
Benchmarking Matching Applications on
the Semantic Web

Alfio Ferrara1, Stefano Montanelli1

Jan Noessner2, and Heiner Stuckenschmidt2

1 Università degli Studi di Milano,
DICo - via Comelico 39, 20135 Milano, Italy

{ferrara,montanelli}@dico.unimi.it
2 KR & KM Research Group

University of Mannheim, B6 26, 68159 Mannheim, Germany
{jan,heiner}@informatik.uni-mannheim.de

Abstract. The evaluation of matching applications is becoming a ma-
jor issue in the semantic web and it requires a suitable methodological
approach as well as appropriate benchmarks. In particular, in order to
evaluate a matching application under different experimental conditions,
it is crucial to provide a test dataset characterized by a controlled variety
of different heterogeneities among data that rarely occurs in real data
repositories. In this paper, we propose SWING (Semantic Web INstance
Generation), a disciplined approach to the semi-automatic generation of
benchmarks to be used for the evaluation of matching applications.

1 Introduction

In the recent years, the increasing availability of structured linked data over the
semantic web has stimulated the development of a new generation of semantic
web applications capable of recognizing identity and similarity relations among
data descriptions provided by different web sources. This kind of applications are
generally known as matching applications and are more and more focused on the
specific peculiarities of instance and linked data matching [7]. Due to this situa-
tion, the evaluation of matching applications is becoming an emerging problem
which requires the capability to measure the effectiveness of these applications
in discovering the right correspondences between semantically-related data. One
of the most popular approaches to the evaluation of a matching application con-
sists in extracting a test dataset of linked data from an existing repository, such
as those available in the linked data project, in deleting the existing links, and in
measuring the capability of the application to automatically restore the deleted
links. However, the datasets extracted from a linked data repository, suffer of
three main limitations: i) the majority of them are created by acquiring data
from web sites using automatic extraction techniques, thus both data and links
are not validated nor checked; ii) the logical structure of these datasets is usually
quite simple and the level of semantic complexity quite low; iii) the number and



2 Benchmarking Matching Applications on the Semantic Web

kind of dissimilarities among data is not controlled, so that it is difficult to tai-
lor the evaluation on the specific problems that affect the currently considered
matching application.

In this context, a reliable approach for the evaluation of matching appli-
cations has to address the following requirements: i) the test dataset used for
the evaluation must be coherent to a given domain and must be represented
according to the desired level of structural and semantic complexity; ii) the
evaluation must be executed by taking into account a controlled variety of dis-
similarities among data, including value, structural, and logical heterogeneity;
iii) a ground-truth must be available, defined as a set of links among data that
the matching application under evaluation is expected to discover. In order to
address these requirements, we propose SWING (Semantic Web INstance Gen-
eration) a disciplined approach to the semi-automatic generation of benchmarks
to be used for the evaluation of matching applications. A SWING benchmark
is composed of a set of test cases, each one represented by a set of instances
and their corresponding assertions (i.e., an OWL ABox) built from an initial
dataset of real linked data extracted from the web. SWING aims at support-
ing the work of an evaluation designer, who has the need to generate a tailored
benchmark for assessing the effectiveness of a certain matching application. The
SWING approach has been implemented as a Java application and it is available
at http://code.google.com/p/swing.

The paper is organized as follows. In Section 2, we discuss some related work
on the subject of matching evaluation. In Section 3, we summarize our approach.
In Section 4 and Section 5 we present the SWING acquisition and transforma-
tion techniques, respectively. In Section 6, we present the experimental results
obtained by executing six different matching algorithms over the benchmark. In
Section 7, we give our concluding remarks.

2 Related work

In the last years, significant research effort has been devoted to ontology match-
ing with special attention on techniques for instance matching [7]. In the litera-
ture, most of the existing approaches/techniques use their individually created
benchmarks for evaluation, which makes a comparison difficult or even impos-
sible [10]. In the fields of object reconciliation, duplicate detection, and entity
resolution, which are closely related to instance matching, a widely used set
of benchmarks are proposed by the Transaction Processing Performance Coun-
cil (TPC)3 that focuses on evaluating transaction processing and databases. A
number of benchmarks are also available for XML data management. Popular
examples are presented in [3, 5]. Since these datasets are not defined in a Seman-
tic Web language (e.g., OWL) their terminological complexity is usually very
shallow. In the area of ontology matching, the Ontology Alignment Evaluation
Initiative (OAEI) [6] organizes since 2005 an annual campaigns aiming at eval-
uating ontology matching technologies through the use of common benchmarks.
3 http://www.tpc.org.



