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Abstract. Schema integration is the activity of providing a unified rep-
resentation of multiple data sources. The core problems in schema inte-
gration are: schema matching, i.e. the identification of correspondences,
or mappings, between schema objects, and schema merging, i.e. the cre-
ation of a unified schema based on the identified mappings. Existing
schema matching approaches attempt to identify a single mapping be-
tween each pair of objects, for which they are 100% certain of its correct-
ness. However, this is impossible in general, thus a human expert always
has to validate or modify it. In this paper, we propose a new schema
integration approach where the uncertainty in the identified mappings
that is inherent in the schema matching process is explicitly represented,
and that uncertainty propagates to the schema merging process, and fi-
nally it is depicted in the resulting integrated schema.

1 Introduction

In this paper we present a new method of schema integration based on uncertain
semantic mappings. Schema integration is the activity of providing a unified rep-
resentation of multiple data sources. The core problems in schema integration
are: schema matching [1], i.e. the identification of correspondences, or mappings,
between schema objects, and schema merging [2], i.e. the creation of a unified
schema based on the identified mappings. In our approach, we focus on semantic
schema integration and on semantic mappings between schema objects. Knowl-
edge about semantic mappings is essential to produce an integrated schema [3].
Early [6,7] and more recent work [4,5,8] has shown that if all semantic mappings
are known, then schema merging can be performed semi-automatically.

Unfortunately, it can be very difficult to identify semantic mappings with
certainty. Manual schema matching is usually time consuming, and it may be
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Fig. 1. Schema S1 and S2: undergraduate and postgraduate data sources
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Fig. 2. Schema S12: integration of S1 and S2

unfeasible, especially with large databases. Automatic schema matching is inher-
ently uncertain because the semantics of schema objects cannot be fully derived
from data and meta-data information. In our novel approach, uncertainty in the
identified mappings is represented during the schema matching process, that un-
certainty propagates to the schema merging process, and it is depicted in the
resulting integrated schema.

As a motivating example, consider the schemas S1 and S2 in Figure 1. Schema
S1 models a data source of undergraduate students. Undergraduates are registered
(reg) in courses that are taught (tch) by staff members. Schema S2 models a data
source of postgraduate students, which can also optionally register in fourth-year
undergraduate courses to refresh their knowledge or familiarize themselves with
new subjects. Therefore, S1.student and S2.student are disjoint, while S1.course
subsumes S2.course. Additionally, S1.staff and S2.staff are equivalent. The cardi-
nalities of the tch relationship in the two schemas differ, since not all staff mem-
bers teach fourth-year courses. The aforementioned semantic mappings drive the
schema merging process. For example, the disjointness mapping between the stu-
dent entities triggers schema transformations that rename the entities to make
them distinct, e.g. into ug and pg, and add a union entity, e.g. student, that rep-
resents the union set of both undergraduate and postgraduate students. This is
illustrated in Figure 2, where the complete integrated schema S12 is presented.

However, in general it is impossible to identify fully automatically the correct
semantic mappings. Even in the small example above, where the schemas are
almost identical, the semantics of the schema objects show subtle differences
which make the discovery of the actual semantic mappings very difficult. Most
existing techniques [9,10,11] try to identify a single mapping for each pair of
objects, which of course could be wrong. For example, an automatic schema
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matching technique might produce an equivalence mapping between the two
student entities in S1 and S2, based on name comparison.

In this paper, we extend the concept of semantic mapping to include the
notion of uncertainty, thus enabling schema matching techniques to show their
level of belief on the mappings that they produce. Our goal is the management
of this uncertainty. We do not include the implementation details of discovering
uncertain mappings, nor the merging technique used to produce the integrated
schema, even though we give such examples to illustrate our approach. To gain
an intuition of our methodology, assume to have a finite amount of belief that
can be distributed to the alternative semantic mappings of two schema objects.
When we are certain about a mapping we assign all our belief to it. This is
implicitly done by the existing schema matching techniques [1]. A straightfor-
ward extension of this concept can be obtained by allowing several alternative
mappings to be possible, and distributing our belief to them. For example we
might think that the two student entities are either disjoint (if we believe that
one entity is undergraduates and the other postgraduates), or equivalent (if both
entities represent all the students). This legitimate uncertainty should not pre-
vent the integration of schemas S1 and S2. In fact we can think of two possible
integrations, one based on disjointness, where one would form a generalisation hi-
erarchy under student, as shown in Figure 2, and the other based on equivalence,
where there would be just a single student entity in the final schema. Hence the
uncertainty in the mapping between the two student entities propagates to the
corresponding alternative integrations. The final integrated schema is created by
combining all the produced mappings and it is structurally uncertain.

