
Completeness and Ambiguity of Schema Cover

Avigdor Gal, Michael Katz, Tomer Sagi, Matthias Weidlich1, Karl Aberer, Nguyen
Quoc Viet Hung2, Zoltán Miklós3, Eliezer Levy, and Victor Shafran4

1 Technion – Israel Institute of Technology, Technion City, Haifa, 32000 Israel
2 École Polytechnique Fédérale de Lausanne EPFL, CH-1015 Lausanne, Switzerland

3 University of Rennes 1, France
4 SAP Research Israel, Ra’anana, 43665, Israel

Abstract. Given a schema and a set of concepts, representative of entities in the
domain of discourse, schema cover defines correspondences between concepts
and parts of the schema. Schema cover aims at interpreting the schema in terms
of concepts and thus, vastly simplifying the task of schema integration. In this
work we investigate two properties of schema cover, namely completeness and
ambiguity. The former measures the part of a schema that can be covered by a set
of concepts and the latter examines the amount of overlap between concepts in
a cover. To study the tradeoffs between completeness and ambiguity we define
a cover model to which previous frameworks are special cases. We analyze the
theoretical complexity of variations of the cover problem, some aim at maximizing
completeness while others aim at minimizing ambiguity. We show that variants
of the schema cover problem are hard problems in general and formulate an
exhaustive search solution using integer linear programming. We then provide
a thorough empirical analysis, using both real-world and simulated data sets,
showing empirically that the integer linear programming solution scales well for
large schemata. We also show that some instantiations of the general schema cover
problem are more effective than others.

1 Introduction

Semantic interoperability among heterogeneous information systems is a critical problem
for modern business networks. Data integration is considered one of the main challenges
in establishing such interoperability, due to the need to provide correct interpretation of
data [1–3]. In today’s world of connected businesses, the idea of approaching the data
integration challenge with methods based on reuse and collaboration becomes feasible.
Such reuse can be based on a repository of information building blocks, referred to as
concepts, [4] representative of entities in the domain of discourse (e.g., a vendor concept
in an eCommerce domain). Concepts establish a form of a conceptual middleware,
providing a shared set of abstractions that facilitates interoperability.

Documents, modeled as schemata are mapped against a set of concepts in a process
termed schema cover. The idea is to “cover” a schema and thereby interpret the schema
in terms of known concepts. This way, the schema is integrated into an existing body
of information and knowledge. For example, consider a network of enterprises that
exchange business documents and cooperate to establish interoperability in order to
conduct business and generate value from the network. The business documents do not

x

y

z

xc
1 yc

1 zc1

yc
2 xc

2

zc3

x

y

z

xc
1 yc

1 zc1

yc
2 xc

2

zc3

address

payment

region

city code country

pCode pValue

country

delivery

city

postalCode

country

delivery

city

postalCode

country

Fig. 1: Role of concepts illustrated

follow a common format or standard, although they come from the same domain, e.g.,
sales and purchase orders. The aim of schema cover is to integrate different vocabulary
and structural elements, representing similar real-world entities, by using concepts.

Schema cover matches parts of schemata (called subschemata) with concepts, using
schema matching techniques [5] and then adds cover-level constraints. One such con-
straint is called ambiguity [4], intuitively representing the number of times an attribute is
matched to attributes in several concepts. Another constraint, introduced in this work,
is completeness, representing the part of a schema that is “covered” by any concept.
Ambiguity and completeness constraints, to be formally defined in this work along
with subschemata and concepts, are embedded as (either hard or soft) constraints in an
optimization cover problem.

To illustrate the role of concepts in schema cover consider Figure 1. On the left
there is a schema with three attributes. On the right, we introduce six attributes that are
available for matching in some repository (not necessarily from the same schema). In the
absence of concepts (Figure 1(left)), the matching task can select attributes without any
restriction. However, in the presence of concepts (Figure 1(right), marked with ovals),
we are guided to choose closely related attributes. Our hypothesis is that well-designed
concepts improve the quality of the integration for exactly this argument.

Schema cover was first introduced by Saha et. al. [4] as a solution for schema
mapping. However, in recent years new applications were introduced, to which schema
cover can bring benefit [6, 7]. We illustrate next two applications that motivate our
investigation of the trade-off between ambiguity and completeness in schema cover.
Partner identification: An enterprise may be interested in investigating a new market,
seeking partners with sufficient common interests to its own while providing sufficient
added value to its capabilities. The use of a cover here can ensure just the right amount
of commonality between prospective business partners. Here, the main interest is in the
amount of completeness of a cover, judging what part of one schema can be covered
by concepts of the other schema and vice versa. Ambiguity takes a secondary role of
ensuring the cover clarity.
Concept filtering: Effective reuse requires the accumulation of many concepts from
which useful schema covers can be created. To ensure efficient cover processing, concept
repositories require a filtering process that ensures that only concepts of good quality
that are also good candidates for a cover are retrieved. In this scenario, completeness is

set as a constraint by a designer and ambiguity is a measure that needs to be optimized
to avoid poor matching quality.

In this paper we investigate the trade-offs between completeness and ambiguity. The
paper makes the following contributions:

– We introduce the trade-off of ambiguity and completeness through a general frame-
work for schema cover, offering a spectrum of schema cover problems where the
above applications can be supported, among other scenarios. In particular, we show
that the framework of [4] is a special case of the generalized problem.

– We propose a new formulation of a cover problem and show it to be NP-Complete.
– We offer integer linear programming (ILP) formulation for optimally solving certain

special variations of the cover problem in an exhaustive manner. These formulations
are shown empirically to scale well to schemata with 1,000 attributes and cover
repository with 8,000 concepts.