Benchmarking Matching Applications on the Semantic Web 3

However, the main focus of the past OAEI benchmarks was to compare and eval-
uate schema-level ontology matching tools. From 2009, a new track specifically
focused on instance matching applications has been introduced in OAEI and a
benchmark has been developed to this end [8]. The weakness of this 2009 OAEI
benchmark is the basic level of flexibility enforced during the dataset creation
and the limited size of the generated test cases. The benchmark provided by
Yatskevich et al. [13] is based on real-world data, using the taxonomy of Google
and Yahoo as input. In [13], the limit of the proposed approach is the problem
to create an error-free gold standard, since the huge size of the datasets pre-
vents a manual alignment. Intelligent semi-automatic approximations are used
to overcome such a weakness, however it is not possible to guarantee that all the
correct correspondences are found and that none of the found correspondences
is incorrect. The same problem raises with the linked data benchmarks DI4 and
VLCR5. Alexe et al. [1] provide a benchmark for mapping systems, which gener-
ate schema files out of a number of given parameters. Their automatic generation
process ensures that a correct gold standard accrues. However, real-world data
are not employed and artificial instances with meaningless content are mainly
considered. Other benchmarks in the area of ontology and instance matching are
presented in [13] and [9]. In these cases, the weak point is still the limited degree
of flexibility in generating the datasets of the benchmark. We stress that the pro-
posed SWING approach provides a general framework for creating benchmarks
for instance matching applications starting with a linked data source and ending
with various transformed ABox ontologies. In particular, the SWING approach
combines the strength of both benchmarks [1] and [12] by taking real-world data
from the linked data cloud as input and by performing transformations on them
which ensure that the gold standard must be correct in all cases. Moreover, a
further contribution of the SWING approach is the high level of flexibility en-
forced in generating the datasets through data transformations that is a widely
recognized weak point of the other existing benchmarks.

3 The SWING approach

The SWING approach is articulated in three phases as shown in Figure 1.

Data acquisition techniques. SWING provides a set of techniques for the ac-
quisition of data from the repositories of linked data and their representation as
a reference OWL ABox. In SWING, we work on open repositories by addressing
two main problems featuring this kind of datasources. First, we support the eval-
uation designer in defining a subset of data by choosing both the data categories
of interest and the desired size of the benchmark. Second, in the data enrichment
activity, we add semantics to the data acquired. In particular, we adopt specific
ontology design patterns that drive the evaluation designer in defining a data

4 http://www.instancematching.org/oaei/imei2010.html.
5 http://www.cs.vu.nl/~laurah/oaei/2010/.



4 Benchmarking Matching Applications on the Semantic Web

Data Acquisition

Data Selection
Data Enrichment

Data Transformation Data Evaluation

Data Value Transformation
Data Structure Transformation
Data Semantic Transformation

Definition of Expected Results

Linked Data 
repositories

Reference OWL
ABox

Transformed OWL
ABoxes (test cases) Reference Alignment

Activities & 
Techniques

Phases

Outputs

Example
(IIMB2010)

(http://www.freebase.com/) star wars iv a new hope

Fantasy
Science Fiction

harrison ford 1942-7-13

star wars

Film

ford h.
a

b

c

d

Film a

b
e

c

d

e

Testing

Fig. 1. The SWING approach

description scheme capable of supporting the simulation of a wide spectrum of
data heterogeneities.

Data transformation techniques. In the subsequent data transformation
activity the TBox is unchanged, while the ABox is modified in several ways by
generating a set of new ABoxes, called test cases. Each test case, is produced by
transforming the individual descriptions in the reference ABox in new individual
descriptions that are inserted in the test case at hand. The goal of transforming
the original individuals is twofold: on one side, we provide a simulated situation
where data referred to the same objects are provided in different datasources;
on the other side, we generate a number of datasets with a variable level of data
quality and complexity.

Data evaluation techniques. Finally, in the data evaluation activity, we au-
tomatically create a ground-truth as a reference alignment for each test case.
A reference alignment contains the mappings (in some contexts called “links”)
between the reference ABox individuals and the corresponding transformed in-
dividuals in the test case. These mappings are what an instance matching ap-
plication is expected to find between the original ABox and the test case.

