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Abstract. A major challenge in information management today is the integration
of huge amounts of data distributed across multiple data sources. A suggested
approach to this problem is ontology-based data integration where legacy data
systems are integrated via a common ontology that represents a unified global
view over all data sources. However, data is often not natively born using these
ontologies. Instead, much data resides in legacy relational databases. Therefore,
mappings that relate the legacy relational data sources to the ontology need to
be constructed. Recent techniques and systems that automatically construct such
mappings have been developed. The quality metrics of these systems are, however,
often only based on self-designed benchmarks. This paper introduces a new pub-
licly available benchmarking suite called RODI, which is designed to cover a wide
range of mapping challenges in Relational-to-Ontology Data Integration scenarios.
RODI provides a set of different relational data sources and ontologies (represent-
ing a wide range of mapping challenges) as well as a scoring function with which
the performance of relational-to-ontology mapping construction systems may be
evaluated.

1 Introduction

Data integration is a big challenge in industry, life sciences, and the web, where data
has not only reached large volumes, but also comes in a variety of formats. Integration
increases the utility of data, it provides a unified access point to several databases
and allows to analyse them, e.g., by correlating their data and identifying important
patterns [3,5].

One of the major challenges in the integration task is to address the heterogeneity
of data. A promising recent approach to address this challenge is to use ontologies,
semantically rich conceptual models [12], to provide a conceptual integration and access
layer on top of databases [27]. The ontology is ‘connected’ to databases with the help



of mappings that are declarative specifications describing the relationship between the
ontological vocabulary and the elements of the database schema.

Ontologies are already available in many domains, and many of them can naturally
be employed to support integration scenarios. For example, in biology there is the Gene
Ontology and in medicine [7] there is the International Classification of Diseases (ICD)
ontology. Another recent example is schema.org, an ontology to mark up data on the web
with schema information. Industrial examples include NPD FactPages ontology [30,17]
created for petroleum domain and Siemens ontology [15] created for the energy sector.

Mappings, however, cannot easily be reused since they are typically specific for each
source database. Thus, they usually need to be developed from scratch. Creating and
curating relational-to-ontology mappings manually is a process that often involves an
immense amount of human effort [25]. In order to address this challenge, a number of
techniques and systems [18,24,10,32,22,13,28] have been recently developed to assist in
the relational-to-ontology data integration problem, either in a semi-automatic fashion
or by bootstrapping initial mappings. However, claims about the quality of the created
mappings are only based on self-designed benchmarks, which make comparisons difficult.
While there already exist some standardized benchmarks or testbeds for data integration
scenarios in data warehousing [26] or for ontology alignment [21], these benchmarks do
not include the mapping challenges that arise from relational-to-ontology mappings.

In this paper we present a systematic overview of different types of mapping chal-
lenges that arise in relational-to-ontology data integration scenarios. Based on these
types of mapping challenges, we selected existing ontologies and created corresponding
relational databases for our benchmark to have a good coverage of all types. Moreover,
the benchmark queries have been designed such that each query targets different mapping
challenges. That way, the results of the scoring function for the individual queries can
be used to draw inferences on how good different types of structural heterogeneity are
supported by a certain integration system.

As the main contribution this paper introduces a new publicly available benchmark-
ing suite9 called RODI which is designed for Relational-to-Ontology Data Integration
Scenarios. RODI provides researchers with a set of different relational data sources
(schema and data) and ontologies (only schema) that model data of research conferences
(e.g., sessions, talks, authors, etc.). The challenge of the benchmark is to map the schema
elements of the relational database to the schema elements of the ontology in order to
instantiate the ontology. In addition, the benchmark provides a set of query pairs (i.e., a
query over parts of the database and an equivalent query over the ontology). The idea
is that each of the query pairs targets schema elements that represent different types
of mapping challenges. Moreover, the benchmark also provides a scoring function to
evaluate the quality of the mappings created by a certain tool. For covering other forms
of heterogeneity, our benchmark provides extension points that allow users to integrate
other relational databases, ontologies and test queries.

