashould
be used to generate one or more records in the target schema. The
mapping should clearly indicate how the multiple records (if more
than one) at each schema are related (i.e., their join predicates), and
additionally how the data values should be copied from the source
attributes to the target attributes.

We use a “query-like” representation for the mappings, which will
be illustrated in the following example.
Example 1: In our bookstores example, the following mapping spec-
ifies how a book record along with its corresponding author record
in theX-Schema are transformed into three records in theY-Schema,
particularly, in theY Book, Y Book Author, andY Author tables.
m1 for a in X Author, b in X Book

where (a.a id = b.b a id)
⇒ exists a’ in Y Author, b’ in Y Book, ba’ in Y Book Author
where (a’.a id = ba’.ba a id ∧ b’.b id = ba’.ba b id)
with (a’.a fname = a.a fname ∧ a’.a lname = a.a lname
∧ b’.b title = b.b title ∧ b’.b pub date = b.b pub date)

The for clause specifies the tables from which the source records
are collected. The followingwhere clause specifies the predicates for
joining these records. Moreover, theexists clause indicates the ta-
bles of the generated records in the target schema. Similar to the first
where clause, the secondwhere clause also provides the join predi-
cates for the target records. However, in addition, it also shows how
the target attributes are populated using the values of the source at-
tributes, as shown in the last two lines ofm1. 2

More formally, the schema mapping problem can be defined by the
tuple (S, T , ΣS , ΣT , V , ΣST ), whereS, T , ΣS , ΣT , andV are in-
puts, whileΣST is the desired output.S andT are the source and
target schemas respectively.ΣS andΣT are the constraints (typically
referential integrity constraints) defined on each ofS andT respec-
tively. V is the set of attribute correspondences betweenS andT ,
which can be either automatically computed in a preceding schema
matching step, or directly provided by the user.ΣST is the set of s-t
tgds representing the desired schema mappings.

2.3 Existing Solutions

The commonly used approach for schema mapping is the one
adopted in the Clio system [11], which is based on analyzing the
referential integrity constraints in the source and target schemas. We
will refer to this approach as theRIC-based approach. A more recent
approach relies on using additional semantic information about both
schemas, which can be found in their associated conceptual models
(e.g., ER diagrams, UML). This approach will be referred to as the
semantic approach. In what follows, we overview the two approaches
(with a little more emphasis on the RIC-based approach sinceour pro-
posed techniques will be building on it).

 Constructing Logical 

Relations 

(Classical Chase)

Creating 

Mappings

Minimizing 

Mappings

Compiling 

Mappings

Figure 2: The RIC-based schema mapping process.

2.3.1 RIC-Based Approach
This approach proceeds in four main steps as shown in Figure 2.

Step 1 (Constructing Logical Relations):At first, we construct what
is referred to as thelogical relations, separately for each schema. A
logical relation is meant to group together all therelatedconcepts (or
attributes) in a schema, even if these concepts do not residein the
same table in the schema. In other words, a logical relation can be the
result of joining multiple tables together.

Since there is typically a large number of possible joins to be done
in a schema, where most of them is not semantically meaningful, the
goal in this step is to limit the generation of logical relations to the
meaningful ones only. For this purpose, the RIC-based technique
“expands” each table,A, in the schema into its corresponding logi-
cal relation by joiningA with all the tables it references to get some
intermediate logical relation. Then, the just-generated intermediate
logical relation is, in turn, joined with all the tables it references, and
so on. The final logical relation corresponding toA is the one which
does not contain any more foreign keys.

The process we just described is essentially applying the chase al-
gorithm [17] on each table, where the set of constraints applied dur-
ing the chase are the referential integrity constraints in each of the
schemas (i.e.,ΣS andΣT for S andT respectively).
Step 2 (Creating Mappings): Once the logical relations are identi-
fied for both schemas, the second step is to find all the pairs oflogical
relations (one from each schema), which cover one or more attribute
correspondences fromV . Each such pair will constitute a mapping.

Example 2: Considering the mappingm1 from Example 1, we find
that it mapsa logical relation fromS, specified in thefor and first
where clauses, to a logical relation fromT , specified in theexists
and secondwhere clauses. The attribute correspondences between
the two logical relations are specified in thewith clause, in order to
show how values should be copied from the source attributes to the
target attributes.2

When a target attribute does not have a corresponding sourceat-
tribute, we cannot simply have it populated by nulls, because it may
be a required attribute, where nulls are not allowed. Moreover, it may
not have a default value, which makes it necessary to synthesize new
values for its population. These synthetic values, usuallyreferred to
aslabeled nulls, are generated usingSkolem functions.

Skolem functions ensure that their outputs are different whenever
their inputs are different. One of their essential uses is tomaintain
the referential integrity in the target database. So for example a book
record inT will only be linked to the record of its own author, and not
any other author records. In this case, the Skolem functionsused to
generate the book id and author id in theY Book andY Author records,
respectively, should be identical to the ones used to generate the for-
eign keys in the correspondingY Book Author record.

Step 3 (Minimizing Mappings): The third step is an optimization
step, which has been introduced in [13]. In this step, the setof gener-
ated mappings can beminimizedby discarding all the mappingssub-
sumedor impliedby other mappings. The criteria for when a mapping
is considered to subsume or imply another mapping are given in [13].
Step 4 (Compiling Mappings):The final step is to compile the min-
imal set of mappings into an executable script, e.g. SQL queries.
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(b) Y-Schema

Figure 1: Schemas of two bookstores.

Running this script should actually move the data from the source to
the target while making the necessary transformations, which would
still respect the constraints of both the source and the target.

2.3.2 Semantic Approach
The semantic approach for schema mapping [3] does not only rely

on the source and target schemas, as is the case with the typical RIC-
based approach. Instead, it takes theconceptual modelsfor both the
source and the target into account as well. Examples for information
that can be found in conceptual models, but not in schemas, include
thecardinalitiesof the relationships between entities, and also special
types of relationships like theIS-Arelationship.

In many cases, this additional information helps in distinguishing
the more meaningful mappings from the less meaningful ones.If only
the RIC-based approach is used, then such mappings will all seem to
be equally meaningful to the mapping tool. The details of howthe
semantic approach exploits this information can be found in[3].

3. ISSUES WITH EXISTING SOLUTIONS
In this section, we describe in more detail the issues involved when

relying on the RIC-based approach. At the same time, we pointout the
situations in which the semantic approach can address some of these
issues, and those situations in which some issues remain unresolved.
Most clearly, the semantic approach will not be helpful whenever the
conceptual models are missing, which needless to say, is a common
scenario in the real world. We now explain each of such issues.

3.1 Unawareness of IS-A Relationships
In many schemas, multiple tables can represent different special-

izations of a higher-level abstract concept orsuperclass(e.g.,student
andinstructor tables would both store information aboutpersons). In
other words, they have anIS-Arelationship with the superclass (which
may not itself have have a separate table in the schema). Suchtables
will thereby have common attributes pertaining to their superclass, in
addition to other attributes specific to each of them.

A key question is whether these tables are disjoint or not. Inother
words, can the same real-world entity have a record in each ofthese
tables? The answer to this question determines how the tables should
be correctlymerged. Merging the tables will be needed if they are
to be mapped from the source schema to a single table in the target
schema. If they are disjoint, then the merger can be achievedusing a
simple union. Otherwise, they will need to beouter-joinedto guaran-
tee that no data duplication occurs in the target database. This can be
illustrated by the following example.

Example 3: In our bookstore example, the tablesX Customer and
X Distributor can both be thought of as having an IS-A relationship
with some abstract concept,Buyer. Hence, if we blindly apply the
RIC-based method, we will generate the two mappingsm2 andm3

given below.

m2 for c in X Customer, ad in X Address, co in X Country
where (c.c ad id = ad.ad id ∧ ad.ad co id = co.co id)
⇒ exists c’ in Y Customer
with (c’.c uname = c.c uname ∧ c’.c passwd = c.c passwd
∧ c’.c fname = c.c fname ∧ c’.c lname = c.c lname
∧ c’.c street = ad.ad street ∧ c’.c city = ad.ad city
∧ c’.c state = ad.ad state ∧ c’.c cntry = co.co name)

m3 for d in X Distributor, ad in X Address, co in X Country
where (d.d ad id = ad.ad id ∧ ad.ad co id = co.co id)
⇒ exists c’ in Y Customer
with (c’.c uname = d.d uname ∧ c’.c passwd = d.d passwd
∧ c’.c company = d.d company
∧ c’.c street = ad.ad street ∧ c’.c city = ad.ad city
∧ c’.c state = ad.ad state ∧ c’.c cntry = co.co name)