As a running example illustrating our approach, in this paper, we present
the IIMB 2010 benchmark6, which has been created by applying our SWING
approach. IIMB 2010 has been used in the instance matching track of OAEI
2010. IIMB 2010 is a collection of OWL ontologies consisting of 29 concepts, 20
object properties, 12 data properties and thousands of individuals divided into 80
test cases. In fact in IIMB 2010, we have defined 80 test cases, divided into 4 sets
of 20 test cases each. The first three sets are different implementations of data
6 http://www.instancematching.org/oaei/imei2010.html



Benchmarking Matching Applications on the Semantic Web 5

value, data structure, and data semantic transformations, respectively, while the
fourth set is obtained by combining together the three kinds of transformations.
IIMB 2010 is created by extracting data from Freebase [2], an open knowledge
base that contains information about 11 Million real objects including movies,
books, TV shows, celebrities, locations, companies and more. Data extraction
has been performed using the query language JSON together with the Freebase
JAVA API7.

4 Data acquisition

The SWING data acquisition phase is articulated in two tasks, called data selec-
tion and data enrichment. The task of data selection has the aim to find the right
balance between the creation of a realistic benchmark and the manageability of
the dataset therein contained. In SWING, the data selection task is performed
according to an initial query that is executed against a linked data repository
with the supervision of the evaluation designer. In particular, the size of the
linked data source is narrowed down by i) selecting a specific subset of all avail-
able linked data classes and ii) limit the individuals belonging to these selected
classes. With the latter selection technique, we can easily scale the number of
individuals from hundreds to millions only by adjusting one single parameter.
The goal of the data enrichment task is to provide a number of data enrich-
ment techniques which can be applied to any linked data source for extending
its structural and semantic complexity from the description logic ALE(D) up
to ALCHI(D). This data enrichment has to be realized, because in the open
linked data cloud the concept hierarchies are usually very low and disjointness
axioms or domain and range restrictions are rarely defined. The limited level
of semantic complexity is a distinguishing feature of linked data. Nevertheless,
many matching applications are capable of dealing with data at different levels
of OWL expressiveness.

To illustrate the SWING enrichment techniques, we will refer to a small
snippet of the IIMB 2010 benchmark displayed in Figure 4. The black colored
nodes, arrows, and names represent information that has been extracted from
Freebase, while the gray colored information has been added according to the
following enrichment techniques of our SWING approach.

Add Super Classes and Super Properties. The designer can adopt two dif-
ferent approaches for determining new super classes. The first one is a bottom-up
approach where new super classes are created by aggregating existing classes.
Thereby, the evaluation designer has to define a super class name which encom-
passes all the classes to include. The second approach is top-down and it requires
to define how to split a class into more subclasses. The same approaches can be
applied for determining super object properties, respectively. This task is mainly

7 http://code.google.com/p/freebase-java/. However, we stress that any kind of
linked data-compatible source can be used to implement the SWING approach.



6 Benchmarking Matching Applications on the Semantic Web

a
Star Wars 

Episode IV: 
A New Hope

name

c

starring_in

featuring
featured_by

Harrison Ford name

Film

Fantasy
Science Fiction

Person

Creature

b
directed_by

directs

featuring

featured_by

Director

Character Creator

Legend Original element SWING enrichment Inferred property

George Lucas

name

d

Han Solo

name

created_by

acted_by

Character

starring_in

featuring

featured_by

Fig. 2. A portion of IIMB 2010

performed manually by the designer, with the support of the system to avoid
the insertion of inconsistency errors.

In IIMB we added for instance following statements for classes and object
properties:

(Person t Character) v Creature

(directed by t acted by t starring in) v featuring

Convert Attributes to Class Assertions. Sometimes, linked data sources
contain string attributes which can be “upgraded” to classes. A good indicator
for such attributes is if the data values are restricted to a number of predefined
expressions like for example male and female or a restricted number of terms
denoting concepts, like for example red, green, and yellow. In this case, an
external lexical system such as for example WordNet can be used to support
the designer in finding those terms that can be considered as candidates for the
class assertion conversion. For example, in Freebase, every film has an attribute
genre with values like Fantasy, Science F iction, Horror, and many more.
This attribute was used in IIMB 2010 to derive additional class assertions as
subclasses of Film as shown in Figure 4.