Thus, RODI is an end-to-end integration benchmark to test different mapping chal-
lenges. We decided to design an end-to-end integration benchmark instead of evaluating
individual artifacts of the data integration process (i.e., correspondences, mappings, ...)
since existing systems implement a wide range of different integration approaches that

9 Download at: http://www.fluidops.com/downloads/collateral/rodi1.
0-2.zip
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do not allow a good way of comparison. For example, a major difference is that some
integration systems directly map relational databases to ontologies (e.g., IncMap [24])
while other tools first translate the relational database into an ontology and then apply an
ontology alignment technique (e.g., BootOX [10]) resulting in different artifacts during
the integration process.

The outline of our paper is the following. Section 2 provides a classification of the
different types of mapping challenges. Section 3 gives an overview of our benchmark
and describes the details about the ontologies and relational databases as well as the
benchmarking queries and the evaluation procedure. Section 4 illustrates the initial use of
our benchmark suite by evaluating four mapping generation systems. Finally, Section 5
summarizes related work and Section 6 concludes the paper.

2 Mapping Challenges

In the following we present our classification of different types of mapping challenges
in relational-to-ontology mapping. As top level of the classification, we use the stan-
dard classification for data integration described by Batini et al. [2]: naming conflicts,
structural heterogeneity, and semantic heterogeneity.

2.1 Naming Conflicts

Typically, relational database schemata and ontologies use different conventions to
name their artifacts even when they model the same domain and thus should use a
similar terminology. While database schemata tend to use short identifiers for tables
and attributes that often include technical artifacts (e.g. for tagging primary keys and
for foreign keys), ontologies typically use long “speaking” names. Moreover, names
in ontologies include IRIs with prefixes (that refer to a namespace). Thus, the main
challenge is to be able to find similar names despite the different naming patterns.

Other model differences include the use of plural vs. singular form for entities,
common tokenization schemes, use of synonyms etc. that are not present in other data
integration scenarios (e.g., relational-to-relational or ontology alignment).

2.2 Structural Heterogeneity

The most important differences in relational-to-ontology integration scenarios compared
to other integration scenarios are structural heterogeneities. We discuss the different
types of structural heterogeneity covered by RODI.

Type Conflicts: Relational schemata and ontologies represent the same artifacts by
using different modeling constructs. While relational schemata use tables, attributes, as
well as constraints, ontologies use modeling elements such as classes and subclasses
(to model class hierarchies), data and object properties, restrictions, etc. Clearly there
exist direct (i.e., naive) mappings from relational schemata to ontologies for some of
the artifacts (e.g., classes map to tables). However, most real-world relational schemata
and corresponding ontologies do not follow any naive mapping. Instead, the mapping
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Fig. 1: Class hierarchies – ontology vs. relational schema

rules are much more complex and there exist big differences (i.e., type conflicts) in the
way how the same concepts are modeled. One reason is that relational schemata are
often optimized towards a given workload (e.g., they are normalized for update-intensive
workloads or denormalized for read-intensive workloads) while ontologies model a
domain on the conceptual level. Another reason is that some modeling elements have
no direct translation (e.g., class hierarchies in ontologies can be mapped to relational
schemata in different ways). In the following, we list the different type conflicts covered
by RODI:

1. Normalization artifacts: Often properties that belong to a class in an ontology are
spread over different tables in the relational schema as a consequence of normaliza-
tion.

2. Denormalization artifacts: For read-intensive workloads, tables are often denormal-
ized. Thus, properties of different classes in the ontology might map to attributes in
the same table.

3. Class hierarchies: Ontologies typically make use of explicit class hierarchies. Rela-
tional models implement class hierarchies implicitly, typically using one of three
different common modeling patterns (c.f., [8, Chap. 3]). In the following we describe
those patterns (see Figure 1): (1) In one common variant the relational schema mate-
rializes several subclasses in the same table and uses additional attributes to indicate



the subclass of each individual. Those additional attributes can take the shape of a
numeric type column for disjoint subclasses and/or a combination of several type or
role flags for non-disjoint subclasses. In this case, several classes need to be mapped
to the same table and can be told apart only by secondary features in the data, such
as the value in a type column. (2) Another common way is to use one table per most
specific class in the class hierarchy and to materialize the inherited attributes in each
table separately. Thus, the same property of the ontology must be mapped to several
tables. (3) A third variant uses one table for each class in the hierarchy, including
for possibly abstract superclasses. Tables then use the same primary key to indicate
the subclass relationship. This variant has a closer resemblance to ontology design
patterns. However, it is also rarely used in practice, as it is more difficult to design,
harder to query, impractical to update and usually considered unnecessary.