– We provide a thorough empirical analysis of the proposed algorithmic solutions
to cover problems, using both real-world and simulated data sets. The empirical
evaluation shows that the cover variation proposed in this work is more effective
(in terms of completeness for similar levels of ambiguity) than the one presented by
Saha et al. [4].

The rest of the paper is organized as follows. Preliminaries are given in Section 2
and Section 3 introduces the cover model. A set of cover problems are presented in
Section 4, together with a theoretical analysis, followed by an ILP formulation in Section
5. Section 6 provides our empirical analysis. We conclude with a description of related
work (Section 7) and directions for further research (Section 8).

2 Background

In this work, we focus on the task of covering a schema with a (possibly large) reposi-
tory of concepts and analyze the trade-offs of completeness and ambiguity. Generally
speaking, a preprocessing of the cover process involves decomposition and coupling.
The former decomposes a schema into subschemata. Concepts and subschemata are then
coupled using schema matching techniques, followed by a cover selection.

Schema decomposition is a process in which a schema is broken into subschemata.
We set no particular restrictions on this process, and therefore attributes can belong to
more than one schema, a subschema (modeled often as a graph) does not have to be a
connected component, etc. Decomposition can be performed in one of two ways, namely
native and by concept-first. Native decomposition is performed independently of the
concept repository. For example, a method for decomposing an underlying ER model
was proposed by An et al. [8]. Alternatively, decomposition by concept-first is guided
by a set of concepts using schema matching techniques. Therefore, a schema matcher
such as COMA++ [9] or OntoBuilder’s Top-K algorithm [10] can determine the best
matchings between a concept and the schema. All the schema attributes that participate
in such a matching are considered part of a subschema.

To make the subsequent pairing and covering process more efficient, the concept
repository can be filtered by selecting representatives of concept clusters. Filtering was

advocated in [4] as a heuristic to confront the high complexity of the cover problem. In
this work, we show first that the use of Integer Linear Programming with state-of-the-
art solvers can do without filtering even for very large concept repositories. Secondly,
we discuss a variant of the generalized cover description that assist in focusing the
cover solutions on relevant concepts. Therefore, we can filter-in clusters for which a
representative concept is identified as a good candidate for covering.

Coupling is a schema matching process in which the similarity between a concept and
a subschema is assessed. If decomposition is performed by concept-first, then coupling
trivially becomes the outcome of the matching discussed above. Otherwise, the same
schema matching techniques are applied to construct a set of concept-subschema pairs
for the cover process.

In the remainder of this section we provide, as a background, a model of schema
matching based on the model presented by Gal [10], and put it in the context of the cover
problem. We shall use a car rental domain example to demonstrate our model, where
a set of concepts may include details about cars, customers, drivers, payments, pickup,
return, and stations. The example attempts to match a schema of a car rental portal to
these concepts.

2.1 Schema Matching

Let schema s = {a1, a2, ..., an} be a finite set of attributes. Attributes can be both simple
and compound and compound attributes should not necessarily be disjoint. An attribute
in a schema of a car rental portal might be carType, firstName, etc. A compound
attribute might be pickUpDate, combining two other attributes – eDay, and eMonth.
In what follows, given a schema s with n attributes, we shall use the attribute indices
(1, 2, ..., n) to identify the attributes of s.

Let s and s′ be schemata with n and n′ attributes, respectively. Let S = s× s′ be the
set of all possible attribute correspondences between s and s′. S is a set of attribute pairs
(e.g., (puDate, PickUpDate)). Letm (s, s′) be an n×n′ similarity matrix over S , where
mi,j (s, s′) represents a degree of similarity between the i-th attribute of s and the j-th
attribute of s′. Whenever the schemata are known from the context we use mi,j instead
of mi,j (s, s′). The majority of works in the schema matching literature define mi,j to
be a real number in [0, 1]. For example, Table 1 represents a simplified similarity matrix
of the running case study. Schema s has the attributes group (representing car group),
seat (referring to child’s safety seat), xDriver (representing an extra driver), puDate
(for pickup date) and rDate (for return date). For schema s′ the attributes carType,
pickUpDate and returnDate are self explanatory. The attribute options is a compound
attribute with two sub-attributes chkBaby and chkExtraDriver, each a binary attribute.
It is worth noting that the matcher, in this case, has identified chkBaby as a perfect
match to seat and xDriver as a perfect match to chkExtraDriver, propagating these
scores to the matching of seat and xDriver with options.

Similarity matrices are generated by schema matchers, instantiations of the schema
matching process. They differ mainly in the measures of similarity they employ, which
yield different similarity matrices. These measures can be arbitrarily complex, and may
use various techniques. Some matchers assume similar attributes are more likely to have
similar names [11, 12]. Other matchers assume similar attributes share similar domains

s−→ 1 group 2 seat 3 xDriver 4 puDate 5 rDate
↓ s′

1 carType 0.843 0.323 0.323 0.317 0.302
2 options 0.290 1.000 1.000 0.326 0.303
3 pickUpDate 0.344 0.328 0.328 0.351 0.352
4 returnDate 0.312 0.310 0.310 0.359 0.356

Table 1: A Similarity Matrix Example

[13, 14]. Others yet take instance similarity as an indication of attribute similarity [15,
16]. Finally, some researchers use the experience of previous matchings as indicators of
attribute similarity [17, 12].