(Fantasy t Science F iction tHorror t ...) v Film

Determine Disjointness Restrictions. The challenge of this task is to add
as many disjointness restrictions as possible while ensuring the ontology consis-
tency. This could be realized by trying to add all possible disjointness combina-
tions and by checking the consistency of the ontology after each combination. If
the ontology does not turn to inconsistency we integrate the axiom, otherwise,
we discard it. In general, disjointness axioms can not only be added for classes,
but also for object properties. For the sake of readability, disjointness axioms



Benchmarking Matching Applications on the Semantic Web 7

are not shown in Figure 4. However, in IIMB 2010, the classes Film, Location,
Language, Budget, and Creature were set to be pairwise disjoint.

Enrich with Inverse Properties. We perform the insertion of inverse prop-
erties by creating an object property with both the active and the passive verb
forms used as property names. To automate this procedure, we rely on a lexical
systems (e.g., WordNet) to determine the active/passive verb forms to insert.
Moreover, the evaluation designed can manually insert the inverse property for
those property names that are not retrieved in WordNet. For example, in IIMB
2010, we added the property directs as the inverse of the existing property
directed by.

Specify Domain and Range Restrictions. For all existing properties, the
challenge is to find the best - that means the narrowest - domain and range
without turning the ontology to inconsistency. For an object property, all the
possible domain and range restrictions can be determined by attempting to as-
sign all the existing classes to be the potential domain/range. If the ontology
is still consistent after the assignment of this new domain/range restriction, the
change is saved, otherwise it is discarded. In the example of IIMB 2010, among
the others, the following domain and range restrictions have been added to the
object property created by:

∃created by v Character ∧ ∃created by− v Character Creator

5 Data transformation

Once the data acquisition phase is executed and a reference ontology O is pro-
duced, we start the SWING data transformation phase that has the goal of pro-
ducing a set T = {O1,O2, . . . ,On−1,On} of new ontologies, called test cases.
Each test case Oi ∈ T has the same schema (i.e., TBox) of O but a different set
of instances (ABox) generated by transforming the ABox AO of O. In detail,
the input of each transformation is a reference ontology O and a configuration
scheme C, which contains the specification of properties involved in the trans-
formations process, the kind of transformations enforced, and the parameters
required by the transformation functions. The output is a new ontology Oi. The
implementation of each ontology transformation can be described in terms of a
transformation function θ : AO → AiO, where AO and AiO denote two ABoxes
consistent with the TBox TO of the ontology O. The transformation function
θ maps each assertion αk ∈ AO into a new set of assertions θ(αk)C according
to the configuration scheme C. Thus, given a configuration scheme C and an
ontology O, a test case Oi is produced as follows:

Oi = TO ∪ AiO with AiO =
N⋃
k=1

θ(αk)C



8 Benchmarking Matching Applications on the Semantic Web

where N is the number of assertions in AO. In SWING, we take into account
two kinds of assertions for the transformation purposes, namely class assertions
and property assertions. A class assertion has the form C(x) and denotes the
fact that and individual x is an instance of class C (i.e., the type of x is C). A
property assertion has the form P (x, y) and denotes the fact that an individual
x is featured by a property P which has value y. P may be either an object
property or a data property. In the first case, the value y is another individual,
while in the second case y is a concrete value. As an example, in the reference
ontology used for IIMB 2010, we have the following assertions:

α1 : Director(b), α2 : name(b, “George Lucas”), α3 : created by(d, b)

denoting the fact that b is a Director whose name is represented by the string
“George Lucas”. Moreover the object denoted by the individual d is created by
the individual b (d denotes the character “Han Solo” as shown in Figure 2). Both
the kinds of assertions taken into account in SWING can be described in terms
of an assertion subject, denoted αs, that is the individual which the assertion
α is referred to, an assertion predicate, denoted αp, that is the RDF property
rdf : type in case of class assertions or the property involved in the assertion in
case of property assertions, and an assertion object, denoted αo, that is a class
in case of class assertions and a concrete or abstract value in case of property
assertions. For example, referring to the IIMB 2010 example above, we have
αs1 = b, αp1 = rdf : type, αo1 = Director and αs2 = b, αp2 = name, αo2 = “George
Lucas”. According to this notation, we can define the individual description Dj

of and individual j into an ABox AO as follows:

Dj = {αk ∈ AO | αsk = j}

that is the set of all assertions in AO having j as subject. According to
this notion of individual description, we define also the notion of individual
transformation θ(j) as the result of the transformation θ(αk) of each assertion
αk in the definition Dj of j.