Our approach, which produces a set of possible mappings for each pair of
schema objects, subsumes previous work where a single mapping is specified
for each pair. As far as we know, there are two other related approaches that
are concerned with uncertainty in schema and data integration. In [12] an ap-
proach to integrating XML documents is described, based on probability theory,
that deals with uncertainty in data-level schemas. However, we focus on schema
integration, and probability theory is just a particular case of the formalism
used in our approach to manage uncertainty. In [13], uncertainty is only exam-
ined on equivalence mappings, while we provide a much wider set of possible
semantic mappings, e.g. subsumption and disjointness. Moreover, in [13] only
mappings between sets of attributes are considered, while we propose a more
general methodology for matching and merging whole schemas.

The paper is organized as follows. In the next section we briefly present an
existing schema integration method based on semantic mappings [14,8]. In the
following sections, we extend it to deal with uncertainty. In particular, in Section
3 we introduce the theory used to represent uncertainty, and provide the formal
definition of uncertain semantic relationship (USR), together with illustrative
examples. In the same section, we also present a software architecture that can
be used to compare schemas and discover USRs. In Section 4 we analyze de-
pendencies between USRs, and describe the process of building an uncertain
integrated schema, i.e. a set of possible schemas with a belief distribution over
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them. The main problem tackled in this section is the management of dependen-
cies between USRs. Finally, we draw our concluding remarks. Schemas S1 and
S2 in Figure 1 will be used as a working example throughout the paper.

2 Schema Integration Based on Semantic Mappings

In this section, we summarize the schema integration approach presented in
[14,8], which we then extend in the sections that follow to deal with uncertainty.

2.1 Semantic Relationships

In [14], a mapping between two schema objects is specified by a semantic relation-
ship. We have defined six types of semantic relationships between schema objects
based on a set comparison of their intentional domains, i.e. the set of real-world
objects that they represent [14]. We use Domint(E) to define the intentional
domain of an ER entity E. The intentional domain of a binary ER relationship
is a subset of the Cartesian domain of the intentional domains of the entities it
associates, e.g. in schema S1, Domint(reg) ⊆ Domint(student) × Domint(course).
The semantic relationships are:

1. equivalence (S=): Schema object ER1 is equivalent to ER2, ER1
S=ER2, iff

Domint(ER1) = Domint(ER2)
2. subset-subsumption (S⊂): Schema object ER1 is a subset of schema object

ER2, ER1
S⊂ER2, iff Domint(ER1) ⊂ Domint(ER2)

3. superset-subsumption (S⊃): Schema object ER1 is a superset of schema
object ER2, ER1

S⊃ER2, iff Domint(ER1) ⊃ Domint(ER2)
4. intersection (S∩): Two schema objects ER1 and ER2 are intersecting, ER1

S∩
ER2, iff ¬(ER1

S⊂ER2), ¬(ER1
S⊃ER2), Domint(ER1) ∩ Domint(ER2) �= ∅, ∃

ER3 : Domint(ER1) ∩ Domint(ER2) = Domint(ER3)
5. disjointness (

S
∩/): Two schema objects ER1 and ER2 are disjoint, ER1

S
∩/ER2,

iff Domint(ER1)∩Domint(ER2) = ∅, ∃ER3 : Domint(ER1)∪Domint(ER2) ⊆
Domint(ER3)

6. incompatibility (
S
/∼): Two schema objects ER1 and ER2 are incompatible,

ER1
S
/∼ER2, iff Domint(ER1) ∩ Domint(ER2) = ∅, � ∃ER3 : Domint(ER1) ∪

Domint(ER2) ⊆ Domint(ER3)

It is important to notice that object ER3 in the definition of intersection
and disjointness may or may not exist in the schemas. The notation ∃ER3 :
condition means that there is a real-world concept in the domain of the data
sources examined, that can be represented by an existing or non-existing schema
object ER3 that satisfies the condition. The notation � ∃ER3 : condition in the
definition of incompatibility means that there is no real-world concept that would
be represented by a schema object ER3 to satisfy the specified condition. We
term semantically compatible any two schema objects related by one of the
above semantic relationships, except incompatibility.
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During schema matching, the identification of the above semantic relation-
ships is accomplished by a bidirectional comparison. Our architecture consists of
a pool of experts that exploit different types of information to compare schema
objects, e.g. schema object names, cardinalities, instances, statistical data over
the instances, data types, value ranges and lengths. The experts produce sim-
ilarity degrees which are then aggregated, and with the help of user-defined
thresholds the semantic relationships between the schema objects are specified.
For example, the comparison of schemas S1 and S2 in Figure 1 could produce
the following semantic mappings:

S1.student
S
∩/ S2.student S1.course

S
/∼ S2.staff S1.reg

S
∩/ S2.reg

S1.student S
/∼ S2.course S1.staff S= S2.staff S1.reg

S
/∼ S2.tch

S1.student S
/∼ S2.staff S1.staff

S
/∼ S2.student S1.tch

S
/∼ S2.reg

S1.course S
⊂ S2.course S1.staff

S
/∼ S2.course S1.tch

S
/∼ S2.tch

S1.course S
/∼ S2.student

The generation of schema S12 in Figure 2 is based on these mappings. However,
this ‘definite’ answer misses the fact that we may not be certain that some of
the above mappings are correct, and hence alternative integrated schemas exist.