Given two schemata, s and s′, let the power-set Σs,s′ = 2S be the set of all possible
schema matches between the schema pair (s, s′), where a schema match σ (s, s′) ∈ Σs,s′
is a set of attribute correspondences (and thus σ (s, s′) ⊆ S). Whenever the schema
pair is known from the context, we refer to a match simply as σ and to a power-set of
matches as Σ. It is worth noting that σ does not necessarily contain all attributes in s or
s′. Therefore, there may exist an attribute a ∈ s, such that for all a′ ∈ s′, (a, a′) /∈ σ.
We denote by σ̄ = {a ∈ s |∀a′ ∈ s′, (a, a′) /∈ σ } ∪ {a′ ∈ s′ |∀a ∈ s, (a, a′) /∈ σ } the
set of all attributes that do not participate in a schema match.

2.2 Similarity and Constraints

A schema match is assigned a similarity measure that is aggregated from the similarity
measures of its attribute correspondences. In the literature, such an aggregation took
various forms, including among others, the aggregate functions of scaled summation
(such as average), max, and min.

For the remainder of this work, f represents any of the common linear aggregate
operators for schema matching. Given a non-empty schema match σ between two
schemata s and s′, we can define a schema match similarity measure Mσ (s, s′) to be:

Mσ (s, s′) = f ({mi,j (s, s′) | (ai, aj) ∈ σ}) . (1)

For example, consider Table 1 and assume that the schema match σ involves matching

{(1, 1) , (2, 2) , (3, 3) , (4, 3) , (5, 4)} .

Also, let f = average, then Mσ (s, s′) = 0.71.
Let Γ : Σ → {0, 1} be a boolean constraint function that captures the application-

specific constraints on schema matchings, e.g., cardinality constraints and inter-attribute
correspondence constraints. Γ partitions Σ into two sets, where the set of all valid
schema matches in Σ is given by ΣΓ = {σ ∈ Σ | Γ (σ) = 1}. Γ is a general constraint
model, where Γ (σ) = 1 means that the match σ can be accepted by a designer. Γ has
been modeled in the literature using matchers called constraint enforcers [18].

The input to the process of schema matching is given by two schemata s and s′ and
Γ . The output of the schema matching process is a schema match σ ∈ ΣΓ .

3 Cover Model

We now introduce the model that serves in defining the different schema cover problems.
The model includes subschemata, concepts (Section 3.1), and a cover (Section 3.2).

3.1 Subschemata and Concepts

Let Ts = {t1, t2, ..., tm} be a set of subschemata of s, ti ⊆ s for all i = 1, 2, ...,m. A
subschema contains a subset of the attributes of s. For example, a subschema of a car
rental portal may include the attributes carType, options and insurance, the first two
already discussed above and the third referring to the type of insurance needed for this
car group. In what follows, we keep the original indexes of s to represent the attributes
from s that are present in t. For example, t = {a1, a5, a8} is a subschema of s that
contains three of the attributes of s, namely a1, a5, and a8.

Let C = {c1, c2, ..., cp} be a set of concepts, where a concept is a schema by itself.
For example, in the car rental domain, a concept repository contains the following
concepts: CarDetails, CustomerDetails, DriverDetails, PaymentDetails, PickUpDe-
tails, ReturnDetails, and Station.

We note that schemata, subschemata, and concepts are all defined to consist of a set
of attributes, however with different semantics. Concepts are schemata whose meaning
is assumed to be known and well-defined in a given business context. Such concepts can
be prepared by an enterprise for internal standardization purposes. Alternatively, it can
be generated and maintained by organizations such as schema.org. A schema represents
a new, unknown set of attributes, that is a candidate for a matching task. For clarity
sake, we differentiate schema attributes from concept attributes and denote by acj the
j-th attribute of concept c.

3.2 Cover

We are now ready to introduce the notion of a cover, defined in this paper as any set of
concepts that match parts of a given schema. Therefore, if a concept interprets part of a
schema, a cover interprets a schema as a whole. We provide a formal definition of a cover,
demonstrate it using our case study example, and explain the roles of completeness and
ambiguity as quality measures for a cover.

Given a set of subschemata Ts of s, a set C of concepts, and a constraint function
Γ for each t ∈ Ts, c ∈ C, we define a set of valid matchings between subschemata and
concepts: E (Ts, C) =

{
σ (t, c)

∣∣t ∈ Ts, c ∈ C, σ (t, c) ∈ ΣΓ
t,c

}
.

Definition 1. A cover of s byC, vs,C ⊆ E (Ts, C) is a subset of valid matchings between
Ts and C.

A cover is a set of pairs, where each pair in the set is a matching between a subschema
and a concept. Let σ = σ (t, c) ∈ vs,C be an element of a cover. We define the presence
vector λ̄σ = (λσ,1, λσ,2, ...λσ,n) as follows:

λσ,i =

{
0 ai ∈ σ̄
1 otherwise (2)

Concept Matching subschema

CarDetails: group, seat, insuranceTypeRequested... carType, options, insurance...
CustomerDetails: address, addressCity, addressCountry... address,city,country...
DriverDetails: ageGroup, email, license...
PaymentDetails: CCV, card, cardExpiryMonth...
PickUpDetails: date, time, stationID... pickUpDate, pickUpTime, location...
ReturnDetails: date, time, stationID... returnDate, returnTime, location...
Station: ID, name, location...

Table 2: A Cover Example

Each element of the vector λ̄σ is an indicator, set to 1 if attribute ai is part of the matching
σ and 0 otherwise (recall that σ̄ represents all the attributes that are not in σ).

To illustrate, a partial sample cover is given in Table 2. Four concepts are used to
cover a schema of a car rental portal where pickup and return location are always the
same.5 Among the schema attributes in the table, the attribute location is present twice
in the cover, matched by the concepts PickUpDetails and ReturnDetalis, and therefore
the relevant entry of the attribute location in λ̄σ for each of the two concepts is assigned
with the value of 1.