5.1 Data Transformation Procedure

The data transformation of an ontology O into an ontology Oi is run as a
procedure articulated in three steps:

Preprocessing of the Initial Ontology. The preprocessing step has the goal
of adding some axioms to the ontology TBox O, that will be the reference TBox
for the rest of the transformation and will be identical for all the test cases.
These additions are required in order to implement some of the subsequent data
transformations without altering the reference TBox. In particular, we add two
kind of axioms. As a first addition, we take into account all the data properties
Pi ∈ O and, for each property, we add a new object property Ri, such that
O = O∪Ri. Moreover, we add a data property has value to O. These additions



Benchmarking Matching Applications on the Semantic Web 9

are required for transforming data property assertions into object property as-
sertions. The second addition is performed only if the semantic complexity of
the ontology chosen by the designer allows the usage of inverse properties. In
this case, we take into account all the object properties Ri that are not already
associated with an inverse property and we add to O a new property Ki such
that Ki ≡ R−i .

Deletion/Addition of Individuals. The SWING approach allows the eval-
uation designer to select a portion of individuals that must be deleted and/or
duplicated in the new ontology. The reason behind this functionality is to obtain
a new ontology where each original individual can have none, one, or more match-
ing counterparts. The goal is to add some noise in the expected mappings in such
a way that the resulting benchmark contains both test cases where each original
instance has only one matching counterpart (i.e., one-to-one mappings) and test
cases where each original instance may have more than one matching counter-
part (i.e., one-to-many mappings). This is a required feature in a benchmark to
avoid that those matching applications that produce only one-to-one mappings
are favored. In particular, the evaluation designer can choose the percentage td
(expressed in the range [0,1]) of individuals that are candidate for deletion and
the percentage ta of individuals that are candidate for addition. Then, given
the number NI of individuals in the initial ontology O, SWING calculates the
number CI of individuals that have to be deleted as CI = btd ·NIc. Given CI ,
two strategies, called deterministic and non-deterministic strategies, are defined
to randomly choose the individuals to eliminate. In the deterministic strategy,
we randomly choose CI individuals from O. The assertions in the descriptions
of the chosen individuals are simply not submitted to transformation and, thus,
do not appear in the new ontology Oi. In the non-deterministic strategy, we
take into account all the individuals in O once at a time. For each individual,
we generate a random value r in the range [0,1]. If r ≤ td, the individual is not
submitted to transformation. Every time the transformation is not executed, we
add 1 to a counter c. This procedure is iterated until c < CI or all the individuals
in O have been considered. The advantage of the deterministic strategy is that
it is possible to control the exact number of transformations that are generated.
The advantage of a non-deterministic choice is to keep the transformation pro-
cess partially blind even for the evaluation designer. Similarly, the number AI
of individuals to be added is calculated as AI = bta · (NI − CI)c. We randomly
select the individuals to be added and for each of these individuals i, we create
a new individual i′ in the text case by substituting the individual identifier i
with a new randomly generated identifier i′. Then, each assertion αk ∈ Di is
transformed by substituting any reference to i with i′. In such a way, in the
test case we will have a copy of each individual description plus the individual
description transformation θ(i).

Individuals Transformation. For each individual description Di and for each
assertion αj ∈ Di, we calculate the transformation θ(αj)C according to the con-
figuration scheme C, that is defined by the evaluation designer. Every transfor-



10 Benchmarking Matching Applications on the Semantic Web

mation θ(αj)C is seen as a ordered sequence of transformation operations. Each
operation takes a set A of assertions in input and returns a set A′ of trans-
formed assertions as output. The input of the first transformation operation is
the singleton set {αj}, while the output of the final operation in the sequence is
the transformation θ(αj)C . Transformation operations are distinguished in three
categories, namely data value transformation, data structure transformation, and
data semantic transformation. Due to space reasons, we cannot describe opera-
tions in detail, but we summarize them in Table 1 and we will provide an example
of their application in the following.

Table 1. Summary of data transformation operations provided by SWING

Data Value Data Structure Data Semantic

Add γ σ, ζ ι
Delete ρ δ λ, π, ι
Modify ρ, κ τ , ζ λ, ω, π

γ = Random token/character addition
ρ = Random token/character modification
κ = Specific data modification
σ = Property assertion addition
ζ = Property assertion splitting
δ = Property assertion deletion

τ = Property type transformation
ι = Creation of inverse property assertions
λ = Deletion/modification of class assertions
π = Creation of super-property assertions
ω = Classification of individuals in disjoint classes

Data value transformation operations work on the concrete values of data
properties and their datatypes when available. The output is a new concrete
value. An example of data value transformation, is shown in Table 2.

