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Abstract

With respect to large-scale, static, Linked Data corpora, in this paper we discuss scalable and distributed methods for entity
consolidation (aka. smushing, entity resolution, object consolidation, etc.) to locate and process names that signify the same
entity. We investigate (i) a baseline approach, which uses explicit owl:sameAs relations to perform consolidation; (ii) extended
entity consolidation which additionally uses a subset of OWL 2 RL/RDF rules to derive novel owl:sameAs relations through the
semantics of inverse-functional properties, functional-properties and (max-)cardinality restrictions with value one; (iii) deriving
weighted concurrence measures between entities in the corpus based on shared inlinks/outlinks and attribute values using
statistical analyses; (iv) disambiguating (initially) consolidated entities based on inconsistency detection using OWL 2 RL/RDF
rules. Our methods are based upon distributed sorts and scans of the corpus, where we deliberately avoid the requirement for
indexing all data. Throughout, we offer evaluation over a diverse Linked Data corpus consisting of 1.118 billion quadruples
derived from a domain-agnostic, open crawl of 3.985 million RDF/XML Web documents, demonstrating the feasibility of our
methods at that scale, and giving insights into the quality of the results for real-world data.
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1. Introduction

Over a decade since the dawn of the Semantic Web,
RDF publishing has begun to find some traction through
adoption of Linked Data best practices as follows:

(i) use URIs as names for things (and not just docu-
ments);

(ii) make those URIs dereferencable via HTTP;
(iii) return useful and relevant RDF content upon

lookup of those URIs;
(iv) include links to other datasets.

Email addresses: aidan.hogan@deri.org (Aidan Hogan),
antoine.zimmermann@insa-lyon.fr (Antoine Zimmermann),
juergen.umbrich@deri.org (Jürgen Umbrich),
axel.polleres@siemens.com (Axel Polleres),
stefan.decker@deri.org (Stefan Decker).

The Linked Open Data project has advocated the goal
of providing dereferencable machine readable data in
a common format (RDF), with emphasis on the re-use
of URIs and inter-linkage between remote datasets—in
so doing, the project has overseen exports from corpo-
rate entities (e.g., the BBC, BestBuy, Freebase), gov-
ernmental bodies (e.g., the UK Government, the US
government), existing structured datasets (e.g., DBPe-
dia), social networking sites (e.g., flickr, Twitter, live-
journal), academic communities (e.g., DBLP, UniProt),
as well as esoteric exports (e.g., Linked Open Numbers,
Poképédia). This burgeoning web of structured data has
succinctly been dubbed the “Web of Data”.

Considering the merge of these structured exports,
at a conservative estimate there now exists somewhere
in the order of thirty billion RDF triples published on
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the Web as Linked Data. 1 However, in this respect,
size isn’t everything [73]. In particular, although the
situation is improving, individual datasets are still not
well-interlinked (cf. [72])—without sufficient linkage,
the ideal of a “Web of Data” quickly disintegrates into
the current reality of “Archipelagos of Datasets”.

There have been numerous works that have looked
at bridging the archipelagos. Some works aim at align-
ing a small number of related datasets (e.g., [48,58,49]),
thus focusing more on theoretical considerations than
scalability, usually combining symbolic (e.g., reason-
ing with consistency checking) methods and similarity
measures. Some authors have looked at inter-linkage
of domain specific RDF datasets at various degrees
of scale (e.g., [61,59,38,54,46]). Further research has
also looked at exploiting shared terminological data—
as well as explicitly asserted links—to better integrate
Linked Data collected from thousands or millions of
sources (e.g., [30,50,15,35]); the work presented herein
falls most closely into this category. One approach has
tackled the problem from the publishers side, detailing a
system for manually specifying some (possibly heuris-
tic) criteria for creating links between two datasets [72].
We leave further detailed related work to Section 9.

In this paper, we look at methods to provide bet-
ter linkage between resources, in particular focusing on
finding equivalent entities in the data. Our notion of an
entity is a representation of something being described
by the data; e.g., a person, a place, a musician, a protein,
etc. We say that two entities are equivalent if they are
coreferent; e.g., refer to the same person, place, etc. 2

Given a collection of datasets that speak about the same
referents using different identifiers, we wish to identify
these coreferences and somehow merge the knowledge
contribution provided by the distinct parties. We call
this merge consolidation.

In particular, our work is inspired by the requirements
of the Semantic Web Search Engine project [32], within
which we aim to offer search and browsing over large,
static, Linked Data corpora crawled from the Web. 3

The core operation of SWSE is to take user keyword
queries as input, and to generate a ranked list of match-
ing entities as results. After the core components of a
crawler, index and user-interface, we saw a clear need
for a component that consolidates—by means of identi-

1 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2 Herein, we avoid philosophical discussion on the notion of iden-
tity; for interesting discussion thereon, see [26].
3 By static, we mean that the system does not cater for updates; this
omission allows for optimisations throughout the system. Instead,
we aim at a cyclical indexing paradigm, where new indexes are
bulk-loaded in the background on separate machines.

fying and canonicalising equivalent identifiers—the in-
dexed corpus: there was an observable lack of URIs such
that coreferent blank-nodes were prevalent [30] even
within the same dataset, and thus we observed many
duplicate results referring to the same thing, leading to
poor integration of data from our source documents.

To take a brief example, consider a simple exam-
ple query: “WHO DOES TIM BERNERS-LEE KNOW?”.
Knowing that Tim uses the URI timblfoaf:i to refer
to himself in his personal FOAF profile document, and
again knowing that the property foaf:knows relates peo-
ple to their (reciprocated) acquaintances, we can formu-
late this request as the SPARQL query [53] as follows:

SELECT ?person
WHERE {
timblfoaf:i foaf:knows ?person .

}

However, other publishers use different URIs to iden-
tify Tim, where to get more complete answers across
these naming schemes, the SPARQL query must use
disjunctive UNION clauses for each known URI; here we
give an example using a sample of identifiers extracted
from a real Linked Data corpus (introduced later):

SELECT ?person
WHERE {
{ timblfoaf:i foaf:knows ?person . }
UNION { identicau:45563 foaf:knows ?person . }
UNION { dbpedia:Berners-Lee foaf:knows ?person . }
UNION { dbpedia:Dr._Tim_Berners-Lee foaf:knows ?person . }
UNION { dbpedia:Tim-Berners_Lee foaf:knows ?person . }
UNION { dbpedia:TimBL foaf:knows ?person . }
UNION { dbpedia:Tim_Berners-Lee foaf:knows ?person . }
UNION { dbpedia:Tim_berners-lee foaf:knows ?person . }
UNION { dbpedia:Timbl foaf:knows ?person . }
UNION { dbpedia:Timothy_Berners-Lee foaf:knows ?person . }
UNION { yagor:Tim_Berners-Lee foaf:knows ?person . }
UNION { fb:en.tim_berners-lee foaf:knows ?person . }
UNION { swid:Tim_Berners-Lee foaf:knows ?person . }
UNION { dblpperson:100007 foaf:knows ?person . }
UNION { avtimbl:me foaf:knows ?person . }
UNION { bmpersons:Tim+Berners-Lee foaf:knows ?person . }
...

}

We see disparate URIs not only across data publishers,
but also within the same namespace. Clearly, the ex-
panded query quickly becomes extremely cumbersome.

In this paper, we look at bespoke methods for identi-
fying and processing coreference in a manner such that
the resultant corpus can be consumed as if more com-
plete agreement on URIs was present; in other words,
using standard query-answering techniques, we want
the enhanced corpus to return the same answers for the
original simple query as for the latter expanded query.

Our core requirements for the consolidation compo-
nent are as follows:
– the component must give high precision of consoli-

dated results;
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– the underlying algorithm(s) must be scalable;
– the approach must be fully automatic;
– the methods must be domain agnostic;
where a component with poor precision will lead to gar-
bled final results merging unrelated entities, where scal-
ability is required to apply the process over our corpora
typically in the order of a billion statements (and which
we feasibly hope to expand in future), where the scale
of the corpora under analysis precludes any manual in-
tervention, and where—for the purposes of research—
the methods should not give preferential treatment to
any domain or vocabulary of data (other than core
RDF(S)/OWL terms). Alongside these primary require-
ments, we also identify the following secondary crite-
ria:
– the analysis should demonstrate high recall;
– the underlying algorithm(s) should be efficient;
where the consolidation component should identify as
many (correct) equivalences as possible, and where
the algorithm should be applicable in reasonable time.
Clearly the secondary requirements are also important,
but they are superceded by those given earlier, where a
certain trade-off exists: we prefer a system that gives a
high percentage of correct results and leads to a clean
consolidated corpus over an approach that gives a higher
percentage of consolidated results but leads to a par-
tially garbled corpus; similarly, we prefer a system that
can handle more data (is more scalable), but may pos-
sibly have a lower throughput (is less efficient). 4

Thus, herein we revisit methods for scalable, pre-
cise, automatic and domain-agnostic entity consolida-
tion over large, static Linked Data corpora. In order
to make our methods scalable, we avoid dynamic on-
disk index structures and instead opt for algorithms
that rely on sequential on-disk reads/writes of com-
pressed flat files, using operations such as scans, ex-
ternal sorts, merge-joins, and only light-weight or non-
critical in-memory indices. In order to make our meth-
ods efficient, we demonstrate distributed implementa-
tions of our methods over a cluster of shared-nothing
commodity hardware, where our algorithms attempt to
maximise the portion of time spent in embarrassingly
parallel execution—i.e., parallel, independent compu-
tation without need for inter-machine coordination. In
order to make our methods domain-agnostic and fully-
automatic, we exploit the generic formal semantics of

4 Of course, entity consolidation has many practical applications
outside of our referential use-case SWSE, and is useful in many
generic query-answering secnarios—we see these requirements as
being somewhat fundamental to a consolidation component, to vary-
ing degrees.

the data described in RDF(S)/OWL and also, generic
statistics derivable from the corpus. In order to achieve
high recall, we incorporate additional OWL features
to find novel coreference through reasoning. Aiming at
high precision, we introduce methods that again exploit
the semantics and also the statistics of the data, but to
conversely disambiguate entities: to defeat equivalences
found in the previous step that are unlikely to be true
according to some criteria.

As such, extending upon various reasoning and
consolidation techniques described in previous
works [30,31,33,34], we now give a self-contained
treatment of our results in this area. In addition, we
distribute the execution of all methods over a cluster
of commodity hardware, we provide novel, detailed
performance and quality evaluation over a large, real-
world Linked Data corpus of one billion statements,
and we also examine exploratory techniques for inter-
linking similar entities based on statistical analyses,
as well as methods for disambiguating and repairing
incorrect coreferences.

In summary, in this paper we:
– provide some necessary preliminaries and describe

our distributed architecture (Section 2);
– characterise the 1 billion quadruple Linked Data cor-

pus that will be used for later evaluation of our meth-
ods, particular focusing on the (re-)use of data-level
identifiers in the corpus (Section 3);

– describe and evaluate our distributed base-line ap-
proach for consolidation, which leverages explicit
owl:sameAs relations (Section 4);

– describe and evaluate a distributed approach that ex-
tends consolidation to consider a richer OWL seman-
tics for consolidating (Section 5);

– present a distributed algorithm for determining
weighted concurrence between entities using statisti-
cal analysis of predicates in the corpus (Section 6);

– present a distributed approach to disambiguate
entities—i.e., detect likely erroneous consolidation—
combining the semantics and statistics derivable from
the corpus (Section 7);

– provide critical discussion (Section 8), render related
work (Section 9) and conclude with discussion (Sec-
tion 10).

2. Preliminaries

In this section, we provide some necessary prelimi-
naries relating to (i) RDF: the structured format used in
our corpora (Section 2.1); (ii) RDFS/OWL, which pro-
vides formal semantics to RDF data, including the se-
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mantics of equality (Section 2.2); (iii) rules, which are
used to interpret the semantics of RDF and apply rea-
soning (Sections 2.3, 2.4); (iv) authoritative reasoning,
which critically examines the source of certain types
of Linked Data to help ensure robustness of reasoning
(Section 2.5); (v) and OWL 2 RL/RDF rules: a standard
rule-based profile for supporting OWL semantics, a sub-
set of which we use to deduce equality (Section 2.6).
Throughout, we attempt to preserve notation and termi-
nology as prevalent in the literature.

2.1. RDF

We briefly give some necessary notation relating to
RDF constants and RDF triples; see [28].

RDF Constant Given the set of URI references U,
the set of blank nodes B, and the set of literals L, the
set of RDF constants is denoted by C = U ∪ B ∪ L.
As opposed to the RDF-mandated existential semantics
for blank-nodes, we interpret blank-nodes as ground
Skolem constants; note also that we rewrite blank-node
labels to ensure uniqueness per document as per RDF
merging [28].

RDF Triple A triple t := (s, p, o) ∈ G := (U∪B)×
U×C is called an RDF triple, where s is called subject,
p predicate, and o object. We call a finite set of triples
G ⊂ G a graph. This notion of a triple restricts the
positions in which certain terms may appear. We use
the phrase generalised triple where such restrictions are
relaxed, and where literals and blank-nodes are allowed
to appear in the subject/predicate positions.

RDF Triple in Context/Quadruple Given c ∈ U, let
http(c) denote the possibly empty graph Gc given by
retrieving the URI c through HTTP (directly returning
200 Okay). An ordered pair (t, c) with an RDF triple t
= (s, p, o), c ∈ U and t ∈ http(c) is called a triple in
context c. We may also refer to (s, p, o, c) as an RDF
quadruple or quad q with context c.

2.2. RDFS, OWL and owl:sameAs

Conceptually, RDF data is composed of assertional
data (i.e., instance data) and terminological data (i.e.,
schema data). Assertional data define relationships be-
tween individuals, provide literal-valued attributes of
those individuals, and declare individuals as members of
classes. Thereafter, terminological data describe those

classes, relationships (object properties), and attributes
(datatype properties) and declaratively assigns them a
semantics. 5 With well-defined descriptions of classes
and properties, reasoning can then allow for deriving
new knowledge, including over assertional data.

On the Semantic Web, the RDFS [11] and OWL [42]
standards are prominently used for making statements
with well-defined meaning and enabling such reasoning.
Although primarily concerned with describing termi-
nological knowledge—such as subsumption or equiva-
lence between classes and properties, etc.—RDFS and
OWL also contain features that operate on an asser-
tional level. The most interesting such feature for our
purposes is owl:sameAs: a core OWL property that al-
lows for defining equivalences between individuals (as
well as classes and properties). Two individuals related
by means of owl:sameAs are interpreted as referring to
the same entity; i.e., they are coreferent.

Interestingly, OWL also contains other features (on
a terminological level) that allow for inferring new
owl:sameAs relations. Such features include:
– inverse-functional properties, which act as “key prop-

erties” for uniquely identifying subjects; e.g., an
:isbn datatype-property whose values uniquely iden-
tifies books and other documents, or the object-
property :biologicalMotherOf, which uniquely iden-
tifies the biological mother of a particular child;

– functional properties, which work in the inverse di-
rection and uniquely identify objects; e.g., the prop-
erty :hasBiologicalMother;

– cardinality and max-cardinality restrictions, which,
when given a value of 1, uniquely identify subjects
of a given class; e.g., the value for the property
:spouse uniquely identifies a member of the class
:Monogamist.
Thus, we see that RDFS and OWL contain various

features that allow for inferring and supporting coref-
erence between individuals. In order to support the se-
mantics of such features, we apply inference rules, in-
troduced next.

2.3. Inference Rules

Herein, we formalise the notion of an inference rule
as applicable over RDF graphs [33]. We begin by defin-
ing the preliminary concept of a triple pattern, of which
rules are composed, and which may contain variables
in any position.

5 Terminological and assertional data are not by any means neces-
sarily disjoint. Furthermore, this distinction is not always required,
but is useful for our purposes herein.
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Triple Pattern, Basic Graph Pattern A triple pattern
is a generalised triple where variables from the set V
are allowed; i.e.: tv := (sv , pv , ov) ∈ GV, GV :=
(C∪V)×(C∪V)×(C∪V). We call a set (to be read
as conjunction) of triple patterns GV ⊂ GV a basic
graph pattern. We denote the set of variables in graph
pattern GV by V(GV).

Intuitively, variables appearing in triple patterns can be
bound by any RDF term in C. Such a mapping from
variables to constants is called a variable binding.

Variable Bindings Let Ω be the set of variable binding
V ∪ C → V ∪ C that map every constant c ∈ C to
itself and every variable v ∈ V to an element of the set
C ∪V. A triple t is a binding of a triple pattern tv :=
(sv , pv , ov) iff there exists µ ∈ Ω, such that t = µ(tv) =
(µ(sv), µ(pv), µ(ov)). A graph G is a binding of a graph
pattern GV iff there exists a mapping µ ∈ Ω such that⋃
tv∈GV µ(tv) = G; we use the shorthand µ(GV) = G.

We use Ω(GV,G) := {µ | µ(GV) ⊆ G, µ(v) = v if v /∈
V(GV)} to denote the set of variable binding mappings
for graph pattern GV in graph G that map variables
outside GV to themselves.

We can now give the notion of an inference rule, which
is comprised of a pair of basic graph patterns that form
an “IF⇒ THEN” logical structure.

Inference Rule We define an inference rule (or often
just rule) as a pair r := (Anter, Conr), where the an-
tecedent (or body) Anter ⊂ GV and the consequent
(or head) Conr ⊂ GV are basic graph patterns such
that all variables in the consequent appear in the an-
tecedent: V(Conr) ⊆ V(Anter). We write inference
rules as Anter ⇒ Conr.

Finally, rules allow for applying inference through rule
applications, where the rule body is used to generate
variable bindings against a given RDF graph, and where
those bindings are applied on the head to generate new
triples that that graph entails.

Rule Application and Standard Closure A rule ap-
plication is the immediate consequences Tr(G) :=⋃
µ∈Ω(Anter,G)(µ(Conr) \ µ(Anter)) of a rule r on

a graph G; accordingly, for a ruleset R, TR(G) :=⋃
r∈R Tr(G). Now, let Gi+1 := Gi ∪ TR(Gi) and G0 :=
G; the exhaustive application of the TR operator on a
graph G is then the least fixpoint (the smallest value for
n) such that Gn = TR(Gn). We call Gn the closure of

G wrt. ruleset R, denoted as ClR(G) , or succinctly G
where the ruleset is obvious.

The above closure takes a graph and a ruleset and re-
cursively applies the rules over the union of the original
graph and the inferences until a fixpoint.

2.4. T-split Rules

In [31,33], we formalised an optimisation based on
a separation of terminological knowledge from asser-
tional data when applying rules. Similar optimisations
have also been used by other authors to enable large-
scale rule-based inferencing [74,71,43]. This optimisa-
tion is based on the premise that, in Linked Data (and
various other scenarios), terminological data speaking
about classes and properties is much smaller than as-
sertional data speaking about individuals. Previous ob-
servations indicate that for a Linked Data corpus in the
order of a billion triples, such terminological data com-
prises of about 0.1% of the total data volume. Addi-
tionally, terminological data is very frequently accessed
during reasoning. Hence, seperating and storing the ter-
minological data in memory allows for more efficient
execution of rules, albeit at the cost of possible incom-
pleteness [74,33].

We now reintroduce some of the concepts relating to
separating terminological information [33], which we
will use later when applying rule-based reasoning to
support the semantics of OWL equality. We begin by
formalising some related concepts that help define our
notion of terminological information.

Meta-class We consider a meta-class as a class whose
members are themselves (always) classes or properties.
Herein, we restrict our notion of meta-classes to the
set defined in RDF(S) and OWL specifications, where
examples include rdf:Property, rdfs:Class, owl:-

DatatypeProperty, owl:FunctionalProperty, etc. Note
that, e.g., owl:Thing and rdfs:Resource are not meta-
classes since not all of their members are classes or
properties.

Meta-property A meta-property is one that has a
meta-class as its domain; again, we restrict our no-
tion of meta-properties to the set defined in RDF(S)
and OWL specifications, where examples include
rdfs:domain, rdfs:range, rdfs:subClassOf, owl:hasKey,
owl:inverseOf, owl:oneOf, owl:onProperty, owl:union-
Of, etc. Note that rdf:type, owl:sameAs, rdfs:label,
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e.g., do not have a meta-class as domain and so are not
considered as meta-properties.

Terminological Triple We define the set of termino-
logical triples T ⊂ G as the union of:

(i) triples with rdf:type as predicate and a meta-class
as object;

(ii) triples with a meta-property as predicate;
(iii) triples forming a valid RDF list whose head is

the object of a meta-property (e.g., a list used for
owl:unionOf, etc.).

The above concepts cover what we mean by termino-
logical data in the context of RDFS and OWL. Next,
we define the notion of triple patterns that distinguish
between these different categories of data.

Terminological/Assertional Pattern We refer to a ter-
minological -triple/-graph pattern as one whose in-
stance can only be a terminological triple or, resp., a set
thereof. An assertional pattern is any pattern that is not
terminological.

Given the above notions of terminological data/patterns,
we can now define the notion of a T-split inference
rule that distinguishes terminological from assertional
information.

T-split inference rule Given a rule r :=
(Anter, Conr), we define a T -split rule r

τ

as the triple
(AnteT

rτ
,AnteG

rτ
, Con) where AnteT

rτ
is the set of ter-

minological patterns inAnter, andAnteG
rτ

:= Anter \
AnteT

rτ
.

The body of T-split rules are divided into a set of pat-
terns that apply over terminological knowledge, and a
set of patterns that apply over assertional (i.e., any)
knowledge. Such rules enable an optimisation whereby
terminological patterns are pre-bound to generate a new,
larger set of purely assertional rules called T-ground
rules. We illustrate this with an example.

Example: Let Rprp-ifp denote the following rule

(?p, a, owl:InverseFunctionalProperty),
(?x1, ?p, ?y),
(?x2, ?p, ?y)
⇒ (?x1, owl:sameAs, ?x2)

When writing T-split rules, we denote terminological
patterns in the body by underlining. Also, we use ‘a’
as a convenient shortcut for rdf:type, which indicates
class-membership. Now take the terminological triples:

(:isbn, a, owl:InverseFunctionalProperty)
(:mbox, a, owl:InverseFunctionalProperty)

From these two triples, we can generate two T-ground
rules as follows:

(?x1, :isbn, ?y),
(?x2, :isbn, ?y)
⇒ (?x1, owl:sameAs, ?x2)

(?x1, :mbox, ?y),
(?x2, :mbox, ?y)
⇒ (?x1, owl:sameAs, ?x2)

These T-ground rules encode the terminological OWL
knowledge given by the previous two triples, and can
be applied directly over the assertional data, e.g., de-
scribing specific books with ISBN numbers. 3

2.5. Authoritative T-split Rules

Caution must be exercised when applying reasoning
over arbitrary data collected from the Web; e.g., Linked
Data. In previous works, we have encountered various
problems when naïvely performing rule-based reason-
ing over arbitrary Linked Data [31,33]. In particular,
third-party claims made about popular classes and prop-
erties must be critically analysed to ensure their trust-
worthiness. As a single example of the type of claims
that can cause issues with reasoning, we found one
document that defines nine properties as the domain
of rdf:type; 6 thereafter, the semantics of rdfs:domain

mandate that everything which is a member of any
class (i.e., almost every known resource) can be in-
ferred to be a “member” of each of the nine properties.
We found that naïve reasoning lead to ∼200× more in-
ferences than would be expected when considering the
definitions of classes and properties as defined in their
“namespace documents”. Thus, in the general case, per-
forming rule-based materialisation with respect to OWL
semantics over arbitrary Linked Data requires some crit-
ical analysis of the source of data, as per our authori-
tative reasoning algorithm. Please see [9] for a detailed
analysis of the explosion in inferences that occurs when
authoritative analysis is not applied.