Given a cover v = vs,C between a schema s and a set of concepts C, we define
the presence vector of v, λ̄v = (λv,1, λv,2, ...λv,n), to be the vector summation of its
matchings presence vectors. Therefore,

λ̄v =
∑
σ∈v

λ̄σ . (3)

Using the values in a presence vector, two quality measures can be derived from it. First,
ambiguity was introduced in [4] as a phenomenon where several concepts may give a
different semantic interpretation to an attribute in a schema. We define the ambiguity of
a cover to be the sum of duplicate appearances of an attribute in a cover:

Av (s) =
∑
i

max(0, λv,i − 1) (4)

As another quality measure we offer completeness, checking to what extent schema
attributes are present in a cover:

Cv (s) =

∑
i min(1, λv,i)

|s|
(5)

λv,i = 0 means that attribute ai is not matched by any of the concepts that participate
in v, hence reducing completeness (Cv). λv,i = 1 means that attribute ai is matched
by exactly one pair and λv,i > 1 means that attribute ai is present in more than one
pair in the cover, hence increasing ambiguity (Av). For example, the cover in Table 2
is represented by a presence vector where the relevant entry of the attribute carType is
assigned the value of 1 and the relevant entry of the attribute location is assigned with 2,
reflecting the attribute ambiguity in the cover.

5 This has been the case for many years when bidding for car rentals in priceline.com

To generalize schema matching similarity to a cover we observe that Eq. 1 can be
adopted to reflect the similarity of a subschema-concept pair. Let Mσ (t, c) denote the
similarity measure of a matching σ between a subschema t and a concept c. Then,

Mv (s, C) = f ({Mσ (t, c) | σ ∈ v}) . (6)

For example, for f = sum, the schema matching similarity of a cover v is

Mv (s, C) =
∑
σ∈v

Mσ (t, c) . (7)

In what follows, we shall also use a measure of dissimilarity. Therefore, given a cover v,
dMv (s, C) is defined similarly

dMv (s, C) = f ({dMσ (t, c) | σ ∈ v}) (8)

where dMσ (t, c) is defined to be 1−Mσ (t, c).

4 Problem Definitions

Equipped with the formal definition of a cover, we can devise an array of optimization
problems, all aiming at optimizing some quality aspect of a cover. To illustrate the
various optimization problems, we now provide a simplified example.

Example 1. Let s = {a1, a2, a3} be a schema and Ts = {{a1} , {a1, a2} , {a2, a3}}
be a set of subschemata of s. Also, let C = {c1, c2, c3} be a set of concepts so that
E (Ts, C) = {({a1} , c1) , ({a1, a2} , c2) , ({a2, a3} , c3)} is the set of valid matchings
between Ts and C. The attribute correspondences are illustrated in Figure 2. The similar-
ity values of the elements of E are given as follows:

σ Mσ (t, c) σ Mσ (t, c) σ Mσ (t, c)

({a1} , c1) 0.45 ({a1, a2} , c2) 0.95 ({a2, a3} , c3) 0.45

�

4.1 Singly-Bounded Maximization Cover

The following problem was specified in [4] as the schema covering problem.

Problem 1 (Singly-Bounded Maximization Cover). Given a set of valid matchings
E (Ts, C), the singly-bounded maximization cover problem (SBMC) is defined to be:

max
v⊆E(Ts,C)

Mv s.t. λ̄v ≤ H̄ ,

where H̄ is a vector of integers.

a1

a2

a3

xc
1

xc
2 yc

2

yc
3 zc3

c1

c2

c3

0.45

0.95

0.95
0.45

0.45

Fig. 2: Illustration of a Cover

For example, let H̄ =

1
1
1

. Such a vector ensures no ambiguity (Av (s) = 0) but

does not guarantee completeness (Cv (s) ≤ 1). Two possible covers that satisfy the
presence constraint are {({a1} , c1) , ({a2, a3} , c3)} and {({a1, a2} , c2)}. Using sum
for Mv, as in [4], we get Mv = 0.9 for the first cover and Mv = 0.95 for the second
cover. Therefore, the cover {({a1, a2} , c2)} is the solution to Problem 1.

Problem 1 carries two characteristics we would like to tune. First, note that a solution
to the optimization problem guarantees ambiguity to be within a certain limit but lacks
control over completeness. As a result, there may be attributes in the schema that are
not covered by any concept. This is evident in the example above, where covering
a1 and a2 is preferred over covering all attributes. Our second observation is that
Problem 1 is “greedy” in the sense that concepts may be added although they offer
no true contribution to the cover, simply because the presence “budget” was not fully
spent yet. This feature negatively affects ambiguity uneccessarily, without any added
value to completeness. To demonstrate this phenomenon, we change H̄ to be H̄ =2

2
1

. The cover {({a1} , c1) , ({a1, a2} , c2) , ({a2, a3} , c3)} becomes the solution to

Problem 1 with Mv = 1.85, although both {({a1} , c1) , ({a2, a3} , c3)} (with Mv =
0.9) and {({a1, a2} , c2) , ({a2, a3} , c3)} (with Mv = 1.4) suffice to achieve maximal
completeness.

4.2 Doubly-Bounded Minimization Cover

We are now ready to introduce an alternative cover problem, the doubly-bounded min-
imization cover problem. This problem seeks covers with different properties than
Problem 1. As our empirical analysis shows later, the doubly-bounded minimization
cover problem offers a more attractive alternative in terms of matching effectiveness.

Problem 2 (Doubly-Bounded Minimization Cover). Given a set of valid matchings
E (Ts, C), the doubly-bounded minimization cover problem (DBMC) is defined to be:

min
v⊆E(Ts,C)

dMv s.t. H̄l ≤ λ̄v ≤ H̄u,

where H̄l and H̄u are vectors of integers.