These two mappings separately map the records of each of
X Customer andX Distributor in theX-Schema to theY Customer ta-
ble in theY-Schema. However, we may be able to determine that
X Customer andX Distributor are overlapping; i.e., some distributors
also have records inX Customer (perhaps to maintain the contact per-
son information for the distributor). In this case, the bestmapping to
populateY Customer should look as follows.
m4 for (c in X Customer outerjoin d in X Distributor),

ad in X Address, co in X Country
where (ad.ad id = ifnull(c.c ad id,d.d ad id)
∧ ad.ad co id = co.co id)
⇒ exists c’ in Y Customer
with (c’.c uname = ifnull(c.c uname,d.d uname)
∧ c’.c passwd = ifnull(c.c passwd,d.d passwd)
∧ c’.c fname = c.c fname ∧ c’.c lname = c.c lname
∧ c’.c company = d.d company
∧ c’.c street = ad.ad street ∧ c’.c city = ad.ad city
∧ c’.c state = ad.ad state ∧ c’.c cntry = co.co name)

Note that the mappingm4 first computes theouter join of
X Customer and X Distributor to ensure that records belonging to
the same real world entity from both tables are merged first. (The
ifnull function is used to merge common attributes inX Customer and
X Distributor into a single attribute inY Customer. It returns the first
parameter, or the second in case the first was null.) Then, therecords
of the resulting outer join are used to populate the YCustomer table.
This approach guarantees that a given real world entity (e.g., a dis-
tributor) will only have one record inY Customer. If X Customer and
X Distributor were disjoint, then just usingm2 andm3 would be suffi-
cient to populateY Customer with the union of the two source tables,
and hence no special treatment is needed in this case.2

Of course, beyond our running example, many other examples exist
in the real world for tables with overlapping sets of entities. Consider
for instance singers and actors, graduate students and instructors, mo-
bile phones and digital cameras – to name just a few.

Using the semantic approach to detect IS-A relationships, as well
as the disjointness of the involved tables, can only be possible if the
conceptual model for each schema is available and if the disjointness
constraints are specified in them. Unfortunately, the RIC-based ap-
proach, which is more commonly used does not recognize IS-A rela-
tionships or disjointness constraints.

It is worth mentioning that a newly introduced technique [18] can
handle a special case of this problem. In particular, [18] presents
a post-processing mapping re-writing algorithm, which focuses on
maintaining the key constraints (equality generating dependencies, or
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egds) on the target. This technique works well when the key attributes
in the source tables (with an IS-A relationship) are mapped to the key
attribute in the target table. The re-written mappings willensure that
records for the same entity in the source tables will be not bemapped
to different records in the target table, since they all havethe same key
in the source, and that key will be mapped to the target as well.

However, it is quite common that keys are just serial numbersand
are not included in the correspondences because they do not have any
semantic meaning (as in Example 3). Instead, new keys are generated
at the target for each newly inserted record. In this scenario, the tech-
nique in [18] cannot prevent duplicate records in the targetbecause
even if they refer to the same real-world entity, each will beassigned
a separate key, and hence no key constraint violations will occur.

3.2 Incomplete Coverage of Logical Relations
As we explained in Section 2.3.1, the RIC-based approach relies on

the chase algorithm to generate the logical relations. Thisalgorithm
chases foreign keys in the forward direction only; i.e., it follows the
edges in the schema going from the foreign key in one table to the pri-
mary key in the other table, but it never chases them in the opposite
direction. The joins resulting from this chase will always be lossless;
i.e., at least one of the relations participating in the joincan be recon-
structed just by applying projection on the join result. Thefact that
the generated logical relation is a result of a lossless joinguarantees
that all the records in that relation are semantically meaningful.

In contrast, if the join involved edges going in opposite directions,
then the join will be considered alossy join; i.e., it is not guaranteed
that any of the participating relations can be reconstructed just by ap-
plying projection on the join result. In this case, some of the records
in the output relation may not even be meaningful. Moreover,the
number of possible lossy joins in a schema can be overwhelming. For
these reasons, the RIC-based approach does not consider lossy joins
when generating the logical relations.

However, we argue that some lossy joins may in fact be meaning-
ful, and hence it is essential to include them in the finally generated
mappings.

The following two examples will illustrate the concepts of lossy
and lossless joins, as well as when they result in meaningfulrecords
and when they do not.
Example 4: Consider the case when the RIC-based technique gener-
ates the target logical relation starting from theY Order Line table. It
will chase the foreign keys referencing theY Book andY Order tables,
and then it will chase the foreign key inY Order, which references
Y Customer. At this point, no more foreign keys will be left to chase,
and the algorithm stops.

Note that this chase does not relate the order line information to the
book’s author information, although it is quite logical to have them re-
lated. The reason is that in theY-Schema, Y Book andY Author have a
many-to-many relationship. Thus, each book is not directlyreferenc-
ing its author(s), but rather they are connected through an intermediate
table which references both of them. Since the chase algorithm only
goes in one direction, it stops at theY Book table.

Ideally, we would like the mapping responsible for populating the
Y Order Line table to connect each order line record with its corre-
sponding author record as shown in the mappingm5 below. However,
the RIC-based approach will never generatem5.
m5 for ol in X Order Line, b in X Book, a in X Author, · · ·

where (ol.ol b id = b.b id ∧ b.b a id = a.a id ∧ · · · )
⇒ exists ol’ in Y Order Line, b’ in Y Book,
ba’ in Y Book Author, a’ in Y Author, · · ·
where (ol’.ol b id = b’.b id ∧ b’.b id = ba’.ba b id
∧ a’.a id = ba’.ba a id ∧ · · · )
with (a’.a fname = a.a fname ∧ a’.a lname = a.a lname
∧ b’.b title = b.b title ∧ b’.b pub date = b.b pub date
∧ ol’.ol qty = ol.ol qty ∧ · · · ) 2

To make our point even clearer regarding the need for considering
lossy joins in certain situations, we present the followingexample.
Example 5: Consider that we have a third schema,Z-Schema, con-
taining a single table calledZ Reader Author, which tracks the readers
for each author. Hence,Z-Schema will simply look as follows.
Z Reader Author(r fname, r lname, a fname, a lname)

When we generate mappings from theY-Schema (source) to the

Z-Schema (target), there must be a logical relation in theY-Schema
which connects the authors to the customers through the bookorders
made by the customers. As explained in Example 3, the RIC-based
approach will not generate this logical relation. Instead,it will pop-
ulate the target table using the two logical relations forX Customer
andX Author. In other words, some records will contain the customer
(reader) names only and others will contain the author namesonly,
with no linkage between them – which defeats the whole purpose of
building the target table.2

We will now show a scenario where chasing foreign keys in oppo-
site directions can indeed result in semantically meaningless logical
relations, and hence the need for a mechanism to distinguishbetween
the situations in which lossy joins should be considered andthose in
which they should not.

Example 6: In the X-Schema, consider that the tableX Author has
an extra attributea nationality, which referencesX Country. Clearly,
there is no meaning in creating a logical relation connecting authors to
customers through theX Country table just because a customer resides
in the same country where an author is a citizen(!).2

It is worth noting that the semantic approach attempts to identify
some of the situations where a lossy join is meaningful by consider-
ing the cardinality constraints for the relationships between entities,
as indicated in the conceptual model. If for example two entities in
the source have a many-to-many relationship and two corresponding
entities in the target also have a many-to-many relationship, then a
mapping is generated from the join of the two corresponding source
tables to the join of the two corresponding target tables. The mapping
is generated even if the joins are lossy, because in this case, the seman-
tic approach considers the compatibility of the cardinality constraints
as an indication that the mapping is semantically meaningful.

Even if we assume that the source and target conceptual models
are available, this strategy of the semantic approach wouldstill have
two main drawbacks. First, a mapping involving lossy joins may be
semantically meaningful even if the cardinality constraints for the re-
lationships in both schemas are not compatible. For example, the
relationship between order lines and authors is one-to-many in the
X-Schema and many-to-many in theY-Schema, yet the mappingm5

(from Example 4), which maps the two relationships is semantically
meaningful. The semantic approach will not generatem5.

Second, if relationships between corresponding entities in both the
source and the target have compatible cardinality constraints, then
still a mapping between the joins of their participating tables can
be semantically meaningless. This was shown in Example 6, where
the composite relationship betweenX Author and X Customer (go-
ing throughX Country) is many-to-many, and similarly the compos-
ite relationship betweenY Author and Y Customer (going through
Y Book Author, Y Book, Y Order Line, andY Order) is also many-to-
many. Still, however, generating a mapping between the two relation-
ships is meaningless, primarily because the first relationship (in the
X-Schema) is itself not semantically meaningful.

Moreover, some of the recent works [8, 19] proposed that users
can provide certain “joins”, which are deemed important to consider
during the construction of logical relations, to compensate for those
missed by the chase algorithm. However, no automatic methodfor
discovering such important joins have been presented.