2.2 Schema Merging

In [8], we have defined the merging of schemas based on the semantic map-
pings specified between their schema objects. Formal rules have been defined
that generate both-as-view (BAV) schema transformations [15] and merge two
schemas. The application of three such rules on entities E1 and E2 is illustrated
in Figure 3.

E2

�

E1

(a) E2
S
⊂E1

E3

� �

E1 E2

(b) E1
S
∩E2

E3

�

E1 E2

(c) E1
S
∩/E2

Fig. 3. Partial Integrated Schemas: ER Entity Subsumption, Intersection, Disjointness

Figure 3(a) illustrates the partial integrated schema that is created when a
subsumption relationship is identified between two ER entities, e.g. the superset-
subsumption relationship identified between entity course in S1 and course in S2.
We call it a partial integrated schema because it is just a part of the final inte-
grated schema. Figure 3(b) illustrates the partial integrated schema that is cre-
ated when an intersection relationship is identified between two entities, and Fig-
ure 3(c) shows the partial integrated schema created when a disjointness relation-
ship is identified between two entities, e.g. the two student entities in S1 and S2.
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3 Uncertain Semantic Relationships

As already discussed in the introduction, an uncertain semantic mapping is a dis-
tribution of beliefs over the set of all possible semantic relationships. To represent
beliefs, we have adopted Shafer’s belief functions [16]. This choice is justified by
the fact that Shafer’s belief functions can represent the main kinds of uncertainty
present in schema matching (as illustrated in the Examples 1–5 that follow).

The basic concept of Shafer’s theory is a function called basic probability as-
signment (BPA), that assigns some probability mass to possible events. The set
of all possible elementary events is called frame of discernment, and is repre-
sented by the letter Θ. In our case, Θ is the set of semantic relationships defined
in Section 2, i.e. { S=,

S∩,
S⊂,

S⊃,
S
∩/,

S
/∼}. Possible events correspond to subsets of Θ.

For instance, the set { S=,
S∩} represents the event “The correct semantic relation-

ship is either equivalence or intersection”, and m({ S=,
S∩}) is the probability mass

supporting exactly this event.

Definition 1 (Basic Probability Assignment (BPA)). A function m :
2Θ → [0, 1] is called basic probability assignment whenever:

– m(∅) = 0
–

∑
A⊆Θ m(A) = 1

From a BPA function, we can compute the belief and plausibility of any
subset A of Θ.

Bel(A) =
∑

B⊆A

m(B) (1)

Pl(A) =
∑

B⊆Θ,B∩A �=∅
m(B) (2)

Belief in A is the sum of all probability masses assigned to subsets of A.
For example, let A be the set { S=,

S
/∼}. If we assign some probability mass to

the set { S=}, this increases our belief in all the events containing it. In fact, if
we have some evidence supporting the event “The true semantic relationship
is equivalence”, the same evidence increases also our belief in the event “The
true semantic relationship is either equivalence or incompatibility”. Plausibility
of A = { S=,

S
/∼} is the sum of all probability masses that are compatible with

{ S=,
S
/∼}. For example, some probability mass assigned to { S=,

S
∩/} tells us that A is

plausible, without increasing our belief in it, because the right relationship could
be disjointness. These definitions can be used to formally define an USR:

Definition 2 (Uncertain Semantic Relationship (USR)). An uncertain
semantic relationship between two schema objects A and B is a pair (Θ, m),
where Θ = { S=,

S∩,
S⊂,

S⊃,
S
∩/,

S
/∼} and m is a BPA.

In the following examples we present the main possible types of USRs, to
show that Shafer’s theory is expressive enough to represent all USRs that can
be found in schema integration.
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Example 1 (Certain Relationship). A certain semantic relationship is a special
case of USR, where all the probability mass is assigned to a singleton. For ex-
ample, a BPA m({ S=}) = 1 means that we are sure that the true relationship is
equivalence.

Example 2 (Probabilistic Relationship). We can use m to assign probabilities
to alternative relationships. A BPA m({S

∩/}) = .4, m({ S
/∼}) = .6 means that the

probability of disjointness is .4, while the probability of incompatibility is .6.