Thus, the main challenge is that integration tools should be capable to resolve differ-
ent levels of (de-)normalization and different patterns implementing class hierarchies in
a relational schema when mapping a schema to an ontology.

Key Conflicts: In ontologies and relational schemata, keys and references (to keys) are
represented in different ways. In the following, we list the different key conflicts covered
by RODI:

1. Keys: Keys in databases are often (but not always) explicitly implemented using
constraints (i.e., primary keys and unique constraints). Keys may be composite and
in some cases partial keys of a table identify different related entities (e.g., denormal-
ized tables on the relational side). Moreover, ontologies use IRIs as identifiers for
individuals. Thus, the challenge is that integration tools should be able to generate
mapping rules for creating IRIs for individuals from the correct choice of keys.

2. References: A similar observation holds for references. While references are typi-
cally modeled as foreign keys in relational schemata, ontologies use object properties.
Moreover, sometimes relational databases do not model foreign key constraints at
all. In that case an integration tool must be able to derive references from relational
schema (e.g., based on the naming scheme or individuals).

Dependency Conflicts: These conflicts arise when a group of concepts are related
among themselves with different dependencies (i.e., 1 : 1, 1 : n, n : m) in the relational
schema and the ontology. While relational schemata use foreign keys over attributes
as constraints to model 1-1 and 1-N relationships explicitly, they can only model N-M
relationships in an implicit way using an additional connection table. Ontologies, on
the other hand, model functionalities (i.e., functional properties or inverse functional
properties) or they define cardinalities explicitly using min- and max-cardinality restric-
tions. However, many ontologies do not make use of these constraints and thus are often
underspecified.

2.3 Semantic Heterogeneity

Besides the usual semantic differences between any two conceptual models of the same
domain, two additional factors apply in relational-to-ontology data integration: (1) the
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Fig. 2: Overview of the RODI benchmark

impedance mismatch between the closed-world assumption (CWA) in databases and
the open-world assumption (OWA) in ontologies;10 and (2) the difference in semantic
expressiveness, i.e., databases may model some concepts or data explicitly where they
are derived logically in ontologies. The challenge is thus to bridge the model gap. In
general, this challenge is inherent to all relational-to-ontology mapping problems.

3 RODI Benchmark Suite

In the following, we present the details of our RODI benchmark: we first give an overview,
then we discuss the details of the data sets (relational schema and ontologies) as well
as the queries, and finally we present our scoring function to evaluate the benchmark
results.

3.1 Overview

Figure 2 gives an overview of our benchmark. In its basic version, the benchmark
provides three target ontologies (T-Box only) and different relational source databases
for each ontology (schema and data) varying in the types of mapping challenges that are
covered.

As the primary domain for testing, we chose the conference domain: it is well under-
stood, comprehensible even for non-domain experts but still complex enough for realistic
testing and it has been successfully used as the domain of choice in other benchmarks
before (e.g., by the OAEI [21]). For each ontology, we provide different variants of
corresponding databases, each focusing on different types of mapping challenges.

The benchmark asks systems to create mapping rules from the different source
databases to their corresponding target ontologies. We call each such combination of
a database and an ontology a benchmark scenario. For evaluation, we provide query
pairs for each scenario to test a range of mapping challenges. Query pairs are evaluated
against the instantiated ontology and the provided databases, respectively. Results are
compared for each query pair and aggregated in the light of different mapping challenges
using our scoring function.

10 Other notions of impedance mismatch exist (e.g., modeling of values vs. objects). The
OWA/CWA notion is most relevant w.r.t. specific mapping challenges.



In order to be open for other data sets and different domains, our benchmark can be
easily extended to include scenarios with real-world ontologies and databases. In our
initial version, we already provide one such extension from a real-world application of
the oil and gas domain.

3.2 Data Sources

In the following, we discuss the data sources (i.e., ontologies and relational schemata) as
well as the combinations used as mapping scenarios for the benchmark in more details.