3.3 Unresolved Correspondences
During the construction of mappings, sometimes it is not clear how

to populate the target attributes using the source attribute values. This
situation occurs when the correspondences between the attributes of
the two logical relations being mapped are conflicting. Suchconflicts
may exist even if the original set of correspondences,V , is conflict-
free. To see why, note that constructing a logical relation typically
involves joining tables together. Sometimes the same tableis included
in the logical relationmore than once. In this case, the attributes of
such a table will appear multiple times in the logical relation (certainly
with different semantics, or contexts, depending on the join predicates
used each time the table is joined).

Now, if a repeated attribute in a source logical relation corresponds
to some target attribute, populating that target attributebecomes un-
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resolved since its values can be obtained from more than one source
attribute.
Example 7: In theX-Schema, theX Order Line table has two foreign
keys referencingX Address, representing the shipping and billing ad-
dresses associated with the order line. Clearly, the logical relation for
X Order Line will include the address attributes (i.e., street, city,· · · ,
etc) more than once.

Similarly, the target logical relation forY Order Line also contains
more than one set of address attributes (to capture the billing, ship-
ping, and customer addresses). The mappingm6 given below is the
one which correctly resolves all the conflicts in the attribute corre-
spondences between the source and target logical relations.

m6 for o in X Order, ol in X Order Line, ad1 in X Address,
ad2 in X Address, co1 in X Country, co2 in X Country, · · ·
where (ol.ol o id = o.o id ∧ ol.ol bill ad id = ad1.ad id
∧ ol.ol ship ad id = ad2.ad id ∧ ad1.ad co id = co1.co id
∧ ad2.ad co id = co2.co id ∧ · · · )
⇒ exists o’ in Y Order, ol’ in Y Order Line, · · ·
where (ol’.ol o id = o’.o id ∧ · · ·

with ∧ o’.o date = o.o date ∧ ol’.ol qty = ol.ol qty
∧ o’.o bill street = ad1.ad street ∧ o’.o bill city = ad1.ad city
∧ o’.o bill state = ad1.ad state ∧ o’.o bill cntry = co1.co name)
∧ o’.o ship street = ad2.ad street ∧ o’.o ship city = ad2.ad city
∧ o’.o ship state = ad2.ad state ∧ o’.o ship cntry = co2.co name)
∧ · · · ) 2

The existing RIC-based approach cannot independently determine
that m6 from Example 7 is the correct mapping. Hence, it gener-
ates a number of mappings equal to the number of all possible ways
to resolve the correspondence conflicts. It then becomes theuser’s
duty to select the correct mapping, which is both time-consuming and
error-prone. Using the semantic approach will not help in this case ei-
ther, because the conceptual model (if available) does not contain the
necessary information to recognize thatm6 is the correct mapping.

Some recent extensions to the RIC-based approach attempt tore-
duce the amount of effort needed to resolve the correspondence con-
flicts. In particular, [1] proposed to assist the user in resolving the
ambiguity among mappings using data instances. Given a realdata
instance from the source for a given mapping, the user is asked to
choose the correct values for the target attributes involved in that map-
ping. The user choices will then determine which of the ambiguous
mappings is correct. Also, [20] describes a GUI which allowsthe
user to duplicate certain tables in the schema, and then specify the
correspondences for each one of the duplicates separately.Such du-
plications can help in resolving correspondence conflicts.

However, the above two approaches still require a lot of human
time and effort, especially for large and complex schemas. This be-
comes evident in Section 5.2, where we found that after the construc-
tion of logical relations for a moderate-sized schema, morethan one
thousand attributes in those logical relations were involved in corre-
spondence conflicts.

4. THE U-MAP APPROACH
In this section, we describe our approach in the U-MAP system. We

show how we can boost the schema mapping quality when we take
query logs into account to address all of the aforementionedissues.
In particular, we enrich the schema mapping process as illustrated
in Figure 3, where theboldfaced steps are either newly introduced
or significantly modified. Each one of the introduced/modified steps
addresses one of the issues raised in Section 3, mainly by exploiting
information present in the query log.

The “merging sibling relations” step is introduced as a pre-
processing step to merge groups of tables, which seem to be a spe-
cialization of the same parent abstract concept (and overalapping),
into a single unified relation. Then, during the “constructing logical
relations” step, the classical chase algorithm is replacedby a more
aggressive version, which is able to discover additional semantically
meaningful logical relations. Moreover, the core “creating mappings”
step is extended to enable conflict resolution for attributecorrespon-
dences, which may arise in situations similar to those described in
Section 3.3. The minimization step remains unchanged in U-MAP.
However, a post-processing “re-writing mappings” step is introduced
to ensure that the generated mappings only refer to originalrelations
in the input schemas and not to any derived relations that could have

been added during the initial merging step. Finally, the “compiling
mappings” step is not shown in the figure because U-MAP currently
focuses only on the generation process itself for the mappings.

 Merging 

Sibling 

Relations

Constructing 

Logical Relations 

(Aggressive Chase)

Creating Mappings 

(with conflict 

resolution)

Minimizing 

Mappings

Rewriting 

Mappings

Figure 3: The schema mapping process used in U-MAP. Bold-
faced steps are either newly introduced or modified, compared to
classical RIC-based schema mapping.

4.1 Managing Sibling Relations
To properly handle the issue ofoverlapping sibling relations(tables

having an IS-A relationship with an abstract superclass, and whose
records overlap), we need to introduce a pre-processing step and a
post-processing step. The goal of the pre-processing step is to first
discoverall the overlapping sibling relations in the schemas, and then
to mergeand replace them with some derivedsuper relations. This
way, the schema mapping problem will appear to the next stepsin the
pipeline to be free of any issues related to overlapping sibling rela-
tions. In the post-processing step, however, all the outputmappings
will need to bere-written to replace any reference to the super rela-
tions with the original sibling relations they represent.

For the pre-processing step, we initially use a simple scheme to
discover candidate sibling relations. We consider that twotables are
siblings if they have one or moresharedattributes. Two attributes are
considered to be shared across two tables if they both correspond to
the same attribute in the other schema. Although simple, this scheme
is effective enough to discover sibling relations with a high recall. In
our running example, bothX Customer andX Distributor will be con-
sidered siblings because their attributesc uname andd uname both
correspond toc uname in Y Customer for instance.

Since we are only interested inoverlappingsibling relations, we
now need to filter out all the disjoint sibling relations, andthe non-
sibling relations which might have been erroneously returned by the
initial discovery scheme. This is where we rely on the query logs.

The key idea is to determine if there were already specific queries
looking for that overlap. In particular, we scan the query log, and
for each pair of tables we find to be joined on their primary keys,
we check this pair against the discovered pairs of sibling relations. If
found, then we mark the pair as overlapping. All pairs which were
not found to be joined on their primary keys are filtered out. Note that
if the two tables were disjoint, or not siblings in the first place, then
their primary keys will be unrelated and it would be pointless to join
them using their primary keys.

Each pair of overlapping sibling relations will then be merged into
a new super relation, which is the outer join (on the primary keys) of
the two sibling relations. The attributes of the super relation will be
the union of the attributes of both relations, as shown in thefollowing
example.

Example 8: Consider that the two relationsX Customer and
X Distributor in theX-Schema are found to be overlapping sibling re-
lations. Then, their super relation (call itX Buyer) will be defined
using the following query.

X Buyer = select ifnull(c.c id,d.d id) bu id,
ifnull(c.c uname,d.d uname) bu uname,
ifnull(c.c passwd,d.d passwd) bu passwd,
c.c fname bu fname, c.c lname bu lname,
d.d company bu company, d.d discount bu discount,
ifnull(c.c ad id,d.d ad id) bu ad id
from X Customer c outerjoin X Distributor d
on c.c id=d.d id

Note that each pair of common attributes inX Customer and
X Distributor are mapped to a single attribute inX Buyer using the
ifnull function. For example,c uname in X Customer andd uname in
X Distributor are mapped tobu uname in X Buyer using the function
ifnull(c uname,d uname). 2

To complete the merging process, both the schema and the query
log need to be updated such that the newly created super relations
properly replace the sibling relations they represent. Forthe schema,
any foreign keys referencing the sibling relations should be updated to
reference the new super relation instead. For the query log,it should
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also be updated to be consistent with the schema. In particular, each
reference to a sibling relation in a query is replaced by its correspond-
ing super relation. This query re-writing process is fairlystraightfor-
ward because each of the sibling relations can be regarded asa projec-
tion over the super relation, and hence query re-writing will proceed
based on the well-understood view-unfolding mechanism [25].

In case more than one pair of overlapping sibling relations were
discovered, then the process described above will be repeated for each
pair iteratively, until all the pairs have been merged.