Example 3 (Non-specific Relationship). In many cases, we will only be able to
restrict Θ, i.e. to exclude some relationships. If we know that two objects are not
equivalent, and that the first cannot be a subset of the second, the corresponding
BPA will be m({S∩,

S⊃,
S
∩/,

S
/∼}) = 1.

Example 4 (Partial Ignorance). When we have some information supporting one
or more relationships, we should commit part of our belief to them. For instance,
a BPA m({ S=}) = .2, m({Θ}) = .8 means that we have some evidence that two
objects are equivalent, but we are not sure. Notice that in this case m does
not define probabilities. A typical problem with probabilities is the difficulty
to justify their precise numerical values. The BPA presented in this example is
much more flexible, as it corresponds to a belief Bel({ S=}) = .2 and a plausibility
Pl({ S=}) = 1, and thus defines a confidence interval [.2, 1] on the equivalence
relationship.

Example 5 (Total Ignorance). As a final example, consider a case in which we
have no information about two objects, or we do not want to compare them.
This can be very useful to compare parts of schemas, as we show in Section 3.1.
We can express our ignorance using the following BPA: m({Θ}) = 1.

3.1 Discovery of USRs

The concept of USR defined above is very intuitive, and is supported by a well
known theory at the same time. In this section we present an architecture to
discover USRs, and provide an example of schema matching between two entities
of S1 and S2.

As in the method described in Section 2, the comparison of schema objects is
performed by a pool of experts, each one specialized on some features. However,
to support the inherent uncertainty of schema matching, experts produce USRs.
The mapping between any two schema objects is computed by aggregating the
results of all the available experts. Our architecture is illustrated in Figure 4.

The aggregation of USRs is easily achieved by using Dempster’s combination
rule, that takes two BPAs over the same frame of discernment Θ as input [16].
Using this rule, the combination of experts’ beliefs is both based on a sound
theory and easy to implement. For every subset A of Θ, the combination of two
beliefs (defined by BPAs m1 and m2) is defined as:

m(A) =

{
0 if A = ∅

∑
A1⊆Θ,A2⊆Θ,A1∩A2=A m1(A1)m2(A2)

1−∑
A1⊆Θ,A2⊆Θ,A1∩A2=∅ m1(A1)m2(A2)

if A �= ∅ (3)
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. . .exp1 exp2 expn−1 expn

USR1 USR2 USRn−1 USRn

USR

Fig. 4. Architecture proposed to discover USRs

This rule can be used to combine the USRs produced by two experts. The
combination of the beliefs of n experts is obtained by iteratively applying it n−1
times.

After the application of the rule, it may happen that some semantic relation-
ships are supported by a very small amount of probability mass. In this case, we
can decide to dispose of them, and to keep only the relationships supported by a
significant amount of probability mass. Thresholds can be used for this purpose.
This is useful to improve efficiency, as it reduces the cardinality of the event
space, and it allows us not to consider possible semantic relationships that are
very unlikely to be the correct ones. However, in this paper we do not investigate
how to choose thresholds, as we focus on the theoretical aspects of our method.
In general, they can be found experimentally, or set up by the users.

Our architecture has many desirable features: (a) its implementation can be
focused on experts, that can be very small independent software agents, (b) it is
scalable, as experts can be deleted and added to the pool with no complexity, (c)
it is easily parallelizable, as experts can run on different and dedicated hardware,
and (d) experts can be software modules, equipped with data analysis tools, or
they can be humans, using software interfaces.

The only requirement on experts is to output USRs. Dempster’s rule can be
used as long as they do not contradict each other. Therefore, human experts
can cooperate with software agents to improve the quality of integration of large
schemas, thanks to Dempster’s combination rule. If a human expert knows or
identifies with certainty some relationships, the beliefs of other experts will not
be considered, as far as they do not state explicitly that the human USR is wrong.
At the same time, we can expect human experts to give their contribution on
some parts of the schemas, letting software agents compare the remaining schema
objects. This can be done by expressing total ignorance about the objects we
do not want to compare. Total ignorance does not influence the combination of
beliefs of other experts.

3.2 Examples

To clarify how USRs can be discovered, we present an example involving three
experts. However, the definition of experts lies outside the scope of this paper,
and we introduce them only to show how our architecture works. This example
focuses on the comparison of the two student entities in schemas S1 and S2.