Table 2. Examples of data value transformations

Operation Original value Transformed value

Standard transformation Luke Skywalker L4kd Skiwaldek
Date format 1948-12-21 December 21, 1948
Name format Samuel L. Jackson Jackson, S.L.
Gender format Male M
Synonyms Jackson has won multiple

awards [...]
Jackson has gained several
prizes [...]

Integer 10 110
Float 1.3 1.30

Data structure transformation operations change the way data values are
connected to individuals in the original ontology graph and change the type
and number of properties associated with a given individual. A comprehensive
example of data structure transformation is shown in Table 3, where an initial
set of assertions A is transformed in the corresponding set of assertions A′ by
applying the property type transformation, property assertion deletion/addition,
and property assertion splitting.



Benchmarking Matching Applications on the Semantic Web 11

Table 3. Example of data structure transformations

A A′

name(n, “Natalie Portman”) name(n, “Natalie”)
born in(n,m) name(n, “Portman”)
name(m, “Jerusalem”) born in(n,m)
gender(n, “Female”) name(m, “Jerusalem”)
date of birth(n, “1981-06-09”) name(m, “Auckland”)

obj gender(n, y)
has value(y, “Female”)

Finally, data semantic transformation operations are based on the idea of
changing the way individuals are classified and described in the original ontology.
For the sake of brevity, we illustrate the main semantic transformation operations
by means of the following example, by taking into account the portion of TO and
the assertions sets A and A′ shown in Table 4.

Table 4. Example of data semantic transformations

TO
Character v Creature, created by ≡ creates−, acted by v featuring, Creature u
Country v ⊥

A A′

Character(k) Creature(k)
Creature(b) Country(b)
Creature(r) >(r)
created by(k, b) creates(b, k)
acted by(k, r) featuring(k, r)
name(k, “Luke Skywalker”) name(k, “Luke Skywalker”)
name(b, “George Lucas”) name(b, “George Lucas”)
name(r, “Mark Hamill”) name(r, “Mark Hamill”)

In the example, we can see how the combination of all the data semantic
operations may change the description of the individual k. In fact, in the original
set A, k (i.e., the Luke Skywalker of Star Wars) is a character created by the
individual b (i.e., George Lucas) and acted by r (i.e., Mark Hamill). In A′ instead,
k is a more generic “creature” and also the relation with r is more generic
(i.e., “featuring” instead of “acted by”). Moreover, individual k is not longer
created by b as it was in A, but it is b that creates k. But the individual b of
A′ cannot be considered the same than b ∈ A, since the class Creature and
Country are disjoint.

According to Table 1, data transformation operations may also be categorized
as operations that add, delete or modify the information originally provided by
the initial ontology. Table 1 shows also how some operations are used in order
to implement more than one action over the initial ontology, such as in case of
deletion and modifications of string tokens that are both implemented by means
of the operation ρ. Moreover, some operations cause more than one consequence



12 Benchmarking Matching Applications on the Semantic Web

on the initial ontology. For example, the property assertion splitting ζ causes
both the modification of the original property assertion and the addition of
some new assertions in the new ontology.

5.2 Combining Transformations and Defining the Expected Results

When a benchmark is generated with SWING it is usually a good practice
to provide a set of test cases for each category of data transformation plus a
fourth bunch of test cases where data value, data structure, and data semantic
transformations are combined together. The combination of different transfor-
mations in SWING is easy both in case of transformations of the same cat-
egory and in case of cross-category transformations. In fact, all the transfor-
mation operations work on assertions sets and produce other assertions sets.
Thus, the combination is obtained by executing the desired transformations
one over the output of the other. As an example, we consider the initial as-
sertion set A = {name(b, “George Lucas”)} and the transformation sequence
A → ρ(A, 0.5) → A′ → τ(A′, 1.0) → A′′ι(A′′, 1.0) → A′′′ that produces the fol-
lowing results: A = name(b, “George Lucas”), A′ = name(b, “YFsqap Lucas”),
A′′ = obj name(b, x), has value(x, “YFsqap Lucas”), A′′′ = obj name−(x, b),
has value(x, “YFsqap Lucas”).