In Problem 2 we set a minimal bound on presence. If H̄l = 0̄ then we are back to the
presence constraint that was set in Problem 1. Setting H̄l = 1̄ ensures full completeness.
Higher values of elements of H̄l generalize the problem. We also note that Problem 2
aims at minimizing dissimilarity. Therefore, any additional concept added to the cover
may either leave its dissimilarity measure unchanged or increase it. This change mitigates
the “greediness” of Problem 1. Concepts are added to maintain the lower presence bound
and the overall presence is also bounded from above as before.

dMv is a representative of a quality measure assigned with a specific cover and H̄l

and H̄u are constraints associated with each attribute in the original schema. As such,
Problem 2 (as well as Problem 1) are instantiations of a general formulation for a cover
problem in which a quality measure of a cover is optimized subject to a set of constraints
on individual attributes.

It is worth noting that problems 1 and 2 both treat λ̄ as a hard constraint while opti-
mizing a measure of similarity (or dissimilarity). Optimizing two quality measures of a
cover, presence and similarity, may be alternatively viewed as a bi-objective optimization
problem. Therefore, one can also envision an ambiguity minimization problem, where
the role of ambiguity and similarity is exchanged. We refrain from providing a formal
presentation of such a problem due to space consideration and defer it to an extended
version of this work. Intuitively, such a cover problem specification allows the designer
to specify the importance she assigns with various attributes, putting more emphasis on
the similarity of attributes that are of greater importance. Therefore, such specification
becomes handy when filtering the concept base.

The need for introducing the generalized cover problem and several of its instanti-
ations goes beyond intellectual curiosity. If there are various ways to use concepts to
cover schemata, can we evaluate whether one way is better than the other? One way
of doing so can evaluate which of the instantiations yields a more effective matching.
Indeed, in Section 6 we answer this question empirically, showing that solutions to the
new formulation offered in this work (Problem 2) outperform solutions to Problem 1 (as
introduced by Saha et al.), reaching higher completeness for the same ambiguity level.

4.3 Complexity Analysis

Having introduced two variations of the generalized cover problem we now turn our
attention to analyzing the complexity of the problem. it was shown in [4] that the Singly-
Bounded Maximization Cover problem is NP-complete. Theorem 4 (which proof is
omitted due to space considerations) asserts the same complexity result for the Doubly-
Bounded Minimization Cover problem.

Theorem 1. The decision of the DBMC problem is NP-complete.

5 ILP Formulation for Cover Problems

We present now an Integer Linear Programming formulation to the DBMC problem.
ILP problems are known to be NP-complete [19], and therefore no polynomial time

algorithm exists (unless P=NP). However, contemporary efficient solvers solve many
instances of ILP within a reasonable time frame. In Section 6 we present an extensive
empirical evaluation using MOSEK solver [20], showing its ability to solve the DBMC
problem efficiently, even for large concept bases. We have also implemented the ILP
formulation for SBMC, the cover problem presented in [4], showing the efficiency (albeit
with lower effectiveness then DBMC) of the solution.

We start by noting that in the DBMC problem, the optimization is performed over
subsets of the set E (Ts, C), and thus we associate a binary variable Xσ with each
σ ∈ E (Ts, C). There is a natural 1 : 1 correspondence between the assignments to
these variables and the subsets of E (Ts, C). Given that, the linear constraints are defined
according to Eq. 3 as follows.

H̄l ≤
∑

σ∈E(Ts,C)

Xσ · λ̄σ ≤ H̄u. (9)

Using Eq. 8, dMv is defined as a linear aggregation function over the elements of v, i.e.

dMv = f({dMσ | σ ∈ v}), (10)

where each dMσ depends only on σ. Then, the (linear) objective function of our ILP can
be defined as in Eq. 10. For example, the summation aggregation function yields

min
∑

σ∈E(Ts,C)

dMσ ·Xσ. (11)

6 Empirical Evaluation

In this section we describe and discuss our empirical evaluation of the cover problem. We
first detail the datasets and the experiment setup (Section 6.1) followed by a description
and analysis of experiment results.

6.1 Datasets and Experiment Setup

Datasets We used two types of datasets, namely real-world and synthetic. Features of
both datasets are summarized in Table 3.

The OntoBuilder dataset consists of 27 Web forms from two domains, car reserva-
tions and aviation. We extracted a schema from each Web form using OntoBuilder.6 The
schemata vary in size, from 21 to 88 attributes. The Vendor and Business Partner datasets
consists of 3 schemata each, containing information about the vendor and business
partner business objects, derived from three different SAP systems. The IBM dataset
describes the features of the dataset that was used in [4]. We were unable to experiment
with this dataset but we have experimented with datasets (both real-world and synthetic)
with similar features. It is worth noting that we have reimplemented the algorithm of

6 All ontologies and exact matchings are available for download from the OntoBuilder Web site,
http://ie.technion.ac.il/OntoBuilder.

Dataset # of schemata # of domains schema size (# of attributes) Relevant concept sets

OntoBuilder 27 2 21-88 WF
Vendor 3 1 304 UBL, NativeVendor
Business Partners 3 1 ˜100 UBL, NativeBP
IBM 5 1 144-456 IBM
Synthetic 700-1000 Synthetic

Concept set # of concepts # of domains concept size (# of attributes) Relevant datasets

WF 15 2 3-12 OntoBuilder
NativeVendor 10-12 1 10 Vendor, Business Partner
UBL 62 1 500-700 Vendor, Business Partner
IBM 292 4 ˜15 IBM
Synthetic 350-8000 25-40 Synthetic
NativeBP 10 1 3-10 Vendor, Business Partner

Table 3: Data and Concept Sets

[4] using our general ILP formulation and experimented with it, comparing it to our
proposed algorithm.