Such observations prompted us to investigate more
robust forms of reasoning. Along these lines, when rea-
soning over Linked Data we apply an algorithm called
authoritative reasoning [14,31,33], which critically ex-

6 viz. http://www.eiao.net/rdf/1.0
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amines the source of terminological triples and conser-
vatively rejects those that cannot be definitively trusted:
i.e., those that redefine classes and/or properties outside
of the namespace document.

Dereferencing and Authority We first give the func-
tion http : U→ 2G that maps a URI to an RDF graph
it returns upon a HTTP lookup that returns the response
code 200 Okay; in the case of failure, the function maps
to an empty RDF graph. Next, we define the function
redir : U→ U that follows a (finite) sequence of HTTP
redirects given upon lookup of a URI, or that returns
the URI itself in the absence of a redirect or in the case
of failure; this function first strips the fragment iden-
tifier (given after the ‘#’ character) from the original
URI if present. Then we give the dereferencing function
deref : http ◦ redir as the mapping from a URI (a Web
location) to an RDF graph it may provide by means of
a given HTTP lookup that follows redirects. Finally, we
can define the authority function—that maps the URI
of a Web document to the set of RDF terms it is author-
itative for—as follows:

auth : U→ 2C

u 7→ {c ∈ U | redir(c) = u} ∪B(http(s))

where B(G) denotes the set of blank-nodes appearing
in a graph G. In other words, a Web document is au-
thoritative for URIs that dereference to it and the blank
nodes it contains.

We note that making RDF vocabulary URIs derefer-
enceable is encouraged in various best-practices [45,4].
To enforce authoritative reasoning, when applying rules
with terminological and assertional patterns in the body
we require that terminological triples are served by a
document authoritative for terms that are bound by spe-
cific variable positions in the rule.

Authoritative T-split Rule Application Given a T-
split rule and a rule application involving a map-
ping µ as before, for the rule application to be au-
thoritative there must additionally exist a µ(v) such
that v ∈ V(AnteT ) ∩ V(AnteG), µ(v) ∈ auth(u),
µ(AnteT ) ⊆ http(u). We call the set of variables that
appear in both the terminological and assertional seg-
ment of the rule body (i.e., V(AnteT )∩V(AnteG)) the
set of authoritative variables for the rule. Where a rule
does not have terminological or assertional patterns, we
consider any rule-application as authoritative. The nota-
tion of an authoritative T-ground rule follows likewise.

Example: Let Rprp-ifp denote the same rule as used in
the previous example, and let the following two triples
be given by the dereferenced document of v1:isbn, but
not v2:mbox—i.e., a document authoritative for the for-
mer term but not the latter.

(v1:isbn, a, owl:InverseFunctionalProperty)
(v2:mbox, a, owl:InverseFunctionalProperty)

The only authoritative variable appearing in both the
terminological and assertional patterns of the body of
Rprp-ifp is ?p, bound by v1:isbn and v2:mbox above.
Since the document serving the two triples is authorita-
tive for v1:isbn, the first triple is considered authorita-
tive, and the following T-ground rule will be generated:

(?x1, v1:isbn, ?y),
(?x2, v1:isbn, ?y)
⇒ (?x1, owl:sameAs, ?x2)

However, since the document is not authoritative for
v2:mbox, the second T-ground rule will be considered
non-authoritative and discarded:

(?x1, v2:mbox, ?y),
(?x2, v2:mbox, ?y)
⇒ (?x1, owl:sameAs, ?x2)

Where third-party documents re-define remote terms in
a way that affects inferencing over instance data, we
filter such non-authoritative definitions. 3

2.6. OWL 2 RL/RDF Rules

Inference rules can be used to (partially) support the
semantics of RDFS and OWL. Along these lines, the
OWL 2 RL/RDF [24] ruleset is a partial-axiomatisation
of the OWL 2 RDF-Based Semantics, which is appli-
cable for arbitrary RDF graphs and constitutes an ex-
tension of the RDF Semantics [28]; in other words,
the ruleset supports a standardised profile of reasoning
that partially covers the complete OWL semantics. In-
terestingly for our scenario, this profile includes infer-
ence rules that support the semantics and inference of
owl:sameAs as discussed.

First, in Table 1, we provide the set of OWL 2
RL/RDF rules that support the (positive) semantics of
owl:sameAs, axiomatising the symmetry (rule eq-sym)
and transitivity (rule eq-trans) of the relation. To take
an example, rule eq-sym is as follows:
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(?x, owl:sameAs, ?y)
⇒ (?y, owl:sameAs, ?x)

where if we know that (:a, owl:sameAs, :b), the rule
will infer the symmetric relation (:b, owl:sameAs, :a).
Rule eq-trans operates analogously; both together al-
low for computing the transitive, symmetric closure of
the equivalence relation. Furthermore, Table 1 also con-
tains the OWL 2 RL/RDF rules that support the seman-
tics of replacement (rules eq-rep-*), whereby data that
holds for one entity must also hold for equivalent enti-
ties.

Note that we (optionally, and in the case of later eval-
uation) choose not to support:

(i) the reflexive semantics of owl:sameAs, since re-
flexive owl:sameAs statements will not lead to any
consolidation or other non-reflexive equality re-
lations and will produce a large bulk of material-
isations;

(ii) equality on predicates or values for rdf:type,
where we do not want possibly imprecise
owl:sameAs data to affect terms in these positions.

OWL2RL
Antecedent

Consequent
assertional

eq-sym ?x owl:sameAs ?y . ?y owl:sameAs ?x .
eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .
eq-rep-s ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .
eq-rep-o ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Table 1
Rules that support the positive semantics of owl:sameAs

Given that the semantics of equality is quadratic with
respect to the A-Box, we apply a partial-materialisation
approach that gives our notion of consolidation: instead
of materialising (i.e., explicitly writing down) all pos-
sible inferences given by the semantics of replacement,
we instead choose one canonical identifier to represent
the set of equivalent terms, thus effectively compress-
ing the data. We have used this approach in previous
works [30–32], and it has also appeared in related works
in the literature [70,6], as a common-sense optimisation
for handling data-level equality. To take an example, in
later evaluation (cf. Table 10) we find a valid equiva-
lence class (set of equivalent entities) with 33,052 mem-
bers; materialising all pairwise non-reflexive owl:sameAs

statements would infer more than 1 billion owl:sameAs

relations (33,0522 - 33,052) = 1,092,434,704; further
assuming that each entity appeared in on average, e.g.,
two quadruples, we would infer an additional ∼2 bil-
lion of massively duplicated data. By choosing a single
canonical identifier, we would instead only materialise
∼100 thousand statements.

Note that although we only perform partial material-
isation, we do not change the semantics of equality: our
methods are sound with respect to OWL semantics. In
addition, alongside the partially materialised data, we
provide a set of consolidated owl:sameAs relations (con-
taining all of the identifiers in each equivalence class)
that can be used to “backward-chain” the full inferences
possible through replacement (as required). Thus, we do
not consider the canonical identifier as somehow ‘defini-
tive’ or superceding the other identifiers, but merely
consider it as representing the equivalence class. 7

Finally, herein we do not consider consolidation of
literals; one may consider useful applications, e.g., for
canonicalising datatype literals, but such discussion is
out of the current scope.

As previously mentioned, OWL 2 RL/RDF also con-
tains rules that use terminological knowledge (alongside
assertional knowledge) to directly infer owl:sameAs re-
lations. We enumerate these rules in Table 2; note that
we italicise the labels of rules supporting features new
to OWL 2, and that we list authoritative variables in
bold. 8

Applying only these OWL 2 RL/RDF rules may miss
inference of some owl:sameAs statements. For example,
consider the example RDF data given in Turtle syn-
tax [3] as follows:

# From the FOAF Vocabulary:
foaf:homepage rdfs:subPropertyOf foaf:isPrimaryTopicOf .
foaf:isPrimaryTopicOf owl:inverseOf foaf:primaryTopic .
foaf:isPrimaryTopicOf a owl:InverseFunctionalProperty .

# From Example Document A:
exA:axel foaf:homepage <http://polleres.net/> .

# From Example Document B:
<http://polleres.net/> foaf:primaryTopic exB:apolleres .

# Inferred through prp-spo1:
exA:axel foaf:isPrimaryTopicOf <http://polleres.net/> .

# Inferred through prp-inv:
exB:apolleres foaf:isPrimaryTopicOf <http://polleres.net/> .

# Subsequently, inferred through prp-ifp:
exA:axel owl:sameAs exB:apolleres .
exB:apolleres owl:sameAs exA:axel .

The example uses properties from the prominent
FOAF vocabulary, which is used for publishing per-
sonal profiles as RDF. Here, we additionally need OWL
2 RL/RDF rules prp-inv and prp-spo1—handling stan-
dard owl:inverseOf and rdfs:subPropertyOf inferenc-
ing respectively—to infer the owl:sameAs relation en-
tailed by the data.

7 We may optionally consider non-canonical blank-node identifiers
as redundant and discard them.
8 As discussed later, our current implementation requires at least
one variable to appear in all assertional patterns in the body, and
so we do not support prp-key and cls-maxqc3; however, these two
features are not commonly used in Linked Data vocabularies [29].
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OWL2RL
Antecedent

Consequent
terminological assertional

prp-fp ?p a owl:FunctionalProperty . ?x ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .
prp-ifp ?p a owl:InverseFunctionalProperty . ?x1 ?p ?y . ?x2 ?p ?y . ?x1 owl:sameAs ?x2 .

cls-maxc2
?x owl:maxCardinality 1 . ?u a ?x .

?y1 owl:sameAs ?y2 .
?x owl:onProperty ?p . ?u ?p ?y1 , ?y2 .

cls-maxqc4
?x owl:maxQualifiedCardinality 1 .

?u a ?x .
?y1 owl:sameAs ?y2?x owl:onProperty ?p .

?u ?p ?y1 , ?y2 .
?x owl:onClass owl:Thing .

Table 2
OWL 2 RL/RDF rules that directly produce owl:sameAs relations; we denote authoritative variables with bold and italicise

the labels of rules requiring new OWL 2 constructs

Along these lines, we support an extended set of
OWL 2 RL/RDF rules that contain precisely one as-
sertional pattern and for which we have demonstrated
a scalable implementation called SAOR, designed for
Linked Data reasoning [33]. These rules are listed in
Table 3, and as per the previous example, can generate
additional inferences that indirectly lead to the deriva-
tion of new owl:sameAs data. We will use these rules for
entity consolidation in Section 5.

OWL2RL
Antecedent

Consequent
terminological assertional

prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .
cls-int2 ?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1 ...?cn .
cls-uni ?c owl:unionOf (?c1 ...?ci...?cn) . ?x a ?ci ?x a ?c .

cls-svf2
?x owl:someValuesFrom owl:Thing ;

?u ?p ?v . ?u a ?x .
owl:onProperty ?p .

cls-hv1
?x owl:hasValue ?y ;

?u a ?x . ?u ?p ?y .
owl:onProperty ?p .

cls-hv2
?x owl:hasValue ?y ;

?u ?p ?y . ?u a ?x .
owl:onProperty ?p .

cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .
Table 3
OWL 2 RL/RDF rules containing precisely one assertional pattern
in the body, with authoritative variables in bold (cf. [33])

Lastly, as we discuss later (particularly in Section 7)
Linked Data is inherently noisy and prone to mistakes.
Although our methods are sound (i.e., correct) with re-
spect to formal OWL semantics, such noise in our input
data may lead to unintended consequences when apply-
ing reasoning which we wish to minimise and/or repair.
Relatedly, OWL contains features that allow for detect-
ing formal contradictions—called inconsistencies—in
RDF data. An example of an inconsistency would be
where something is a member of two disjoint classes,
such as foaf:Person and foaf:Organization; formally,
the intersection of such disjoint classes should be empty

and they should not share members. Along these lines,
OWL 2 RL/RDF contains rules (with the special sym-
bol false in the head) that allow for detecting incon-
sistency in an RDF graph. We use a subset of these
consistency-checking OWL 2 RL/RDF rules later in
Section 7 to try to automatically detect and repair un-
intended owl:sameAs inferences; the supported subset is
listed in Table 4.

OWL2RL
Antecedent

terminological assertional

eq-diff1 -
?x owl:sameAs ?y .
?x owl:differentFrom ?y .

prp-irp ?p a owl:IrreflexiveProperty . ?x ?p ?x .
prp-asyp ?p a owl:AsymmetricProperty ?x ?p ?y . ?y ?p ?x .
prp-pdw ?p1 owl:propertyDisjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y .

prp-adp
?x a owl:AllDisjointProperties .

?u ?pi ?y ; ?pj ?y . (i6=j)
?x owl:members (?p1, ..., ?pn) .

cls-com ?c1 owl:complementOf ?c2 . ?x a ?c1 , ?c2 .

cls-maxc1
?x owl:maxCardinality 0 .

?u a ?x ; ?p ?y .
?x owl:onProperty ?p .

cls-maxqc2
?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y .?x owl:onProperty ?p .
?x owl:onClass owl:Thing .

cax-dw ?c1 owl:disjointWith ?c2 . ?x a ?c1 , ?c2 .

cax-adc
?x a owl:AllDisjointClasses .

?z a ?ci , ?cj . (i6=j)
?x owl:members (?c1, ..., ?cn) .

Table 4
OWL 2 RL/RDF rules used to detect inconsistency that we
currently support; we denote authoritative variables with bold

2.7. Distribution architecture

To help meet our scalability requirements, our meth-
ods are implemented on a shared-nothing distributed ar-
chitecture [64] over a cluster of commodity hardware.
The distributed framework consists of a master machine
that orchestrates the given tasks, and several slave ma-
chines that perform parts of the task in parallel.

The master machine can instigate the following dis-
tributed operations:
– scatter: partition on-disk data using some local split

function, and send each chunk to individual slave
machines for subsequent processing;
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– run: request the parallel execution of a task by the
slave machines—such a task either involves process-
ing of some data local to the slave machine, or the
coordinate method (described later) for reorganising
the data under analysis;

– gather: gathers chunks of output data from the slave
swarm and performs some local merge function over
the data;

– flood: broadcast global knowledge required by all
slave machines for a future task.
The master machine provides input data to the slave

swarm, provides the control logic required by the dis-
tributed task (commencing tasks, coordinating timing,
ending tasks), gathers and locally perform tasks on
global knowledge that the slave machines would other-
wise have to replicate in parallel, and transmits globally
required knowledge.

The slave machines, as well as performing tasks in
parallel, can perform the following distributed operation
(at the behest of the master machine):
– coordinate: local data on each slave machine is par-

titioned according to some split function, with the
chunks sent to individual machines in parallel; each
slave machine also gathers the incoming chunks in
parallel using some merge function.
The above operation allows slave machines to reor-

ganise (split/send/gather) intermediary amongst them-
selves; the coordinate operation could be replaced by
a pair of gather/scatter operations performed by the
master machine, but we wish to avoid the channelling
of all intermediary data through one machine.

Note that herein, we assume that the input corpus is
evenly distributed and split across the slave machines,
and that the slave machines have roughly even speci-
fications: that is, we do not consider any special form
of load balancing, but instead aim to have uniform ma-
chines processing comparable data-chunks.

We note that there is the practical issue of the mas-
ter machine being idle waiting for the slaves, and, more
critically, the potentially large cluster of slave machines
waiting idle for the master machine. One could over-
come idle times with mature task-scheduling (e.g., in-
terleaving jobs) and load-balancing. From an algorith-
mic point of view, removing the central coordination on
the master machine may enable better distributability.
One possibility would be to allow the slave machines to
duplicate the aggregation of global knowledge in paral-
lel: although this would free up the master machine and
would probably take roughly the same time, duplicating
computation wastes resources that could otherwise be
exploited by, e.g., interleaving jobs. A second possibil-
ity would be to avoid the requirement for global knowl-

edge and to coordinate upon the larger corpus (e.g., a
coordinate function hashing on the subject and object
of the data, or perhaps an adaptation of the SPEEDDATE
routing strategy [51]). Such decisions are heavily in-
fluenced by the scale of the task to perform, the per-
centage of knowledge that is globally required, how the
input data are distributed, how the output data should
be distributed, and the nature of the cluster over which
it should be performed and the task-scheduling possi-
ble. The distributed implementation of our tasks are de-
signed to exploit a relatively small percentage of global
knowledge which is cheap to coordinate, and we choose
to avoid—insofar as reasonable—duplicating computa-
tion.

2.8. Experimental setup

Our entire code-base is implemented on top of stan-
dard Java libraries. We instantiate the distributed ar-
chitecture using Java RMI libraries, and using the
lightweight open-source Java RMIIO package 9 for
streaming data for the network.

All of our evaluation is based on nine machines
connected by Gigabit ethernet, 10 each with uniform
specifications, viz., 2.2GHz Opteron x86-64, 4GB
main memory, 160GB SATA hard-disks, running Java
1.6.0_12 on Debian 5.0.4.

3. Experimental corpus

Later in this paper, we discuss the performance
and results of applying our methods over a corpus
of 1.118 billion quadruples derived from an open-
domain RDF/XML crawl of 3.985 million web doc-
uments in mid-May 2010 (detailed in [32,29]). The
crawl was conducted in a breadth-first manner, extract-
ing URIs from all positions of the RDF data. Individ-
ual URI queues were assigned to different pay-level-
domains (aka. PLDs: domains that require payment,
e.g., deri.ie, data.gov.uk), where we enforced a po-
liteness policy of accessing a maximum of two URIs
per PLD per second. URIs with the highest inlink count
per each PLD queue were polled first.

With regards the resulting corpus, of the 1.118 billion
quads, 1.106 billion are unique, and 947 million are
unique triples. The data contain 23 thousand unique
predicates and 105 thousand unique class terms (terms

9 http://openhms.sourceforge.net/rmiio/
10We observe, e.g., a max FTP transfer rate of 38MB/sec between
machines.
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in the object position of an rdf:type triple). In terms
of diversity, the corpus consists of RDF from 783 pay-
level-domains [32].

Note that further details about the parameters of
the crawl and statistics about the corpus are available
in [32,29].

Now we discuss the usage of terms in a data-level
position, viz., terms in the subject position or object
position of non-rdf:type triples. 11 Since we do not
consider the consolidation of literals or schema-level
concepts, we focus on characterising blank-node and
URI re-use in such data-level positions, thus rendering
a picture of the structure of the raw data.

We found 286.3 million unique terms, of which, 165.4
million (57.8%) were blank-nodes, 92.1 million (32.2%)
were URIs, and 28.9 million (10%) were literals. With
respect to literals, each had on average 9.473 data-level
occurrences (by definition, all in the object position).

With respect to blank-nodes, each had on average
5.233 data-level occurrences. Each occurred on average
0.995 times in the object position of a non-rdf:type
triple, with 3.1 million (1.87%) not occurring in the
object position; conversely, each occurred on average
4.239 times in the subject position of a triple, with 69
thousand (0.04%) not occurring in the subject position.
Thus, we summarise that almost all blank-nodes appear
in both the subject position and object position, but
occur most prevalently in the former. Importantly, note
that in our input, blank-nodes cannot be re-used across
sources.

With respect to URIs, each had on average 9.41 data-
level occurrences (1.8× the average for blank-nodes),
with 4.399 average appearances in the subject posi-
tion and 5.01 appearances in the object position—19.85
million (21.55%) did not appear in an object position,
whilst 57.91 million (62.88%) did not appear in a sub-
ject position.

With respect to re-use across sources, each URI had a
data-level occurrence in, on average, 4.7 documents, and
1.008 PLDs—56.2 million (61.02%) of URIs appeared
in only one document, and 91.3 million (99.13%) only
appeared in one PLD. Also, re-use of URIs across doc-
uments was heavily weighted in favour of use in the ob-
ject position: URIs appeared in the subject position in,
on average, 1.061 documents and 0.346 PLDs; for the
object position of non-rdf:type triples, URIs occurred
in, on average, 3.996 documents and 0.727 PLDs.

The URI with the most data-level occur-
rences (1.66 million) was http://identi.ca/;

11Please see [32, Appendix A] for further statistics relating to this
corpus.

the URI with the most re-use across documents
(appearing in 179.3 thousand documents) was
http://creativecommons.org/licenses/by/3.0/;
the URI with the most re-use across PLDs
(appearing in 80 different domains) was
http://www.ldodds.com/foaf/foaf-a-matic. Although
some URIs do enjoy widespread re-use across different
documents and domains, in Figures 1 and 2 we give
the distribution of re-use of URIs across documents
and across PLDs, where a power-law relationship is
roughly evident—again, the majority of URIs only
appear in one document (61%) or in one PLD (99%).

From this analysis, we can conclude that with respect
to data-level terms in our corpus:
– blank-nodes, which by their very nature cannot be

re-used across documents, are 1.8× more prevalent
than URIs;

– despite a smaller number of unique URIs, each one is
used in (probably coincidentally) 1.8× more triples;

– unlike blank-nodes, URIs commonly only appear in
either a subject position or an object position;

– each URI is re-used on average in 4.7 documents, but
usually only within the same domain—most external
re-use is in the object position of a triple;

– 99% of URIs appear in only one PLD.
We can conclude that within our corpus—itself a gen-

eral crawl for RDF/XML on the Web—we find that
there is only sparse re-use of data-level terms across
sources, and particularly across domains.

Finally, for the purposes of demonstrating perfor-
mance across varying numbers of machines, we extract
a smaller corpus, comprising of 100 million quadruples,
from the full evaluation corpus. We extract the sub-
corpus from the head of the raw corpus; since the data
are ordered by access time, polling statements from the
head roughly emulates a smaller crawl of data, which
should ensure, e.g., that all well-linked vocabularies are
contained therein.

4. Base-line Consolidation

We now present the “base-line” algorithm for consol-
idation that consumes asserted owl:sameAs relations in
the data. Linked Data best-practices encourage the pro-
vision of owl:sameAs links between exporters that coin
different URIs for the same entities:

“It is common practice to use the owl:sameAs prop-
erty for stating that another data source also pro-
vides information about a specific non-information
resource.”
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—[7, § 6]

We would thus expect there to be a significant
amount of explicit owl:sameAs data present in our
corpus—provided directly by the Linked Data publish-
ers themselves—that can be directly used for consoli-
dation.