As a last step in the benchmark generation, for each test case Oi we define a
set of mappings MO,Oi that represents the set of correspondences between the
individuals of the ontology O and the individuals of the the test case Oi that a
matching application is expected to find when matching O against Oi. For each
individual j in O we define a new individual j′ and we substitute any reference to
j in Oi with a reference to j′. Then, if the pair j, j′ is not involved in any opera-
tion of classification of individuals in disjoint classes, we insert m(j, j′) inMO,Oi .

A comprehensive example of data transformation taken form IIMB 2010 is
shown in Figure 3, together with the expected results generated for the test case
at hand.

6 Experimental Results

In order to evaluate the applicability of the SWING approach to the evaluation
of matching applications, we have executed six different matching algorithms
against IIMB 2010 and we have compared precision and recall of each algorithm
against the different test cases of the benchmark. The six algorithms have been
chosen to represent some of the most popular and reliable matching techniques
in the field of instance matching. We recall that the goal of our evaluation is
to verify the capability of the IIMB 2010 benchmark generated with SWING
to provide a reliable and sufficiently complete dataset to measure the effective-
ness of different and often complementary matching algorithms/applications.
The considered matching algorithms are divided into two categories, namely
simple matching and complex matching. Simple matching algorithms are three



Benchmarking Matching Applications on the Semantic Web 13

a
Star Wars 

Episode IV: 
A New Hope

name

Coming of age

b

directed_by

Director

George Lucas
name

Fantasy

Science Fiction

1944-05-14

date of birth

George Walton Lucas, Jr. (born 
May 14, 1944) is an Academy 
Award-nominated American film 
producer [...]

article

Original ABox portion Transformed ABox portion
A New Hope

obj_name
b'directs

Person

George Lucas

name

1944

date of birth

a'

x

has_value

Star Wars 
Episode IV:

has_value

y has_value

May 14

date of birth

b''

featuring

George E. T. S. Walton Lucas, 
younger (born May 14, 1944) 
cost Associate in Nursing 
academy Award-nominated 
American film [...]

article

p

Darth Vader

name

Character
created_by

Expected results

a ba' b' b''

Fig. 3. Example of data transformation taken from IIMB 2010

variations of string matching functions that are used for the comparison of a
selected number of property values featuring the test case instances. Complex
matching algorithms work on the structure and semantics of test cases and on
the expected cardinality of resulting mappings. In this category we executed
the algorithms LexicalMatch, StructuralMatch, and HMatch. LexicalMatch and
StructuralMatch [11] use integer linear programming to calculate the optimal
one-to-one alignment based on the sum of the lexical similarity values. In Lexical-
Match, no structural information is considered. StructuralMatch uses both, lex-
ical and structural information. Finally, HMatch [4] is a flexible matching suite
where a number of matching techniques are implemented and organized in dif-
ferent modules providing linguistic, concept, and instance matching techniques
that can be invoked in combination.

A summary of the matching results is reported in Figure 4(a), where we show
the average values of the harmonic mean of precision and recall (i.e., FMeasure)
for each algorithm over data value, structure and semantic transformation test
cases, respectively. The last two chunks of results refer to a combination of
transformations and to the benchmark as a whole, respectively.

The goal of our experiments is to evaluate the IIMB 2010 effectiveness, that
is the capability of distinguishing among different algorithms where they are
tested on different kinds of transformations. To this end, we observe that IIMB
2010 allows to stress the difference between simple and complex matching algo-
rithms. In fact, in Figure 4(a), the FMeasure for simple matching algorithms is
between 0.4 and 0.5, while we obtain values in the range 0.8-0.9 with complex
algorithms. It is interesting to see how simple algorithms have best performances
on value transformations and worst performances on structural transformations.
This result is coherent with the fact that simple matching does not take into
account neither the semantics nor the structure of individuals, and proves that
SWING simulates structural transformation in a correct way. In case of seman-



14 Benchmarking Matching Applications on the Semantic Web

0,00 

0,10 

0,20 

0,30 

0,40 

0,50 

0,60 

0,70 

0,80 

0,90 

1,00 

Value  Structure  Seman8c  Combined  All 

TermMatch  StringMatch  TextMatch  LexicalMatch  StructuralMatch  Hmatch 

(a)

0,00 

0,10 

0,20 

0,30 

0,40 

0,50 

0,60 

0,70 

0,80 

0,90 

1,00 

Prec.  Rec.  Prec.  Rec.  Prec.  Rec.  Prec.  Rec.  Prec.  Rec.  Prec.  Rec. 