The Web form (WF) concept set is constructed by human effort for each domain.
The NativeVendor concept set is constructed by performing schema decomposition to
each of the three schemata in the Vendor dataset. The UBL concept set was formed from
schemata of the Universal Business Language (UBL) version 2.1. UBL is a library of
standard electronic XML business documents such as purchase orders and invoices that
is developed by OASIS.7 The IBM concept set represents the features of the concept set
that was used in [4].

The synthetic dataset is used for run-time evaluation. Therefore, we generate ad-
ditional schemata and concepts using multiple copies of the real-world schemata with
minor variations of schema element names. The number of copies depend on the specific
scale that is required per experiment.
Experimental Setup We implemented an experimental environment to test the different
solutions. In each experiment a single schema (from the pool of real-world or synthetic
datasets) is introduced to a concept repository. We vary the size and type of concepts in
the concept repository. The decomposition phase is performed using concepts from a
relevant domain and the number of subschemata also vary among experiments. Jointly,
the number of concepts and the number of subschemata determine a range for the number
of pairs in each experiment.

We have varied the low and high presence constraints. For the high presence con-
straint we use a k-reduction value that ranges from 0 to 4. A k-reduction value of 0 sets
the high presence constraint for each attribute to be the number of concepts that are
matched with this attribute. Higher k-reduction values put an increasing constraint on
the allowed presence. Table 4 provides the six control parameters, for each stating the
range of values we use in our experiments and a baseline value (whenever there is one),
kept fixed unless otherwise described.
We report on the following metrics:

– Ambiguity: For a cover v we measure Av(s) normalized by schema size, for better
comparison among schemata.

7 http://www.oasis-open.org/committees/ubl/

Parameter Parameter Name Range Baseline

|C| # of concepts 4-3000
|T | # of subschemata 2-500
|a| # of attributes in a subschema 2-100
|ac| # of attributes in a concept 2-100
Hl low ambiguity constraint 0-2 1
k reduction of high ambiguity constraint 0-4 0

Table 4: Controlled Parameters

– Completeness: For a cover v we measure Cv(s).
– Runtime: the execution time of each algorithm.

The experiments were conducted on a Intel(R) Core(TM)2 Quad CPU Q8200 @
2.33GHz. The algorithms were implemented in Java, using JDK version 1.6.0. The JVM
was initiated with a heap-memory size of 8.00GB.

For decomposition, we use Auto-Mapping Core (AMC), a tool developed by SAP
Research that provides an infrastructure and a set of algorithms to establish correspon-
dences between two business schemata. The algorithms are designed to explore various
features and dependencies that exist in business schemata. Based on the extracted features
the algorithm may suggest correspondences between nodes in two different schemata.
Different algorithms may suggest different correspondences and the overall result is
integrated based on quality measures as reported by the various algorithms.

6.2 Ambiguity-Completeness Tradeoff

In the first set of experiments we solve the DBMC problem starting with H̄l = 1̄ and
then relaxing completeness by assigning a 0 value to some elements of the H̄l vector.

Figure 3 provides the tradeoff between the two parameters for one schema pair. Other
pairs show similar behavior. As expected, there is a tradeoff between ambiguity and
completeness, where an increased completeness is necessarily accompanied with an
increased ambiguity. Specifying both H̄l and H̄u allows a designer the flexibility to
choose where on the curve to seek a solution.

In the next set of experiments we have taken real-world schemata of varying sizes
(ranging from 30 to 40 attributes), and tested the impact of various presence constraints.
As a baseline, we have applied a k = 0 reduction of presence, allowing maximum
ambiguity per attribute and setting H̄u accordingly. Even at this level some attributes
may not find a correspondence, due to a threshold constraint that is applied by AMC, in
which case their lower bound is set to 0. Then, we started reducing the values of H̄u by
increasing k and checking for completeness.

Table 5 illustrates the impact of the presence constraint on SBMC and DBMC and the
tradeoff between ambiguity and completeness. Each table’s row represents the average
of completeness for schemata of a different size. Each column represents the k-reduction
in ambiguity for SBMC and DBMC. Each entry is the average completeness of schemata
of a given size with a different k-reduction value and one of SBMC and DBMC.

Fig. 3: Ambiguity vs. Completeness

k-reduce → 0 1 2 3 4
↓ Schema size SBMC DBMC SBMC DBMC SBMC DBMC SBMC DBMC SBMC DBMC

30 0.63 0.63 0.6 0.57 0.57 0.57
31 0.58 0.58 0.48 0.48 0.48 0.48
32 0.72 0.72 0.72 0.72 0.69 0.69 0.63
33 0.61 0.61 0.55 0.52 0.52 0.52
34 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
35 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
36 0.36 0.36 0.25 0.36 0.28 0.36 0.28 0.36 0.28 0.36
37 0.76 0.76 0.68 0.49 0.49 0.46
38 0.53 0.53 0.37 0.37 0.32 0.29
39 0.51 0.51 0.41 0.41 0.41 0.36
40 0.7 0.7 0.68 0.7 0.58 0.7 0.58 0.7 0.53

Table 5: Impact of Presence Constraint

For DBMC, completeness remains fixed, since H̄l does not change with increased k.
Therefore, whenever the upper limit of presence does not allow certain attributes to be
mapped, DBMC returns no solution, marked with a blank cell in the table.

We observe that whenever a full-cover solution (baseline completeness) is possible,
DBMC by definition covers all possible attributes while SBMC does not necessarily do
so. For example, for a schema of size 40, completeness reduces with an increased k in
solutions for SBMC, while up to k = 3, a solution that cover all possible attributes is
still found with DBMC.