To perform consolidation over such data, the first step
is to extract all explicit owl:sameAs data from the corpus.
We must then compute the transitive and symmetric clo-
sure of the equivalence relation and build equivalence
classes: sets of coreferent identifiers. Note that the set
of equivalence classes forms a partition of coreferent
identifiers where, due to the transitive and symmetric
semantics of owl:sameAs, each identifier can only appear
in one such class. Also note that we do not need to con-
sider singleton equivalence classes that contain only one
identifier: consolidation need not perform any action if
an identifier is found only to be coreferent with itself.
Once the closure of asserted owl:sameAs data has been
computed, we then need to build an index that maps
identifiers to the equivalence class in which it is con-
tained. This index enables lookups of coreferent iden-
tifiers. Next, in the consolidated data, we would like to
collapse the data mentioning identifiers in each equiv-
alence class to instead use a single consistent, canoni-
cal identifier; for each equivalence class, we must thus
choose a canonical identifier. Finally, we can scan the
entire corpus, and using the equivalence class index,
rewrite the original identifiers to their canonincal form.
As an optional step, we can also add links between each
canonical identifier and its coreferent forms using an ar-
tifical owl:sameAs relation in the output, thus persisting
the original identifiers.

The distributed algorithm presented in this section
is based on an in-memory equivalence class closure
and index, and is the current method of consolidation
employed by the SWSE system, described previously
in [32]. Herein, we briefly reintroduce the approach
from [32], where we also add new performance eval-
uation over varying numbers of machines in the dis-
tributed setup, present more discussion and analysis of
the use of owl:sameAs in our Linked Data corpus, and
manually evaluate the precision of the approach for an
extended sample of 1,000 coreferent pairs. In partic-
ular, this section serves as a baseline for comparison
against the extended consolidation approach that uses
richer reasoning features, explored later in Section 5.

4.1. High-level approach

Based on the previous discussion, the approach is
straight-forward:

(i) scan the corpus and separate out all asserted
owl:sameAs relations from the main body of the
corpus;

(ii) load these relations into an in-memory index that
encodes the transitive and symmetric semantics
of owl:sameAs;

(iii) for each equivalence class in the index, choose a
canonical term;

(iv) scan the corpus again, canonicalising any term
in the subject position or object position of an
rdf:type triple.

Thus, we need only index a small subset of the corpus—
owl:sameAs statements—and can apply consolidation by
means of two scans.

The non-trivial aspects of the algorithm are given
by the equality closure and index. To perform the in-
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memory transitive, symmetric closure, we use a tra-
ditional union–find algorithm [66,40] for computing
equivalence partitions, where (i) equivalent elements are
stored in common sets such that each element is only
contained in one set; (ii) a map provides a find function
for looking up which set an element belongs to; and
(iii) when new equivalent elements are found, the sets
they belong to are unioned. The process is based on an
in-memory map index, and is detailed in Algorithm 1,
where:

(i) the eqc labels refer to equivalence classes, and s
and o refer to RDF subject and object terms;

(ii) the function map.get refers to an identifier
lookup on the in-memory index that should re-
turn the intermediary equivalence class associated
with that identifier (i.e., find);

(iii) the function map.put associates an identifier
with a new equivalence class.

The output of the algorithm is an in-memory map from
identifiers to their respective equivalence class.

Next, we must choose a canonical term for each
equivalence class: we prefer URIs over blank-nodes,
thereafter choosing a term with the lowest alphabetical
ordering; a canonical term is thus associated to each
equivalent set. Once the equivalence index has been fi-
nalised, we re-scan the corpus and canonicalise the data
using the in-memory index to service lookups.

4.2. Distributed approach

Again, distribution of the approach is fairly intuitive,
as follows:

(i) run: scan the distributed corpus (split over the
slave machines) in parallel to extract owl:sameAs
relations;

(ii) gather: gather all owl:sameAs relations onto the
master machine, and build the in-memory equal-
ity index;

(iii) flood/run: send the equality index (in its entirety)
to each slave machine, and apply the consolida-
tion scan in parallel.

As we will see in the next section, the most expensive
methods—involving the two scans of the main corpus—
can be conducted in parallel.

4.3. Performance Evaluation

We applied the distributed base-line consolidation
over our corpus with the aformentioned procedure and
setup. The entire consolidation process took 63.3 min,
with the bulk of time taken as follows: the first scan

Algorithm 1 Building equivalence map [32]
Require: SAMEAS DATA: SA

1: map ← {}
2: for (s, owl:sameAs, o) ∈ SA ∧ s 6= o do
3: eqcs ← map.get(s)
4: eqco ← map.get(o)
5: if eqcs = ∅ ∧ eqco = ∅ then
6: eqcs∪o ← {s, o}
7: map.put(s, eqcs∪o)
8: map.put(o, eqcs∪o)
9: else if eqcs = ∅ then

10: add s to eqco
11: map.put(s, eqco)
12: else if eqco = ∅ then
13: add o to eqcs
14: map.put(o, eqcs)
15: else if eqcs 6= eqco then
16: if |eqcs| > |eqco| then
17: add all eqco into eqcs
18: for eo ∈ eqco do
19: map.put(eo,eqcs)
20: end for
21: else
22: add all eqcs into eqco
23: for es ∈ eqcs do
24: map.put(es,eqco)
25: end for
26: end if
27: end if
28: end for

extracting owl:sameAs statements took 12.5 min, with
an average idle time for the servers of 11 s (1.4%)—
i.e., on average, the slave machines spent 1.4% of the
time idly waiting for peers to finish. Transferring, ag-
gregating and loading the owl:sameAs statements on the
master machine took 8.4 min. The second scan rewrit-
ing the data according to the canonical identifiers took
in total 42.3 min, with an average idle time of 64.7 s
(2.5%) for each machine at the end of the round. The
slower time for the second round is attributable to the
extra overhead of re-writing the GZip-compressed data
to disk, as opposed to just reading.

In the rightmost column of Table 5 (full-8), we give
a breakdown of the timing for the tasks over the full
corpus using eight slave machines and one master ma-
chine. Independent of the number of slaves, we note
that the master machine required 8.5 min for coordinat-
ing globally-required owl:sameAs knowledge, and that
the rest of the task time is spent in embarrassingly par-
allel execution (amenable to reduction by increasing
the number of machines). For our setup, the slave ma-
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Category
1 2 4 8 full-8

min % min % min % min % min %
Total execution time 42.2 100.0 22.3 100.0 11.9 100.0 6.7 100.0 63.3 100.0

M
A

S
T

E
R

Executing 0.5 1.1 0.5 2.2 0.5 4.0 0.5 7.5 8.5 13.4
Aggregating owl:sameAs 0.4 1.1 0.5 2.2 0.5 4.0 0.5 7.5 8.4 13.3
Miscellaneous ∼ 0.1 ∼ 0.1 ∼ 0.1 ∼ 0.4 0.1 0.1

Idle (waiting for slaves) 41.8 98.9 21.8 97.7 11.4 95.8 6.2 92.1 54.8 86.6

S
L

A
V

E
S

Avg. Executing (total) 41.8 98.9 21.8 97.7 11.4 95.8 6.2 92.1 53.5 84.6
Extract owl:sameAs 9.0 21.4 4.5 20.2 2.2 18.4 1.1 16.8 12.3 19.5
Consolidate 32.7 77.5 17.1 76.9 8.8 73.5 4.7 70.5 41.2 65.1

Avg. Idle 0.5 1.1 0.7 2.9 1.0 8.2 0.8 12.7 9.8 15.4
Waiting for peers 0.0 0.0 0.1 0.7 0.5 4.0 0.3 4.7 1.3 2.0
Waiting for master 0.5 1.1 0.5 2.3 0.5 4.2 0.5 7.9 8.5 13.4

Table 5
Breakdown of timing of distributed baseline consolidation

chines were kept busy for, on average, 84.6% of the total
task time; of the idle time, 87% was spent waiting for
the master to coordinate the owl:sameAs data, and 13%
was spent waiting for peers to finish their task due to
sub-optimal load balancing. The master machine spent
86.6% of the task idle waiting for the slaves to finish.

In addition, Table 5 also gives performance results
for one master and varying numbers of slave machines
(1,2,4,8) over the 100 million quadruple corpus. Note
that in the table, we use the symbol ∼ to indicate a neg-
ligible value (0 <∼< 0.05). We see that as the number
of slave machines increases, so too does the percent-
age of time taken to aggregate global knowledge on the
master machine (the absolute time stays roughly sta-
ble). This indicates that for a high number of machines,
the aggregation of global knowledge will eventually be-
come a bottleneck, and an alternative distribution strat-
egy may be preferable, subject to further investigation.
Overall, however, we see that the total execution times
roughly halve when the number of slave machines are
doubled: we observe a 0.528×, 0.536× and 0.561× re-
duction in total task execution time moving from 1 slave
machine to 2, 2 to 4, and 4 to 8, respectively (here, a
value of 0.5× would indicate linear scaling out).

4.4. Results Evaluation

We extracted 11.93 million raw owl:sameAs quadru-
ples from the full corpus. Of these, however, there
were only 3.77 million unique triples. After closure,
the data formed 2.16 million equivalence classes men-
tioning 5.75 million terms (6.24% of URIs)—an av-
erage of 2.65 elements per equivalence class. Of the
5.75 million terms, only 4,156 were blank-nodes. Fig-
ure 3 presents the distribution of sizes of the equiva-
lence classes, where the largest equivalence class con-

tains 8,481 equivalent entities and 1.6 million (74.1%)
equivalence classes contain the minimum two equiva-
lent identifiers. Figure 4 shows a similar distribution,
but for the number of PLDs extracted from URIs in each
equivalence class. Interestingly, the majority (57.1%)
of equivalence classes contained identifiers from more
than one PLD, where the most diverse equivalence class
contained URIs from 32 PLDs.

Table 6 shows the canonical URIs for the largest 5
equivalence classes; we manually inspected the results
and show whether or not the results were verified as
correct/incorrect. Indeed, results for class 1 and 2 were
deemed incorrect due to over-use of owl:sameAs for link-
ing drug-related entities in the DailyMed and LinkedCT
exporters. Results 3 and 5 were verified as correct con-
solidation of prominent Semantic Web related authors,
resp.: Dieter Fensel and Rudi Studer—authors are given
many duplicate URIs by the RKBExplorer coreference
index. 12 Result 4 contained URIs from various sites
generally referring to the United States, mostly from
DBPedia and LastFM. With respect to the DBPedia
URIs, these (i) were equivalent but for capitilisation
variations or stop-words, (ii) were variations of abbrevi-
ations or valid synonyms, (iii) were different language
versions (e.g., dbpedia:États_Unis), (iv) were nick-
names (e.g., dbpedia:Yankee_land), (v) were related but
not equivalent (e.g., dbpedia:American_Civilization),
(vi) were just noise (e.g., dbpedia:LOL_Dean).

Besides the largest equivalence classes, which we
have seen are prone to errors perhaps due to the snow-
balling effect of the transitive and symmetric closure,

12For example, see the coreference results given by http:

//www.rkbexplorer.com/sameAs/?uri=http://acm.rkbexplorer.com/id/

person-53292-22877d02973d0d01e8f29c7113776e7e, which at the time
of writing correspond to 436 out of the 443 equivalent URIs found
for Dieter Fensel.
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Fig. 3. Distribution of sizes of equivalence classes on log/log scale
(from [32])
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Fig. 4. Distribution of the number of PLDs per equivalence class
on log/log scale

# Canonical Term (Lexically First in Equivalence Class) Size Correct?

1 http://bio2rdf.org/dailymed_drugs:1000 8,481 X
2 http://bio2rdf.org/dailymed_drugs:1042 800 X
3 http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e 443 X

4 http://agame2teach.com/#ddb61cae0e083f705f65944cc3bb3968ce3f3ab59-ge_1 353 X/X
5 http://acm.rkbexplorer.com/id/person-236166-1b4ef5fdf4a5216256064c45a8923bc9 316 X

Table 6
Largest 5 equivalence classes (from [32])

# PLD PLD Co-occur
1 rdfize.com uriburner.com 506,623
2 dbpedia.org freebase.com 187,054
3 bio2rdf.org purl.org 185,392
4 loc.gov info:lc/authorities 13 166,650
5 l3s.de rkbexplorer.com 125,842
6 bibsonomy.org l3s.de 125,832
7 bibsonomy.org rkbexplorer.com 125,830
8 dbpedia.org mpii.de 99,827
9 freebase.com mpii.de 89,610

10 dbpedia.org umbel.org 65,565
Table 7
Top 10 PLD pairs co-occurring in the equivalence classes, with

number of equivalence classes they co-occur in

we also manually evaluated a random sample of re-
sults. For the sampling, we take the closed equivalence
classes extracted from the full corpus, pick an identi-
fier (possibly non-canonical) at random and then ran-
domly pick another coreferent identifier from its equiv-
alence class. We then retrieve the data associated for
both identifiers and manually inspect them to see if
they are, in fact, equivalent. For each pair, we then
select one of four options: SAME, DIFFERENT, UN-
CLEAR, TRIVIALLY SAME. We used the UNCLEAR op-
tion sparingly and only where there was not enough
information to make an informed decision, or for dif-
ficult subjective choices; note that where there was not
enough information in our corpus, we tried to derefer-

ence more information to minimise use of UNCLEAR;
in terms of difficult, subjective choices, one exam-
ple pair we marked unclear was dbpedia:Folkcore and
dbpedia:Experimental_folk. We used the TRIVIALLY
SAME option to indicate that an equivalence is purely
“syntactic”, where one identifier has no information
other than being the target of a owl:sameAs link; al-
though the identifiers are still coreferent, we distinguish
this case since the equivalence is not so “meaningful”.
For the 1,000 pairs, we choose option TRIVIALLY SAME
661 times (66.1%), SAME 301 times (30.1%), DIFFER-
ENT 28 times (2.8%) and UNCLEAR 10 times (1%). In
summary, our manual verification of the baseline re-
sults puts the precision at ∼97.2%, albeit with many
syntatic equivalences found. Of those found to be incor-
rect, many were closely-related DBpedia resources that
were linked to by the same resource on the Freebase ex-
porter; an example of this was dbpedia:Rock_Hudson and
dbpedia:Rock_Hudson_filmography having owl:sameAs

links from the same Freebase concept fb:rock_hudson.
Moving on, in Table 7 we give the most frequently co-

occurring PLD-pairs in our equivalence classes, where
datasets resident on these domains are “heavily” inter-
linked with owl:sameAs relations. We italicise the in-
dexes of inter-domain links that were observed to often
be purely syntactic.

With respect to consolidation, identifiers in 78.6 mil-
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lion subject positions (7% of subject positions) and
23.2 million non-rdf:type-object positions (2.6%) were
rewritten, giving a total of 101.9 million positions
rewritten (5.1% of total rewritable positions). The av-
erage number of documents mentioning each URI rose
slightly from 4.691 to 4.719 (a 0.6% increase) due to
consolidation, and the average number of PLDs also
rose slightly from 1.005 to 1.007 (a 0.2% increase).

5. Extended Reasoning Consolidation

We now look at extending the baseline approach to
include more expressive reasoning capabilities, in par-
ticular using OWL 2 RL/RDF rules (introduced previ-
ously in Section 2.6) to infer novel owl:sameAs relations
that can then be used for consolidation alongside the
explicit relations asserted by publishers.

As described in Section 2.2, OWL provides
various features—including functional properties,
inverse-functional properties, and certain cardinality
restrictions—that allow for inferring novel owl:sameAs

data. Such features could ease the burden on publishers
of providing explicit owl:sameAs mappings to corefer-
ent identifiers in remote naming schemes. For example,
inverse-functional properties can be used in conjunc-
tion with legacy identification schemes—such as ISBNs
for books, EAN·UCC-13 or MPN for products, MAC
addresses for network-enabled devices, etc.—to boot-
strap identity on the Web of Data within certain do-
mains; such identification values can be encoded as sim-
ple datatype strings, thus bypassing the requirement for
bespoke agreement or mappings between URIs. Also,
“information resources” with indigenous URIs can be
used for indirectly identifying related resources to which
they have a functional mapping, where examples in-
clude personal email-addresses, personal homepages,
WIKIPEDIA articles, etc.

Although Linked Data literature has not explicitly
endorsed or encouraged such usage, prominent grass-
roots efforts publishing RDF on the Web rely (or have
relied) on inverse-functional properties for maintaining
consistent identity. For example, in the Friend Of A
Friend (FOAF) community, a technique called smush-
ing was proposed to leverage such properties for iden-
tity, serving as an early precursor to methods described
herein. 14

Versus the baseline consolidation approach, we
must first apply some reasoning techniques to infer
novel owl:sameAs relations. Once we have the inferred

14cf. http://wiki.foaf-project.org/w/Smushing; retr. 2011/01/22.

owl:sameAs data materialised and merged with the as-
serted owl:sameAs relations, we can then apply the same
consolidation approach as per the baseline: (i) apply
the transitive symmetric closure and generate the equiv-
alence classes, (ii) pick canonical identifiers for each
class and (iii) rewrite the corpus. However, in con-
trast to the baseline, we expect the extended volume
of owl:sameAs data to make in-memory storage infeasi-
ble. 15 Thus, in this section, we avoid the need to store
equivalence information in-memory, where we instead
investigate batch-processing methods for applying an
on-disk closure of the equivalence relations, and like-
wise on-disk methods for rewriting data.

Early versions of the local batch-processing [31]
techniques and some of the distributed reasoning tech-
niques [33] are borrowed from previous works. Herein,
we reformulate and combine these techniques into a
complete solution for applying enhanced consolidation
in a distributed, scalable manner over large-scale Linked
Data corpora. We provide new evaluation over our 1.118
billion quadruple evaluation corpus, presenting new per-
formance results over the full corpus and for a varying
number of slave machines. We also analyse, in depth,
the results of applying the techniques over our evalua-
tion corpus, analysing the applicability of our methods
in such scenarios. We contrast the results given by the
baseline and extended consolidation approaches, and
again manually evaluate the results of the extended con-
solidation approach for 1,000 pairs found to be coref-
erent.

5.1. High-level approach

In Table 2, we provide the pertinent rules for infer-
ring new owl:sameAs relations from the data. However,
after analysis of the data, we observed that no docu-
ments used the owl:maxQualifiedCardinality construct
required for the cls-maxqc* rules, and that only one
document defined one owl:hasKey axiom 16 involving
properties with less than 5 occurrences in the data—
hence, we leave implementation of these rules for fu-
ture work and note that these new OWL 2 constructs
have probably not yet had time to find proper traction
on the Web. Thus, on top of inferencing involving ex-
plicit owl:sameAs, we are left with rule prp-fp, which
supports the semantics of properties typed owl:Funct-

15Further note that since all machines must have all owl:sameAs
information, adding more machines does not increase the capacity for
handling more such relations: the scalability of the baseline approach
is limited by the machine with the least in-memory capacity.
16http://huemer.lstadler.net/role/rh.rdf

16



ionalProperty; and rule prp-ifp, which supports the
semantics of properties typed owl:InverseFunctional-

Property; and rule cls-maxc1, which supports the se-
mantics of classes with a specified cardinality of 1 for
some defined property (a class restricted version of the
functional-property inferencing). 17

Thus, we look at using OWL 2 RL/RDF rules prp-
fp, prp-ifp and cls-maxc2 for inferring new owl:sameAs

relations between individuals—we also support an ad-
ditional rule that gives an exact cardinality version of
cls-maxc2. 18 Herein, we refer to these rules as consol-
idation rules.

We also investigate pre-applying more general OWL
2 RL/RDF reasoning over the corpus to derive more
complete results, where the ruleset is available in Ta-
ble 3 and is restricted to OWL 2 RL/RDF rules with one
assertional pattern [33]; unlike the consolidation rules,
these general rules do not require the computation of
assertional joins, and thus are amenable to execution by
means of a single-scan of the corpus. We have demon-
strated this profile of reasoning to have good compe-
tency with respect to the features of RDFS and OWL
used in Linked Data [29]. These general rules may in-
directly lead to the inference of additional owl:sameAs

relations, particularly when combined with the consol-
idation rules of Table 2.

Once we have used reasoning to derive novel
owl:sameAs data, we then apply an on-disk batch pro-
cessing technique to close the equivalence relation and
to ultimately consolidate the corpus.

Thus, our high-level approach is as follows:
(i) extract relevant terminological data from the cor-

pus;
(ii) bind the terminological patterns in the rules from

this data, thus creating a larger set of general rules
with only one assertional pattern and identifying
assertional patterns that are useful for consolida-
tion;

(iii) apply general-rules over the corpus, and buffer
any input/inferred statements relevant for consol-
idation to a new file;

(iv) derive the closure of owl:sameAs statements from
the consolidation-relevant dataset;

(v) apply consolidation over the main corpus with
respect to the closed owl:sameAs data.

17Note that we have presented non-distributed, batch-processing
execution of these rules at a smaller scale (147 million quadruples)
in [31].
18Exact cardinalities are disallowed in OWL 2 RL due to their effect
on the formal proposition of completeness underlying the profile,
but such considerations are moot in our scenario.

In Step (i), we extract terminological data—required
for application of our rules—from the main corpus. As
discussed in Section 2.5, to help ensure robustness, we
apply authoritative reasoning; in other words, at this
stage we discard any third-party terminological state-
ments that affect inferencing over instance data for re-
mote classes and properties.

In Step (ii), we then compile the authoritative termi-
nological statements into the rules to generate a set of
T-ground (purely assertional) rules, which can then be
applied over the entirety of the corpus [33]. As men-
tioned in Section 2.6, the T-ground general rules only
contain one assertional pattern, and thus are amenable
to execution by a single scan; e.g., given the statement:

:homepage rdfs:subPropertyOf :isPrimaryTopicOf .

we would generate a T-ground rule:

?x :homepage ?y .

⇒ ?x :isPrimaryTopicOf ?y .

which does not require the computation of joins. We
also bind the terminological patterns of the consolida-
tion rules in Table 2; however, these rules cannot be
performed by means of a single scan over the data since
they contain multiple assertional patterns in the body.
Thus, we instead extract triple patterns, such as:

?x :isPrimaryTopicOf ?y .

which may indicate data useful for consolidation (note
that here, :isPrimaryTopicOf is assumed to be inverse-
functional).

In Step (iii), we then apply the T-ground general
rules over the corpus with a single scan. Any input or
inferred statements matching a consolidation-relevant
pattern—including any owl:sameAs statements found—
are buffered to a file for later join computation.

