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Abstract. In geospatial applications with heterogeneous classification
schemes that describe related domains, an ontology-driven approach to
data sharing and interoperability relies on the alignment of concepts
across different ontologies. To enable scalability both in the size and
the number of the ontologies involved, the alignment method should
be automatic. In this paper, we propose two fully automatic alignment
methods that use the structure of the ontology graphs for contextual
information, thus providing the matching process with more semantics.
We have tested our methods on a set of geospatial ontologies pertaining
to the domain of wetlands and on four sets that belong to an ontology
repository that is becoming the standard for testing ontology alignment
techniques. We have compared the effectiveness and efficiency of the
proposed methods against two previous approaches. The effectiveness
results that we have obtained with at least one of the new methods are
as good or better than the results obtained with the previously proposed
methods.

1 Introduction

Geospatial data and metadata are highly dependent on the regions for which
they have been defined. Such heterogeneity can, for example, be caused by the
autonomic and often uncoordinated development of classification schemes by di-
verse local government organizations or even by different countries. Other causes
include the adaptation of those schemes to particular characteristics of the re-
gions that they describe. Therefore, geospatial data sharing and interoperability
will require the matching of metadata concepts across a variety of classification
schemes.

In our work, classification schemes are represented by ontologies and the
matching of concepts is achieved by aligning those ontologies. Ontology align-
ment encompasses a wide variety of techniques, which include the matching of
single concepts [1, 2, 17], the matching of several concepts at a time taking into
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account the structure of the ontologies [14, 16, 18], or even the data associated
with the ontological concepts [10, 12, 13]. In this paper, we concentrate on the
structure of the ontologies that we want to align.

Two types of architecture can be considered: a centralized architecture and
a peer-to-peer architecture. In the former case, each of the ontologies associated
with the heterogeneous data sources is mapped to the global ontology. In the
latter case, mappings are established between pairs of ontologies, as needed. In
both cases, the ontology from which the mapping is defined is called the source
and the other ontology is called the target. Once a pair of ontologies is mapped,
queries posed in terms of one of the ontologies can be automatically translated to
the other ontology. A full discussion of these architectures and associated query
mechanisms has been discussed elsewhere [5, 8].

As ontologies grow in size or the number of ontologies grows, their alignment
should ideally be automatic or require minimum user intervention. Much at-
tention has been recently placed on the automatic alignment of ontologies. For
example, the Ontology Alignment Evaluation Initiative (OAEI) [19] promotes
the comparison of automatic alignment methods by publishing every year sets
of ontologies so as to compare the effectiveness (in terms of recall and precision)
of the methods proposed by the contestants. Each set contains a source ontology,
a target ontology, and the expected alignment results between them.

In our previous work, we have explored ontology alignment for geospatial
applications [4–6], leading to a multi-layered approach, consisting currently of
four layers [7]. Two of these layers use automatic methods, one uses a semi-
automatic method, and the other one uses only a manual method. The overall
process is supervised by a domain expert.

In the first layer, an automatic mapping by definition process is undertaken
that compares each concept in the first ontology to each concept in the second
ontology according to their definition, as provided by a dictionary. A similarity
measure from 0% (no match) to 100% (exact match) between the concepts being
compared is returned. If a dictionary is not consulted, the procedure will be
performed by comparing only the concept names and any associated descriptions
or properties of the concepts.

In this paper, we propose an enhancement to our first layer of mapping by
introducing two (fully) automatic structure-based methods: the Descendants’
Similarity Inheritance (DSI) method, which uses the relationships between an-
cestor concepts, and the Sibling’s Similarity Contribution (SSC) method, which
uses the relationships between sibling concepts.