Conference Ontologies. The conference ontologies in this benchmark are provided by
the Ontology Alignment Evaluation Initiative (OAEI) [21] and were originally developed
by the OntoFarm project.11 We selected three particular ontologies (CMT, SIGKDD,
CONFERENCE), based on a number of criteria: variation in size, the presence of
functional coherences, the coverage of the domain, variations in modeling style, and the
expressive power of the ontology language used. In SIGKDD, we have fixed a total of
seven inconsistencies that we discovered in this ontology.

Relational Schemata. We synthetically derived different relational schemata for each
of the ontologies, focusing on different mapping challenges. First, for each ontology we
derived a relational schema that can be mapped to the ontology using a naive mapping
as described in [11]. The algorithm works by extracting an entity-relationship (ER)
model from an OWL DL ontology. It then translates this ER model into a relational
schema according to text book rules (e.g., [8]). We extended this algorithm to consider
ontology instance data to derive more proper functionalities (rather than just looking
at the T-Box as the existing algorithm did). Otherwise, the generated naive relational
schemata would have contained an unrealistically high number of n : m-relationship
tables. The naively translated schemata of the algorithm are guaranteed to be in fourth
normal form (4NF), fulfilling normalization requirements of standard design practices.
Thus, the naive schemata already include various normalization artifacts as mapping
challenges. Also, all scenarios reflect the kind of semantic heterogeneity that is inherent
to relational-to-ontology mappings.

From each naively translated schema, we systematically created different variants
by introducing different aspects on how a real-world schema may differ from a naive
translation and thus to test different mapping challenges:

1. Adjusted Naming: As described in Section 2.1, ontology designers typically consider
other naming schemes than database architects do, even when implementing the
same (verbal) specification. Those differences include longer vs. shorter names,
“speaking” prefixes, human-readable property IRIs vs. technical abbreviations (e.g.,
“hasRole” vs. ”RID”), camel case vs. underscore tokenization, preferred use of
singular vs. plural, and others. For each naively translated schema we automatically
generate a variant with identifier names changed accordingly.

11 http://nb.vse.cz/˜svatek/ontofarm.html

http://nb.vse.cz/~svatek/ontofarm.html


CMT CONFERENCE SIGKDD
Naive (X) (X) (X)

Adjusted Naming X X X
Cleaned Hierarchies X X X

Combined Case (X) (X) X
Missing FKs - X -

Denormalized X - -

Table 1: Scenario combinations

2. Varying Hierarchies: The most critical structural challenge comes with different
relational design patterns to model class hierarchies more or less implicitly, as
we have discussed in Section 2.2. We automatically derive variants of all naively
translated schemata where different hierarchy design patterns are presented.

3. Combined Case: In the real world, both of the previous cases (i.e., adjusted naming
and hierarchies) would usually apply at the same time. To find out how tools cope
with such a situation, we also built scenarios where both are combined.

4. Removing Foreign Keys: Although it is considered as bad style, databases without
foreign keys are not uncommon in real-world applications. The mapping challenge
is that mapping tools must guess the join paths to connect tables of different enti-
ties. Therefore, we have created one dedicated scenario to test this challenge with
the CONFERENCE ontology and based it on the schema variant with cleaned
hierarchies.

5. Partial Denormalization: In many cases, schemata get partially denormalized to
optimize for a certain read-mostly workload. Denormalization essentially means
that correlated (yet separated) information is jointly stored in the same table and
partially redundant. We provide one such scenario for the CMT ontology.

Mapping Scenarios. For each of our three main ontologies, CMT, CONFERENCE,
and SIGKDD, the benchmark includes five scenarios, each with a different variant
of the database schema (discussed before). Table 1 lists the different versions. All
scenarios cover the main semantic challenges and to some degree also the structural
challenges. Renamed scenarios cover the naming conflicts challenge. Scenarios with
cleaned hierarchies and advanced cases mostly address structural heterogeneity but
also stress the challenge of semantic differences more than other scenarios. To keep
the number of scenarios small for the default setup, we differentiate between default
scenarios and non-default scenarios. While the default scenarios are mandatory to
cover all mapping challenges, the non-default scenarios are optional (i.e., users could
decide to run them in order to gain additional insights). Non-default scenarios are put
in parentheses in Table 1. Similarly, we include scenarios that require mappings of
schemata to one of the other ontologies (e.g., mapping a CMT database schema variant
to the SIGKDD ontology), but do not consider them as default scenarios either. They
represent more advanced scenarios.