Subsequently, in Step (iv), we must now compute the
on-disk canonicalised closure of the owl:sameAs state-
ments. In particular, we mainly employ the following
three on-disk primitives:

(i) sequential scans of flat files containing line-
delimited tuples; 19

(ii) external-sorts where batches of statements are
sorted in memory, the sorted batches written to
disk, and the sorted batches merged to the final
output; and

(iii) merge-joins where multiple sets of data are
sorted according to their required join position,
and subsequently scanned in an interleaving man-
ner that aligns on the join position and where an

19These files are G-Zip compressed flat files of N-Triple-like syntax
encoding arbitrary length tuples of RDF constants.
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in-memory join is applied for each individual join
element.

Using these primitives to compute the owl:sameAs clo-
sure minimises the amount of main memory required,
where we have presented similar approaches in [30,31].

First, assertional memberships of functional prop-
erties, inverse-functional properties and cardinality re-
strictions (both properties and classes) are written to
separate on-disk files. For functional-property and car-
dinality reasoning, a consistent join variable for the as-
sertional patterns is given by the subject position; for
inverse-functional-property reasoning, a join variable is
given by the object position. 20 Thus, we can sort the
former sets of data according to subject and perform
a merge-join by means of a linear scan thereafter; the
same procedure applies to the latter set, sorting and
merge-joining on the object position. Applying merge-
join scans, we produce new owl:sameAs statements.

Both the originally asserted and newly inferred
owl:sameAs relations are similarly written to an on-disk
file, over which we now wish to perform the canoni-
calised symmetric/transitive closure. We apply a similar
method again, leveraging external sorts and merge-joins
to perform the computation (herein, we sketch and point
the interested reader to [31, Section 4.6]). In the follow-
ing, we use > and < to denote lexical ordering, SA as
a shortcut for owl:sameAs, a, b, c, etc., to denote mem-
bers of U∪B such that a < b < c, and define URIs to
be lexically lower than blank nodes (∀u ∈ U,∀v ∈ B :
u < v). The process is as follows:

(i) we only materialise symmetric equality relations
that involve a (possibly intermediary) canonical
term chosen by a lexical ordering: given b SA a, we
materialise a SA b; given a SA b SA c, we materialise
the relations a SA b, a SA c, and their inverses, but
do not materialise b SA c or its inverse;

(ii) transitivity is supported by iterative merge-join
scans:
– in the scan, if we find c SA a (sorted by object)

and c SA d (sorted naturally), we infer a SA d
and drop the non-canonical c SA d (and d SA c);

– at the end of the scan:
· newly inferred triples are marked and

merge-joined into the main equality data;
· any triples echoing an earlier inference

are ignored;
· dropped non-canonical statements are re-

moved;

20Although a predicate-position join is also available, we prefer
object-position joins that provide smaller batches of data for the
in-memory join.

– the process is then iterative: in the next scan, if
we find d SA a and d SA e, we infer a SA e and
e SA a;

– inferences will only occur if they involve a
statement added in the previous iteration, en-
suring that inference steps are not re-computed
and that the computation will terminate;

(iii) the above iterations stop when a fixpoint is
reached and nothing new is inferred;

(iv) the process of reaching a fixpoint is accelerated
using available main-memory to store a cache of
partial equality chains.

The above steps follow well-known methods for
transtive closure computation, modified to support the
symmetry of owl:sameAs and to use adaptive canonical-
isation in order to avoid quadratic output. With respect
to the last item, we use Algorithm 1 to derive “batches”
of in-memory equivalences, and when in-memory ca-
pacity is achieved, we write these batches to disk and
proceed with on-disk computation: this is particularly
useful for computing the small number of long equality
chains, which would otherwise require sorts and merge-
joins over all of the canonical owl:sameAs data currently
derived, and where the number of iterations would oth-
erwise be the length of the longest chain. The result of
this process is a set of canonicalised equality relations
representing the symmetric/transitive closure.

Next, we briefly describe the process of canonical-
ising data with respect to this on-disk equality clo-
sure, where we again use external-sorts and merge-joins.
First, we prune the owl:sameAs index to only maintain
relations s1 SA s2 such that s1 > s2; thus, given s1 SA

s2, we know that s2 is the canonical identifier, and s1 is
to be rewritten. We then sort the data according to the
position that we wish to rewrite, and perform a merge-
join over both sets of data, buffering the canonicalised
data to an output file. If we want to rewrite multiple po-
sitions of a file of tuples (e.g., subject and object), we
must rewrite one position, sort the results by the second
position, and then rewrite the second position. 21

Finally, note that in the derivation of owl:sameAs from
the consolidation rules prp-fp, prp-ifp, cax-maxc2, the
overall process may be iterative. For example, consider:

21One could instead build an on-disk map for equivalence classes
and pivot elements and follow a consolidation method similar to
the previous section over the unordered data: however, we would
expect such an on-disk index to have a low cache hit-rate given the
nature of the data, which would lead to many (slow) disk seeks.
An alternative approach might be to hash-partition the corpus and
equality index over different machines: however, this would require
a non-trivial minimum amount of memory on the cluster.
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dblp:Axel foaf:isPrimaryTopicOf <http://polleres.net/> .
axel:me foaf:isPrimaryTopicOf <http://axel.deri.ie/> .
<http://polleres.net/> owl:sameAs <http://axel.deri.ie/> .

from which the conclusion that dblp:Axel is the same
as axel:me holds. We see that new owl:sameAs relations
(either asserted or derived from the consolidation rules)
may in turn “align” terms in the join position of the
consolidation rules, leading to new equivalences. Thus,
for deriving the final owl:sameAs, we require a higher-
level iterative process as follows:

(i) initially apply the consolidation rules, and ap-
pend the results to a file alongside the asserted
owl:sameAs statements found;

(ii) apply the initial closure of the owl:sameAs data;
(iii) then, iteratively until no new owl:sameAs infer-

ences are found:
– rewrite the join positions of the on-disk files

containing the data for each consolidation rule
according to the current owl:sameAs data;

– derive new owl:sameAs inferences possible
through the previous rewriting for each consol-
idation rule;

– re-derive the closure of the owl:sameAs data in-
cluding the new inferences.

The final closed file of owl:sameAs data can then be
re-used to rewrite the main corpus in two sorts and
merge-join scans over subject and object.

5.2. Distributed approach

The distributed approach follows quite naturally from
the previous discussion. As before, we assume that the
input data are evenly pre-distributed over the slave ma-
chines (in any arbitrary ordering), where we can then
apply the following process:

(i) run: scan the distributed corpus (split over the
slave machines) in parallel to extract relevant ter-
minological knowledge;

(ii) gather: gather terminological data onto the mas-
ter machine and thereafter bind the terminologi-
cal patterns of the general/consolidation rules;

(iii) flood: flood the rules for reasoning and the
consolidation-relevant patterns to all slave ma-
chines;

(iv) run: apply reasoning and extract consolidation-
relevant statements from the input and inferred
data;

(v) gather: gather all consolidation statements onto
the master machine, then in parallel:
– local: compute the closure of the consolidation

rules and the owl:sameAs data on the master ma-
chine;

– run: each slave machine sorts its fragment
of the main corpus according to natural order
(s, p, o, c);

(vi) flood: send the closed owl:sameAs data to the slave
machines once the distributed sort has been com-
pleted;

(vii) run: each slave machine then rewrites the subjects
of their segment of the corpus, subsequently sorts
the rewritten data by object, and then rewrites the
objects (of non-rdf:type triples) with respect to
the closed owl:sameAs data.

5.3. Performance Evaluation

Applying the above process to our 1.118 billion
quadruple corpus took 12.34 h. Extracting the termino-
logical data took 1.14 h with an average idle time of 19
min (27.7%) (one machine took ∼18 min longer than
the rest due to processing a large ontology containing
∼2 million quadruples [32]). Merging and aggregating
the terminological data took roughly ∼1 min. Applying
the reasoning and extracting the consolidation relevant
statements took 2.34 h, with an average idle time of 2.5
min (1.8%). Aggregating and merging the consolidation
relevant statements took 29.9 min. Thereafter, locally
computing the closure of the consolidation rules and the
equality data took 3.52 h, with the computation requir-
ing two iterations overall (the minimum possible—the
second iteration did not produce any new results). Con-
current to the previous step, the parallel sort of remote
data by natural order took 2.33 h with an average idle
time of 6 min (4.3%). Subsequent parallel consolida-
tion of the data took 4.8 h with 10 min (3.5%) average
idle time—of this, ∼19% of the time was spent consol-
idating the pre-sorted subjects, ∼60% of the time was
spent sorting the rewritten data by object, and ∼21% of
the time was spent consolidating the objects of the data.

As before, Table 8 summarises the timing of the task.
Focusing on the performance for the entire corpus, the
master machine took 4.06 h to coordinate global knowl-
edge, constituting the lower bound on time possible for
the task to execute with respect to increasing machines
in our setup—in future it may be worthwhile to investi-
gate distributed strategies for computing the owl:sameAs

closure (which takes 28.5% of the total computation
time), but for the moment we mitigate the cost by con-
currently running a sort on the slave machines, thus
keeping the slaves busy for 63.4% of the time taken for
this local aggregation step. The slave machines were,
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Category
1 2 4 8 full-8

min % min % min % min % min %
Total execution time 454.3 100.0 230.2 100.0 127.5 100.0 81.3 100.0 740.4 100.0

M
A

S
T

E
R

Executing 29.9 6.6 30.3 13.1 32.5 25.5 30.1 37.0 243.6 32.9
Aggregate Consolidation Relevant Data 4.3 0.9 4.5 2.0 4.7 3.7 4.6 5.7 29.9 4.0
Closing owl:sameAs† 24.4 5.4 24.5 10.6 25.4 19.9 24.4 30.0 211.2 28.5
Miscellaneous 1.2 0.3 1.3 0.5 2.4 1.9 1.1 1.3 2.5 0.3

Idle (waiting for slaves) 424.5 93.4 199.9 86.9 95.0 74.5 51.2 63.0 496.8 67.1

S
L

A
V

E

Avg. Executing (total) 448.9 98.8 221.2 96.1 111.6 87.5 56.5 69.4 599.1 80.9
Extract Terminology 44.4 9.8 22.7 9.9 11.8 9.2 6.9 8.4 49.4 6.7
Extract Consolidation Relevant Data 95.5 21.0 48.3 21.0 24.3 19.1 13.2 16.2 137.9 18.6
Initial Sort (by subject)† 98.0 21.6 48.3 21.0 23.7 18.6 11.6 14.2 133.8 18.1
Consolidation 211.0 46.4 101.9 44.3 51.9 40.7 24.9 30.6 278.0 37.5

Avg. Idle 5.5 1.2 8.9 3.9 37.9 29.7 23.6 29.0 141.3 19.1
Waiting for peers 0.0 0.0 3.2 1.4 7.1 5.6 6.3 7.7 37.5 5.1
Waiting for master 5.5 1.2 5.8 2.5 30.8 24.1 17.3 21.2 103.8 14.0

Table 8
Breakdown of timing of distributed extended consolidation w/reasoning where † identifies the master/slave tasks that run concurrently

on average, busy for 80.9% of the total task time; of the
idle time, 73.3% was spent waiting for the master ma-
chine to aggregate the consolidation relevant data and
to finish the closure of owl:sameAs data, and the balance
(26.7%) was spent waiting for peers to finish (mostly
during the extraction of terminological data).

With regards performance evaluation over the 100
million quadruple corpus for a varying number of slave
machines, perhaps most notably, the average idle time of
the slave machines increases quite rapidly as the num-
ber of machines increases. In particular, by 4 machines,
the slaves can perform the distributed sort-by-subject
task faster than the master machine can perform the lo-
cal owl:sameAs closure. The significant workload of the
master machine will eventually become a bottleneck as
the number of slave machines increases further. This is
also noticeable in terms of overall task time: the respec-
tive time savings as the number of slave machines dou-
bles (moving from 1 slave machine to 8) are 0.507×,
0.554× and 0.638× respectively.

Briefly, we also ran the consolidation without the gen-
eral reasoning rules (Table 3) motivated earlier. With re-
spect to performance, the main variations were given by
(i) the extraction of consolidation relevant statements—
this time directly extracted from explicit statements
as opposed to explicit and inferred statements—which
took 15.4 min (11% of the time taken including the gen-
eral reasoning) with an average idle time of less than
one minute (6% average idle time); (ii) local aggrega-
tion of the consolidation relevant statements took 17
min (56.9% of the time taken previously); (iii) local clo-
sure of the owl:sameAs data took 3.18 h (90.4% of the
time taken previously). The total time saved equated to

2.8 h (22.7%), where 33.3 min were saved from coor-
dination on the master machine, and 2.25 h were saved
from parallel execution on the slave machines.

5.4. Results Evaluation

In this section, we present the results of the con-
solidation, which included the general reasoning step
in the extraction of the consolidation-relevant state-
ments. In fact, we found that the only major varia-
tion between the two approaches was in the amount of
consolidation-relevant statements collected (discussed
presently), where the changes in the total amounts of
coreferent identifiers, equivalence classes, and canon-
icalised terms were in fact negligible (<0.1%). Thus,
for our corpus, extracting only asserted consolidation-
relevant statements offered a very close approximation
of the extended reasoning approach. 22

Extracting the terminological data, we found au-
thoritative declarations of 434 functional properties,
57 inverse-functional properties, and 109 cardinality
restrictions with a value of 1. We discarded some
third-party, non-authoritative declarations of inverse-
functional or functional properties, many of which were
simply “echoing” the authoritative semantics of those
properties; e.g., many people copy the FOAF vocabulary
definitions into their local documents. We also found
some other documents on the bio2rdf.org domain that
define a number of popular third-party properties as

22At least in terms of pure quantity. However, we do not give an
indication of the quality or importance of those few equivalences
we miss with this approximation, which may well be application
specific.
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being functional, including dc:title, dc:identifier,
foaf:name, etc. 23 However, these particular axioms
would only affect consolidation for literals; thus, we can
say that if applying only the consolidation rules, also
considering non-authoritative definitions would not af-
fect the owl:sameAs inferences for our corpus. Again,
non-authoritative reasoning over general rules for a cor-
pus such as ours quickly becomes infeasible [9].

We (again) gathered 3.77 million owl:sameAs triples,
as well as 52.93 million memberships of inverse-
functional properties, 11.09 million memberships of
functional properties, and 2.56 million cardinality-
relevant triples. Of these, respectively 22.14 mil-
lion (41.8%), 1.17 million (10.6%) and 533 thousand
(20.8%) were asserted—however, in the resulting closed
owl:sameAs data derived with and without the extra rea-
soned triples, we detected a variation of less than 12
thousand terms (0.08%), where only 129 were URIs,
and where other variations in statistics were less than
0.1% (e.g., there were 67 less equivalence classes when
the reasoned triples were included).

From previous experiments for older RDF Web
data [30], we were aware of certain values for inverse-
functional properties and functional properties that are
erroneously published by exporters, and which cause
massive incorrect consolidation. We again blacklist
statements featuring such values from our consolida-
tion processing, where we give the top 10 such val-
ues encountered for our corpus in Table 9—this black-
list is the result of trial and error, manually inspect-
ing large equivalence classes and the most common
values for (inverse-)functional properties. Empty lit-
erals are commonly exported (with and without lan-
guage tags) as values for inverse-functional-properties
(particularly FOAF “chat-ID properties”). The literal
"08445a31a78661b5c746feff39a9db6e4e2cc5cf" is the SHA-1 hash
of the string ‘mailto:’, commonly assigned as a
foaf:mbox_sha1sum value to users who don’t specify
their email in some input form. The remaining URIs are
mainly user-specified values for foaf:homepage, or val-
ues automatically assigned for users that don’t specify
such. 24

During the computation of the owl:sameAs closure, we
found zero inferences through cardinality rules, 106.8
thousand raw owl:sameAs inferences through functional-
property reasoning, and 8.7 million raw owl:sameAs

inferences through inverse-functional-property reason-
ing. The final canonicalised, closed, and non-symmetric

23cf. http://bio2rdf.org/ns/bio2rdf:Topic; offline as of 2011/06/20
24Our full blacklist contains forty-one such values, and can be found
at http://aidanhogan.com/swse/blacklist.txt.

# Blacklisted Term Occurrences
1 empty literals 584,735
2 <http://null> 414,088
3 <http://www.vox.com/gone/> 150,402
4 "08445a31a78661b5c746feff39a9db6e4e2cc5cf" 58,338
5 <http://www.facebook.com> 6,988
6 <http://facebook.com> 5,462
7 <http://www.google.com> 2,234
8 <http://www.facebook.com/> 1,254
9 <http://google.com> 1,108

10 <http://null.com> 542
Table 9
Top ten most frequently occurring blacklisted values

owl:sameAs index (such that s1 SA s2, s1 > s2, and s2

is a canonical identifier) contained 12.03 million state-
ments.

From this data, we generated 2.82 million equiva-
lence classes (an increase of 1.31× from baseline con-
solidation) mentioning a total of 14.86 million terms
(an increase of 2.58× from baseline—5.77% of all
URIs and blank-nodes), of which 9.03 million were
blank-nodes (an increase of 2173× from baseline—
5.46% of all blank-nodes) and 5.83 million were URIs
(an increase of 1.014× from baseline—6.33% of all
URIs). Thus, we see a large expansion in the amount
of blank-nodes consolidated, but only minimal expan-
sion in the set of URIs referenced in the equivalence
classes. With respect to the canonical identifiers, 641
thousand (22.7%) were blank-nodes and 2.18 million
(77.3%) were URIs.

Figure 5 contrasts the equivalence class sizes for the
baseline approach (seen previously in Figure 3), and for
the extended reasoning approach. Overall, there is an
observable increase in equivalence class sizes, where
we see the average equivalence class size grow to 5.26
entities (1.98× baseline), the largest equivalence class
size grow to 33,052 (3.9× baseline) and the percentage
of equivalence classes with the minimum size 2 drop to
63.1% (from 74.1% in baseline).

In Table 10, we update the five largest equivalence
classes. Result 2 carries over from the baseline con-
solidation. The rest of the results are largely intra-
PLD equivalences, where the entity is described using
thousands of blank-nodes, with a consistent (inverse-
)functional property value attached. Result 1 refers to
a meta-user—labelled Team Vox—commonly appearing
in user-FOAF exports on the Vox blogging platform. 25

Result 3 refers to a person identified using blank-nodes
(and once by URI) in thousands of RDF documents
resident on the same server. Result 4 refers to the Im-

25This site shut down on 2010/09/30.
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age Bioinformatics Research Group in the University
of Oxford—labelled IBRG—where again it is identified
in thousands of documents using different blank-nodes,
but a consistent foaf:homepage. Result 5 is similar to
result 1, but for a Japanese version of the Vox user.

We performed an analogous manual inspection of
1,000 coreferent pairs as per the sampling used pre-
viously in Section 4.4 for the baseline consolidation
results. This time, we selected SAME 823× (82.3%),
TRIVIALLY SAME 145× (14.5%), DIFFERENT 23×
(2.3%) and UNCLEAR 9× (0.9%). This gives an ob-
served precision for the sample of∼97.7% (vs.∼97.2%
for baseline). After applying our blacklisting, the ex-
tended consolidation results are, in fact, slightly more
precise (on average) than the baseline equivalences: this
is due in part to a high number of blank-nodes being
consolidated correctly from very uniform exporters of
FOAF data that “dilute” the incorrect results. 26

Figure 6 presents a similar analysis to Figure 5, this
time looking at identifiers on a PLD-level granularity.
Interestingly, the difference between the two approaches
is not so pronounced, initially indicating that many of
the additional equivalences found through the consoli-
dation rules are “intra-PLD”. In the baseline consolida-
tion approach, we determined that 57% of equivalence
classes were inter-PLD (contain identifiers from more
than one PLD), with the plurality of equivalence classes
containing identifiers from precisely two PLDs (951
thousand, 44.1%); this indicates that explicit owl:sameAs
relations are commonly asserted between PLDs. In the
extended consolidation approach (which of course sub-
sumes the above results), we determined that the per-
centage of inter-PLD equivalence classes dropped to
43.6%, with the majority of equivalence classes con-
taining identifiers from only one PLD (1.59 million,
56.4%). The entity with the most diverse identifiers (the
observable outlier on the x-axis in Figure 6) was the
person “Dan Brickley”—one of the founders and lead-
ing contributors of the FOAF project—with 138 identi-
fiers (67 URIs and 71 blank-nodes) minted in 47 PLDs;
various other prominent community members and some
country identifiers also featured high on the list.

In Table 11, we compare the consolidation of the top
five ranked identifiers in the SWSE system (see [32]).
The results refer respectively to (i) the (co-)founder
of the Web “Tim Berners-Lee”; (ii) “Dan Brickley”
as aforementioned; (iii) a meta-user for the micro-
blogging platform StatusNet, which exports RDF; (iv)
the “FOAF-a-matic” FOAF profile generator (linked

26We make these and later results available for review at http:

//swse.deri.org/entity/.

from many diverse domains hosting FOAF profiles it
created); and (v) “Evan Prodromou”, founder of the
identi.ca/StatusNet micro-blogging service and plat-
form. We see a significant increase in equivalent iden-
tifiers found for these results; however, we also noted
that after reasoning consolidation, Dan Brickley was
conflated with a second person. 27

Note that the most frequently co-occurring PLDs in
our equivalence classes remained unchanged from Ta-
ble 7.

During the rewrite of the main corpus, terms in
151.77 million subject positions (13.58% of all sub-
jects) and 32.16 million object positions (3.53% of
non-rdf:type objects) were rewritten, giving a total of
183.93 million positions rewritten (1.8× the baseline
consolidation approach). In Figure 7, we compare the
re-use of terms across PLDs before consolidation, after
baseline consolidation, and after the extended reason-
ing consolidation. Again, although there is an increase
in re-use of identifiers across PLDs, we note that: (i) the
vast majority of identifiers (about 99%) still only appear
in one PLD; (ii) the difference between the baseline and
extended reasoning approach is not so pronounced. The
most widely referenced consolidated entity—in terms
of unique PLDs—was “Evan Prodromou” as aformen-
tioned, referenced with six equivalent URIs in 101 dis-
tinct PLDs.

In summary, we conclude that applying the consoli-
dation rules directly (without more general reasoning)
is currently a good approximation for Linked Data, and
that in comparison to the baseline consolidation over ex-
plicit owl:sameAs, (i) the additional consolidation rules
generate a large bulk of intra-PLD equivalences for
blank-nodes; 28 (ii) relatedly, there is only a minor ex-
pansion (1.014×) in the number of URIs involved in the
consolidation; (iii) with blacklisting, the overall preci-
sion remains roughly stable.