The first expert compares the cardinality of two schema objects, i.e. the
number of instances belonging to them. If cardinalities are equal, subsumption
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is not possible. If the cardinality of the first object is greater than the other,
they cannot be equivalent and the second object cannot subsume the first one.
Notice that this expert assumes that all instances belonging to those objects
in the real world are stored in the database. It would be easy to improve the
expert so that some instances can be missing, using fuzzy comparisons. How-
ever, this is not needed in this example. The cardinality of S1.student is much
greater than that of S2.student, because there are much more undergraduate
students than postgraduates. Therefore, the first expert can exclude equiva-
lence and subset-subsumption. The USR produced by this expert is defined by
m1({S∩,

S⊃,
S
∩/,

S
/∼}) = 1.

The second expert compares object names, using an ontology. The ontology
stores information about the six relationships under consideration, when compar-
ing English words. For example, a subsumption relationship between the terms
undergraduate and student corresponds to some confidence on the fact that a
schema object whose name is undergraduate is a subset of a schema object called
student. Moreover, the expert would also have some (less) confidence about the
equality of the two corresponding objects. As it only compares the names of the
entities, the ontology-based expert will always assume to be possibly wrong. The
second expert, based on the identical names of student entities, might produce
the following BPA: m2({ S=}) = .7, m2({ S⊂,

S⊃,
S
∩/, S∩}) = .2, m2({Θ}) = .1.

The third expert compares the instances of two schema objects. For efficiency
reasons, it only compares a subset of the instances of S1.student with all the
instances of the S2.student entity, and vice versa. Obviously, the expert cannot
compare directly real-world objects, but must compare name, type, and values of
the entity identifiers in the ER schemas. This induces uncertainty on the result.
In our example, the third expert cannot find matches between the instances of
the two student entities, because an undergraduate cannot be a postgraduate and
vice versa. Therefore, it will support the set of relationships {S∩,

S
∩/}. However, as

already said, the expert cannot be certain of this information. Its USR is defined
by: m3({S∩,

S
∩/}) = .8, m3({Θ}) = .2.

The combination of m1, m2, and m3 is obtained by applying Dempster’s rule,
and produces the following USR:

m({S∩,
S
∩/}) = 4/5, m({S∩,

S⊃,
S
∩/}) = 2/15, m({S∩,

S⊃,
S
∩/,

S
/∼}) = 1/15.

Table 1. Belief, plausibility of alternative semantic relationships between students

Relationship Bel Pl

{S=} 0 0
{S

⊂} 0 0
{S

⊃} 0 1
5

{S
∩} 0 1

{S
∩/} 0 1

{S
/∼} 0 1

15
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This result is what we would expect from the combination of the three USRs.
The second expert assigns a large amount of probability mass to the equiva-
lence relationship, but this option is excluded by the first expert. For this rea-
son, equivalence is not considered in the final USR. The high probability mass
assigned to disjointness and intersection is justified by the fact that m1, m2
and m3 support these two relationships. In fact, all experts think that disjoint-
ness and intersection are plausible, and one of them (the third expert) believes
in it.

In Table 3.2 we have indicated belief and plausibility of every alternative
relationship. Notice that both S∩ and

S
∩/ are completely plausible, while S= and S⊂

are not plausible at all. The choice of further considering S⊃ and
S
/∼ in our analysis

depends on the threshold we set up. In our working example, we will not consider
them as they are not plausible enough, compared to S∩ and

S
∩/.

4 Uncertain Integrated Schema

This section presents the schema merging process of our methodology. Based on
schema matching and the discovered uncertain semantic relationships, several
possible integrated schemas can be created. We explain how the beliefs assigned
to the uncertain semantic relationships are propagated to these schemas and a
final uncertain integrated schema is produced. First, though, the dependencies
between the uncertain semantic relationships need to be examined and possible
conflicts need to be identified.

4.1 Dependencies Between Semantic Relationships

Consider again the two schemas S1 and S2. Similarly to Section 3.2, the uncertain
semantic relationships between the two reg ER relationships can be computed.
These two ER relationships have identical names but they do not have any
instances in common and particularly S1.reg represents a much larger set of
instances. Thus, the three experts described in Section 3.2 will produce the
same USRs as the ones produced for students. These are aggregated and the
highest probability mass is assigned to disjointness and intersection, m({S∩,

S
∩/}) =

4
5 . Because the rest of the alternatives have very small probability masses we

can safely assume that m({S∩,
S
∩/}) = 1. The same assumption will also produce

m({S∩,
S
∩/}) = 1 for the student entities. Finally, suppose that a human expert has

specified that the semantic relationship between the course entities is superset-
subsumption, m({ S⊃}) = 1, i.e. S1.course

S⊃ S2.course.
During schema merging, these produced USRs need to be combined. Table 2

illustrates all their possible combinations. Consider the second row of the table,
where S1.course

S⊃ S2.course, S1.reg
S∩ S2.reg and S1.student

S
∩/ S2.student. The inter-

section relationship between the two reg ER relationships specifies that there is
at least one common instance between S1.reg and S2.reg, i.e. there is a common
instance of S1.student and S2.student that is associated with a common instance
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of S1.course and S2.course. But, according to the second row of the table, the
student entities are disjoint and do not have any instances in common. There-
fore, the combination of semantic relationships in the second row of the table is
invalid.