Our chosen application domain of wetlands demonstrates the importance
of ontology alignment in the geospatial domain. Organizations monitoring the
wetlands data inventory have an interest in sharing data. The lack of standard
classification has long been identified as an obstacle to the development, im-
plementation, and monitoring of wetland conservation strategies both at the
national and regional levels [9]. In defining wetlands, the United States adopts
the “Cowardin” Wetland Classification System [3]. In contrast, European na-
tions use the International Ramsar Convention Definition (www.ramsar.org) and
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South Africa uses the National Wetland Classification Inventory [9]. Most clas-
sifications recognize the need for regionalization because of the variations in
climate, geology, soils, and vegetation. Regionalization is designed to facilitate
three activities: (i) planning, where it is necessary to study management prob-
lems and potential solutions on a regional basis, (ii) organization and retrieval
of data gathered in a resource inventory, and (iii) interpretation of inventory
data, including differences in indicator plants and animals among the regions.
It can thus be concluded that it is extremely difficult to have a standardized
classification system between nations and also between regions of a country with
a large geographic area [3].

We implemented our proposed methods and tested them against our previous
technique [7], which provides us with a “base case”. In addition, we tested our
methods against the implementation of a structure-based algorithm, the Simi-
larity Flooding algorithm by Melnik et al. [14]. Our experiments involve aligning
five pairs of ontologies. In particular, we have covered in detail the alignment
of ontologies describing the classification schemes of wetlands, so as to illustrate
the main principles that underly our structure-based methods. Our experiments
show that at least one of our structure-based methods is as effective or better
than both our base case method and the Similarity Flooding algorithm.

The rest of this paper is organized as follows. In Section 2, we give an overview
of related work in the area. We present a brief description of our multi-layered
approach to ontology alignment and an overview of our alignment tool in Sec-
tion 3. In Section 4, we present our automatic structure-based methods that
support the first layer of mapping in our multi-layered approach along with the
experimental results of applying these methods on five ontology sets. Finally, in
Section 5, we draw conclusions and outline future work.

2 Related Work

In their survey paper, Shvaiko and Euzenat [19] provide a comparative review
of recent schema and ontology matching techniques in the context of a new
classification system they propose, where the techniques are classified as element
level or structure level. In the element level category, the techniques can be based
on strings, language, linguistic considerations, constraints, or alignment reuse. In
the structure level category, the techniques are further classified as graph-based,
taxonomy-based, or model-based. In order to derive mappings between concepts
during the alignment process, the element level techniques consider the labels of
concepts, their definitions, the language they are expressed in, and any possibility
to reuse previous mappings to derive new ones. The structure level techniques
consider the location of the concept in the ontology structure (e.g., tree, graph)
and how the mappings of concepts can contribute to the mappings of adjacent
concepts. According to their classification system, our alignment techniques fall
into their element level category because of our definition mapping layer (base
technique), and structure level category because of our mapping by context
layer [7] and of the new methods proposed in this paper.
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OLA is an alignment tool, whose main purpose is to align ontologies expressed
in OWL [11]. OLA offers parsing and visualization of OWL-Lite and OWL-DL
ontologies. In addition it offers similarity computations between concepts of the
ontologies being aligned. OLA employs linguistic element level and structure level
techniques and supports both manual mappings and automated mappings. The
available knowledge about the concepts in the aligned ontologies is taken into
consideration prior to the alignment process by allowing appropriate alignment
methods to be chosen. OLA tries to achieve the highest level of automation,
by letting users provide a minimal set of parameters at the initial steps of the
alignment process and then leaving it to the tool to end the alignment. Unlike in
our approach, similarities between concepts do not contribute to the similarities
of their neighbors.

RiMOM (Risk Minimization based Ontology Mapping) is a system that in-
tends to combine different strategies to achieve optimal alignment from a source
ontology to a target ontology [21]. There are two types of defined strategies
in the system: linguistic-based techniques (includes edit-distance and statistical-
learning), and structure-based techniques (includes similarity-propagation,
property-to-property propagation, and concept-to-property propagation). Ri-
MOM first examines the structural similarity of the ontologies and the label
similarity of the concepts in the ontologies to determine which strategies to use
in the alignment process. For example, if there is high similarity in the labels, Ri-
MOM will rely more on linguistic-based strategies to find the matchings between
concepts. RiMOM then applies the selected alignment strategies; each strategy
outputs its own independent results and the results are then combined using a
linear-interpolation method. Finally, RiMOM applies a refinement procedure to
prune alignments that are not considered good. Compared to our approach, we
are also using multiple matching techniques and allowing for the determination
of which techniques will play a more important role for each matching. However,
we offer structure level matching, whereas RiMOM does not.