6. Statistical Concurrence Analysis

Having looked extensively at the subject of consoli-
dating Linked Data entities, in this section, we now in-
troduce methods for deriving a weighted concurrence
score between entities in the Linked Data corpus: we

27Domenico Gendarmi with three URIs—one document assigns
one of Dan’s foaf:mbox_sha1sum values (for danbri@w3.org)
to Domenico: http://foafbuilder.qdos.com/people/myriamleggieri.

wordpress.com/foaf.rdf
28We believe this to be due to FOAF publishing practices whereby
a given exporter uses consistent inverse-functional property values
instead of URIs to uniquely identify entities across local documents.
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# Canonical Term (Lexically Lowest in Equivalence Class) Size Correct?

1 bnode37@http://a12iggymom.vox.com/profile/foaf.rdf 33,052 X

2 http://bio2rdf.org/dailymed_drugs:1000 8,481 ×
3 http://ajft.org/rdf/foaf.rdf#_me 8,140 X

4 bnode4@http://174.129.12.140:8080/tcm/data/association/100 4,395 X

5 bnode1@http://aaa977.vox.com/profile/foaf.rdf 1,977 X
Table 10
Largest 5 equivalence classes after extended consolidation
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# Canonical Identifier BL# R#
1 <http://dblp.l3s.de/.../Tim_Berners-Lee> 26 50
2 <genid:danbri> 10 138
3 <http://update.status.net/> 0 0
4 <http://www.ldodds.com/foaf/foaf-a-matic> 0 0
5 <http://update.status.net/user/1#acct> 0 6

Table 11
Number of equivalent identifiers found for the top-five ranked entities
in SWSE with respect to baseline consolidation (BL#) and reasoning
consolidation (R#)

define entity concurrence as the sharing of outlinks, in-
links and attribute values, denoting a specific form of
similarity. Conceptually, concurrence generates scores
between two entities based on their shared inlinks, out-
links, or attribute values. More “discriminating” shared
characteristics lend a higher concurrence score; for ex-
ample, two entities based in the same village are more
concurrent than two entities based in the same country.
How discriminating a certain characteristic is is deter-
mined through statistical selectivity analysis. The more
characteristics two entities share, (typically) the higher
their concurrence score will be.

We use these concurrence measures to materialise
new links between related entities, thus increasing the
interconnectedness of the underlying corpus. We also
leverage these concurrence measures in Section 7 for
disambiguating entities, where, after identifying that an
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equivalence class is likely erroneous and causing incon-
sistency, we use concurrence scores to realign the most
similar entities.

In fact, we initially investigated concurrence as a
speculative means of increasing the recall of consol-
idation for Linked Data; the core premise of this in-
vestigation was that very similar entities—with higher
concurrence scores—are likely to be coreferent. Along
these lines, the methods described herein are based on
preliminary works [34], where we:
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– investigated domain-agnostic statistical methods for
performing consolidation and identifying equivalent
entities;

– formulated an initial small-scale (5.6 million triples)
evaluation corpus for the statistical consolidation us-
ing reasoning consolidation as a best-effort “gold-
standard”.

Our evaluation gave mixed results where we found some
correlation between the reasoning consolidation and the
statistical methods, but we also found that our meth-
ods gave incorrect results at high degrees of confidence
for entities that were clearly not equivalent, but shared
many links and attribute values in common. This high-
lights a crucial fallacy in our speculative approach: in
almost all cases, even the highest degree of similarity/-
concurrence does not necessarily indicate equivalence
or co-reference (cf. [27, Section 4.4]). Similar philo-
sophical issues arise with respect to handling transitiv-
ity for the weighted “equivalences” derived [16,39].

However, deriving weighted concurrence measures
has applications other than approximative consolida-
tion: in particular, we can materialise named relation-
ships between entities that share a lot in common, thus
increasing the level of inter-linkage between entities in
the corpus. Again, as we will see later, we can leverage
the concurrence metrics to repair equivalence classes
found to be erroneous during the disambiguation step
of Section 7. Thus, we present a modified version of the
statistical analysis presented in [34], describe a (novel)
scalable and distributed implementation thereof, and
finally evaluate the approach with respect to finding
highly-concurring entities in our 1 billion triple Linked
Data corpus.

6.1. High-level approach

Our statistical concurrence analysis inherits similar
primary requirements to that imposed for consolidation:
the approach should be scalable, fully automatic, and
domain agnostic to be applicable in our scenario. Sim-
ilarly, with respect to secondary criteria, the approach
should be efficient to compute, should give high pre-
cision, and should give high recall. Compared to con-
solidation, high precision is not as critical for our sta-
tistical use-case: in SWSE, we aim to use concurrence
measures as a means of suggesting additional navigation
steps for users browsing the entities—if the suggestion
is uninteresting, it can be ignored, whereas incorrect
consolidation will often lead to conspicuously garbled
results, aggregating data on multiple disparate entities.

Thus, our requirements (particularly for scale) pre-

clude the possibility of complex analyses or any form
of pair-wise comparison, etc. Instead, we aim to de-
sign lightweight methods implementable by means of
distributed sorts and scans over the corpus. Our meth-
ods are designed around the following intuitions and
assumptions:

(i) the concurrence of entities is measured as a func-
tion of their shared pairs, be they predicate-
subject (loosely, inlinks), or predicate-object pairs
(loosely, outlinks or attribute values);

(ii) the concurrence measure should give a higher
weight to exclusive shared-pairs—pairs that are
typically shared by few entities, for edges (pred-
icates) that typically have a low in-degree/out-
degree;

(iii) with the possible exception of correlated pairs,
each additional shared pair should increase the
concurrence of the entities—a shared pair cannot
reduce the measured concurrence of the sharing
entities;

(iv) strongly exclusive property-pairs should be more
influential than a large set of weakly exclusive
pairs;

(v) correlation may exist between shared pairs—e.g.,
two entities may share an inlink and an inverse-
outlink to the same node (e.g., foaf:depiction,
foaf:depicts), or may share a large number of
shared pairs for a given property (e.g., two en-
tities co-authoring one paper are more likely to
co-author subsequent papers)—where we wish to
dampen the cumulative effect of correlation in the
concurrence analysis;

(vi) the relative value of the concurrence measure is
important; the absolute value is unimportant.

In fact, the concurrence analysis follows a similar
principle to that for consolidation, where instead of con-
sidering discrete functional and inverse-functional prop-
erties as given by the semantics of the data, we attempt
to identify properties that are quasi-functional, quasi-
inverse-functional, or what we more generally term ex-
clusive: we determine the degree to which the values
of properties (here abstracting directionality) are unique
to an entity or set of entities. The concurrence between
two entities then becomes an aggregation of the weights
for the property-value pairs they share in common.

Consider the following running-example:
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dblp:AliceB10 foaf:maker ex:Alice .
dblp:AliceB10 foaf:maker ex:Bob .

ex:Alice foaf:gender "female" .
ex:Alice foaf:workplaceHomepage <http://wonderland.com> .

ex:Bob foaf:gender "male" .
ex:Bob foaf:workplaceHomepage <http://wonderland.com> .

ex:Claire foaf:gender "female" .
ex:Claire foaf:workplaceHomepage <http://wonderland.com> .

where we want to determine the level of (relative) con-
currence between three colleagues: ex:Alice, ex:Bob

and ex:Claire: i.e., how much do they coincide/concur
with respect to exclusive shared pairs.

6.1.1. Quantifying concurrence
First, we want to characterise the uniqueness of prop-

erties; thus, we analyse their observed cardinality and
inverse-cardinality as found in the corpus (in contrast to
their defined cardinality as possibly given by the formal
semantics):

Definition 1 (Observed Cardinality) Let G be an
RDF graph, p be a property used as a predicate in G
and s be a subject in G. The observed cardinality (or
henceforth in this section, simply cardinality) of p wrt
s in G, denoted CardG(p, s), is the cardinality of the
set {o ∈ C | (s, p, o) ∈ G}.

Definition 2 (Observed Inverse-Cardinality) Let G
and p be as before, and let o be an object in G. The
observed inverse-cardinality (or henceforth in this sec-
tion, simply inverse-cardinality) of pwrt o inG, denoted
ICardG(p, o), is the cardinality of the set {s ∈ U∪B |
(s, p, o) ∈ G}.

Thus, loosely, the observed cardinality of a property-
subject pair is the number of unique objects it ap-
pears within the graph (or unique triples it appears
in); letting Gex denote our example graph, then, e.g.,
CardGex(foaf:maker, dblp:AliceB10) = 2. We see
this value as a good indicator of how exclusive (or
selective) a given property-subject pair is, where sets
of entities appearing in the object position of low-
cardinality pairs are considered to concur more than
those appearing with high-cardinality pairs. The ob-
served inverse-cardinality of a property-object pair is the
number of unique subjects it appears with in the graph—
e.g., ICardGex(foaf:gender, "female") = 2. Both di-
rections are considered analogous for deriving concur-
rence scores—note however that we do not consider
concurrence for literals (i.e., we do not derive concur-
rence for literals that share a given predicate-subject
pair; we do of course consider concurrence for subjects
with the same literal value for a given predicate).

To avoid unnecessary duplication, we henceforth fo-
cus on describing only the inverse-cardinality statistics
of a property, where the analogous metrics for plain-
cardinality can be derived by switching subject and ob-
ject (that is, switching directionality)—we choose the
inverse direction as perhaps being more intuitive, in-
dicating concurrence of entities in the subject position
based on the predicate-object pairs they share.

Definition 3 (Average Inverse-Cardinality) Let G be
an RDF graph, and p be a property used as a predi-
cate in G. The average inverse-cardinality (AIC) of p
with respect to G, written AICG(p), is the average of
the non-zero inverse-cardinalities of p in the graph G.
Formally:

AICG(p) =
|{(s, o) | (s, p, o) ∈ G}|
|{o | ∃s : (s, p, o) ∈ G}|

.

The average cardinality ACG(p) of a property p is
defined analogously as for AICG(p). Note that the
(inverse-)cardinality value of any term appearing as a
predicate in the graph is necessarily greater-than or
equal-to one: the numerator is by definition greater-
than or equal-to the denominator. Taking an example,
AICGex(foaf:gender) = 1.5, which can be viewed
equivalently as the average non-zero cardinalities of
foaf:gender (1 for "male" and 2 for "female"), or the
number of triples with predicate foaf:gender divided
by the number of unique values appearing in the object
position of such triples ( 3

2 ).
We call a property p for which we observe

AICG(p) ≈ 1, a quasi-inverse-functional property with
respect to the graph G, and analogously properties for
which we observe ACG(p) ≈ 1 as quasi-functional
properties. We see the values of such properties—
in their respective directions—as being very excep-
tional: very rarely shared by entities. Thus, we would
expect a property such as foaf:gender to have a
high AICG(p) since there are only two object-values
("male", "female") shared by a large number of en-
tities, whereas we would expect a property such as
foaf:workplaceHomepage to have a lower AICG(p) since
there are arbitrarily many values to be shared amongst
the entities; given such an observation, we then surmise
that a shared foaf:gender value represents a weaker
“indicator” of concurrence than a shared value for
foaf:workplaceHomepage.

Given that we deal with incomplete informa-
tion under the Open World Assumption underlying
RDF(S)/OWL, we also wish to weigh the average (in-
verse) cardinality values for properties with a low num-
ber of observations towards a global mean—consider a
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fictional property ex:maritalStatus for which we only
encounter a few predicate-usages in a given graph, and
consider two entities given the value "married": given
sparse inverse-cardinality observations, we may naïvely
over-estimate the significance of this property-object
pair as an indicator for concurrence. Thus, we use a
credibility formula as follows to weight properties with
few observations towards a global mean:

Definition 4 (Adjusted Average Inverse-Cardinality)
Let p be a property appearing as a predicate in the
graph G. The adjusted average inverse-cardinality
(AAIC) of p with respect to G, written AAICG(p), is
then

AAICG(p) =
AICG(p)× |G−→p |+ AICG × |G→|

|G−→p |+ |G→|
(1)

where |G−→p | is the number of distinct objects that ap-
pear in a triple with p as a predicate (the denomi-
nator of Definition 3), AICG is the average inverse-
cardinality for all predicate-object pairs (formally,
AICG = |G|

|{(p,o)|∃s:(s,p,o)∈G}| ), and |G→| is the aver-
age number of distinct objects for all predicates in the
graph (formally, |G→| = |{(p,o)|∃s:(s,p,o)∈G}|

|{p|∃s,∃o:(s,p,o)∈G}| ).

Again, the adjusted average cardinality AACG(p) of
a property p is defined analogously as for AAICG(p).
Some reduction of Equation 1 is possible if one consid-
ers that AICG(p) × |G−→p | = |{(s, o) | (s, p, o) ∈ G}|
also denotes the number of triples for which p appears
as a predicate in graph G, and that AICG × |G→| =

|G|
|{p|∃s,∃o:(s,p,o)∈G}| also denotes the average number of
triples per predicate. We maintain Equation 1 in the
given unreduced form as it more clearly corresponds to
the structure of a standard credibility formula: the read-
ing (AICG(p)) is dampened towards a mean (AICG)
by a factor determined by the size of the sample used to
derive the reading (|G−→p |) relative to the average sample
size (|G→|).

Now, we move towards combining these metrics
to determine the concurrence of entities who share a
given non-empty set of property-value pairs. To do
so, we combine the adjusted average (inverse) car-
dinality values, which apply generically to proper-
ties, and the (inverse) cardinality values, which ap-
ply to a given property-value pair. For example,
take the property foaf:workplaceHomepage: entities that
share a value referential to a large company—e.g.,
http://google.com/—should not gain as much concur-
rence as entities that share a value referential to a smaller
company—e.g., http://deri.ie/. Conversely, consider
a fictional property ex:citizenOf, which relates a citizen

to its country, and for which we find many observations
in our corpus, returning a high AAIC value, and con-
sider that only two entities share the value ex:Vanuatu

for this property: given that our data are incomplete, we
can use the high AAIC value of ex:citizenOf to deter-
mine that the property is usually not exclusive, and that
it is generally not a good indicator of concurrence. 29

We start by assigning a coefficient to each pair (p, o)
and each pair (p, s) that occur in the dataset, where the
coefficient is an indicator of how exclusive that pair is:

Definition 5 (Concurrence Coefficients) The
concurrence-coefficient of a predicate-subject pair
(p, s) with respect to a graph G is given as:

CG(p, s) =
1

CardG(p, s)×AACG(p)

and the concurrence-coefficient of a predicate-object
pair (p, o) with respect to a graph G is analogously
given as:

ICG(p, o) =
1

ICardG(p, o)×AAICG(p)
.

Again, please note that these coefficients fall into the
interval ]0, 1] since the denominator, by definition, is
necessarily greater than one.

To take an example, let pwh =
foaf:workplaceHomepage and say that we compute
AAICG(pwh) = 7 from a large number of observations,
indicating that each workplace homepage in the graph
G is linked to by, on average, seven employees. Further,
let og = http://google.com/ and assume that og occurs
2,000 times as a value for pwh: ICardG(pwh, og) =
2,000; now, ICG(pwh, og) = 1

2,000×7 = 0.00007. Also,
let od = http://deri.ie/ such that ICardG(pwh, od)
= 100; now, ICG(pwh, od) = 1

10×7 ≈ 0.00143. Here,
sharing DERI as a workplace will indicate a higher
level of concurrence than analogously sharing Google.

Finally, we require some means of aggregating the
coefficients of the set of pairs that two entities share to
derive the final concurrence measure.

Definition 6 (Aggregated Concurrence Score)
Let Z = (z1, . . . zn) be a tuple such that for each

29Here, we try to distinguish between property-value pairs that are
exclusive in reality (i.e., on the level of what’s signified) and those
that are exclusive in the given graph. Admittedly, one could think
of counter-examples where not including the general statistics of
the property may yield a better indication of weighted concurrence,
particularly for generic properties that can be applied in many
contexts; for example, consider the exclusive predicate-object pair
(skos:subject, category:Koenigsegg_vehicles) given for
a non-exclusive property.
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i = 1, . . . , n, zi ∈]0, 1]. The aggregated concurrence
value ACSn is computed iteratively: starting with
ACS0 = 0, then for each k = 1 . . . n, ACSk =
zk + ACSk−1 − zk ∗ACSk−1.

The computation of the ACS value is the same pro-
cess as determining the probability of two independent
events occurring—P (A∨B) = P (A)+P (B)−P (A∗
B)—which is by definition commutative and associa-
tive, and thus computation is independent of the order
of the elements in the tuple. It may be more accurate
to view the coefficients as fuzzy values, and the aggre-
gation function as a disjunctive combination in some
extensions of fuzzy logic [75].

However, the underlying coefficients may not be de-
rived from strictly independent phenomena: there may
indeed be correlation between the property-value pairs
that two entities share. To illustrate, we reintroduce a
relevant example from [34] shown in Figure 8, where
we see two researchers that have co-authored many pa-
pers together, have the same affiliation, and are based
in the same country.

This example illustrates three categories of concur-
rence correlation:

(i) same-value correlation where two entities may be
linked to the same value by multiple predicates
in either direction (e.g., foaf:made, dc:creator,
swrc:author, foaf:maker);

(ii) intra-property correlation where two entities that
share a given property-value pair are likely to
share further values for the same property (e.g.,
co-authors sharing one value for foaf:made are
more likely to share further values);

(iii) inter-property correlation where two entities
sharing a given property-value pair are likely
to share further distinct but related property-
value pairs (e.g., having the same value for
swrc:affiliation and foaf:based_near).

Ideally, we would like to reflect such correlation in the
computation of the concurrence between the two enti-
ties.

Regarding same-value correlation, for a value with
multiple edges shared between two entities, we choose
the shared predicate edge with the lowest AA[I]C value
and disregard the other edges: i.e., we only consider the
most exclusive property used by both entities to link to
the given value and prune the other edges.

Regarding intra-property correlation, we apply a
lower-level aggregation for each predicate in the set of
shared predicate-value pairs. Instead of aggregating a
single tuple of coefficients, we generate a bag of tuples
Z = {Zp1 , . . . , Zpn}, where each element Zpi repre-

sents the tuple of (non-pruned) coefficients generated
for the predicate pi. 30 We then aggregate this bag as
follows:

ACS(Z) = ACS(ACS(Zpi ∗AA[I]C(pi))Zpi∈Z)

where AA[I]C is either AAC or AAIC, dependant on
the directionality of the predicate-value pair observed.
Thus, the total contribution possible through a given
predicate (e.g., foaf:made) has an upper-bound set as
its AA[I]C value, where each successive shared value
for that predicate (e.g., each successive co-authored pa-
per) contributes positively (but increasingly less) to the
overall concurrence measure.

Detecting and counteracting inter-property correla-
tion is perhaps more difficult, and we leave this as an
open question.

6.1.2. Implementing entity-concurrence analysis
We aim to implement the above methods using sorts

and scans, and we wish to avoid any form of complex
indexing, or pair-wise comparison. First, we wish to ex-
tract the statistics relating to the (inverse-)cardinalities
of the predicates in the data. Given that there are 23
thousand unique predicates found in the input corpus,
we assume that we can fit the list of predicates and
their associated statistics in memory—if such were not
the case, one could consider an on-disk map, where we
would expect a high cache hit-rate based on the distri-
bution of property occurrences in the data (cf. [32]).

Moving forward, we can calculate the necessary
predicate-level statistics by first sorting the data accord-
ing to natural order (s, p, o, c), and then scanning the
data, computing the cardinality (number of distinct ob-
jects) for each (s, p) pair, and maintaining the aver-
age cardinality for each p found. For inverse-cardinality
scores, we apply the same process, sorting instead by
(o, p, s, c) order, counting the number of distinct sub-
jects for each (p, o) pair, and maintaining the average
inverse-cardinality scores for each p. After each scan,
the statistics of the properties are adjusted according to
the credibility formula in Equation 4.

We then apply a second scan of the sorted corpus;
first we scan the data sorted in natural order, and for
each (s, p) pair, for each set of unique objectsOps found
thereon, and for each pair in

{(oi, oj) ∈ U ∪B×U ∪B | oi, oj ∈ Ops, oi < oj}
where < denotes lexicographical order, we output the
following sextuple to an on-disk file:

(oi, oj ,C(p, s), p, s,−)

30For brevity, we omit the graph subscript.
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swperson:stefan-
decker

swperson:andreas-
harth

swpaper1:40

swpaper2:221

swpaper3:403

dbpedia:Ireland

sworg:nui-
galway

sworg:deri-
nui-galway

foaf:made

swrc:affiliaton

foaf:based_near

dc:creator 
swrc:author
foaf:maker 

foaf:made

dc:creator 
swrc:author
foaf:maker 

foaf:made
dc:creator 

swrc:author
foaf:maker 

foaf:member

foaf:member

swrc:affiliaton

Fig. 8. Example of same-value, inter-property and intra-property correlation, where the two entities under comparison are highlighted in the
dashed box, and where the labels of inward-edges (with respect to the principal entities) are italicised and underlined (from [34])

where C(p, s) = 1
|Ops|×AAC(p) . We apply the same pro-

cess for the other direction: for each (p, o) pair, for each
set of unique subjects Spo, and for each pair in

{(si, sj) ∈ U ∪B×U ∪B | si, sj ∈ Spo, si < sj}

we output analogous sextuples of the form:

(si, sj , IC(p, o), p, o,+)

We call the sets Ops and their analogues Spo con-
currence classes, denoting sets of entities that share
the given predicate-subject/predicate-object pair respec-
tively. Here, note that the ‘+’ and ‘−’ elements sim-
ply mark and track the directionality from which the
tuple was generated, required for the final aggregation
of the co-efficient scores. Similarly, we do not imme-
diately materialise the symmetric concurrence scores,
where we instead do so at the end so as to forego du-
plication of intermediary processing.

Once generated, we can sort the two files of tuples
by their natural order, and perform a merge-join on the
first two elements—generalising the directional oi/si
to simply ei, each (ei, ej) pair denotes two entities that
share some predicate-value pairs in common, where we
can scan the sorted data and aggregate the final concur-
rence measure for each (ei, ej) pair using the informa-
tion encoded in the respective tuples. We can thus gener-
ate (trivially sorted) tuples of the form (ei, ej , s), where
s denotes the final aggregated concurrence score com-
puted for the two entities; optionally, we can also write
the symmetric concurrence tuples (ej , ei, s), which can
be sorted separately as required.

Note that the number of tuples generated is quadratic
with respect to the size of the respective concurrence
class, which becomes a major impediment for scalabil-
ity given the presence of large such sets—for example,
consider a corpus containing 1 million persons shar-
ing the value "female" for the property foaf:gender,

where we would have to generate 106×2−106

2 ≈ 500 bil-
lion non-reflexive, non-symmetric concurrence tuples.
However, we can leverage the fact that such sets can
only invoke a minor influence on the final concurrence
of their elements, given that the magnitude of the set—
e.g., |Spo|—is a factor in the denominator of the com-
puted C(p, o) score, such that C(p, o) ∝ 1

|Sop| . Thus,
in practice, we implement a maximum-size threshold
for the Spo and Ops concurrence classes: this thresh-
old is selected based on a practical upper limit for raw
similarity tuples to be generated, where the appropriate
maximum class size can trivially be determined along-
side the derivation of the predicate statistics. For the
purpose of evaluation, we choose to keep the number
of raw tuples generated at around ∼1 billion, and so set
the maximum concurrence class size at 38—we will see
more in Section 6.4.