TermMatch  StringMatch  TextMatch  LexicalMatch  StructuralMatch  HMatch 

1‐1 Mappings  1‐N Mappings 

(b)

Fig. 4. Results for the execution of different matching algorithms against IIMB 2010

tic transformations instead, simple algorithms have quite good performances
because many semantic transformations affect individual classification, which is
an information that is ignored by simple algorithms. In Figure 4(b), we show
the values of precision and recall of the considered algorithms in the test cases
where all the expected mappings were one-to-one mappings (i.e., 1-1 Mappings)
and in the test cases where one-to-many mappings were expected for 20% of
the individuals (i.e., 1-N Mappings). We note that the algorithms that are not
based on the assumption of finding one-to-one mappings (i.e., simple matching
algorithms and HMatch) have similar results in case of 1-1 and 1-N mappings.
Instead, LexicalMatch and StructuralMatch are based on the idea of finding the
best 1-1 mapping set. Thus, precision and recall of these algorithms are lower
when 1-N mappings are expected. The number of individuals corresponding to
more than one individual is about 20% of the total number of individuals and
this percentage corresponds to the degradation of results that we can observe
for LexicalMatch and StructuralMatch.

7 Concluding Remarks

In this paper we have presented SWING, our approach to the supervised gen-
eration of benchmarks for the evaluation of matching applications. Experiments



Benchmarking Matching Applications on the Semantic Web 15

presented in the paper show that SWING is applicable to the evaluation of real
matching applications with good results. Our future work is focused on collecting
more evaluations results in the instance matching evaluation track of OAEI 2010,
where SWING has been used to generate the IIMB 2010 benchmark. Moreover,
we are interested in studying the problem of extending SWING to the creation
of benchmarks for evaluation of ontology matching applications in general, by
providing a suite of comprehensive evaluation techniques and tools tailored for
the specific features of TBox constructs.

Acknowledgements. Heiner Stuckenschmidt is partially supported by the Euro-
pean project SEALS (IST-2009-238975).

References

1. Alexe, B., Tan, W., Velegrakis, Y.: STBenchmark: towards a Benchmark for Map-
ping Systems. Proc. of the VLDB Endowment 1(1), 230–244 (2008)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a Collabo-
ratively Created Graph Database for Structuring Human Knowledge. In: Proc. of
the ACM SIGMOD Int. Conference on Management of Data. pp. 1247–1250 (2008)

3. Bressan, S., Li Lee, M., Guang Li, Y., Lacroix, Z., Nambiar, U.: The XOO7 Bench-
mark. In: Proc. of the 1st VLDB Workshop on Efficiency and Effectiveness of XML
Tools, and Techniques (EEXTT 2002) (2002)

4. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics V (2006)

5. Duchateau, F., Bellahse, Z., Hunt, E.: XBenchMatch: a Benchmark for XML
Schema Matching Tools. In: Proc. of the 33rd Int. Conference on Very Large Data
Bases (VLDB 2007) (2007)

6. Euzenat, J., Ferrara, A., Hollink, L., et al.: Results of the Ontology Alignment
Evaluation Initiative 2009. In: Proc. of the 4th Int. Workshop on Ontology Match-
ing (OM 2009) (2009)

7. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag (2007)
8. Ferrara, A., Lorusso, D., Montanelli, S., Varese, G.: Towards a Benchmark for

Instance Matching. In: Proc. of the ISWC Int. Workshop on Ontology Matching
(OM 2008) (2008)

9. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: Proc. of the 3rd Int. Semantic Web Conference (ISWC 2004)
(2004)

10. Koepcke, H., Thor, A., Rahm, E.: Evaluation of Entity Resolution Approaches on
Real-World Match Problems. In: Proc. of the 36th Int. Conference on Very Large
Data Bases (VLDB 2010) (2010)

11. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging Termi-
nological Structure for Object Reconciliation. The Semantic Web: Research and
Applications pp. 334–348 (2010)

12. Perry, M.: TOntoGen: A Synthetic Data Set Generator for Semantic Web Appli-
cations. AIS SIGSEMIS Bulletin 2(2), 46–48 (2005)

13. Yatskevich, M., Giunchiglia, F., Avesani, P.: A Large Scale Dataset for the Evalua-
tion of Matching Systems. In: Proc. of the 4th European Semantic Web Conference
(ESWC 2007), Poster Session (2007)