Silva et al. discuss the situation when different mapping agents establish
different semantic bridges between the concepts in the source and target on-
tologies [20]. Due to the inherent and subjective nature of ontologies, different
agents establish different semantic bridges for the same set of ontologies. This
may cause conflicts. To address this issue, they propose an approach to ontology
mapping negotiation where various agents are able to achieve consensus among
them. In our approach, multiple alignment layers are supported, such that each
layer proposes a set of mappings between the source ontology and the target
ontology. In our case, a consolidation mapping layer is applied where it is up to
a mapping expert to specify the priority scheme across the different layers.

Melnik et al. propose a simple structural model-based level technique, the
Similarity Flooding algorithm, that can be used in matching a variety of data
structures (referred to as models) [14]. Models can be data schemas, data in-
stances, or a mixture of both. In their approach, models are converted to directed
labeled graphs. For their algorithm to work, they rely on the fact that concepts
from the two graphs are similar when their adjacent concepts on the graphs are
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similar. The algorithm starts by obtaining initial mappings between concepts
in the two input graphs using a string matching function that returns initial
similarities between matched concepts. Having established the initial mappings,
the algorithm proceeds iteratively to establish more mappings between other
concepts based on the assumption that whenever any two concepts in the in-
put models match with some similarity measure, the similarity of their adjacent
concepts increases. The iterations continue “flooding” the similarities across the
concepts in the graphs until a fixed point is reached where similarity measures for
all concepts have been stabilized. Of the matching techniques that we surveyed,
this one is the closest to our vision of what a structure level approach should
be, hence we have implemented their algorithm so as to compare its results with
those of the methods that we propose in this paper.

3 The AgreementMaker Framework

We have been working on a framework that supports the alignment of two ontolo-
gies. In our framework, we introduce an alignment approach that uses different
matching techniques between the concepts of the aligned ontologies. Each match-
ing technique is embedded in a mapping layer [7]. As mentioned in Section 1,
we have currently four layers in our framework with the possibility of adding
more mapping layers in the future. The motivation behind our framework is to
allow for the addition of as many mapping layers as possible in order to capture
a wide range of relationships between concepts.

Our mapping layers use element-based alignment techniques (first layer) and
structure-based alignment techniques (first and third layers). In addition, domain
experts can use their knowledge and contribute to the alignment process (second
and third layers).

We have developed a tool, the AgreementMaker, which implements our ap-
proach. The user interface of our tool displays the two ontologies side by side
as shown in Figure 1. After loading the ontologies, the domain expert can start
the alignment process by mapping corresponding concepts manually or invoking
procedures that map them automatically (or semi-automatically). The mapping
information is displayed in the form of annotated lines connecting the matched
nodes. Many choices were considered in the process of displaying the ontologies
and their relationships [7].

4 Automatic Similarity Methods

In order to achieve a high level of confidence in performing the automatic align-
ment of two ontologies, a thorough understanding of the concepts in the on-
tologies is highly desired. To this end, we propose methods that investigate the
ontology concepts prior to making a decision on how they should be mapped.
We consider both the labels and the definitions of the ontology concepts and the
relative positions of the concepts in the ontology tree. Our alignment method
enables the user to select one of the following three matching methods: (1)
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Fig. 1. Results of running three of the mapping layers.

applying the base similarity calculations only, (2) applying the base similarity
calculations followed by the Descendant’s Similarity Inheritance (DSI) method,
or (3) applying the base similarity calculations followed by the Sibling’s Similar-
ity Contribution (SSC) method. Both the DSI and the SSC methods have been
introduced to enhance the alignment results that were obtained from using the
base similarity method previously proposed [7]. We apply one of these methods
in our first mapping layer.