An interesting anomaly can be seen for a schema of size 36. Here, when k increases
from 1 to 2, meaning that a tighter presence constraint is applied, the completeness
for SBMC actually increases (from 9 to 10). This may indicate some instability in the
performance of SBMC.

6.3 Runtime

Figure 4a demonstrates the increase of runtime with schema size, using both real-world
and synthetic datasets. As expected, the runtime of the ILP-based solutions demonstrate
an exponential runtime trend,8 yet even for large schemata (of size up to 1,000 attributes)
cover is performed in less than 200ms.

8 Trendlines were generated using MS-Excel

(a) A function of schema size (b) A function of concept base size

(c) A function of number of concepts in a cover

Fig. 4: Runtime analysis

Figures 4b illustrates the impact of concept base size on runtime. Runtime increases
with concept base size, albeit with a quadratic runtime trend, handling concept bases of
8,000 concepts in a few seconds.

Figure 4c illustrates the impact of the number of concepts in a cover on the execu-
tion time. The correlations is less conclusive, with low R2 values. DBMC exhibits an
exponential correlation. SBMC finds covers with more concepts than DBMC due to its
greedy approach, while maintaining a lower execution time.

6.4 Discussion

Our empirical analysis covers tradeoff and run-time analysis of cover solutions. When
it comes to run-time analysis we show that while the general cover problem and its
two instantiations are NP-Complete, encoding cover problems using ILP generates an
efficient solution that can handle large schemata and big concept bases. Using pres-
ence constraints with DBMC, when given in moderation, help in identifying better
interpretation with higher completeness.

7 Related Work

A definition of a schema cover was first introduced by Saha et al. [4]. In this work we
extend the cover definition to a general linear constraint optimization, and offer a new
algorithm to solve cover problems. We show that the ILP formulation of the problem is

efficient even for large schemas and large concept repositories. We also show that the
proposed cover algorithm outperforms the one proposed in [4], in its ability to provide
higher completeness for a given level of ambiguity.

Our work on schema covering builds on schema matching techniques. We provide
next a brief overview of major achievements in schema matching modeling, although
it is not the focus of this work. The body of research on the topic of schema matching
is vast and we do not attempt to cover all of it here. Schema matching research has
been going on for more than 25 years now (see surveys [1, 21–23], books [24, 10], and
online lists, e.g., OntologyMatching9 and Ziegler10) first as part of schema integration
and then as a standalone research. Due to its cognitive complexity, schema matching has
been traditionally considered to be AI-complete, performed by human experts [25, 26].
Semi-automatic schema matching has been justified in the literature using arguments of
scalability (especially for matching large schemata [27], where schema covering can be
specifically useful) and by the need to speed-up the matching process. Fully-automatic
(that is, unsupervised) schema matching was suggested in settings where a human expert
is absent from the decision process, e.g., machine-understandable Web resources [28].

Over the years, a significant body of work was devoted to the identification of schema
matchers, heuristics for schema matching. Examples include COMA [9], Cupid [13],
OntoBuilder [14], Autoplex [15], Similarity Flooding [29], Clio [30], Glue [31], to name
just a few. The main objective of schema matchers is to provide schema matchings that
will be effective from the user point of view, yet computationally efficient (or at least not
disastrously expensive). Such research has evolved in different research communities,
including databases, information retrieval, information sciences, data semantics and the
semantic Web, and others.

8 Conclusions

We have presented a general framework for schema cover. In this formulation, a cover
problem aims at optimizing a quality measure subject to a set of constraints on individ-
ual attributes. We focus on minimizing a dissimilarity measure subject to bounds on
ambiguity and also show that this general framework extends previous works in which
similarity was maximized subject to an upper bound on ambiguity.

The empirical analysis shows the effectiveness of the proposed cover formulation
(DBMC) over previous proposal (SBMC) in terms of completeness for a given ambiguity.
It also shows the efficiency of ILP encoding of cover problems, by running experiments
on schemata with up to 1,000 attributes and a concept repository with up to 8,000
concepts.

As part of an ongoing work, due to the complexity of the ILP solution we also created
a heuristic framework that follows a simple scheme: we first order the set E (Ts, C) using
a simple scoring function and then process this ordered list, one by one. At each step,
we maintain a set of candidate subschema-concept pairs: if at least one attribute of the
actual pair brings us closer to satisfying the lower bound and the pair also satisfies the
upper bound, we add this element to the set of candidates. We also maintain temporary

9 http://www.ontologymatching.org/
10 http://www.ifi.unizh.ch/˜pziegler/IntegrationProjects.html

presence values for the remaining problem that we update each time we add a new pair
to the candidate set. We continue with this process until either we find a valid cover or
we processed the entire list. We intend to report on this framework and on our empirical
evaluation with it in an extended version of this work.

We believe that cover formulation is an essential component in the toolkit of data
integration. It is implemented as part of the NisB platform,11 serving as a discovery as
well as a matching tool. In terms of future work, we intend to investigate formulations
of cover problems that aim at minimizing ambiguity subject to individual constrains
on dissimilarity. Improving the quality of concept bases is also part of the future work
agenda, possibly through techniques of clustering and natural evolution.

Acknowledgement

This research has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number 256955. This research is
partially supported by JAPAN TECHNION SOCIETY RESEARCH FUND.

References

1. C. Batini, M. Lenzerini, and S. Navathe, “A comparative analysis of methodologies for
database schema integration,” ACM Computing Surveys, vol. 18, no. 4, pp. 323–364, Dec.
1986.

2. M. Lenzerini, “Data integration: A theoretical perspective.” in Proc. 21st ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, 2002, pp. 233–246.