As a result of this merging process, the output mappings willstill
be referring to the super relations, which were not part of the orig-
inal input schemas. Therefore, in the post-processing step, all the
mappings will be re-written – also using the view-unfoldingmecha-
nism. But this time, the views defining the super relations interms of
their underlying sibling relations will be used instead (See Example
8). During rewriting, every reference to an attribute in a super rela-
tion representing the merger of two attributes,a andb, is replaced by
ifnull(a,b) (with the order being currently arbitrary in U-MAP), lead-
ing to mappings similar tom4 in Example 3. Note that the use of the
ifnull function in the final output mappings is comparable to the useof
skolemization/concat functions in [26] for instance.

4.2 Aggressive Chase
Now that we are confident that the updated input schemas will not

have any overlapping sibling relations, we can proceed withthe “con-
structing logical relations” step. We have seen in Section 3.2 that re-
lying on the classical chase algorithm in this step can result in missing
some meaningful logical relations. In this section, we describe how
we can exploit the information in the query logs to extend theclassical
chase algorithm into a more aggressive version, where even when no
foreign keys are left to chase in the forward direction, the algorithm
may still decide to chase a foreign key in the reverse direction.

We start by formally analyzing the situations where the classical
chase will either discover or miss interesting logical relations. Let
us first note that a logical relation can essentially be represented by a
directed tree, with the root being the table where the chase starts. The
other nodes represent the other tables visited during the chase, and
the edges indicate the direction in which the chase occurred. With
classical chase, the directed tree is always anarborescence(i.e., all
edges point away from the root). If the chase is permitted to occur
in the reverse direction (as we will explain shortly), then the directed
tree will be a general one, where edges can either point to or away
from the root.

Moreover, we can classify the types of associations betweenat-
tributes in a logical relation as follows. Given two attributesa andb
in the same logical relation, which originally belong to tablesA and
B respectively, the relationship betweenA andB can either be 1-1,
1-m, m-1, or m-m. Without loss of generality, we will only focus on
the m-1 and m-m relationships (since 1-m is identical to m-1 given
that the two tables are switched, and 1-1 is a special case of m-1).

In the directed tree representation of a logical relation, an m-1 rela-
tionship occurs betweenA andB if A is the ancestor ofB, as shown
in Figure 4(a). For m-m relationships, we can actually further classify
them into two types:common-ancestor many-to-manyandcommon-
ancestor-free many-to-manyaccording to the definitions below.

Definition 1: Common-Ancestor Many-to-Many (CA-m-m) Rela-
tionships: Two relationsA andB, which are both used in construct-
ing the same logical relation,A, are said to have a common-ancestor
many-to-many (CA-m-m) relationship if there exists a thirdrelation
C also used in constructingA, such that the relationships between
C andA is many-to-one and betweenC andB is also many-to-one
(i.e.,C is the common ancestor of bothA andB in the directed tree
representation ofA).

Definition 2: Common-Ancestor-Free Many-to-Many (CAF-m-
m) Relationships: Two relationsA andB, which are both used in
constructing the same logical relation,A, are said to have a common-
ancestor-free many-to-many (CAF-m-m) relationship if (1)there does
NOT exist a third relationC also used in constructingA, such that
the relationships betweenC and A is many-to-one and betweenC
andB is also many-to-one; and (2) the relationship betweenA and

B is neither m-1 nor 1-m (i.e., there is NO common ancestor for both
A andB in the directed tree representation ofA).

The two types of relationships, CA-m-m and CAF-m-m, are illus-
trated in Figures 4(b) and 4(c) respectively. The classicalchase can
construct logical relations capturing m-1 and CA-m-m relationships,
because starting from the common ancestor the chase can proceed in
the forward direction to include both A and B. However, it cannot
capture CAF-m-m relationships (for the absence of a common ances-
tor), although such relationships can be interesting as wasshown in
Examples 4 and 5 in Section 3.2. We show next how we discover
interesting CAF-m-m relationships with the help of query logs.

 

A

B

(a) m-1

 

A

B

(b) CA-m-m

 

A

B

(c) CAF-m-m

Figure 4: Possible relationships between two tables,A and B, in
a logical relation.

Building the FR-Index: In U-MAP, prior to executing the chase
algorithm, we first analyze the query log and build an index struc-
ture, which we refer to as theFR-Index(short for Forward-Reverse
Index). Each entry in the FR-Index contains a pair of opposing ref-
erences; i.e. two different foreign keys referencing the same primary
key (see Figure 5(b) for an example). The first reference is considered
the forward reference, and the second one is considered the reverse
reference. What characterizes the specific pairs maintained in the FR-
Index is that joining the referenced table with the two referencing
tables using such pairs of foreign keys should result in a semantically
meaningful output.

The FR-Index is constructed as follows. Each query encountered in
the query log is modeled as a graph, where nodes represent thetables
involved in the query, and edges represent the join predicates used to
join each pair of tables. If the same table is used more than once in
the query, then it will be represented by multiple nodes in the graph.

For a node withn incoming edges, the
(

n

2

)

possible pairs of such
edges are stored in the FR-Index. Since each edge in a given pair can
either be considered as a forward or a reverse reference (depending
on which edge is traversed first), a pair of edges (e,e′) is stored twice
in the FR-Index: as (e,e′) and as (e′,e) to account for both cases.

The following example illustrates how a single query is analyzed,
and how the FR-Index is populated as a result of this analysis.

Example 9: Consider a query posed on theY-Schema that requests
for customer “John Smith” all the pairs of books written by the same
author that John has ordered within less than 30 days. The query will
look as follows.
Q1 select b1.b title, b2.b title, a1.a fname, a1.a lname

from Y Customer c1, Y Order o1, Y Order Line ol1,
Y Book b1, Y Book Author ba1, Y Author a1, Y Order o2,
Y Order Line ol2, Y Book b2, Y Book Author ba2
where c1.c id=o1.o c id and o1.o id=ol1.ol o id
and ol1.ol b id=b1.b id and b1.b id=ba1.ba b id
and ba1.ba a id=a1.a id and c2.c id=o2.o c id
and o2.o id=ol2.ol o id and ol2.ol b id=b2.b id
and b2.b id=ba2.ba b id and ba2.ba a id=a2.a id
and ba1.ba a id=ba2.ba a id and b1.b title<>b2.b title
and abs(o1.o date-o2.o date)<30 and o1.o c id=o2.o c id
and c1.c fname=‘John’ and c1.c lname=‘Smith’

The graph constructed forQ1 is shown in Figure 5(a), and Fig-
ure 5(b) shows how the FR-Index is finally populated as a result of
analyzingQ1. Thebold edges are the ones corresponding to the op-
posing references, which get stored in the FR-Index. Note that in this
case,Y Order Line andY Book Author give an example of an interest-
ing CAF-m-m relationship.2
Aggressive Chase Algorithm: Given the FR-Index, the chase algo-
rithm can now be modified as shown in Algorithm 1. Starting from a
given tableA, the algorithm will execute a series of alternatingrounds
of chase: (forward chase, reverse chase, forward chase,. . . etc). The
first round is a regular forward chase whereA is joined with all the
tables it references to create the first intermediate logical relation. The
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c1 o1 ol1 b1 ba1 a1

o2 ol2 b2 ba2

(a) Query Graph
 

(Y_Book_Author.ia_b_id, Y_Book.b_id)(Y_Order_Line.ol_b_id, Y_Book.b_id)

(Y_Order_Line.ol_b_id, Y_Book.b_id)(Y_Book_Author.ia_b_id, Y_Book.b_id)

ReverseForward

(Y_Book_Author.ia_b_id, Y_Book.b_id)(Y_Order_Line.ol_b_id, Y_Book.b_id)

(Y_Order_Line.ol_b_id, Y_Book.b_id)(Y_Book_Author.ia_b_id, Y_Book.b_id)

ReverseForward

FR-Index

(b) FR-Index

Figure 5: Q1’s query graph and the corresponding entries in the
FR-Index for Example 9.

second round is a reverse chase, where the algorithm will check each
forward reference it used in the previous round against the FR-Index.
If one or more lookups for the forward references return correspond-
ing reverse references, then the algorithm will proceed by joining the
current intermediate logical relation to all the referencing tables cov-
ered by the reverse references returned from the FR-Index. The alter-
nation between forward and reverse chase rounds will then continue,
until a forward chase round is reached, where there are no further
foreign keys to chase. The aggressive chase algorithm will then stop.

Algorithm 1 AggressiveChase(A: input table, FR-Index)
1: A = A {initialize logical relationA with input tableA}
2: F = set of forward references outgoing fromA
3: R = set of reverse references incoming toA

4: while F is not emptydo
5: {forward chase}
6: for f in F (wheref is a forward reference of the form:A.ai → B.bj )

do
7: A = output of joiningA with B
8: end for
9: {reverse chase}

10: for f in F do
11: if an entry(f, r) exists in the FR-Index (wherer is a reverse refer-

ence of the form:A.ai ← C.ck then
12: A = output of joiningA with C
13: end if
14: end for
15: {update forward and reverse references}
16: F = set of forward references outgoing fromA
17: R = set of reverse references incoming toA

18: end while
19: returnA

Note that with the above algorithm, the path from one table toan-
other in the directed tree of the generated logical relationcan contain
one or more reverse edges, and hence the two tables may not have
a common ancestor. Therefore, the aggressive chase indeed captures
the CAF-m-m relationships as long as they are deemed interesting
according to the query log.