Data. In RODI, we provide data to fill both the databases and ontologies, as all ontologies
are provided as empty T-Boxes, only. All data are first generated as A-Box facts for the
different ontologies, and then translated into the corresponding relational data. Actually,
for the evaluation it would not be necessary to generate data for the ontologies. However,
this design simplifies the evaluation since all databases can be automatically derived from
the given ontologies as described before. Our conference data generator deterministically
produces a scalable amount of synthetic facts around key concepts in the ontologies,
such as conferences, papers, authors, reviewers, and others. In total, we generate data for
23 classes, 66 object properties (including inverse properties) and 11 datatype properties
(some of which apply to several classes).

3.3 Queries

We test each mapping scenario with a series of query pairs, consisting of semanti-
cally equivalent queries against the instantiated ontology and the provided databases,
respectively.

Each query pair is based on one SPARQL query, which we then translated into
equivalent SQL for each corresponding schema using the same translation mechanism
as used for schema translation. To double-check that queries in each pair are in fact
equivalent, we manually checked result sets on both ends. Queries are manually curated
and designed to test different mapping challenges.

To this end, all query pairs are tagged with categories, relating them to different
mapping challenges. All scenarios draw on the same pool of 56 query pairs, accordingly
translated for each ontology and schema. However, the same query may face different
challenges in different scenarios, e.g., a simple 1 : 1 mapping between a class and table
in a naive scenario can turn into a complicated n : 1 mapping problem in a scenario with
cleaned hierarchies. Also, not all query pairs are applicable on all ontologies (and thus,
on their derived schemata).

3.4 Evaluation Criteria

It is our aim to measure the practical usefulness of mappings. We are therefore interested
in the correctness (precision) and completeness (recall) of query results, rather than com-
paring mappings directly to a reference mapping set. This is important because a number
of different mappings might effectively produce the same data w.r.t. a specific input
database. Also, the mere number of facts is no indicator of their semantic importance
for answering queries (e.g., the overall number of conferences is much smaller than the
number of paper submission dates, yet are at least as important in a query about the same
papers).

We therefore define precision and recall locally for each individual test (i.e., for each
query pair) and use a simple scoring function to calculate averages for different subsets
of tests, i.e., for tests relating to a specific mapping challenge.

Unfortunately, precision and recall cannot be measured immediately by naively
checking results of query pairs tuple by tuple for equality, as different mappings typically
generate different IRIs to denote the same entities. Instead, we define an equivalence
measure that is agnostic of entity IRIs.
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In the following, we define tuple set equivalence based on a more general equivalence
of query results (i.e., tuple sets):

Definition 1 (Structural Tuple Set Equivalence). Let V = IRI ∪Lit∪Blank be the
set of all IRIs, literals and blank nodes, T = V × ... × V the set of all n-tuples of V .
Then two tuple sets t1, t2 ∈ P(T ) are structurally equivalent if there is an isomorphism
φ : (IRI ∩ t1)→ (IRI ∩ t2).

For instance, {(urn:p-1, ’John Doe’)} and {(http://my#john, ’John Doe’)} are struc-
turally equivalent. On this basis, we can easily define the equivalence of query results
w.r.t. a mapping target ontology:

Definition 2 (Tuple Set Equivalence w.r.t. Ontology (∼O)). Let O be a target ontol-
ogy of a mapping, I ⊂ IRI the set of IRIs used in O and t1, t2 ∈ P(T ) result sets of
queries q1 and q2 evaluated on a superset of O (i.e., over O plus A-Box facts added by a
mapping).

Then, t1 ∼O t2 (are structurally equivalent w.r.t. O) iff t1 and t2 are structurally
equivalent and ∀i ∈ I : φ(i) = i

For instance, {(urn:p-1, ’John Doe’)} and {(http://my#john, ’John Doe’)} are struc-
turally equivalent, iff http://my#john is not already defined in the target ontology. Finally,
we can define precision and recall:

Definition 3 (Precision and Recall under Tuple Set Equivalence). Let tr ∈ P(T ) be
a reference tuple set, tt ∈ P(T ) a test tuple set and trsub, ttsub ∈ P(T ) be maximal
subsets of tr and tt, s.t., trsub ∼O ttsub.