6.2. Distributed implementation

Given the previous discussion, our distributed imple-
mentation is fairly straight-forward as follows:

(i) coordinate: the slave machines split their seg-
ment of the corpus according to a modulo-hash
function on the subject position of the data, sort
the segments, and send the split segments to the
peer determined by the hash-function; the slaves
simultaneously gather incoming sorted segments,
and subsequently perform a merge-sort of the seg-
ments;

(ii) coordinate: the slave machines apply the same
operation, this time hashing on object—triples
with rdf:type as predicate are not included in the
object-hashing; subsequently the slaves merge-
sort the segments ordered by object;

(iii) run: the slave machines then extract predicate-
level statistics, and statistics relating to the
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concurrence-class-size distribution, which are
used to decide upon the class size threshold;

(iv) gather/flood/run: the master machine gathers
and aggregates the high-level statistics generated
by the slave machines in the previous step and
sends a copy of the global statistics back to each
machine; the slaves subsequently generate the raw
concurrence-encoding sextuples as described be-
fore from a scan of the data in both orders;

(v) coordinate: the slave machines coordinate the lo-
cally generated sextuples according to the first el-
ement (join position) as before;

(vi) run: the slave machines aggregate the sextuples
coordinated in the previous step, and produce the
final non-symmetric concurrence tuples;

(vii) run: the slave machines produce the symmetric
version of the concurrence tuples, and coordinate
and sort on the first element.

Here, we make heavy use of the coordinate function to
align data according to the join position required for the
subsequent processing step—in particular, aligning the
raw data by subject and object, and then the concurrence
tuples analogously.

Note that we do not hash on the object position of
rdf:type triples: our raw corpus contains 206.8 million
such triples, and given the distribution of class mem-
berships, we assume that hashing these values will lead
to uneven distribution of data, and subsequently uneven
load balancing—e.g., 79.2% of all class memberships
are for foaf:Person, hashing on which would send 163.7
million triples to one machine, which alone is greater
than the average number of triples we would expect per
machine (139.8 million). In any case, given that our cor-
pus contains 105 thousand unique values for rdf:type,
we would expect the average-inverse-cardinality to be
approximately 1,970—even for classes with two mem-
bers, the potential effect on concurrence is negligible.

6.3. Performance evaluation

We apply our concurrence analysis over the consoli-
dated corpus derived in Section 5. The total time taken
was 13.9 h. Sorting, splitting and scattering the data ac-
cording to subject on the slave machines took 3.06 h,
with an average idle time of 7.7 min (4.2%). Subse-
quently, merge-sorting the sorted segments took 1.13 h,
with an average idle time of 5.4 min (8%). Analogously
sorting, splitting and scattering the non-rdf:type state-
ments by object took 2.93 h, with an average idle time
of 11.8 min (6.7%). Merge sorting the data by object
took 0.99 h, with an average idle time of 3.8 min (6.3%).

Extracting the predicate statistics and threshold infor-
mation from data sorted in both orders took 29 min,
with an average idle time of 0.6 min (2.1%). Generating
the raw, unsorted similarity tuples took 69.8 min with
an average idle time of 2.1 min (3%). Sorting and coor-
dinating the raw similarity tuples across the machines
took 180.1 min, with an average idle time of 14.1 min
(7.8%). Aggregating the final similarity took 67.8 min,
with an average idle time of 1.2 min (1.8%).

Table 12 presents a breakdown of the timing of the
task. First, with regards application over the full corpus,
although this task requires some aggregation of global-
knowledge by the master machine, the volume of data
involved is minimal: a total of 2.1 minutes is spent on the
master machine performing various minor tasks (initial-
isation, remote calls, logging, aggregation and broad-
cast of statistics). Thus, 99.7% of the task is performed
in parallel on the slave machine. Although there is less
time spent waiting for the master machine compared to
the previous two tasks, deriving the concurrence mea-
sures involves three expensive sort/coordinate/merge-
sort operations to redistribute and sort the data over the
slave swarm. The slave machines were idle for, on av-
erage, 5.8% of the total task time; most of this idle time
(99.6%) was spent waiting for peers. The master ma-
chine was idle for almost the entire task, with 99.7%
waiting for the slave machines to finish their tasks—
again, interleaving a job for another task would have
practical benefits.

Second, with regards the timing of tasks when varying
the number of slave machines for 100 million quadru-
ples, we see that the percentage of time spent idle on
the slave machines increases from 0.4% (1) to 9% (8).
However, for each incremental doubling of the number
of slave machines, the total overall task times are re-
duced by 0.509×, 0.525× and 0.517× respectively.

6.4. Results Evaluation

With respect to data distribution, after hashing on sub-
ject we observed an average absolute deviation (average
distance from the mean) of 176 thousand triples across
the slave machines, representing an average 0.13% de-
viation from the mean: near-optimal data distribution.
After hashing on the object of non-rdf:type triples, we
observed an average absolute deviation of 1.29 mil-
lion triples across the machines, representing an aver-
age 1.1% deviation from the mean; in particular, we
note that one machine was assigned 3.7 million triples
above the mean (an additional 3.3% above the mean).
Although not optimal, the percentage of data deviation
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Category
1 2 4 8 full-8

min % min % min % min % min %
Total execution time 516.2 100.0 262.7 100.0 137.8 100.0 73.0 100.0 835.4 100.0

M
A

S
T

E
R Executing 2.2 0.4 2.3 0.9 3.1 2.3 3.4 4.6 2.1 0.3

Miscellaneous 2.2 0.4 2.3 0.9 3.1 2.3 3.4 4.6 2.1 0.3
Idle (waiting for slaves) 514.0 99.6 260.4 99.1 134.6 97.7 69.6 95.4 833.3 99.7

S
L

A
V

E

Avg. Executing (total exc. idle) 514.0 99.6 257.8 98.1 131.1 95.1 66.4 91.0 786.6 94.2
Split/sort/scatter (subject) 119.6 23.2 59.3 22.6 29.9 21.7 14.9 20.4 175.9 21.1
Merge-sort (subject) 42.1 8.2 20.7 7.9 11.2 8.1 5.7 7.9 62.4 7.5
Split/sort/scatter (object) 115.4 22.4 56.5 21.5 28.8 20.9 14.3 19.6 164.0 19.6
Merge-sort (object) 37.2 7.2 18.7 7.1 9.6 7.0 5.1 7.0 55.6 6.6
Extract High-level Statistics 20.8 4.0 10.1 3.8 5.1 3.7 2.7 3.7 28.4 3.3
Generate Raw Concurrence Tuples 45.4 8.8 23.3 8.9 11.6 8.4 5.9 8.0 67.7 8.1
Cooordinate/Sort Concurrence Tuples 97.6 18.9 50.1 19.1 25.0 18.1 12.5 17.2 166.0 19.9
Merge-sort/Aggregate Similarity 36.0 7.0 19.2 7.3 10.0 7.2 5.3 7.2 66.6 8.0

Avg. Idle 2.2 0.4 4.9 1.9 6.7 4.9 6.5 9.0 48.8 5.8
Waiting for peers 0.0 0.0 2.6 1.0 3.6 2.6 3.2 4.3 46.7 5.6
Waiting for master 2.2 0.4 2.3 0.9 3.1 2.3 3.4 4.6 2.1 0.3

Table 12
Breakdown of timing of distributed concurrence analysis

given by hashing on object is still within the natural
variation in run-times we have seen for the slave ma-
chines during most parallel tasks.

In Figures 9(a) and 9(b), we illustrate the effect
of including increasingly large concurrence classes on
the number of raw concurrence tuples generated. For
the predicate-object pairs, we observe a power-law(-
esque) relationship between the size of the concurrence
class and the number of such classes observed. Second,
we observe that the number of concurrences generated
for each increasing class size initially remains fairly
static—i.e., larger class sizes give quadratically more
concurrences, but occur polynomially less often—until
the point where the largest classes that generally only
have one occurrence is reached, and the number of con-
currences begins to increase quadratically. Also shown
is the cumulative count of concurrence tuples gener-
ated for increasing class sizes, where we initially see a
power-law(-esque) correlation, which subsequently be-
gins to flatten as the larger concurrence classes become
more sparse (although more massive).

For the predicate-subject pairs, the same roughly
holds true, although we see fewer of the very largest
concurrence classes: the largest concurrence class given
by a predicate-subject pair was 79 thousand, versus 1.9
million for the largest predicate-object pair, respectively
given by the pairs (kwa:map, macs:manual_rameau_lcsh)
and (opiumfield:rating, ""). Also, we observe some
“noise” where for milestone concurrence class sizes
(esp., at 50, 100, 1,000, 2,000) we observe an unusual
amount of classes. For example, there were 72 thou-

sand concurrence classes of precisely size 1,000 (ver-
sus 88 concurrence classes at size 996)—the 1,000 limit
was due to a FOAF exporter from the hi5.com do-
main, which seemingly enforces that limit on the to-
tal “friends count” of users, translating into many users
with precisely 1,000 values for foaf:knows. 31 Also for
example, there were 5.5 thousand classes of size 2,000
(versus 6 classes of size 1,999)—almost all of these
were due to an exporter from the bio2rdf.org domain,
which puts this limit on values for the b2r:linkedToFrom

property. 32 We also encountered unusually large num-
bers of classes approximating these milestones, such
as 73 at 2,001. Such phenomena explain the staggered
“spikes”and “discontinuities” in Figure 9(b), which can
be observed to correlate with such milestone values (in
fact, similar but less noticeable spikes are also present
in Figure 9(a)).

These figures allow us to choose a threshold of
concurrence-class size given an upper bound on raw
concurrence tuples to generate. For the purposes of eval-
uation, we choose to keep the number of materialised
concurrence tuples at around 1 billion, which limits our
maximum concurrence class size to 38 (from which we
produce 1.023 billion tuples: 721 million through shared
(p, o) pairs and 303 million through (p, s) pairs.

With respect to the statistics of predicates, for the
predicate-subject pairs, each predicate had an average
of 25,229 unique objects for 37,953 total triples, giving
an average cardinality of ∼1.5. We give the five predi-

31cf. http://api.hi5.com/rest/profile/foaf/100614697
32cf. http://bio2rdf.org/mesh:D000123Q000235
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(b) Predicate-subject pairs

Fig. 9. Breakdown of potential concurrence classes given with respect to predicate-object pairs and predicate-subject pairs respectively, where
for each class size on the x-axis (si) we show the number of classes (ci); the raw non-reflexive, non-symmetric concurrence tuples generated

(spi = ci ×
s2i+si

2
); a cumulative count of tuples generated for increasing class sizes (ŝpi =

∑
j≤i

spj ); and our cut-off (si = 38) that we’ve

chosen to keep the total number of tuples at ∼1 billion (log/log)

# Predicate Objects Triples AAC
1 foaf:nick 150,433,035 150,437,864 1.000
2 lldpubmed:journal 6,790,426 6,795,285 1.003
3 rdf:value 2,802,998 2,803,021 1.005
4 eurostat:geo 2,642,034 2,642,034 1.005
5 eurostat:time 2,641,532 2,641,532 1.005

Table 13
Top five predicates with respect to lowest adjusted average cardi-

nality (AAC)

cates observed to have the lowest adjusted average car-
dinality in Table 13. These predicates are judged by the
algorithm to be the most selective for identifying their
subject with a given object value (i.e., quasi-inverse-
functional); note that the bottom two predicates will
not generate any concurrence scores since they are per-
fectly unique to a given object (i.e., the number of triples
equals the number of objects such that no two entities
can share a value for this predicate). For the predicate-
object pairs, there was an average of 11,572 subjects
for 20,532 triples, giving an average inverse-cardinality
of ∼2.64; We analogously give the five predicates ob-
served to have the lowest adjusted average inverse car-
dinality in Table 14. These predicates are judged to
be the most selective for identifying their object with
a given subject value (i.e., quasi-functional); however,
four of these predicates will not generate any concur-
rences since they are perfectly unique to a given sub-
ject (i.e., those where the number of triples equals the
number of subjects).

Aggregation produced a final total of 636.9 million
weighted concurrence pairs, with a mean concurrence
weight of∼0.0159. Of these pairs, 19.5 million involved

# Predicate Subjects Triples AAIC
1 lldpubmed:meshHeading 2,121,384 2,121,384 1.009
2 opiumfield:recommendation 1,920,992 1,920,992 1.010
3 fb:type.object.key 1,108,187 1,108,187 1.017
4 foaf:page 1,702,704 1,712,970 1.017
5 skipinions:hasFeature 1,010,604 1,010,604 1.019

Table 14
Top five predicates with respect to lowest adjusted average inverse-

cardinality (AAIC)

a pair of identifiers from different PLDs (3.1%), whereas
617.4 million involved identifiers from the same PLD;
however, the average concurrence value for an intra-
PLD pair was 0.446, versus 0.002 for inter-PLD pairs—
although fewer intra-PLD concurrences are found, they
typically have higher concurrences. 33

In Table 15, we give the labels of top five most
concurrent entities, including the number of pairs they
share—the concurrence score for each of these pairs
was > 0.9999999. We note that they are all loca-
tions, where particularly on WIKIPEDIA (and thus fil-
tering through to DBpedia), properties with location
values are typically duplicated (e.g., dbp:deathPlace,
dbp:birthPlace, dbp:headquarters—properties that are
quasi-functional); for example, New York City and
New York State are both the dbp:deathPlace of
dbpedia:Isacc_Asimov, etc.

33Note that we apply this analysis over the consolidated data, and
thus this is an approximative reading for the purposes of illustration:
we extract the PLDs from canonical identifiers, which are choosen
based on arbitrary lexical ordering.
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# Entity Label 1 Entity Label 2 Concur
1 New York City New York State 791
2 London England 894
3 Tokyo Japan 900
4 Toronto Ontario 418
5 Philadelphia Pennsylvania 217

Table 15
Top five concurrent entities and the number of pairs they share

# Ranked Entity #Con. “Closest” Entity Val.
1 Tim Berners-Lee 908 Lalana Kagal 0.83
2 Dan Brickley 2,552 Libby Miller 0.94
3 update.status.net 11 socialnetwork.ro 0.45
4 FOAF-a-matic 21 foaf.me 0.23
5 Evan Prodromou 3,367 Stav Prodromou 0.89

Table 16
Breakdown of concurrences for top five ranked entities in SWSE,

ordered by rank, with, respectively, entity label, number of concurrent
entities found, the label of the concurrent entity with the largest
degree, and finally the degree value

In Table 16, we give a description of the concur-
rent entities found for the top-five ranked entities—
for brevity, again we show entity labels. In particu-
lar, we note that a large amount of concurrent en-
tities are identified for the highly-ranked persons.
With respect to the strongest concurrences: (i) Tim
and his former student Lalana share twelve primar-
ily academic links, coauthoring six papers; (ii) Dan
and Libby, co-founders of the FOAF project, share 87
links, primarily 73 foaf:knows relations to and from
the same people, as well as a co-authored paper, oc-
cupying the same professional positions, etc.; 34 (iii)
update.status.net and socialnetwork.ro share a sin-
gle foaf:accountServiceHomepage link from a common
user; (iv) similarly, the FOAF-a-matic and foaf.me ser-
vices share a single mvcb:generatorAgent inlink; (v) fi-
nally, Evan and Stav share 69 foaf:knows inlinks and
outlinks exported from the identi.ca service.

7. Entity Disambiguation and Repair

We have already seen that—even by only exploit-
ing the formal logical consequences of the data through
reasoning—consolidation may already be imprecise due
to various forms of noise inherent in Linked Data. In
this section, we look at trying to detect erroneous coref-
erences as produced by the extended consolidation ap-
proach introduced in Section 5. Ideally, we would like
to automatically detect, revise, and repair such cases
to improve the effective precision of the consolidation

34Notably, Leigh Dodds (creator of the FOAF-a-matic service) is
linked by the property quaffing:drankBeerWith to both.

process. As discussed in Section 2.6, OWL 2 RL/RDF
contains rules for automatically detecting inconsisten-
cies in RDF data, representing formal contradictions ac-
cording to OWL semantics. Where such contradictions
are created due to consolidation, we believe this to be
a good indicator of erroneous consolidation.

Once erroneous equivalences have been detected, we
would like to subsequently diagnose and repair the
coreferences involved. One option would be to com-
pletely disband the entire equivalence class; however,
there may often be only one problematic identifier that,
e.g., causes inconsistency in a large equivalence class—
breaking up all equivalences would be a coarse solu-
tion. Instead, herein we propose a more fine-grained
method for repairing equivalence classes that incremen-
tally rebuilds coreferences in the set in a manner that
preserves consistency and that is based on the original
evidences for the equivalences found, as well as con-
currence scores (discussed in the previous section) to
indicate how similar the original entities are. Once the
erroneous equivalence classes have been repaired, we
can then revise the consolidated corpus to reflect the
changes.

7.1. High-level approach

The high-level approach is to see if the consolidation
of any entities conducted in Section 5 lead to any novel
inconsistencies, and subsequently recant the equiva-
lences involved; thus, it is important to note that our aim
is not to repair inconsistencies in the data, but instead to
repair incorrect consolidation symptomised by incon-
sistency. 35 In this section, we (i) describe what forms
of inconsistency we detect and how we detect them; (ii)
characterise how inconsistencies can be caused by con-
solidation using examples from our corpus where pos-
sible; (iii) discuss the repair of equivalence classes that
have been determined to cause inconsistency.

First, in order to track which data are consolidated
and which not, in the previous consolidation step we
output sextuples of the form:

(s, p, o, c, s′, o′)

where s, p, o, c, denote the consolidated quadruple con-
taining canonical identifiers in the subject/object posi-

35We instead refer the interested reader to [9] for some previous
works on the topic of general inconsistency repair for Linked Data.
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tion as appropriate, and s′ and o′ denote the input iden-
tifiers prior to consolidation. 36

To detect inconsistencies in the consolidated corpus,
we use the OWL 2 RL/RDF rules with the false con-
sequent [24] as listed in Table 4. A quick check of our
corpus revealed that one document provides 8 owl:-

AsymmetricProperty and 10 owl:IrreflexiveProperty

axioms 37 , and one directory gives 9 owl:AllDisjoint-

Classes axioms 38 , and where we found no other OWL
2 axioms relevant to the rules in Table 4.

We also consider an additional rule, whose seman-
tics are indirectly axiomatised by the OWL 2 RL/RDF
rules (through prp-fp, dt-diff and eq-diff1), but which
we must support directly since we do not consider con-
solidation of literals:

?p a owl:FunctionalProperty .

?x ?p ?l1 , ?l2 .

?l1 owl:differentFrom ?l2 .

⇒ false

where we underline the terminological pattern. To illus-
trate, we take an example from our corpus:

# Terminological [http://dbpedia.org/data3/length.rdf]
dpo:length rdf:type owl:FunctionalProperty .

# Assertional [http://dbpedia.org/data/Fiat_Nuova_500.xml]
dbpedia:Fiat_Nuova_500′ dpo:length "3.546"^^xsd:double .

# Assertional [http://dbpedia.org/data/Fiat_500.xml]
dbpedia:Fiat_Nuova′ dpo:length "2.97"^^xsd:double .

where we use the prime symbol [′] to denote identi-
fiers considered coreferent by consolidation. Here we
see two very closely related models of cars consoli-
dated in the previous step, but we now identify that they
have two different values for dpo:length—a functional-
property—and thus the consolidation raises an incon-
sistency.

Note that we do not expect the owl:differentFrom

assertion to be materialised, but instead intend a rather
more relaxed semantics based on a heurisitic compari-
son: given two (distinct) literal bindings for ?l1 and ?l2,
we flag an inconsistency iff (i) the data values of the
two bindings are not equal (standard OWL semantics);
and (ii) their lower-case string value (minus language-
tags and datatypes) are lexically unequal. In particular,
the relaxation is inspired by the definition of the FOAF
(datatype) functional properties foaf:age, foaf:gender,

36We use syntactic shortcuts in our file to denote when s = s′

and/or o = o′. Maintaining the additional rewrite information during
the consolidation process is trivial, where the output of consolidating
subjects gives quintuples (s, p, o, c, s′), which are then sorted and
consolidated by o to produce the given sextuples.
37http://models.okkam.org/ENS-core-vocabulary#country_of_

residence
38http://ontologydesignpatterns.org/cp/owl/fsdas/

and foaf:birthday, where the range of these prop-
erties is rather loosely defined: a generic range of
rdfs:Literal is formally defined for these properties,
with informal recommendations to use male/female as
gender values, and MM-DD syntax for birthdays, but not
giving recommendations for datatype or language-tags.
The latter relaxation means that we would not flag an
inconsistency in the following data:

# Terminological [http://xmlns.com/foaf/spec/index.rdf]
foaf:Person owl:disjointWith foaf:Document .

# Assertional [fictional]
ex:Ted foaf:age 25 .
ex:Ted foaf:age "25" .
ex:Ted foaf:gender "male" .
ex:Ted foaf:gender "Male"@en .
ex:Ted foaf:birthday "25-05"^^xsd:gMonthDay .
ex:Ted foaf:birthday "25-05" .

With respect to these consistency checking rules, we
consider the terminological data to be sound. 39 We
again only consider terminological axioms that are au-
thoritatively served by their source; for example, the
following statement:

sioc:User owl:disjointWith foaf:Person .

would have to be served by a document that either
sioc:User or foaf:Person dereferences to (either the
FOAF or SIOC vocabulary since the axiom applies over
a combination of FOAF and SIOC assertional data).

Given a grounding for such an inconsistency-
detection rule, we wish to analyse the constants bound
by variables in join positions to determine whether or
not the contradiction is caused by consolidation; we are
thus only interested in join variables that appear at least
once in a consolidatable position (thus, we do not sup-
port dt-not-type) and where the join variable is “intra-
assertional” (exists twice in the assertional patterns).
Other forms of inconsistency must otherwise be present
in the raw data.

Further note that owl:sameAs patterns—particularly
in rule eq-diff1—are implicit in the consolidated data;
e.g., consider:

# Assertional [http://www.wikier.org/foaf.rdf]
wikier:wikier′ owl:differentFrom eswc2006p:sergio-fernandez′ .

where an inconsistency is implicitly given by
the owl:sameAs relation that holds between
the consolidated identifiers wikier:wikier′ and
eswc2006p:sergio-fernandez′. In this example, there
are two Semantic Web researchers, respectively

39In any case, we always source terminological data from the raw
unconsolidated corpus.
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named “Sergio Fernández” 40 and “Sergio Fernández
Anzuola” 41 who both participated in the ESWC 2006
conference, and who were subsequently conflated in the
“DogFood” export. 42 The former Sergio subsequently
added a counter-claim in his FOAF file, asserting the
above owl:differentFrom statement.