3. P. Bernstein and S. Melnik, “Meta data management,” in Proc. 20th Int. Conf. on Data
Engineering, 2004, tutorial Presentation.

4. B. Saha, I. Stanoi, and K. Clarkson, “Schema covering: a step towards enabling reuse in
information integration,” in Proc. 26th Int. Conf. on Data Engineering, 2010, pp. 285–296.

5. S. Melnik, Generic Model Management: Concepts and Algorithms. Springer-Verlag, 2004.
6. M. Lee, L. Yang, W. Hsu, and X. Yang, “XCLUST: Clustering XML schemas for effective

integration,” in Proceedings of the International Conference on Information and Knowledge
Management (CIKM). McLean, Virginia: ACM Press, 2002, pp. 292–299.

7. K. Smith, M. Morse, P. Mork, M. Li, A. Rosenthal, D. Allen, and L. Seligman, “The role
of schema matching in large enterprises,” in CIDR 2009, Fourth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, Jan. 2009.

8. Y. An, A. Borgida, R. Miller, and J. Mylopoulos, “A semantic approach to discovering schema
mapping expressions,” in Proceedings of the IEEE CS International Conference on Data
Engineering, 2007, pp. 206–215.

9. H. Do and E. Rahm, “COMA - a system for flexible combination of schema matching
approaches,” in Proc. 28th Int. Conf. on Very Large Data Bases, 2002, pp. 610–621.

10. A. Gal, Uncertain Schema Matching, ser. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2011.

11. B. He and K. C.-C. Chang, “Statistical schema matching across Web query interfaces,” in
Proc. ACM SIGMOD Int. Conf. on Management of Data. San Diego, California, United
States: ACM Press, 2003, pp. 217–228.

11 http://www.nisb-project.eu/

12. W. Su, J. Wang, and F. Lochovsky, “A holistic schema matching for Web query interfaces,” in
Advances in Database Technology, Proc. 10th Int. Conf. on Extending Database Technology,
2006, pp. 77–94.

13. J. Madhavan, P. Bernstein, and E. Rahm, “Generic schema matching with Cupid,” in Proc.
27th Int. Conf. on Very Large Data Bases, Rome, Italy, Sept. 2001, pp. 49–58.

14. A. Gal, G. Modica, H. Jamil, and A. Eyal, “Automatic ontology matching using application
semantics,” AI Magazine, vol. 26, no. 1, pp. 21–32, 2005.

15. J. Berlin and A. Motro, “Autoplex: Automated discovery of content for virtual databases,” in
Proc. Int. Conf. on Cooperative Information Systems, ser. Lecture Notes in Computer Science,
C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, Eds., vol. 2172. Springer, 2001, pp.
108–122.

16. A. Doan, P. Domingos, and A. Halevy, “Reconciling schemas of disparate data sources: A
machine-learning approach,” in Proc. ACM SIGMOD Int. Conf. on Management of Data,
W. G. Aref, Ed. Santa Barbara, California: ACM Press, May 2001, pp. 509–520.

17. J. Madhavan, P. Bernstein, A. Doan, and A. Halevy, “Corpus-based schema matching,” in
Proc. 21st Int. Conf. on Data Engineering. Los Alamitos, CA, USA: IEEE Computer Society,
2005, pp. 57–68.

18. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal, “eTuner: tuning schema matching software
using synthetic scenarios.” VLDB J., vol. 16, no. 1, pp. 97–122, 2007.

19. R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer Compu-
tations, R. Miller and J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

20. MOSEK, “The MOSEK Optimization Tools Version 6.0 (revision 61),” [Online], 2009,
http://www.mosek.com.

21. A. Sheth and J. Larson, “Federated database systems for managing distributed, heterogeneous,
and autonomous databases,” ACM Comput. Surv., vol. 22, no. 3, pp. 183–236, 1990.

22. E. Rahm and P. Bernstein, “A survey of approaches to automatic schema matching,” VLDB J.,
vol. 10, no. 4, pp. 334–350, 2001.

23. P. Shvaiko and J. Euzenat, “A survey of schema-based matching approaches,” Journal of Data
Semantics, vol. 4, pp. 146 – 171, Dec. 2005.

24. Z. Bellahsene, A. Bonifati, and E. Rahm, Eds., Schema Matching and Mapping. Springer,
2011.

25. B. Convent, “Unsolvable problems related to the view integration approach,” in Proceedings
of the International Conference on Database Theory (ICDT), Rome, Italy, Sept. 1986, in
Computer Science, Vol. 243, G. Goos and J. Hartmanis, Eds. Springer-Verlag, New York, pp.
141-156.

26. R. Hull, “Managing semantic heterogeneity in databases: A theoretical perspective,” in
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS). ACM Press, 1997, pp. 51–61.

27. B. He and K.-C. Chang, “Making holistic schema matching robust: an ensemble approach.”
in Proc. 11th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 2005, pp.
429–438.

28. B. Srivastava and J. Koehler, “Web service composition - Current solutions and open problems,”
in Workshop on Planning for Web Services (ICAPS-03), Trento, Italy, 2003.

29. S. Melnik, E. Rahm, and P. Bernstein, “Rondo: A programming platform for generic model
management,” in Proc. ACM SIGMOD Int. Conf. on Management of Data. San Diego,
California: ACM Press, 2003, pp. 193–204.

30. R. Miller, M. Hernàndez, L. Haas, L.-L. Yan, C. Ho, R. Fagin, and L. Popa, “The Clio project:
Managing heterogeneity,” SIGMOD Record, vol. 30, no. 1, pp. 78–83, 2001.

31. A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Learning to map between ontologies on
the semantic web,” in Proc. 11th Int. World Wide Web Conf. ACM Press, 2002, pp. 662–673.