Table 2. Possible combinations of alternative semantic relationships between course,
reg, and student schema objects

S1.course,S2 .course S1.reg,S2.reg S1.student,S2.student
S
⊃

S
∩

S
∩

S
⊃

S
∩

S
∩/

S
⊃

S
∩/

S
∩

S
⊃

S
∩/

S
∩/

This example manifests the existence of dependencies between the semantic
relationships of ER relationships and the semantic relationships of the associated
ER entities, and vice versa. In this paper, we focus just on binary ER relation-
ships. We have exhaustively examined their dependencies and we present in
Table 3 all the legal combinations.

The table considers the general case of two ER relationships: ER relationship
R1 that associates ER entities A1 and B1 and ER relationship R2 that associates
entities A2 and B2 (Figure 5). The first column of the table specifies the semantic
relationship between the entities A1 and A2, and the second column specifies
the semantic relationship between B1 and B2. The third column examines the
possible semantic relationships between R1 and R2.

A1 R1

LA1
:UA1

LB1
:UB1

B1 A2 R2

LA2
:UA2

LB2
:UB2

B2

Fig. 5. Two ER relationships: R1 and R2

Our previous example, where the intersection relationship between S1.reg
and S2.reg was invalid, is a case of A1

S⊂A2, B1
S
∩/B2 instantiated to S2.course

S⊂
S1.course, S2.student

S
∩/ S1.student. Row nine of Table 3 defines that in this case the

legal semantic relationships between R1 and R2, instantiated to S2.reg and S1.reg,
are only incompatibility and disjointness. Thus, the intersection relationship
between them is invalid, as previously shown.

In some cases, a semantic relationship between R1 and R2 can only be legal
when a cardinality condition is satisfied, e.g. we can have that A1

S=A2, A2
S=B2,

R1
S=R2 if and only if the cardinalities of R1 and R2 are identical (first row of

Table 3).
Except from dependencies between the semantic relationships of ER relation-

ships and the semantic relationships of their associated ER entities, there are
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Table 3. Dependencies between entities and ER relationships

A1,A2 B1,B2 R1,R2

S= S=
S
/∼,

S
∩/, S

∩: always possible,
S=: LA1=LA2 , UA1=UA2 , LB1=LB2 , UB1=UB2 ,
S
⊂: LA1 ≤ LA2 , UA1 ≤ UA2 , ¬(LA1=LA2 , UA1=UA2=(1, 1)),

LB1 ≤ LB2 , UB1 ≤ UB2 , ¬(LB1=LB2 , UB1=UB2=(1, 1)),
S
⊃: LA1 ≥ LA2 , UA1 ≥ UA2 , ¬(LA1=LA2 , UA1=UA2=(1, 1)),

LB1 ≥ LB2 , UB1 ≥ UB2 , ¬(LB1=LB2 , UB1=UB2=(1, 1)).
S=

S
⊂

S
/∼,

S
∩/, S

∩: always possible,
S=: LA1=LA2 , UA1=UA2 , UB1=UB2 , LB1=0,
S
⊂: LA1 ≤ LA2 , UA1 ≤ UA2 , UB1 ≤ UB2 ,
S
⊃: LA1 ≥ LA2 , UA1 ≥ UA2 , LB2=0, UB1 ≥ UB2 .

S=
S
∩

S
/∼,

S
∩/, S

∩: always possible,
S=: LA1=LA2 , UA1=UA2 , LB1=LB2=0,
S
⊂: LA1 ≤ LA2 , UA1 ≤ UA2 , ¬(LA1=LA2=1, UA1=UA2=1),

LB1=0, UB1 ≤ UB2 ,
S
⊃: LA1 ≥ LA2 , UA1 ≥ UA2 , ¬(LA1=LA2=1, UA1=UA2=1),

LB2=0, UB1 ≥ UB2 .
S=

S
∩/

S
/∼,

S
∩/: always possible.

S=
S
/∼

S
/∼: always possible.

S
⊂

S
⊂

S
/∼,

S
∩/, S

∩: always possible,
S
⊂: UA1 ≤ UA2 , UB1 ≤ UB2 ,
S
⊃: UA1 ≥ UA2 , UB1 ≥ UB2 , LA2=LB2=0,
S=: UA1=UA2 , UB1=UB2 , LA2=LB2=0.