Other inconsistencies do not involve explicit
owl:sameAs patterns, a subset of which may require
“positive” reasoning to be detected; e.g.:

# Terminological [http://xmlns.com/foaf/spec]
foaf:Person owl:disjointWith foaf:Organization .
foaf:knows rdfs:domain foaf:Person .

# Assertional [http://identi.ca/w3c/foaf]
identica:48404′ foaf:knows identica:45563 .

# Assertional [inferred by prp-dom]
identica:48404′ a foaf:Person .

# Assertional [http://data.semanticweb.org/organization/w3c/rdf]
semweborg:w3c′ a foaf:Organization .

where the two entities are initially consolidated due to
sharing the value http://www.w3.org/ for the inverse-
functional property foaf:homepage; the W3C is stated
to be a foaf:Organization in one document, and is in-
ferred to be a person from its identi.ca profile through
rule prp-dom; finally, the W3C is a member of two
disjoint classes, forming an inconsistency detectable by
rule cax-dw. 43

Once the inconsistencies caused by consolidation
have been identified, we need to perform a repair of the
equivalence class involved. In order to resolve incon-
sistencies, we make three simplifying assumptions:

(i) the steps involved in the consolidation can be
rederived with knowledge of direct inlinks and
outlinks of the consolidated entity, or reasoned
knowledge derived from there;

(ii) inconsistencies are caused by pairs of consoli-
dated identifiers;

(iii) we repair individual equivalence classes and do
not consider the case where repairing one such
class may indirectly repair another.

With respect to the first item, our current implemen-
tation will be performing a repair of the equivalence
class based on knowledge of direct inlinks and outlinks,
available through a simple merge-join as used in the

40http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/

Fern=aacute=ndez:Sergio.html
41http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/

Anzuola:Sergio_Fern=aacute=ndez.html
42http://data.semanticweb.org/dumps/conferences/

eswc-2006-complete.rdf
43Note that this also could be viewed as a counter-example for
using inconsistencies to recant consolidation, where arguably the
two entities are coreferent from a practical perspective, even if
“incompatible” from a symbolic perspective.

previous section; this thus precludes repair of consoli-
dation found through rule cls-maxqc2, which also re-
quires knowledge about the class memberships of the
outlinked node. With respect to the second item, we say
that inconsistencies are caused by pairs of identifiers—
what we term incompatible identifiers—such that we
do not consider inconsistencies caused with respect to a
single identifier (inconsistencies not caused by consol-
idation) and do not consider the case where the align-
ment of more than two identifiers are required to cause
a single inconsistency (not possible in our rules) where
such a case would again lead to a disjunction of repair
strategies. With respect to the third item, it is possible
to resolve a set of inconsistent equivalence classes by
repairing one; for example, consider rules with multiple
“intra-assertional” join-variables (prp-irp, prp-asyp)
that can have explanations involving multiple consoli-
dated identifiers as follows:

# Terminological [fictional]
:made owl:propertyDisjointWith :maker .

# Assertional [fictional]
ex:AZ′′ :maker ex:entcons′ .
dblp:Antoine_Zimmermann′′ :made dblp:HoganZUPD15′ .

where both equivalences together constitute an incon-
sistency. Repairing one equivalence class would repair
the inconsistency detected for both: we give no special
treatment to such a case, and resolve each equivalence
class independently. In any case, we find no such inci-
dences in our corpus: these inconsistencies require (i)
axioms new in OWL 2 (rules prp-irp, prp-asyp, prp-
pdw and prp-adp); (ii) alignment of two consolidated
sets of identifiers in the subject/object positions. Note
that such cases can also occur given the recursive nature
of our consolidation, whereby consolidating one set of
identifiers may lead to alignments in the join positions
of the consolidation rules in the next iteration; however,
we did not encounter such recursion during the consol-
idation phase for our data.

The high-level approach to repairing inconsistent
consolidation is as follows:

(i) rederive and build a non-transitive, symmetric
graph of equivalences between the identifiers in
the equivalence class, based on the inlinks and
outlinks of the consolidated entity;

(ii) discover identifiers that together cause inconsis-
tency and must be separated, generating a new
seed equivalence class for each, and breaking the
direct links between them;

(iii) assign the remaining identifiers into one of the
seed equivalence classes based on:

(a) minimum distance in the non-transitive
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equivalence class;
(b) if tied, use a concurrence score.

Given the simplifying assumptions, we can formalise
the problem thus: we denote the graph of non-transitive
equivalences for a given equivalence class as a weighted
graph G = (V,E, ω) such that V ⊂ B∪U is the set of
vertices, E ⊂ B ∪U×B ∪U is the set of edges, and
ω : E 7→ N× R is a weighting function for the edges.
Our edge weights are pairs (d, c) where d is the number
of sets of input triples in the corpus that allow to di-
rectly derive the given equivalence relation by means of
a direct owl:sameAs assertion (in either direction), or a
shared inverse-functional object, or functional subject—
loosely, the independent evidences for the relation given
by the input graph, excluding transitive owl:sameAs se-
mantics; c is the concurrence score derivable between
the unconsolidated entities and is used to resolve ties
(we would expect many strongly connected equivalence
graphs where, e.g., the entire equivalence class is given
by a single shared value for a given inverse-functional
property, and we thus require the additional granular-
ity of concurrence for repairing the data in a non-trivial
manner). We define a total lexicographical order over
these pairs.

Given an equivalence class Eq ⊂ U ∪ B that we
perceive to cause a novel inconsistency—i.e., an in-
consistency derivable by the alignment of incompati-
ble identifiers—we first derive a collection of sets C =
{C1, . . . , Cn}, C ⊂ 2U∪B, such that each Ci ∈ C,
Ci ⊆ Eq denotes an unordered pair of incompatible
identifiers.

We then apply a straightforward, greedy consistent
clustering of the equivalence class, loosely following
the notion of a minimal cutting (see, e.g., [63]). For
Eq, we create an initial set of singleton sets Eq0, each
containing an individual identifier in the equivalence
class. Now let Φ(Ei, Ej) denote the aggregated weight
of the edge considering the merge of the nodes ofEi and
the nodes of Ej in the graph: the pair (d, c) such that d
denotes the unique evidences for equivalence relations
between all nodes in Ei and all nodes in Ej and such
that c denotes the concurrence score considering the
merge of entities in Ei and Ej—intuitively, the same
weight as before, but applied as if the identifiers in Ei
and Ej were consolidated in the graph. We can apply
the following clustering:
– for each pair of sets Ei, Ej ∈ Eqn such that

@{a, b} ∈ C : a ∈ Eqi, b ∈ Eqj (i.e., consistently
mergeable subsets) identify the weights of Φ(Ei, Ej)
and order the pairings;

– in descending order with respect to the above weights,
merge Ei, Ej pairs—such that neither Ei or Ej have

already been merged in this iteration—producing
En+1 at iteration’s end;

– iterate over n until fixpoint.
Thus, we determine the pairs of incompatible identi-

fiers that must necessarily be in different repaired equiv-
alence classes, deconstruct the equivalence class, and
then begin reconstructing the repaired equivalence class
by iteratively merging the most strongly linked interme-
diary equivalence classes that will not contain incom-
patible identifers. 44

7.2. Implementing disambiguation

The implementation of the above disambiguation pro-
cess can be viewed on two levels: the macro level, which
identifies and collates the information about individual
equivalence classes and their respectively consolidated
inlinks/outlinks, and the micro level, which repairs in-
dividual equivalence classes.

On the macro level, the task assumes input data
sorted by both subject (s, p, o, c, s′, o′) and object
(o, p, s, c, o′, s′), again such that s, o represent canon-
ical identifiers and s′, o′ represent the original identi-
fiers as before. Note that we also require the asserted
owl:sameAs relations encoded likewise. Given that all
the required information about the equivalence classes
(their inlinks, outlinks, derivable equivalences and orig-
inal identifiers) are gathered under the canonical identi-
fiers, we can apply a straight-forward merge-join on s-o
over the sorted stream of data and batch consolidated
segments of data.

On a micro level, we buffer each individual consoli-
dated segment into an in-memory index; currently, these
segments fit in memory, where for the largest equiv-
alence classes we note that inlinks/outlinks are com-
monly duplicated—if this were not the case, one could
consider using an on-disk index, which should be fea-
sible given that only small batches of the corpus are
under analysis at each given time. We assume access to
the relevant terminological knowledge required for rea-
soning, and the predicate-level statistics derived during
from the concurrence analysis. We apply scan-reasoning
and inconsistency detection over each batch, and for ef-
ficiency, skip over batches that are not symptomised by
incompatible identifiers.

For equivalence classes containing incompatible
identifiers, we first determine the full set of such pairs
through application of the inconsistency detection rules:

44We note the possibility of a dual correspondence between our
“bottom-up” approach to repair and the “top-down” minimal hitting
set techniques introduced by Reiter [55].
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usually, each detection gives a single pair, where we ig-
nore pairs containing the same identifier (i.e., detections
that would equally apply over the unconsolidated data).
We check the pairs for a trivial solution: if all identi-
fiers in the equivalence class appear in some pair, we
check whether the graph formed by the pairs is strongly
connected, in which case, the equivalence class must
necessarily be completely disbanded.

For non-trivial repairs, we extract the explicit
owl:sameAs relations (which we view as directionless)
and reinfer owl:sameAs relations from the consolidation
rules, encoding the subsequent graph. We label edges in
the graph with a set of hashes denoting the input triples
required for their derivation, such that the cardinality
of the hashset corresponds to the primary edge weight.
We subsequently use a priority-queue to order the edge-
weights, and only materialise concurrence scores in the
case of a tie. Nodes in the equivalence graph are merged
by combining unique edges and merging the hashsets
for overlapping edges. Using these operations, we can
apply the aformentioned process to derive the final re-
paired equivalence classes.

In the final step, we encode the repaired equivalence
classes in memory, and perform a final scan of the cor-
pus (in natural sorted order), revising identifiers accord-
ing to their repaired canonical term.

7.3. Distributed implementation

Distribution of the task becomes straight-forward, as-
suming that the slave machines have knowledge of ter-
minological data, predicate-level statistics, and already
have the consolidation encoding sextuples sorted and
coordinated by hash on s and o. Note that all of these
data are present on the slave machines from previous
tasks; for the concurrence analysis, we in fact maintain
sextuples during the data preparation phase (although
not required by the analysis).

Thus, we are left with two steps:
– run: each slave machine performs the above pro-

cess on its segment of the corpus, applying a merge-
join over the data sorted by (s, p, o, c, s′o′) and
(o, p, s, c, o′, s′) to derive batches of consolidated
data, which are subsequently analysed, diagnosed,
and a repair derived in memory;

– gather/run: the master machine gathers all repair in-
formation from all slave machines, and floods the
merged repairs to the slave machines; the slave ma-
chines subsequently perform the final repair of the
corpus.

7.4. Performance Evaluation

We ran the inconsistency detection and disambigua-
tion over the corpora produced by the extended consoli-
dation approach. For the full corpus, the total time taken
was 2.35 h. The inconsistency extraction and equiva-
lence class repair analysis took 1.2 h, with a significant
average idle time of 7.5 min (9.3%): in particular, cer-
tain large batches of consolidated data took significant
amounts of time to process, particularly to reason over.
The additional expense is due to the relaxation of du-
plicate detection: we cannot consider duplicates on a
triple level, but must consider uniqueness based on the
entire sextuple to derive the information required for re-
pair; we must apply many duplicate inferencing steps.
On the other hand, we can skip certain reasoning paths
that cannot lead to inconsistency. Repairing the corpus
took 0.98 h, with an average idle time of 2.7 min.

In Table 17, we again give a detailed breakdown of
the timings for the task. With regards the full corpus,
note that the aggregation of the repair information took
a negligible amount of time, and where only a total of
one minute is spent on the slave machine. Most notably,
load-balancing is somewhat of an issue, causing slave
machines to be idle for, on average, 7.2% of the total
task time, mostly waiting for peers. This percentage—
and the associated load-balancing issues—would likely
be aggrevated further by more machines or a higher
scale of data.

With regards the timings of tasks when varying the
number of slave machines, as the number of slave ma-
chines doubles, the total execution times decrease by
factors of 0.534×, 0.599× and 0.649× respectively. Un-
like for previous tasks where the aggregation of global
knowledge on the master machine poses a bottleneck,
this time load-balancing for the inconsistency detection
and repair selection task sees overall performance start
to converge when increasing machines.

7.5. Results Evaluation

It seems that our discussion of inconsistency repair
has been somewhat academic: from the total of 2.82 mil-
lion consolidated batches to check, we found 280 equiv-
alence classes (0.01%)—containing 3,985 identifiers—
causing novel inconsistency. Of these 280 inconsis-
tent sets, 185 were detected through disjoint-class con-
straints, 94 were detected through distinct literal val-
ues for inverse-functional properties, and one was de-
tected through owl:differentFrom assertions. We list
the top five functional-properties given non-distinct lit-
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Category
1 2 4 8 full-8

min % min % min % min % min %
Total execution time 114.7 100.0 61.3 100.0 36.7 100.0 23.8 100.0 141.1 100.0

M
A

S
T

E
R Executing ∼ ∼ ∼ ∼ ∼ 0.1 ∼ 0.1 ∼ ∼

Miscellaneous ∼ ∼ ∼ ∼ ∼ 0.1 ∼ 0.1 ∼ ∼
Idle (waiting for slaves) 114.7 100.0 61.2 100.0 36.6 99.9 23.8 99.9 141.1 100.0

S
L

A
V

E

Avg. Executing (total exc. idle) 114.7 100.0 59.0 96.3 33.6 91.5 22.3 93.7 130.9 92.8
Identify inconsistencies and repairs 74.7 65.1 38.5 62.8 23.2 63.4 17.2 72.2 72.4 51.3
Repair Corpus 40.0 34.8 20.5 33.5 10.3 28.1 5.1 21.5 58.5 41.5

Avg. Idle ∼ ∼ 2.3 3.7 3.1 8.5 1.5 6.3 10.2 7.2
Waiting for peers 0.0 0.0 2.2 3.7 3.1 8.4 1.5 6.2 10.1 7.2
Waiting for master ∼ ∼ ∼ ∼ ∼ 0.1 ∼ 0.1 ∼ ∼

Table 17
Breakdown of timing of distributed disambiguation and repair

# Functional Property Detections
1 foaf:gender 60
2 foaf:age 32
3 dbo:height, dbo:length 4
4 dbo:wheelbase, dbo:width 3
5 atomowl:body 1
6 loc:address, loc:name, loc:phone 1

Table 18
Breakdown of inconsistency detections for functional-properties,

where properties in the same row gave identical detections

# Disjoint Class 1 Disjoint Class 2 Detections
1 foaf:Document foaf:Person 163
2 foaf:Document foaf:Agent 153
3 foaf:Organization foaf:Person 17
4 foaf:Person foaf:Project 3
5 foaf:Organization foaf:Project 1

Table 19
Breakdown of inconsistency detections for disjoint-classes

eral values in Table 18 and the top five disjoint classes
in Table 19; note that some inconsistent equivalent
classes had multiple detections, where, e.g., the class
foaf:Person is a subclass of foaf:Agent and thus an
identical detection is given for each. Notably, almost all
of the detections involve FOAF classes or properties.
(Further, we note that between the time of the crawl and
the time of writing, the FOAF vocabulary has removed
disjointness constraints between the foaf:Document and
foaf:Person/foaf:Agent classes.)

In terms of repairing these 280 equivalence classes,
29 (10.4%) had to be completely disbanded since all
identifiers were pairwise incompatible. A total of 905
partitions were created during the repair, with each of
the 280 classes being broken up into an average of 3.23
repaired, consistent partitions. Figure 10 gives the dis-
tribution of the number of repaired partitions created for
each equivalence class; 230 classes were broken into
the minimum of two partitions, and one class was bro-

ken into 96 partitions. Figure 11 gives the distribution
of the number of identfiers in each repaired partition;
each partition contained an average of 4.4 equivalent
identifiers, with 577 identifiers in singleton partitions,
and one partition containing 182 identifiers.

Finally, although the repaired partitions no longer
cause inconsistency, this does not necessarily mean that
they are correct. From the raw equivalence classes iden-
tified to cause inconsistency, we applied the same sam-
pling technique as before: we extracted 503 identifiers
and for each, randomly sampled an identifier originally
thought to be equivalent. We then manually checked
whether or not we considered the identifiers to refer to
the same entity or not. In the (blind) manual evaluation,
we selected option UNCLEAR 19 times, option SAME
232 times (of which, 49 were TRIVIALLY SAME) and
option DIFFERENT 249 times. 45 We checked our man-
ually annotated results against the partitions produced
by our repair to see if they corresponded. The results are
enumerated in Table 20. Of the 481 (clear) manually-
inspected pairs, 361 (72.1%) remained equivalent after
the repair, and 123 (25.4%) were separated. Of the 223
pairs manually annotated as SAME, 205 (91.9%) also
remained equivalent in the repair, whereas 18 (18.1%)
were deemed different; here we see that the repair has
a 91.9% recall when reesatablishing equivalence for re-
sources that are the same. Of the 261 pairs verified as
DIFFERENT, 105 (40.2%) were also deemed different
in the repair, whereas 156 (59.7%) were deemed to be
equivalent.

Overall, for identifying which resources were the
same and should be re-aligned during the repair, the
precision was 0.568, with a recall of 0.919, and F1-
measure of 0.702. Conversely, the precision for identi-

45We were particularly careful to distinguish information
resources—such as WIKIPEDIA articles—and non-information re-
sources as being DIFFERENT.
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Fig. 10. Distribution of the number of partitions the inconsistent
equivalence classes are broken into (log/log)
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manual auto count %

SAME * 223 44.3
DIFFERENT * 261 51.9
UNCLEAR – 19 3.8

* SAME 361 74.6
* DIFFERENT 123 25.4

SAME SAME 205 91.9
SAME DIFFERENT 18 8.1

DIFFERENT DIFFERENT 105 40.2
DIFFERENT SAME 156 59.7

Table 20
Results of manual repair inspection

fying which resources were different and should be kept
separate during the repair, the precision was 0.854, with
a recall of 0.402, and F1-measure of 0.546.

Interpreting and inspecting the results, we found that
the inconsistency-based repair process works well for
correctly fixing equivalence classes with one or two
“bad apples”. However, for equivalence classes which
contain many broken resources, we found that the re-
pair process tends towards re-aligning too many identi-
fiers: although the output partitions are consistent, they
are not correct. For example, we found that 30 of the
pairs which were annotated as different but were re-
consolidated by the repair were from the opera.com do-
main, where users had specified various nonsense values
which were exported as values for inverse-functional
chat-ID properties in FOAF (and were missed by our
black-list). This lead to groups of users (the largest con-
taining 205 users) being initially identified as being co-
referent through a web of sharing different such values.
In these groups, inconsistency was caused by different
values for gender (a functional property), and so they
were passed into the repair process. However, the repair
process simply split the groups into male and female

partitions, which although now consistent, were still in-
correct. This illustrates a core weakness of the proposed
repair process: consistency does not imply correctness.

In summary, for an inconsistency-based detection and
repair process to work well over Linked Data, vocab-
ulary publishers would need to provide more, sensible
axioms which indicate when instance data are inconsis-
tent. These can then be used to detect more examples
of incorrect equivalence (amongst other use-cases [9]).
To help repair such cases, in particular, the widespread
use and adoption of datatype-properties which are both
inverse-functional and functional (i.e., one-to-one prop-
erties such as isbn) would greatly help to automatically
identify not only which resources are the same, but to
identify which resources are different in a granular man-
ner. 46 Functional properties (e.g., gender) or disjoint
classes (e.g., Person, Document) which have wide catch-
ments are useful to detect inconsistencies in the first
place, but are not ideal for performing granular repairs.

8. Critical Discussion

In this section, we provide critical discussion of our
approach, following the dimensions of the requirements
listed at the outset.

With respect to scale, on a high level, our primary
means of organising the bulk of the corpus is external-
sorts, characterised by the linearithmic time complexity
O(n∗log(n)); external-sorts do not have a critical main-
memory requirement, and are efficiently distributable.
Our primary means of accessing the data is via linear
scans. With respect to the individual tasks:

46Of course, in OWL (2) DL, datatype-properties cannot be inverse-
functional, but Linked Data vocabularies often break this restric-
tion [29].
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– our current baseline consolidation approach relies on
an in-memory owl:sameAs index: however we demon-
strate an on-disk variant in the extended consolida-
tion approach;

– the extended consolidation currently loads termino-
logical data that is required by all machines into mem-
ory: if necessary, we claim that an on-disk termino-
logical index would offer good performance given
the distribution of class and property memberships,
where we believe that a high cache-hit rate would be
enjoyed;

– for the entity concurrence analysis, the predicate
level statistics required by all machines is small in
volume—for the moment, we do not see this as a se-
rious factor in scaling-up;

– for the inconsistency detection, we identify the same
potential issues with respect to terminological data;
also, given large equivalence classes with a high num-
ber of inlinks and outlinks, we would encounter main-
memory problems, where we believe that an on-disk
index could be applied assuming a reasonable upper
limit on batch sizes.

With respect to efficiency:
– the on-disk aggregation of owl:sameAs data for the ex-

tended consolidation has proven to be a bottleneck—
for efficient processing at higher levels of scale, dis-
tribution of this task would be a priority, which should
be feasible given that again, the primitive opera-
tions involved are external sorts and scans, with non-
critical in-memory indices to accelerate reaching the
fixpoint;

– although we typically observe terminological data to
constitute a small percentage of Linked Data corpora
(0.1% in our corpus; cf. [31,33]) at higher scales,
aggregating the terminological data for all machines
may become a bottleneck, and distributed approaches
to perform such would need to be investigated; sim-
ilarly, as we have seen, large terminological docu-
ments can cause load-balancing issues; 47

– for the concurrence analysis and inconsistency detec-
tion, data are distributed according to a modulo-hash
function on the subject and object position, where
we do not hash on the objects of rdf:type triples;
although we demonstrated even data distribution by
this approach for our current corpus, this may not
hold in the general case;

47We reduce terminological statements on a document-by-document
basis according to unaligned blank-node positions: for example, we
prune RDF collections identified by blank-nodes that do not join
with, e.g., an owl:unionOf axiom.

– as we have already seen for our corpus and ma-
chine count, the complexity of repairing consolidated
batches may become an issue given large equivalence
class sizes;

– there is some notable idle time for our machines,
where the total cost of running the pipeline could be
reduced by interleaving jobs.
With the exception of our manually derived black-

list for values of (inverse-)functional-properties, the
methods presented herein have been entirely domain-
agnostic and fully automatic.