4.3 Resolving Correspondence Conflicts
Once we have constructed all the logical relations in both schemas,

the next step is to construct the mappings between them. However,
we explained in Section 3.3 that the correspondences between the at-
tributes of the two logical relations may not be conflict-free. In this
section, we explain the process we follow in U-MAP to resolve these
conflicts, and hence find the most meaningful mapping in such situ-
ations. This is in contrast to simply generating mappings for all the
possible resolutions of the correspondence conflicts.

Problem Formulation: We will now formulate the problem of con-
flict resolution as follows. Given two logical relationsA andB with
attributes{a1, a2, . . . , aI} and {b1, b2, . . . , bJ} respectively, and a
set of correspondences in the form of(ai, bj), i ∈ [1, I ], j ∈ [1, J ],
a pair of correspondences are said to beconflicting if they were in
the form of〈(ai, bj1), (ai, bj2)〉 or 〈(ai1 , bj), (ai2 , bj)〉. In these two
cases, the attributesbj1 , bj2 , ai1 , andai2 are said to beconflicting
attributes.

Moreover, unlike the attributes of regular schema tables, each at-
tribute in a logical relation is associated with what we refer to as a

logical attribute path, which specifies how this attribute was reached
when constructing the logical relation. Hence, the same attribute from
the same table may appear multiple times in the logical relation, but
each time with a different associated path. It can be formally defined
as follows.
Definition 3: Logical Attribute Path ( LAP (a)): A logical attribute
path is a sequence ofK join predicates connecting an initial tableA0

to an attributea in some tableAK , whereK ≥ 0.
Consider thataik denotes the primary key of a tableAk, and that

ai′
k

denotes a foreign key inAk, k ∈ [0, K]. Thus, if all the join
predicates inLAP (a) represent forward references, thenLAP (a) is
given as follows.

LAP (a) = “(A0.ai′
0
= A1.ai1), (A1.ai′

1
= A2.ai2), . . . ,

(AK−1.ai′
K−1

= AK .aiK ), AK .a”.

Otherwise, if the join predicates inLAP (a) include opposing ref-
erences, thenLAP (a) is given as follows.

LAP (a) = “(A0.ai′
0
= A1.ai1), . . . , (Ak−1.ai′

k−1
= Ak.aik ),

(Ak.aik = Ak+1.ai′
k+1

), . . . , AK .a”.

In view of the above discussion, the conflict resolution problem is
to search the space of all possibleconflict-freemappings between the
attributes ofA andB, and find the mapping that is most semantically
meaningful in terms of how the attributes (with their associated paths)
are matched on both sides.
Example 10: Figure 6 shows some conflicting correspondences be-
tween the attributes of theX Order Line andY Order Line logical re-
lations. In particular, it focuses on those conflicts between the “city”
attributes on both sides. Each attribute is shown along withits path in
the figure. (Note that the table names in the paths are abbreviated for
space limitation.)2
 

LAP(a2)

"XOL.o_bill_ad_id=XAD.ad_id,XAD.ad_city"

LAP(a6)

"XOL.o_ship_ad_id=XAD.ad_id,XAD.ad_city"

LAP(a10)

"XOL.o_c_id=XC.c_id,XC.c_ad_id=XAD.ad_id,XAD.ad_city"

LAP(b2)

"YOL.ol_o_id=YO.o_id,YO.o_bill_city"

LAP(b6)

"YOL.ol_o_id=YO.o_id,YO.o_ship_city"

LAP(b10)

"YOL.ol_o_id=YO.o_id,YO.o_c_id=YC.c_id,YC.c_city"

.. ..

X-Schema

X_Order_Line Logical Relation Attributes

Y-Schema

Y_Order_Line Logical Relation Attributes

conflicting 

correspondences

..

..

..

..

..

..

Figure 6: Correspondence conflicts for all “city” attribute s when
mapping the logical relations for X Order Line and Y Order Line .

Solution Overview: Our proposed solution is centered around two
ideas, which translate into two consecutive stages.

• Attribute Grouping:The purpose of the first stage is to reduce
the size of the search space by excluding as many illogical map-
pings as possible, and hence ensure that they will not be erro-
neously selected in the following stage. This is achieved byfirst
dividing the attribute sets of each ofA andB into groups of
semantically-related attributes. Then, the only mappingscon-
sidered are those where no two attributes in the same group on
one side are mapped to two attributes in different groups on the
other side.

• Usage-based Conflict Resolution:The second stage actually se-
lects the most meaningful mapping. Its main idea is to match a
pair of attributes fromA andB only when theirusage patterns
(as reflected in their respective query logs) seem more compat-
ible compared to other alternative matches.

4.3.1 Attribute Grouping
The intuition behind this stage is based on the observation that con-

flicting attributes in a logical relation result from using the samecon-
ceptsin differentcontexts. For example, as we mentioned in Example

7



7, the logical relations forX Order Line andY Order Line both contain
multiple versions of address attributes (i.e., street, city, state,. . . , etc),
where each version corresponds to a different context (e.g., billing ad-
dress, shipping address, customer address,. . . , etc).

Formally speaking, the full context of an attributea in a logical
relation is given byLAP (a). Consequently, an attributea is said to
have a more similar context to attributeb compared to attributec if
LAP (a) andLAP (b) share a longer prefix compared toLAP (a)
andLAP (c).

The idea of grouping is to ensure that attributes having similar con-
texts are grouped together. This way, we can match whole groups
of attributes across the source and target logical relations. This ap-
proach is in contrast to matching individual attributes, which may
lead to matching two attributes in the same context on one side to
two attributes in two different contexts on the other side, which would
clearly result in a wrong mapping.

Goal: Our goal is to generate attribute groups that satisfy the fol-
lowing properties: (1) All attributes in the same group mustbe non-
conflicting with one another; (2) Given any two attributesa andb in
two different groupsG1 andG2 respectively, the common prefix of
LAP (a) andLAP (b) cannot be longer than the common prefix of
LAP (a) andLAP (c), for any other attributec in G1; and (3) The
number of generated groups must be minimal given that they satisfy
the above two properties.

The first property ensures that matching attributes from onegroup
on one side to another group on the other side will not involveany
further conflict resolution. The second property ensures that attributes
within the same group are closer to each other, in terms of their con-
texts, compared to attributes in other groups. Finally, thethird prop-
erty ensures that groups satisfying the first two propertiesare not un-
necessarily split into smaller subgroups, which in turn ensures that the
space of possible mappings to be explored is kept to a minimum.

Attribute Grouping Algorithm: The input to our grouping algo-
rithm is the list of all conflicting attributes in the logicalrelation, along
with their paths. The output is a list of groups of attributessatisfying
the properties described above. The algorithm operates as follows.
For each conflicting attributea, LAP (a) is inserted into atrie, or
a prefix tree. Briefly, a trie is a tree structure for efficiently storing
strings (logical attribute paths in our case). Each leaf node stores one
of the inserted paths. Internal nodes store the common prefixfor all
the paths stored in its descendant nodes. Each node also maintains
pointers to the set of attributes represented by its descendants (and
hence are considered to be represented by that node as well).

The populated trie is then used to partition the attributes into groups
as follows. We perform a depth first search starting from the root
node. For each visited node, if some attributes in the set it repre-
sents conflict with one another, then this set cannot be considered as
a group, and its descendant nodes are visited in the standarddepth
first search order (i.e., the set of attributes must be further split). Con-
versely, if the set of attributes in the visited node are not conflicting
with one another, then the set will be considered as one of theoutput
groups, and none of node’s descendants will be visited (i.e., no further
splitting is performed). The pseudocode for this algorithmhas been
omitted for space limitations.

Example 11: Figure 7 shows how the conflicting attributes are
grouped in theY Order Line logical relation. The list of such conflict-
ing attributes, along with their paths, is given in Figure 7(a). After all
the paths are inserted into a trie, the populated trie will then look as
shown in Figure 7(b). The output groups in this case are the sets of
attributes associated with each one of the second-level nodes (high-
lighted nodes). This is because they are all conflict-free, as opposed
to the set of attributes associated with the root node (e.g.,b2, b6, and
b10 in the root node are all “city” attributes, and hence they conflict
with one another).2

Note that the attribute grouping stage is optional, in the sense that
conflict resolution (described next) can occur even if the attributes
were not grouped. However, we found in our experiments that the
grouping constraints introduced in this stage indeed help in protecting
the next stage from making wrong decisions, and hence improve the
overall quality of the generated mappings.