S
⊂

S
⊃

S
/∼,

S
∩/, S

∩: always possible,
S
⊂: LB1=0, UB1 ≤ UB2 , UA1 ≤ UA2 ,
S
⊃: UA1 ≥ UA2 , UB1 ≥ UB2 , LA2=0,
S=: UA1=UA2 , UB1=UB2 , LA2=LB1=0.

S
⊂

S
∩

S
/∼,

S
∩/, S

∩: always possible,
S
⊂: LB1=0, UB1 ≤ UB2 , UA1 ≤ UA2 ,
S
⊃: UA1 ≥ UA2 , UB1 ≥ UB2 , LA2=LB2=0,
S=: UA1=UA2 , UB1=UB2 , LB1=LB2=LA2=0.

S
⊂

S
∩/

S
/∼,

S
∩/: always possible.

S
⊂

S
/∼

S
/∼: always possible.

S
∩

S
∩

S
/∼,

S
∩/, S

∩: always possible,
S
⊂: LA1=0, UA1 ≤ UA2 , LB1=0, UB1 ≤ UB2 ,
S
⊃: LA2=0, UA2 ≤ UA1 , LB2=0, UB2 ≤ UB1 ,
S=: LA1=LA2=0,LB1=LB2=0, UA1=UA2 , UB1=UB2 .

S
∩

S
∩/

S
/∼,

S
∩/: always possible.

S
∩

S
/∼

S
/∼: always possible.

S
∩/

S
∩/

S
/∼,

S
∩/: always possible.

S
∩/

S
/∼

S
/∼: always possible.

S
/∼

S
/∼

S
/∼: always possible.
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Table 4. Dependencies between schema objects of the same kind

A,B B,C A,C A,B B,C A,C
S=

S
⊂

S
⊂ S=

S
⊃

S
⊃

S=
S
∩

S
∩ S=

S
∩/

S
∩/

S=
S
/∼

S
/∼

S
⊂

S
⊂

S
⊂

S
⊂

S
⊃ S=, S

∩, S
⊂, S

⊃,
S
∩/, S

/∼
S
⊂

S
∩

S
∩, S

⊂,
S
∩/, S

/∼
S
⊂

S
∩/

S
∩/, S

/∼
S
⊂

S
/∼

S
∩/, S

/∼
S
⊃

S
⊃

S
⊃

S
⊃

S
∩

S
⊃, S

∩
S
⊃

S
∩/

S
∩, S

⊃,
S
∩/, S

/∼
S
⊃

S
/∼

S
∩, S

⊃,
S
∩/, S

/∼
S
∩

S
∩ S=, S

∩, S
⊂, S

⊃,
S
∩/, S

/∼
S
∩

S
∩/

S
∩, S

⊃,
S
∩/, S

/∼
S
∩

S
/∼

S
∩, S

⊃,
S
∩/, S

/∼
S
∩/

S
∩/ S=, S

∩, S
⊂, S

⊃,
S
∩/, S

/∼
S
∩/

S
/∼

S
∩, S

⊂, S
⊃,

S
∩/, S

/∼
S
/∼

S
/∼ S=, S

∩, S
⊂, S

⊃,
S
∩/, S

/∼

also dependencies between the semantic relationships of the same type of con-
structs. Consider the following example. The ER relationship S1.tch subsumes
S2.tch but we might be uncertain about the semantic relationship between S1.reg
and S2.tch since both of them associate person identifiers with course identifiers.
S1.reg has a much larger set of instances than S2.tch, and therefore equivalence
and subset-subsumption relationships are excluded. Thus, from a comparison of
S1.reg and S2.tch a pool of experts could decide to support the set { S⊃,

S∩,
S
/∼} of

possible semantic relationships. However, since S1.reg and S1.tch are incompat-
ible, based on the structure of S1, and S1.tch subsumes S2.tch, the intersection
and superset-subsumption relationships between S1.reg and S2.tch are also ex-
cluded. Therefore, S1.reg and S2.tch must be incompatible.

This restriction of relationships is generalised in Table 4, where all legal com-
binations of semantic relationships between three objects A, B and C of the same
type of construct are defined. Objects B and C belong to the same schema thus
their semantic relationship can be derived from the schema structure. Semantic
relationships between A,B and A,C are discovered during schema matching. In
our example of S1.reg and S2.tch, A is instantiated to S2.tch and B,C to S1.tch
and S1.reg, respectively. If the semantic relationships S2.tch

S⊂ S1.tch and S1.tch
S
/∼ S1.reg are certain, then based on Table 4 S1.reg and S2.tch can only be disjoint
or incompatible.

4.2 Schema Merging

In the previous sections we compared student and reg schema objects, obtaining
a set of possible semantic relationships between them, with BPAs representing
our belief distribution. In particular, both student and reg schema objects could
be either disjoint or intersecting. This is shown in Table 2.