Then the precision of the test set tt is P = |ttsub|
|tt| and recall is R = |trsub|

|tr| .

We observe precision and recall locally on each query test, i.e., based on how many
of the result tuples of each query are structurally equivalent to a reference query result
set. Table 2 shows an example with a query test that asks for the names of all authors.
The corresponding query pair here would be:

SQL: SELECT name FROM persons WHERE person_type = 2.
SPARQL: SELECT ?name WHERE {?p a :Author; foaf:name ?name}).

Result set 1 is structurally equivalent to the reference result set, i.e., it has found all authors and
did not return anything else, so both precision and recall are 1.0. Result set 2 is equivalent with
only a subset of the reference result (e.g., it did not include those authors who are also reviewers).
Here, precision is still 1.0, but recall is only 0.5. In case of result set 3, all expected authors are
included, but also another person, James. Here, precision is only 0.66, but recall is 1.0.

To aggregate results of individual query pairs, a scoring function calculates the averages of
per query numbers for each scenario and for each challenge category. For instance, we calculate
averages of all queries testing 1 : n mappings.



3.5 Extension Scenarios

Our benchmark suite is designed to be extensible, i.e., additional scenarios can be easily added.
The primary aim of supporting such extensions is to allow actual real-world mapping challenges
to be tested on a realistic query workload alongside our more controlled default scenarios.

To demonstrate the feasibility of extension scenarios we added and evaluated one example of
an extension scenario in our benchmark suite, based on the data, ontology and queries from The
Norwegian Petroleum Directorate (NPD) FactPages [30]. The test set contains a small relational
database (≈40 MB), but with a relatively complex structure (70 tables, ≈1000 columns and
≈100 foreign keys), an ontology covering the domain of the database (with ≈300 classes and
≈350 properties), and 17 query pairs. The database and ontology are constructed from a publicly
available dataset containing reference data about past and ongoing activities in the Norwegian
petroleum industry, and the queries in the test set are built from real information needs collected
from end-users of the NPD FactPages.

4 Benchmark Results

Setup: In order to show the usability of our benchmark and the usefulness and significance of
its results, we have performed an initial evaluation with four systems: BootOX [9,16], IncMap
[24,23], morph/MIRROR12 and ontop [29].

(1) BootOX (Bootstrapper of Oxford) is based on the approach called ‘direct mapping’ by the
W3C:13, i.e., every table in the database (except for those representing n : m relationships) is
mapped to one class in the ontology; every data attribute is mapped to one data property; and every
foreign key to one object property. Explicit and implicit database constraints from the schema are
also used to enrich the bootstrapped ontology with axioms about the classes and properties from
these direct mappings. Afterwards, BootOX performs an alignment with the target ontology using
the LogMap system [31]. (2) IncMap maps an available ontology directly to the relational schema.
IncMap represents both the ontology and schema uniformly, using a structure-preserving meta-
graph for both. (3) morph/MIRROR (MappIngs for Rdb to Rdf generatOR) is a tool for generating
an ontology and R2RML direct mappings automatically from an RDB schema. morph/MIRROR
has been implemented as a module of the RDB2RDF engine morph-RDB [28]. (4) ontop is an
ontology-based data access system that also includes a module to automatically compute direct
mappings and a simple ontology with the vocabulary used in the mappings. For the last step of
aligning to the target ontology we have coupled both morph/MIRROR and ontop with LogMap in
a similar setup to the one used in BootOX.

Results: For each of those systems we were running the default scenarios of our benchmark
(as discussed in Section 3). We mainly report overall aggregates but also highlight some of the
most interesting findings in more detail.