4.3.2 Usage-based Conflict Resolution
The goal of this stage is to match the groups generated duringthe

attribute grouping stage between the source and target logical rela-
tions. (If no grouping was performed, then each individual attribute
will be considered as a group.) The straightforward approach would
be to match the common path prefixes defining the shared context
among the attributes in each group.

For example, the common path prefixes for the attributes in the
two groups representing the billing and shipping addressesin the
logical relation of X Order Line are “(X Order Line.ol bill ad id
= X Address.ad id),” and “(X Order Line.ol ship ad id =
X Address.ad id),” respectively. Similarly, for the logical rela-
tion of Y Order, the common prefixes for the attributes in the two
corresponding groups are “Y Order.o bill ” and “Y Order.o ship ”
respectively.

Clearly, in this case, measuring the textual similarity between the
prefixes on each side can lead us to the correct matching. For instance,
we can break up each prefix into a set of text fragments and then
measure the Jaccard similarity coefficient between the resulting sets.
However, this approach will not be useful if the attribute naming was
not similar in both schemas – for example, ifo bill city ando ship city
are instead namedo city1 ando city2. An even more extreme example
is when the two schemas are in two different languages.

For this reason, we do not assume that textual similarity between
the prefixes always exists, and instead we rely on a differentsource of
information. In particular, we assume that a group of attributes rep-
resenting certain concepts in a given context are expected to exhibit
differentusage patternscompared to another group of attributes rep-
resenting the same concepts but in a different context. For example,
the usage of the billing address attributes can be differentfrom the
usage of the shipping address attributes as reflected in the query log.

Usage-Based Schema Matching:The idea of relying on the usage
information for matching attributes has already been proposed in [10].
However, the focus in [10] was on full-fledged schema matching. In
our case, we need to match the attributes of two logical relations rather
than two schemas. Moreover, the fact that the same schema attribute
may occur multiple times in a logical relation poses new challenges
which were not addressed in [10].

The technique proposed in [10] can be summarized as follows.It
relies on collecting statistical information from the query logs for each
attribute, or each pair of attributes (e.g., their co-occurrence frequency
in the select clause, or in theselect andwhere clauses respectively,
and so on). Then those collected statistics are compared across the
two schemas. The set of attribute correspondences, which result in the
highest similarity for the collected statistics in both schemas (based
on a scoring function described in [10]), is returned as the schema
matching output.

A New Matching Problem: In our problem setting, however, we
found that before we can match the attributes of logical relations
as described above, a totally separatematching problemneeds to be
solved first – one that requires a new strategy too. In particular, the
statistics collected from the query logs for those attributes which ap-
pear multiple times in the logical relation must now be splitacross the
different versions of each such attribute. For this purpose, each occur-
rence of this attribute in the query log must bematchedto one of the
versions in the logical relation. This way we can correctly account for
the statistics pertaining to each individual version.

Matching in this scenario will becontext-based– if an attribute oc-
curs in a query in acontextsimilar to that of a given version of the
same attribute in the logical relation, then they are matched together.
We call this problemattribute context matching. To understand how
we address this problem, we will explain next how we specify at-
tribute contexts when they occur in logical relations and inqueries,
and how we actually match them.

Attribute Contexts in Logical Relations: As we mentioned earlier,
the context of an attributea is generally determined based on its path,
LAP (a). This path, however, can sometimes be too long, and hence
represents a very specific context, which will unlikely match with the
contexts found in the query log. In principle, we only need the context
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P(b1):   "YOL.ol_o_id=YO.o_id,YO.o_bill_street"
P(b2):   "YOL.ol_o_id=YO.o_id,YO.o_bill_city"
P(b3):   "YOL.ol_o_id=YO.o_id,YO.o_bill_state"
P(b4):   "YOL.ol_o_id=YO.o_id,YO.o_bill_cntry"
P(b5):   "YOL.ol_o_id=YO.o_id,YO.o_ship_street"
P(b6):   "YOL.ol_o_id=YO.o_id,YO.o_ship_city"
P(b7):   "YOL.ol_o_id=YO.o_id,YO.o_ship_state"
P(b8):   "YOL.ol_o_id=YO.o_id,YO.o_ship_cntry"
P(b9):   "YOL.ol_o_id=YO.o_id,YO.o_c_id=YC.c_id,YC.c_street"
P(b10):  "YOL.ol_o_id=YO.o_id,YO.o_c_id=YC.c_id,YC.c_city"
P(b11):  "YOL.ol_o_id=YO.o_id,YO.o_c_id=YC.c_id,YC.c_state"
P(b12):  "YOL.ol_o_id=YO.o_id,YO.o_c_id=YC.c_id,YC.c_cntry"

(a) Paths of conflicting attributes in the
X Order Line logical relation

 

Prefix: “YOL.ol_o_id=YO.o_id,YO.o_”
Attributes: {{b1,b5,b9},{b2,b6,b10},{b3,b7,b13},{b4,b8,b12}}

Prefix: “bill_”
Attributes: {{b1},{b2},{b3},{b4}}

Prefix: “ship_”
Attributes: {{b5},{b6},{b7},{b8}}

Prefix: “c_id=YC.c_id,YC.c_”
Attributes: {{b9},{b10},{b11},{b12}}

“street”
{{b1}} “city”

{{b2}} “state”
{{b3}} “cntry”

{{b4}}

“street”
{{b5}} “city”

{{b6}} “state”
{{b7}} “cntry”

{{b8}}

“street”
{{b9}} “city”

{{b10}} “state”
{{b11}} “cntry”

{{b12}}

(b) The trie built for all the paths in (a)

Figure 7: Attribute grouping for the Y Order Line logical relation. The output groups of attributes are highlighted.

of an attribute to be specific enough todistinguishit from the contexts
of the other versions of the same attribute in the logical relation.

Let us consider that attributes{a1, a2, . . . , an} in a logical relation
A are different versions of the same attributea in some tableA. The
paths of all attributesai, i ∈ [1, n], will have the same beginning
(the root of the logical relation) and ending (attributea). Only the
internal components in these paths are what distinguish them from
one another. Hence, the least specific path for an attribute in a logical
relation which can still distinguish it from all other attributes in the
same logical relation is given by the following definition.

Definition 4: Minimal Distinguishing Logical Attribute Pat h
(MDLAP (a)): Given an attributea in a logical relationA, the min-
imal distinguishing logical attribute path ofa, or MDLAP (a), is
defined as the minimalsuffix ofLAP (a), such that there does not ex-
ist an attributeb in A, whereMDLAP (a) is also a suffix ofLAP (b).

In conclusion, for the purpose of attribute context matching across
logical relations and queries, the context of an attributea in a logical
relation is given byMDLAP (a).

Attribute Contexts in Queries: In order to identify the context of the
attributes appearing in a query, we first need to build its query graph
as described in Section 4.2. Then, using this graph, we can compute
the path of join predicates leading to the table instance where each
attribute belongs. This is achieved by starting form the node in the
graph representing the attribute’s table instance, and then visiting the
chain of its ancestor nodes in the graph. The format of this path for an
attributea will be identical to that ofLAP (a) given in Definition 3.
However, we will denote the path extracted from a query byQAP (a)
– short forquery attribute path.

The main difference between a query and a logical relation isthat
the former is represented by a general directed graph, whilethe latter
is represented by a rooted directed tree. As a result, each attribute in a
logical relation will only have one path starting from the root. But in
theory, an attribute in a query may have multiple paths. (In our run-
ning example, for instance, a query may request all addresses which
were used both as billing and shipping addresses for the sameorder.
In this case, each address attribute will have two paths corresponding
to its billing and shipping roles.) Therefore, for the sake of generality,
an attribute in a query is allowed to have multiple contexts depending
on how many paths are discovered for it in the query.

Context Matching: To decide whether an attributeaq appearing in
a query is actually an occurrence of an attributeal appearing in a
logical relation, we need to first match their recognized contexts (or
paths). For this purpose, we use the following strategy. Foreach
pathQAPi(aq) associated withaq, if MDLAP (al) is a suffix of
QAP (aq), thenaq is considered to be an occurrence ofal in the
query.

This criterion guarantees that given the context ofaq in the query,
aq will be unambiguously matched to a single attribute,al, in the log-
ical relation. This is because the context ofal is already known to be
unique in the logical relation. And since the context foraq must beas
specific as, or even more specific than,that ofal, thenaq cannot be
matched to any other attribute in the logical relation giventhat con-

text. In caseaq has more than one context (as discussed earlier), then
it may be matched to more than one attribute in the logical relation –
one for each such context.
By solving the context matching problem as described above,we
can then directly apply the usage-based matching techniquedescribed
in [10] to resolve the correspondence conflicts across the two logical
relations, and thereby find the most meaningful conflict-free mapping.