One major open issue is the question of precision
and recall. Given the nature of the tasks—particularly
the scale and diversity of the datasets—we believe that
deriving an appropriate gold standard is currently infea-
sible:
– the scale of the corpus precludes manual or semi-

automatic processes;
– any automatic process for deriving the gold standard

would make redundant the approach to test;
– results derived from application of the methods on

subsets of manually verified data would not be equat-
able to the results derived from the whole corpus;

– even assuming a manual approach were feasible, of-
tentimes there is no objective criteria for determining
what precisely signifies what—the publisher’s origi-
nal intent is often ambiguous.

Thus, we prefer symbolic approaches to consolidation
and disambiguation that are predicated on the formal
semantics of the data, where we can appeal to the fact
that incorrect consolidation is due to erroneous data,
not an erroneous approach. Without a formal means of
sufficiently evaluating the results, we employ statisti-
cal methods for applications where precision is not a
primary requirement. We also use formal inconsistency
as an indicator of imprecise consolidation, although we
have shown that this method does not currently yield
many detections. In general, we believe that for the cor-
pora we target, such research can only find it’s real lit-
mus test when integrated into a system with a critical
user-base.

Finally, we have only briefly discussed issues relat-
ing to web-tolerance: e.g., spamming or conflicting
data. With respect to such consideration, we currently
(i) derive and use a blacklist for common void values;
(ii) consider authority for terminological data [31,33];
and (iii) try to detect erroneous consolidation through
consistency verification. One might question an ap-
proach which trusts all equivalences asserted or derived
from the data. Along these lines, we track the original
pre-consolidation identifiers (in the form of sextuples),
which can be used to revert erroneous consolidation. In
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fact, similar considerations can be applied more gener-
ally to the re-use of identifiers across sources: giving
special consideration to the consolidation of third party
data about an entity is somewhat fallacious without also
considering the third party contribution of data using a
consistent identifier. In both cases, we track the context
of (consolidated) statements, which at least can be used
to verify or post-process sources. 48 Currently, the cor-
pus we use probably does not exhibit any significant
deliberate spamming, but rather indeliberate noise. We
leave more mature means of handling spamming for fu-
ture work (as required).

9. Related work

Related Fields
Work relating to entity consolidation has been re-

searched in the area of databases for a number of
years, aiming to identify and process co-referent sig-
nifiers, with works under the titles of record linkage,
record or data fusion, merge-purge, instance fusion,
and duplicate identification, and (ironically) a plethora
of variations thereupon; see [47,44,13,5,1,2], etc., and
surveys at [19,8]. Unlike our approach, which lever-
ages the declarative semantics of the data in order
to be domain agnostic, such systems usually operate
given closed schemas—similarly, they typically focus
on string-similarity measures and statistical analysis.
Haas et al. note that “in relational systems where the
data model does not provide primitives for making
same-as assertions <...> there is a value-based notion
of identity” [25]. However, we note that some works
have focused on leveraging semantics for such tasks in
relation databases; e.g., Fan et al. [21] leverage domain
knowledge to match entities, where interestingly they
state “real life data is typically dirty... <thus> it is often
necessary to hinge on the semantics of the data”.

Some other works—more related to Information Re-
trieval and Natural Language Processing—focus on ex-
tracting coreferent entity names from unstructured text,
tying in with aligning the results of Named Entity
Recognition where for example, Singh et al. [60] present
an approach to identify coreferences from a corpus of 3
million natural language “mentions” of persons, where
they build compound “entities” out of the individual
mentions.

48Although it must be said, we currently do not track the steps used
to derive the equivalences involved in consolidation, which would
be expensive to materialise and maintain.

Instance Matching
With respect to RDF, one area of research also goes

by the name instance matching: for example, in 2009,
the Ontology Alignment Evaluation Initiative 49 intro-
duced a new test track on instance matching 50 . We refer
the interested reader to the results of OAEI 2010 [20]
for further information, where we now discuss some
recent instance matching systems. It is worth noting
that in contrast to our scenario, many instance match-
ing systems take as input a small number of instance
sets—i.e., consistently named datasets—across which
similarities and coreferences are computed. Thus, the
instance matching systems mentioned in this section are
not specifically tailored for processing Linked Data (and
most do not present experiments along these lines).

The LN2R [56] system incorporates two methods for
performing instance matching: (i) L2R applies deduc-
tive techniques where rules are used to model the se-
mantics of the respective ontology—particularly func-
tional properties, inverse-functional properties and dis-
jointness constraints—which are then used to infer con-
sistent coreference matches; (ii) N2R is an inductive,
numeric approach which uses the results of L2R to per-
form unsupervised matching, where a system of linear-
equations representing similarities is seeded using text-
based analysis and then used to compute instance sim-
ilarity by iterative resolution. Scalability is not directly
addressed.

The MOMA [68] engine matches instances from two
distinct datasets; to help ensure high precision, only
members of the same class are matched (which can be
determined, perhaps, by an ontology-matching phase).
A suite of matching tools is provided by MOMA, along
with the ability to pipeline matchers, and to select a va-
riety of operators for merging, composing and select-
ing (thresholding) results. Along these lines, the sys-
tem is designed to facilitate a human expert in instance-
matching, focusing on a different scenario to ours pre-
sented herein.

The RiMoM [41] engine is designed for ontology
matching, implementing a wide range of strategies
which can be composed and combined in a graphical
user interface; strategies can also be selected by the en-
gine itself based on the nature of the input. Matching
results from different strategies can be composed us-
ing linear interpolation. Instance matching techniques
mainly rely on text-based analysis of resources using
Vector Space Models and IR-style measures of simi-
larity and relevance. Large scale instance matching is

49OAEI. http://oaei.ontologymatching.org/
50Instance data matching. http://www.instancematching.org/
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enabled by an inverted-index over text terms, similar in
principle to candidate reduction techniques discussed
later in this section. They currently do not support sym-
bolic techniques for matching (although they do allow
disambiguation of instances from different classes).

Nikolov et al. [48] present the KnoFuss architecture
for aligning data on an assertional level; they identify
a three phase process involving coreferencing (find-
ing equivalent individuals), conflict detection (finding
inconsistencies caused by the integration), and incon-
sistency resolution. For the coreferencing, the authors
introduce and discuss approaches incorporating string
similarity measures and class-based machine learning
techniques. Although the high-level process is similar
to our own, the authors do not address scalability con-
cerns.

In motivating the design of their RDF-AI system,
Scharffe et al. [58] identify four steps in aligning
datasets: align, interlink, fuse and post-process. The
align process identifies equivalences between entities
in the two datasets, the interlink process materialises
owl:sameAs relations between the two datasets, the align-
ing step merges the two datasets (on both a termino-
logical and assertional level, possibly using domain-
specific rules), and the post-processing phase subse-
quently checks the consistency of the output data. Al-
though parts of this conceptual process echoes our own,
the RDF-AI system itself differs greatly from our work.
First, the authors focus on the task of identifying coref-
erence across two distinct datasets, whereas we aim to
identify coreference in a large “bag of instances”. Sec-
ond, the authors do not emphasise scalability, where the
RDF datasets are loaded into memory and processed
using the popular Jena framework; similarly, the sys-
tem proposes performing using pair-wise comparison
for, e.g., using string matching techniques (which we do
not support). Third, although inconsistency detection is
mentioned in the conceptual process, the authors do not
discuss implementation details for the RDF-AI system
itself.

Noessner et al. [49] present an approach for aligning
two A-Boxes described using the same T-Box; in par-
ticular they leverage similarity measures introduced by
Stuckenschmidt [65], and define an optimisation prob-
lem to identify the alignment that generates the high-
est weighted similarity between the two A-Boxes under
analysis: they use Integer Linear Programming to gen-
erate the optimal alignment, encoding linear constraints
to enforce valid (i.e., consistency preserving), one-to-
one, functional mappings. Although they give perfor-
mance results, they do not directly address scalability.
Their method for comparing entities is similar in prac-

tice to ours: they measure the “overlapping knowledge”
between two entities, counting how many assertions are
true about both. The goal is to match entities such that:
the resulting consolidation is consistent; the measure of
overlap is maximal.

Like us, Castano et al. [12] approach instance match-
ing from two distinct perspectives: (i) determine coref-
erent identifiers; (ii) detect similar individuals based on
the data they share. Much of their work is similar in prin-
ciple to ours: in particular, they use reasoning for iden-
tifying equivalences and use a statistical approach for
identifying properties “with high identification power”.
They do not consider use of inconsistency detection
for disambiguating entities, and perhaps more critically,
only evaluate with respect to a dataset containing ∼15
thousand entities.

Cudré-Mauroux et al. [17] present the idMesh sys-
tem, which leverages user-defined associations and
probabalistic methods to derive entity-level relation-
ships, including resolution of conflicts; they also de-
lineate entities based on “temporal discrimination”,
whereby coreferent entities may predate or postdate one
another, capturing a description thereof at a particular
point in time. The idMesh system itself is designed over
a peer-to-peer network with centralised coordination.
However, evaluation is over synthetic data, where they
only demonstrate a maximum scale involving 8,000 en-
tities and 24,000 links, over 400 machines: the eval-
uation of performance focuses on network traffic and
message exchange as opposed to time.

Domain-Specific Consolidation
Various authors have looked at applying consolida-

tion over domain-specific RDF corpora: e.g., Sleeman
and Finin look at using machine learning techniques
to consolidate FOAF personal profile information [61];
Shi et al. similarly look at FOAF-specific alignment
techniques [59] using inverse-functional properties and
fuzzy string matching; Jentzsch et al. examine align-
ment of published drug data [38]; 51 Raimond et al.
look at interlinking RDF from the music-domain [54];
Monaghan and O’ Sullivan apply consolidation to photo
annotations expressed in RDF [46].

Salvadores et al. [57] present the LinksB2N system,
which aims to perform scalable integration of RDF data,
particularly focusing on evaluation over corpora from
the marketing domain; however, their methods are not
specific to this domain. They do not leverage the se-

51In fact, we believe that this work generates the incorrect results ob-
servable in Table 6; cf. http://groups.google.com/group/pedantic-web/
browse_thread/thread/ad740f7052cc3a2d.
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mantics of the data for performing consolidation, in-
stead using similarity measures based on the idea that
“the unique combination of RDF predicates associated
with RDF resources is what defines their existence as
unique” [57]. This is a similar intuition to that behind
our concurrence analysis, but we again question the va-
lidity of such an assumption for consolidation, partic-
ularly given incomplete data and the Open World As-
sumption underlying RDF(S)/OWL—we view an RDF
resource as a description of something signified, and
would wish to avoid conflating unique signifiers, even
if they match precisely with respect to their description.

Large-Scale/Web-Data Consolidation
Like us, various authors have investigated consolida-

tion techniques tailored to the challenges—esp. scala-
bility and noise—of resolving coreference in heteroge-
neous RDF Web data.

On a larger scale and following a similar ap-
proach to us, Hu et al. [36,35] have recently investi-
gated a consolidation system—called ObjectCoRef—
for application over ∼500 million triples of Web
data. They too define a baseline consolidation (which
they call the kernel) built by applying reason-
ing on owl:sameAs, owl:InverseFunctionalProperty,
owl:FunctionalProperty and owl:cardinality. No
other OWL constructs or reasoning is used when build-
ing the kernel. Then, starting from the coreferents in
the kernel, they use a learning technique to find the
most discriminative properties. Further, they reuse the
notion of average (inverse) cardinality [34] to find fre-
quent property combination pairs. A small scale exper-
iment is conducted that shows good results. At large
scale, although they manage to build the kernel for the
∼500 million triples dataset, they only apply and evalu-
ate their statistical method on a very small subset, con-
fessing that the approach would not be feasible for the
complete set.

The Sindice system has historically used inverse-
functional properties to find equivalent identifiers, also
investigating some bespoke “schema-level” reasoning to
identify a wider range of such properties [50]. However,
Sindice no longer uses such OWL features for determin-
ing coreference of entities. 52 The related Sig.ma search
system [69] internally uses IR-style string-based mea-
sures (e.g., TF-IDF scores) to mashup results in their
engine; compared to our system, they do not prioritise
precision, where mashups are designed to have a high
recall of related data, and to be disambiguated manu-

52From personal communication with the Sindice team

ally by the user using the interface. This can be verified
anecdotally by searching for various ambiguous terms
in their public interface. 53

Bishop et al. [6] apply reasoning over 1.2 billion
Linked Data triples using the BigOWLIM reasoner;
however, this dataset is manually selected as a merge
of a number of smaller, known datasets as opposed to
an arbitrary corpus. They discuss well-known optimi-
sations similar to our canonicalisation as a necessary
means of avoiding the quadratic nature of traditional
replacement semantics for owl:sameAs.

Large-Scale/Distributed Consolidation
With respect to distributed consolidation, Urbani et

al. [70] propose the WebPie system, which uses MapRe-
duce to perform pD* reasoning [67] using a clus-
ter of commodity hardware similar to ourselves. The
pD* ruleset contains rules for handling owl:sameAs re-
placement, inverse-functional properties and functional-
properties, but not for cardinalities (which, in any case
we demonstrated to be ineffective over out corpus). The
authors also discuss a canonicalisation approach for
handling equivalent identifiers. They demonstrate their
methods over 100 billion triples of synthetic LUBM data
over 64 machines; however, they do not present evalua-
tion over Linked Data, do not perform any form of sim-
ilarity or concurrence measures, do not consider incon-
sistency detection (not given by the pD* ruleset, or by
their corpora) and generally have a somewhat different
focus: scalable distributed rule-based materialisation.

Candidate Reduction
For performing large-scale consolidation, one ap-

proach is to group together sets of candidates within
which there are likely to be coreferent identifiers. Such
candidate reduction then by-passes the need for com-
plete pair-wise comparison and can enable the use of
more expensive matching methods in closed regions.
This is particularly relevant for text-based analyses
which we have not tackled in this paper. However, the
principle of candidate reduction generalises to any form
of matching that cannot be performed in a complete
pair-wise manner.

Song and Heflin [62] investigate scalable methods
to prune the candidate-space for the instance matching
task, focusing on scenarios such as our own. First, dis-
criminating properties—i.e., those for which a typical
value is shared by few instances—are used to group ini-
tial candidate sets. Second, the authors propose building

53http://sig.ma/search?q=paris
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textual descriptions of instances from surrounding text
and using an IR-style inverted index to query and group
lexically similar instances. Evaluation demonstrates fea-
sibility for matching up-to one million instances, al-
though the authors claim that the approach can scale
further.

Ioannou et al. [37] also propose a system, called RDF-
Sim, to cluster similar candidates based on associated
textual information. Virtual prose documents are con-
structed for resources from surrounding text, which are
then encoded in a special index which using Locality
Sensitive Hashing (LSH). The core idea of LSH is to
hash similar virtual documents into regions of space,
where distance measures can be used to identify similar
resources. A set of hash functions can be employed for
these purposes, and “close” documents are then subject
to other similarity measures; the RDFSim system cur-
rently uses the Jaccard coefficient to compute textual
similarities for these purposes.

Naming/Linking Resources on the Web
A number of works have investigated the fundamen-

tals of resource naming and linking on the Web, propos-
ing schemes or methods to bootstrap agreement between
remote publishers on common resource URIs, or to en-
able publishers to better link their contribution with
other external datasets.

With respect to URI naming on the Web, Bouquet
et al. [10] propose OKKAM: a centralised naming ar-
chitecture for minting URI signifiers for the Web. The
OKKAM system thus supports entity lookups for pub-
lishers, where a search providing a description of the
entity in question returns a set of possible candidates.
Publishers can then re-use the URI for the candidate
which most closely matches their intention in their local
data, with the intuition that other publishers have done
the same; thus, all users of the system will have their
naming schemes aligned. However, we see such a cen-
tralised “‘naming authority” as going against the ad-hoc,
decentralised, scale-free nature of the Web. More con-
cretely, for example, having one URI per resource goes
against current Linked Data principles which encourage
use of dereferenceable URIs: one URI can only derefer-
ence to one document, so which document should that
be, and who should decide?

Online systems RKBExplorer [23,22] 54 ,
<sameAs> 55 and ObjectCoref [15] 56 offer on-
demand querying for owl:sameAs relations found for a

54http://www.rkbexplorer.com/sameAs/
55http://sameas.org/
56http://ws.nju.edu.cn/objectcoref/

given input URI, which they internally compute and
store; the former focus on publishing owl:sameAs re-
lations for authors and papers in the area of scientific
publishing, with the latter two systems offering more
general owl:sameAs relationships between Linked Data
identifiers. In fact, many of the owl:sameAs relations
we consume are published as Linked Data by the
RKBExplorer system.

Volz et al. [72] present the Silk framework for cre-
ating and maintaining inter-linkage between domain-
specific RDF datasets; in particular, this framework
provides publishers with a means of discovering and
creating owl:sameAs links between data sources using
domain-specific rules and parameters. Thereafter, pub-
lishers can integrate discovered links into their ex-
ports, enabling better linkage of the data and subse-
quent consolidation by data consumers: this framework
goes hand-in-hand with our approach, producing the
owl:sameAs relations which we consume.

Popitsch and Haslhofer present discussion on the
problem of broken links in Linked Data, identifying
structurally broken links (the Web of Data’s version of
a “deadlink”) and semantically broken links, where the
original meaning of an identifier changes after a link has
been remotely asserted [52]. The authors subsequently
present the DSNotify system, which monitors dynam-
icity over a given subset of Linked Data and can detect
and act upon changes—e.g., to notify another agent or
correct broken links—and can also be used to indirectly
link the dynamic target.

Analyses of owl:sameAs
Recent papers have analysed and discussed the use

of owl:sameAs on the Web. These papers have lead to
debate on whether owl:sameAs is appropriate for mod-
elling coreference across the Web.

Halpin et al. [26] look at the semantics and cur-
rent usage of owl:sameAs in Linked Data, discussing is-
sues relating to identity, and providing four categories
of owl:sameAs usage to relate entities that are closely
related, but for which the semantics of owl:sameAs—
particularly substitution—does not quite hold. The au-
thors also take and manually inspect 500 owl:sameAs

links sampled (using logarithmic weights for each do-
main) from Web data. Their experiments suggest that
although the majority of owl:sameAs relations are con-
sidered correct, many were still incorrect, and disagree-
ment between the judges indicates that the quality of
specific owl:sameAs links can be subjective [26]. In fact,
their results are much more pessimistic than ours with
regards the quality of owl:sameAs on the Web: whereas
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we established a precision figure of 97.2% for explicit
owl:sameAs through manual inspection, Halpin et al. put
the figure at 51% (±21%). Even taking the most op-
timistic figure of 72% from Halpin’s paper, there is a
wide gap to our result. Possible reasons for the discrep-
ancy include variations in sampling techniques, as well
as different criteria for manual judging. 57 .

Ding et al. [18] also provide quantitative analysis of
owl:sameAs usage in the BTC-2010 dataset; some of
these results correspond with analogous measures we
have presented in Section 4.4, but for a different (albeit
similar) sampled corpus. They found that URIs with at
least one coreferent identifier had an average of 2.4 iden-
tifiers (this corresponds closely with our measurement
of 2.65 identifiers per equivalence-class for baseline
consolidation). The average path length of owl:sameAs

was 1.07, indicating that few transitive links are given.
The largest equivalence class found was 5 thousand
(versus 8,481 in our case). They also discuss the land-
scape of owl:sameAs linkage between different publish-
ers of Linked Data.

10. Conclusion

In this paper, we have provided comprehensive dis-
cussion on scalable and distributed methods for consoli-
dating, matching, and disambiguating entities present in
a large static Linked Data corpus. Throughout, we have
focused on the scalability and practicalities of applying
our methods over real, arbitrary Linked Data in a do-
main agnostic and (almost entirely) automatic fashion.
We have shown how to use explicit owl:sameAs relations
in the data to perform consolidation, and subsequently
expanded this approach, leveraging the declarative for-
mal semantics of the corpus to materialise additional
owl:sameAs relations. We also presented a scalable ap-
proach to identify weighted concurrence relations for
entities that share many inlinks, outlinks, and attribute
values; we note that many of those entities demonstrat-
ing the highest concurrence were not coreferent. Next,
we presented an approach using inconsistencies to dis-
ambiguate entities and subsequently repair equivalence
classes: we found that this approach currently derives
few diagnoses, where the granularity of inconsistencies
within Linked Data is not sufficient for accurately pin-
pointing all incorrect consolidation. Finally, we tem-
pered our contribution with critical discussion, particu-
larly focusing on scalability and efficiency concerns.

57Again, our inspection results are available at http://swse.deri.

org/entity/

We believe that the area of research touched upon in
this paper—particularly as applied to large scale Linked
Data corpora—is of particular significance given the
rapid growth in popularity of Linked Data publishing.
As the scale and diversity of the Web of Data expands,
scalable and precise data integration technique will be-
come of vital importance, particularly for data ware-
housing applications; we see the work presented herein
as a significant step in the right direction.
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Appendix A. Prefixes

Table A.1 lists the prefixes used throughout the paper.

Prefix URI
“T-Box prefixes”

atomowl: http://bblfish.net/work/atom-owl/2006-06-06/#

b2r: http://bio2rdf.org/bio2rdf:

b2rr: http://bio2rdf.org/bio2rdf_resource:

dbo: http://dbpedia.org/ontology/

dbp: http://dbpedia.org/property/

ecs: http://rdf.ecs.soton.ac.uk/ontology/ecs#

eurostat: http://ontologycentral.com/2009/01/eurostat/ns#

fb: http://rdf.freebase.com/ns/

foaf: http://xmlns.com/foaf/0.1/

geonames: http://www.geonames.org/ontology#

kwa: http://knowledgeweb.semanticweb.org/heterogeneity/alignment#

lldpubmed: http://linkedlifedata.com/resource/pubmed/

loc: http://sw.deri.org/2006/07/location/loc#

mo: http://purl.org/ontology/mo/

mvcb: http://webns.net/mvcb/

opiumfield: http://rdf.opiumfield.com/lastfm/spec#

owl: http://www.w3.org/2002/07/owl#

quaffing: http://purl.org/net/schemas/quaffing/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

skipinions: http://skipforward.net/skipforward/page/seeder/skipinions/

skos: http://www.w3.org/2004/02/skos/core#

“A-Box prefixes”
avtimbl: http://www.advogato.org/person/timbl/foaf.rdf#

dbpedia: http://dbpedia.org/resource/

dblpperson: http://www4.wiwiss.fu-berlin.de/dblp/resource/person/

eswc2006p: http://www.eswc2006.org/people/#
identicau: http://identi.ca/user/

kingdoms: http://lod.geospecies.org/kingdoms/

macs: http://stitch.cs.vu.nl/alignments/macs/

semweborg: http://data.semanticweb.org/organization/
swid: http://semanticweb.org/id/

timblfoaf: http://www.w3.org/People/Berners-Lee/card#

vperson: http://virtuoso.openlinksw.com/dataspace/person/

wikier: http://www.wikier.org/foaf.rdf#

yagor: http://www.mpii.de/yago/resource/

Table A.1
Used prefixes
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