Table 3 shows precision, recall and f-measure averaged over all tests for each scenario. What
becomes immediately apparent is that measured quality is relatively modest. Another surprising
observation is that for each system, precision, recall and f-measure are always the same per
scenario. A manual analysis of results has shown, that the reason for this behavior is linked to
the relatively low overall quality: systems did only solve some of the simpler query tests and
those tend to result in atomic answers, which may be either correct or incorrect, but nothing
in-between. For instance, if a query asks for the number of author instances, the result in either
correct (p = r = f = 1.0) or incorrect (p = r = f = 0.0). Systems did surprisingly well on
some tests of medium difficulty, e.g., author names (where, e.g., some other persons could be

12 https://github.com/oeg-upm/MIRROR
13 http://www.w3.org/TR/rdb-direct-mapping/

https://github.com/oeg-upm/MIRROR
http://www.w3.org/TR/rdb-direct-mapping/


Scenario BootOX IncMap MIRROR ontop
P R F P R F P R F P R F

Adjusted naming
CMT 0.33 0.33 0.33 0.5 0.5 0.5 0.28 0.28 0.28 0.39 0.39 0.39

CONFERENCE 0.33 0.33 0.33 0.26 0.26 0.26 0.27 0.27 0.27 0.37 0.37 0.37
SIGKDD 0.45 0.45 0.45 0.21 0.21 0.21 0.3 0.3 0.3 0.45 0.45 0.45

Cleaned hierarchies
CMT 0.28 0.28 0.28 0.44 0.44 0.44 0.17 0.17 0.17 0.28 0.28 0.28

CONFERENCE 0.23 0.23 0.23 0.16 0.16 0.16 0.23 0.23 0.23 0.3 0.3 0.3
SIGKDD 0.16 0.16 0.16 0.11 0.11 0.11 0.11 0.11 0.11 0.16 0.16 0.16

Combined case
SIGKDD 0.16 0.16 0.16 0.05 0.05 0.05 0.11 0.11 0.11 0.16 0.16 0.16

Missing FKs
CONFERENCE 0.17 0.17 0.17 0.03 0.03 0.03 0.17 0.17 0.17 - - -

Denormalized
CMT 0.28 0.28 0.28 0.22 0.22 0.22 0.22 0.22 0.22 0.28 0.28 0.28

Table 3: Average results of all tests per scenarios. Precision, Recall and F-measure are
all equal as systems fail the more complex tasks while simpler ones are atomic.

mistaken for authors) and scored p = r = f = 1.0 in all cases where they submitted any results at
all. For the most complex queries, where results could be likely in ]0; 1[, systems failed the query
tests completely. We expect this behavior to change as systems improve in general and overall
scores go up.

Best numbers are generally reached for “adjusted naming” scenarios, which are close to the
naive ontology translation and thus schemata resemble their corresponding ontologies most closely.
Besides the generic model gap and those, these scenarios only test the challenges of naming
conflicts and normalization artifacts. Quality drops rapidly for almost all other types of scenarios,
i.e., whenever we introduce additional challenges that are specific to the relational-to-ontology
modeling gap. With a few exceptions, BootOX and ontop perform better than the others. Where
differences appear between the two of them, ontop surprisingly outperforms BootOX. Note that
those two similar setups differ mostly in that ontop only produces a very simple ontology while
BootOX tries to additionally include some knowledge encoded in the database structure. Results
hint that this additional knowledge may be noisy. For CMT, IncMap outperforms other systems
both adjusted names and cleaned hierarchies. This is interesting, as IncMap has been designed
to work on typical databases and CMT differs from the other ontologies insofar as it contains
relatively flat class hierarchies and results in a somewhat more realistic relational database even
when translated naively. The generally low numbers of morph/MIRROR come as a surprise. We
had expected it to perform similarly to or somewhat better than BootOX as it follows the same
idea of leveraging knowledge from the database schema to build a better ontology, but does so
more systematically. The effect of noise seems to be insufficient as an explanation in this case. As
morph/MIRROR is still under development, we assume that some of the effects may be related to
technical issues that we could not isolate and identify as such.

The drop in accuracy between “adjusted names” and “cleaned hierarchies” is mostly due to the
n : 1 mapping challenge, introduced by one of the relational patterns to represent class hierarchies
which groups data for several subclasses in a single table. Neither of the systems managed to solve
even a single test on this challenge.