Now assume that S1.course
S⊃ S2.course and S1.tch

S⊃ S2.tch relationships are
certain, while the relationship between S1.staff and S2.staff could be S=, with a
probability of .7, or S⊃, with a probability of .3. We can build a complete table
(Table 5), that is an extension of Table 2, representing all possible combinations
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of semantic relationships between all pairs of schema objects. In Table 5 we
have concentrated only on compatible objects. Each row of this final table corre-
sponds to a possible integrated schema, where each semantic relationship defines
a partial integrated schema, like those represented in Figure 3. For example, in
the possible integrated schema (a) of Table 5 staff entities are equivalent, while
in the possible integrated schema (b) S1.staff subsumes S2.staff. Based on this
table we can create the corresponding schemas. The schemas corresponding to
rows (a) and (b) of Table 5 are illustrated in Figure 6.

Table 5. Possible combinations of semantic relationships in the integrated schema

# S1.stud.,S2.stud. S1.reg,S2.reg S1.course,S2.course S1.staff,S2.staff S1.tch,S2.tch
(a)

S
∩/

S
∩/

S
⊃ S=

S
⊃

(b)
S
∩/

S
∩/

S
⊃

S
⊃

S
⊃

(c) S
∩

S
∩

S
⊃ S=

S
⊃

(d) S
∩

S
∩

S
⊃

S
⊃

S
⊃

(e) S
∩

S
∩/

S
⊃ S=

S
⊃

(f) S
∩

S
∩/

S
⊃

S
⊃

S
⊃

S2.student S1.student

student

�

S1.reg
1:N

1:N
S1.course

S2.course

�

S1.tch
1:1

1:N

S2.tch
1:1

0:N

staff

S2.reg
0:N

0:N

reg
0:N

0:N

(a)

S2.student S1.student

student

�

S1.reg
1:N

1:N
S1.course

S2.course

�

S1.tch
1:1

1:N

S2.tch
1:1

0:N
S2.staff

S1.staff

�

S2.reg
0:N

0:N

reg
0:N

0:N

(b)

Fig. 6. Two of the final alternative integrated schemas generated by our approach
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The BPA obtained as a combination of all the aforementioned USRs is defined
by m{(a), (c), (e)} = .7, and m{(b), (d), (f)} = .3. The corresponding beliefs
and plausibilities can be easily computed using (1) and (2). The meaning of this
BPA reflects the uncertainty on the partial integrated schemas. The set {(a),
(b), (c), (d), (e), (f)}, together with its BPA, is called an uncertain integrated
schema, and is the final product of our schema integration approach on our
working example.

From the uncertain integrated schema we can reconstruct all the previously
produced USRs. For example, we previously assigned a probability mass of 1
to the set of relationships { S=,

S∩} between the two student entities. This value
can be obtained from the uncertain integrated schema by adding together all
the probability masses assigned to combinations of possible integrated schemas
where S1.student

S
∩/ S2.student or S1.student S∩ S2.student. This corresponds to all

the rows of Table 5, i.e. all possible schemas. Similarly, if we sum all masses
assigned to possible combinations of schemas where S1.staff S= S2.staff, we obtain
.7, while for S1.staff

S⊃ S2.staff we obtain .3.

5 Conclusion and Future Work

In this paper we have presented a new method of schema integration. Differently
from other existing methods, our approach manages the inherent uncertainty in
(semi-)automatic schema matching, and supports six kinds of semantic relation-
ships between schema objects. These features are essential to cope with real
schema integration tasks, where many semantic relationships are possible, and
it is very unlikely to know all of them with certainty.

An analysis of the computational complexity of our method is outside the
scope of this paper. However, it is easy to identify two main possible causes of in-
efficiency related to the management of uncertainty. The first is the combination
of the USRs produced by the experts. In fact, the complexity of exact methods for
performing Dempster’s combination rule is exponential on the size of the frame of
discernment, because it must consider all its subsets in the worst case. However,
the frame of discernment in our method contains only six elements – our seman-
tic relationships. Therefore, the complexity of the combination is bounded by a
small constant. The second issue is the number of possible integrated schemas
generated by the method, that can be exponential on the number of schema
objects. However, in practice the output of our method will not be the set of
all possible integrated schemas, but only the most probable ones. The number
of schemas returned by the method can be decided in advance. Finally, an ap-
propriate use of thresholds can further reduce the number of schemas, without
losing significant information.

While the theory underlying our method has been presented in this paper, we
still need to experimentally verify its efficiency and effectiveness. In the future,
we are going to implement it as an extension of an existing schema integration
software [14].
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