5. EVALUATION
To evaluate our approach, we have conducted experiments in two

main scenarios: the bookstores scenario, and the life sciences sce-
nario, as will be described next. Unfortunately, research benchmarks
such as STBenchmark [2] were not suitable for our experiments be-
cause they did not include query log information, which is needed for
the operation of U-MAP.

5.1 Bookstores Scenario
In this section, we describe an experimental study whose goal is

to measure the effect of each of the new features introduced in the
U-MAP system on the quality of the generated mappings, in com-
parison with the classical RIC-based approach. We also study the
performance of the mapping generation process.
Dataset: We have considered schemas from the bookstores domain,
based on the industry-standard TPC-W benchmark [27]. TPC-W
gives the specifications for building an online bookstore, including
the database schema, the data stored in it, and the system workload.
In order to simulate the presence of two different bookstoresystems,
we created two perturbed versions of the specified schema, very simi-
lar to those shown in Figure 1. The schemas used in the experiments,
however, contain more tables (e.g. related to the shopping cart infor-
mation), and more attributes (e.g., book subjects and stocklevels). In
summary, the two schemas used in our experiments contain a total of
18 tables and 82 attributes, covering 30 different correspondences.

In order to generate the query logs, we used the Wisconsin imple-
mentation of TPC-W [28], and ran the bookstore system under the
different workload mixes specified by the benchmark. In particular,
there are three such mixes: a browsing mix, a shopping mix, and an
ordering mix, where the read-only Web interactions constitute 95%,
80%, and 50% respectively. By running the system under each mix,
we could generate two corresponding query logs for the source and
target schemas. The query logs were generated by re-writingthe orig-
inal queries so that they conform to each of the two schemas. To
ensure heterogeneity, we assumed that the two schemas were associ-
ated with the two most different query logs (browsing for thesource,
and ordering for the target). A single run of each workload mix was
performed by running 30 emulated browsers, which simultaneously
submit requests to the bookstore system for about 3 hours. These
runs resulted in query logs containing 5,231 and 11,424 queries for
the source and target schemas respectively.

It is worth noting that TPC-W is focused on a single use case for the
bookstore database, namely that of the bookstore’s online customers.
Hence, it does not account for other typical use cases of the same
database, such as the queries made by the shipping department, the
accounting department, etc. In the query logs we used, we tried to
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account for those use cases as well, while making the smallest pos-
sible changes to the original query logs. In particular, we assumed
that queries requesting the information of specific orders are not only
coming from the online customers. But they might also be coming
from the shipping department (which will normally be interested in
the order’s shipping address), and the accounting department (which,
in contrast, will be interested in the billing address). We also assumed
that the requests of the accounting department are generally more fre-
quent than those of the shipping department. The rationale is that,
unlike the accounting department, the shipping departmentis only
concerned with an order until it gets shipped.

Methodology: We implemented the U-MAP system such that all of
its new features can either be enabled or disabled. In particular, we
refer to the following four features: merging sibling relations (MSR),
aggressive chase (AC), attribute grouping (AG), and usage-based con-
flict resolution (UCR). To indicate that a given feature is disabled, we
prefix it with “!” (e.g., “!AC” implies that aggressive chaseis not
used). Clearly, if all four features are disabled, then U-MAP will be-
have similar to a classical RIC-based mapping system.

In the experiments, we run U-MAP using its 16 possible configura-
tions. For each run, we measure the precision and recall by comparing
the generated mappings against a set of manually-created ground truth
mappings. Both the generated and ground truth mappings represent
the set ofminimizedmappings (i.e., they are the outcome of step 3
described in Section 2.3.1). For our experimental setting,we found
the total number of ground truth mappings to be 15. Moreover,we
also measured the processing time given the different configurations
of U-MAP, averaged over 20 independent runs each. The experiments
were conducted on a 4-core Windows 7 machine with 2.66 GHz core
speed and 6GB of RAM.

Unlike the RIC-based approach, we did not directly compare U-
MAP to the semantic approach in our experiments. Beside the fact
that no implementation for the semantic approach was available to us,
we were also more interested in the general case, where a conceptual
model does not necessarily exist. (In fact, no conceptual models were
available for the bookstore schemas we used.) Moreover, we could
show in Section 3, that even in the presence of the conceptualmodels,
the semantic approach will neither help in discovering someof the
meaningful logical relations, nor will it help in resolvingcorrespon-
dence conflicts.
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Figure 8: Precision and recall for the different U-MAP configura-
tions, including the classical RIC configuration.

5.1.1 Quality Study
Overview: Figure 8 shows the precision and recall measurements for
each of the 16 configurations of U-MAP. Figure 8 shows that the best
configuration is where all the new features are enabled. Thisconfigu-
ration resulted in a precision and recall of 0.93 and 0.87 respectively.
In particular, exactly 14 mappings were generated with one false pos-
itive and two false negatives.

The false positive is because of generating an incorrect map-
ping between the logical relations ofX Buyer (the super relation of
X Customer andX Distributer) andY Order, which incorrectly maps
the customer address attributes inX Buyer to the shipping address at-
tributes inY Order.

The reason for this glitch is that the highest-score mapping(based
on the scoring function described in [10]) between the two logical re-
lations is discarded during the minimization step despite being the
correct mapping. However, we have set our implementation such
that if the highest-score mapping is discarded, it getsreplacedwith
the second highest-score mapping, and so on. We found that this
replacement strategy generally leads to better results, compared to
no-replacement. In some cases however (as in this case), it results
in generating incorrect mappings. The choice of replacement versus
no-replacement is controlled by a configurable parameter inU-MAP.

The two false negatives are because we assumed that there aretwo
ground truth mappings between the logical relations ofX Address
andY Order, and similarly between those ofX Country andY Order.
These mappings correspond to mapping the address information once
to the billing address inY Order, and once to the shipping address.
In U-MAP, however, we only generate the highest-score mapping be-
tween each pair of logical relations, and hence the second ground truth
mapping (which scored less) was missed.

Another observation from Figure 8 is that the precision is almost
zero whenever both AG and UCR are both disabled (including the
RIC configuration). The reason is that in all of these cases, the num-
ber of incorrectly generated mappings is exponentially large, because
all the possible mappings for all possible conflict resolutions are gen-
erated without any grouping constraints.

It is also worth mentioning that in all of our experiments, executing
each of MSR, AC, and AG has always been accurate; i.e., overlap-
ping sibling relations were correctly detected and merged whenever
MSR was enabled, meaningful reverse references were correctly de-
tected and chased whenever AC was enabled, and the attributes were
correctly grouped whenever AG was enabled. In what follows,we
study the impact of each individual new feature on the quality of the
generated mappings.
Effect of Merging Sibling Relations: To assess the impact of MSR,
we will compare the best configuration, where all new features are
enabled, to that where all are enabled except for MSR. The precision
and recall dropped from 0.93 and 0.87 for the former configuration to
0.56 and 0.67 respectively for the latter configuration. In particular,
in the latter configuration, 18 mappings are generated with 8false
positives and 5 false negatives (compared to 1 and 2 respectively for
the former).

Clearly, the false positives in this case are mostly becauseof gen-
erating mappings involvingX Customer andX Distributor, while the
false negatives are because ofnot generating the mappings involving
X Buyer.
Effect of Aggressive Chase:The configuration where all new fea-
tures are enabled except for AC results in a precision and recall of
0.79 and 0.73 respectively. In this case, exactly 14 mappings are gen-
erated, similar to the best configuration. However, unlike the best con-
figuration, 3 false positives and 4 false negatives occur. Asexpected,
the additional false positives are due to the generation of mappings
involving the chase ofY Order Line without including the author in-
formation. Also, the additional false negatives are attributed tonot
generating the mappings involving the chase ofY Order Line with the
author information included.
Effect of Attribute Grouping: When using the configuration where
all the new features are enabled except for AG, we find that thepre-
cision and recall drop to 0.75 and 0.8 compared to 0.93 and 0.87 re-
spectively, when all features are enabled, including AG. These figures
correspond to 16 generated mappings, with 4 false positivesand 3
false negatives.

In the absence of grouping constraints, the conflict resolution step
will have to search for the best mapping within a large numberof
possible conflict resolutions. For this reason, it becomes more prone
to errors. And indeed, this is what we observed in this experiment.
Both the false positives and false negatives occurred, precisely, be-
cause some of the generated mappings incorrectly mapped address
attributes from the same group in theX-Schema to address attributes
in two different groups in theY-Schema. For example, the mapping
between the logical relations ofX Address andY Order mapped the
street, city, and country attributes in theX-Schema to their corre-
spondingcustomeraddress attributes in theY-Schema. Conversely,
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however, the city attribute in theX-Schema was mapped to theship-
ping city in theY-Schema.