Adjusted naming BootOX IncMap MIRROR ontop
C D O C D O C D O C D O

CMT 0.67 0.0 0.0 0.67 0.50 0.0 0.56 0.0 0.0 0.78 0.0 0.0
CONFERENCE 0.67 0.0 0.0 0.42 0.24 0.0 0.53 0.0 0.0 0.73 0.0 0.0

SIGKDD 0.69 0.0 0.0 0.34 0.0 0.0 0.46 0.0 0.0 0.69 0.0 0.0

Table 4: Average F-measure results for the adjusted naming scenarios. ’C’ stands for
queries about classes, ’D’ stands for queries involving data properties and ’O’ stands for
queries involving object properties

In the most advanced cases, all systems lose on the additional challenges, although to different
degrees. For instance, all systems failed to solve any of the tests specifically targeted to the
challenge of denormalization artifacts. (For BootOX and ontop, there is no difference to the
“cleaned hierarchies” scenario as the systems failed the relevant queries already on that simpler
scenario.) While BootOX stands up relatively well in those most advanced scenarios, IncMap
records significant further drops. ontop failed to produce mappings for the advanced scenario
involving missing foreign keys.

All systems struggle with identifying properties, as Table 4 shows. A close look shows that this
is in part due to the challenge of normalization artifacts, with no system succeeding in detecting
any properties that map to multi-hop join paths in the tables. Here, IncMap shows its stronger
suit, mapping datatype properties with an average f-measure of up to 0.5. It has however to be
noted that we test properties only in the context of their domains and ranges, i.e., to succeed in a
property test, a correct mapping at least for its domain class is a precondition, making those tests
generally harder.

On NPD FactPages, our extension scenario with real-world data and queries, all four tested
systems fail to answer any of the 17 query tests correctly. Given the previous results from the
default scenarios, this was to be expected. The query tests in NPD FactPages consist of real-world
queries, only. Just as systems failed the most complex queries in the (generally still simpler)
default scenarios, they also failed all queries in the extension scenario.

5 Related Work

Mappings between ontologies are usually evaluated only on the basis of their underlying corre-
spondences (usually referred to as ontology alignments). The Ontology Alignment Evaluation
Initiative [21] provides tests and benchmarks of those alignments that can be considered as de-
facto standard. Mappings between relational databases are typically not evaluated by a common
benchmark. Instead, authors compare their tools to an industry standard system (e.g., [6,1]) in a
scenario of their choice. A novel TPC benchmark [26] was created only recently.

Similarly, evaluations of relational-to-ontology mapping generating systems were based on
one or several data sets deemed appropriate by the authors and are therefore not comparable. In
one of the most comprehensive evaluations so far, QODI [32] was evaluated on several real-world
data sets, though some of the reference mappings were rather simple. IncMap [24] was evaluated
on real-world mapping problems based on data from two different domains. Such domain-specific
mapping problems could be easily integrated in our benchmark through our extension mechanism.

A number of papers discuss different quality aspects of such mappings in general. Console
and Lenzerini have devised a series of theoretical quality checks w.r.t. consistency [4]. In another
benchmark, Impraliou et al. generate synthetic queries to measure the correctness and completeness
of OBDA query rewriting [14]. The presence of complete and correct mappings is a prerequisite
to their approach. Mora and Corcho discuss issues and possible solutions to benchmark the query



rewriting step in OBDA systems [20]. Mappings are supposed to be given as immutable input. The
NPD benchmark [19] measures performance of OBDA query evaluation. Neither of these papers,
however, address the issue of systematically measuring mapping quality.

6 Conclusion

We have presented RODI, a benchmark suite for testing the quality of generated relational-to-
ontology mappings. RODI tests a wide range of relational-to-ontology mapping challenges, which
we discussed of the paper.

Initial results on four systems demonstrate that existing tools can cope with simpler mapping
challenges to varying degrees. However, all tested tools fail on more advanced challenges and are
still a long way from solving actual real-world problems. In particular, results show that mapping
accuracy degrades massively when relational schemata use design patterns that differ greatly from
the corresponding ontologies (e.g., in scenarios with “cleaned hierarchies”). We also gave detailed
feedback about specific shortcomings to the authors of several of the tested systems, which has
already lead to adjustments in one case and will lead to improvements in others.

As the main avenue of future work, we plan to conduct a both broader and deeper evaluation,
also involving a greater number of systems. Another interesting aspect would be the addition of
further extension scenarios to cover data from a number of application domains out of the box.
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