Effect of Conflict Resolution: Figure 8 shows that the configuration
where all the new features are enabled except for UCR, achieves a
recall of 1. This is expected because with no conflict resolution, the
mappings corresponding to all possible resolutions are generated, in-
cluding all the desirable ones. The precision however dropsfrom 0.93
to 0.55, compared to the best configuration. Clearly, the reason is that
many incorrect mappings are also generated in this case. In particular,
27 mappings are generated for this configuration. This number goes
up to 2763 generated mappings for the configuration where both AG
and UCR are disabled (i.e., with no grouping constraints).

5.1.2 Performance Study
Although the mapping generation process is typically a one-time

offline process, and hence the computational efficiency comes at a
lower priority compared to the quality of the generated mappings – we
still, however, report here the performance results in our experiments
to demonstrate the practicality of U-MAP.

In terms of the processing time, the configuration where all the new
features were enabled took about 12.5 seconds to generate all the map-
pings. The remaining configurations ranged from 0.3 to 16 seconds,
except for the four configurations where both MSR and AG were dis-
abled, which took several hours each. These four cases required trying
all the possible ways to match 16 address attributes on the source side
with 12 address attributes on the target side. Additionally, the two
target attributesc uname and c passwd had 4 different ways to be
matched to the source attributes:c uname, c passwd, d uname, and
d passwd. This striking difference in the processing time underscores
the value of the “merging sibling relations” and “attributegrouping”
features in U-MAP.

5.2 Life Sciences Scenario
To further assess the validity of our approach, we report in this sec-

tion our experience with a larger-scale real-world data setfrom the
life sciences domain. In this scenario, we only focus on one system
(as opposed to two parallel systems serving as the source andthe tar-
get). This is primarily because it is the one where information on
both its schema and its queries were available to us. While measuring
the accuracy and performance of the complete mapping process is not
possible in this case, studying this particular system was still quite
helpful in showing that: (1) the issues U-MAP is addressing are in-
deed likely to occur in real-world schemas, and (2) the usageinforma-
tion can help us better understand the semantics of a database schema,
and hence perform a better job in mapping it to other schemas.

In particular, we could obtain the schema of a functional genomics
database [4] from its authors. The database keeps track of millions
of biological measurements collected for over 60,000 tissue samples
of the Arabidopsis plant, including both mutant and normal samples.
It has been in operation for over four years serving biologists world-
wide, who are interested in this particular plant.

The schema, whose layout is shown on the right side of Figure 9,
contains 35 tables and 273 attributes. We could not get access to the
full-fledged query log for this database. However, we could obtain a
list of 73 query templates(or parameterized queries), which are em-
bedded in the source code of the application that runs on top of it. Al-
though the frequency information for these queries was missing, they
were still an excellent source of information for the usage patterns of
the different tables and attributes in the schema. Table 1 summarizes
some statistics, which characterize the schema and querieswe con-
sider in this scenario. We now discuss how such characteristics can
highlight the value of our newly introduced features in U-MAP.

Sibling Relations: While this schema does contain 6 sibling relations
(two groups of three relations each), none of them is overlapping.
However, thepeople table (magnified in the left side of Figure 9) in
fact represents different types of people: customers requesting the
analysis, providers of the samples, specialists who plant and harvest
the samples, and analysts who collect and analyze the measurements.
Therefore, a very likely alternative design would have a separate table
assigned to each type of people. Moreover, the roles of thesepeople
often overlap, causing such tables to become overlapping sibling rela-

Table 1: Statistics from the life sciences scenario.
Schema and Queries

# tables 35
# attributes 273

# query templates 73
Sibling Relations

# sibling relations 6
# overlapping sibling relations 0

Aggressive Chase
# pairs of opposite edges 106

# interesting pairs of opposing references 3
# logical relations using opposing references 7

Conflict Resolution
# logical relations with conflicting attributes 16
# conflicting attributes in all logical relations 1267

tions. For example, the analyst can also be the person who plants and
harvests the sample, and so on. In this case, we can only avoidhav-
ing duplicate records in the target database, if we appropriately merge
those overlapping sibling relations prior to mapping generation.
Aggressive Chase:We analyzed all the referential integrity con-
straints in the schema and found that the overall number of pairs of
opposing references is 106. Moreover, by analyzing the queries asso-
ciated with the schema, we discovered that 3 out of those 106 pairs
are interesting. An interesting pair is one that is used to join three ta-
bles in some query, and hence suggests that their attributesshould be
associated. When applying the aggressive chase, the discovered inter-
esting pairs are used in constructing 7 different logical relations. To
appreciate the significance of this finding on the quality of the gener-
ated mappings (between this schema and any other schema), wenote
that all mappings involving any of the 7 aforementioned logical re-
lations will be missing important associations, and hence considered
incorrect, unless the aggressive chase is applied.
Conflict Resolution: The schema in Figure 9 contains numerous
cases where one table refers to another table multiple times, and for
a different purpose each time (similar to the billing and shipping ad-
dresses in the bookstores scenario). For example, the tablecalled
trayinfo (shown in the left side of Figure 9, and which covers infor-
mation about each experiment for planting sample tissues) references
the people table three times to track the persons who planted, har-
vested, and analyzed the results for the tissue sample. It also refer-
ences a table calledtypedet (not magnified in the figure, however, it
is a general-purpose table used to maintain the possibletypesof dif-
ferent concepts in the schema) twice – once to track the type of the
tissue being planted, and another for the growing medium type.

As a result of these and many other similar cases in the schema, 16
of the constructed logical relations were found to contain atotal of
1267 conflicting attributes(!). Considering the number of mappings
these logical relations will be involved in, and the number of corre-
spondence conflicts they will generate, we can immediately realize
how impractical it is to leave the conflict resolution task for the user
to perform manually in complex real-world scenarios.

6. RELATED WORK
The problem of mapping generation has received a lot of attention,

especially in the last decade(e.g., [3, 6, 9, 11, 13, 21, 23]). In the con-
text of the Clio project, several techniques were proposed for mapping
discovery, first for relational data sources [21], and then for XML data
sources [23]. Later, the notion of “nested mappings” was introduced
in [13], which showed how we can combine multiple mappings to-
gether into a single nested mapping.

Besides Clio, other research efforts were made for the discovery of
complex mappings beyond the simple attribute correspondences. The
semantic approach [3] described in Section 2 is an example. As we al-
ready mentioned, a key drawback in this approach is that the concep-
tual models, which it relies upon, are not often present in real-world
scenarios. iMap [9] focuses on finding complex relations between
attributes in both schemas such asprice=rate*(1+tax). Bohannon et
al. [6] introducedcontextual schema matching, in which a match be-
tween a pair of attributes is valid only when certain conditions are met
in the data instances.

None of the above techniques, however, relied on query logs.Only
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Figure 9: The life sciences schema (right side) with the dashed rectangle containing thepeople and trayinfo tables magnified (left side).

in a recent overview paper on the Clio project [11], it was briefly
mentioned that query logs can be used to find associations between
attributes. The paper essentially refers to non-RIC-basedassociations
like having the first two letters in the course ID for instanceequal to
the department ID. This idea is complementary to the techniques we
propose in this paper.

More recently, several works have focused on the post mapping
generation phase, where the generated mappings are re-written to
obtain a new set of mappings with desirable properties. For exam-
ple, [26, 19] are two independent approaches for re-writingmappings
to generate SQL scripts capable of computing what is known asthe
core solutionfor a data exchange problem [12]. Also, [14] shows
how schema mappings can be normalized in the same spirit in which
relational schemas are normalized. The technique proposedin [18]
addresses the situation where key constraints and functional depen-
dencies (egds) hold on the target. Given a mapping scenario with s-t
tgds along with target egds, a best-effort algorithm is given to re-write
this scenario into one with no egds, which can be efficiently executed.
However, we explained in Section 3.1 that this technique canhandle
the problem of merging sibling relations, but not when the key at-
tributes are not mapped across the source and the target. Hence, the
above works either do not consider the same problems we address in
this paper, or only handle special cases for some of them. It would
be useful, however, to have them incorporated into the “minimization
step” in Figure 3.

As described in Section 3.3, Muse [1] and +Spicy [20] attemptto
solve the problem of unresolved correspondences. However,their so-
lutions involve substantial manual labor and can be tediousfor large
and complex schemas. Our work is also related to the usage-based
schema matching technique presented in [10] in the sense that they
both exploit the query logs. However, as we explained in Section 4.3,
this work is only focused on the generation of simple attribute corre-
spondences across two schemas.

7. CONCLUSION
We have presented U-MAP, a schema mapping system, which em-

phasizes the value of the usage information in the query logsto ad-
dress several unresolved problems in the schema mapping area. We
also verified the effectiveness and efficiency of U-MAP by running it
on realistic databases from the retail and life sciences domains. Our
results suggest that the best quality for the generated mappings is ob-
tained when all the new features in U-MAP are turned on.
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