4.1 Base similarity calculations

The very first step in our approach is to establish initial mappings between the
concepts of the source ontology and the concepts of the target ontology. These
initial mappings will be a starting point for both the DSI and SSC methods.
We try to find matching concepts in the target ontology for each concept in the
source ontology. This is achieved by defining a similarity function that takes a
concept in the source ontology and a concept in the target ontology and returns
a similarity measure between them. If the similarity measure is equal or above
a certain threshold decided by the domain expert, then the two concepts match
each other. In order to find the base similarity measure between two concepts,
we utilize the concepts’ labels and definitions as provided by a dictionary [7].
In what follows, we present the details of finding the base similarity between a
concept in the source ontology and a concept in the local ontology:
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– Let S be the source ontology and T be the target ontology.
– Let C be a concept in S and C ′ be a concept in T.
– We use function base sim(C, C ′) that yields a similarity measure M, such

that 0 ≤ M ≤ 1.
– Parameter TH is a threshold value such that C ′ is matched with C when

base sim(C, C ′) ≥ TH.
– For every concept C in S, we define the mapping set of C, denoted MS(C), as

the set of concepts C ′ in T that are matched with C (i.e., base sim(C,C ′) ≥
TH).

Establishing base similarities between concepts of the source ontology and
concepts of the target ontology may not be sufficient to achieve a high degree
of precision in relating concepts in the two ontologies. To exemplify this point,
we give an example in the domain of wetland classification. The first ontology
describes the “Cowardin” wetland classification system and the second ontology
describes the South African wetland classification system. Figure 2 shows part
of the “Cowardin” classification on the left, which is the source ontology, and
part of the South African classification on the right, which is the target ontology.
When calculating the base similarities between concepts of the two ontologies,
the concept Reef that belongs to the Intertidal wetland subsystem in the source
ontology, will yield a base similarity measure of 100% with the concept Reef that
belongs to the Intertidal wetland subsystem in the target ontology. Furthermore,
it will also yield a base similarity measure of 100% with the concept Reef that
belongs to the Subtidal wetland subsystem in the target ontology. This example
shows that the base similarity measure is misleading because it does not correctly
express the true meaning of the relationship between the two concepts, which
should not be related because they belong to different wetland subsystems.

In order to eliminate such situations, we propose the Descendant’s Similarity
Inheritance (DSI) method, which reconfigures the base similarity between the
concepts based on the similarity of their parent concepts.

4.2 Descendant’s Similarity Inheritance (DSI) method

We define the DSI reconfigured similarity between a concept C in S and a
concept C ′ in T as DSI sim(C, C ′). In what follows, we present the details on
how to determine DSI sim(C, C ′):

– Let path len root(C) be the number of edges between the concept C in S and
the root of the ontology tree S. For example, in Figure 3, path len root(C) =
2. Similarly, we define path len root(C ′) with respect to T . For example, in
Figure 3, path len root(C ′) = 2.

– Let parenti(C) be the ith concept from the concept C to the root of the source
ontology S, where 0 ≤ i ≤ path len root(C). Similarly define parenti(C ′) with
respect to T . For example, in Figure 3, parent1(C) = B and parent1(C ′) =
B′.
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Fig. 2. An example of a case where misleading mappings may occur when two concepts
have the same label.

– Define MCP as the main contribution percentage, which is the fraction of
the similarity measure between C and C ′ that will be used in determining
the overall DSI sim(C,C’).

– We compute DSI sim(C, C ′) as follows:

MCP·base sim(C, C ′)+
2(1−MCP)

n(n + 1)

n∑

i=1

(n+1−i)base sim(parenti(C), parenti(C
′)))

where n = min(path len root(C), path len root(C ′))

The main characteristic of the DSI method is that it allows for the parent
and in general for any ancestor of a concept to play a role in the identification
of the concept. Intuitively, the parent of a concept should contribute more to
the identity of the concept than its grandparent. This is achieved by setting a
relatively high value to MCP. The grandparent concept contributes more than
the great grandparent, and so on, until the root is reached. This can be demon-
strated by considering the example in Figure 3. In the figure, we show how the
DSI similarity is determined between the concept C in the source ontology S
(shown left) and the concept C ′ in the target ontology T (shown right) when
applying the DSI method using an MCP value of 75%. The DSI similarity is
determined by adding 75% of the base similarity between C and C ′ to 17% of
the base similarity of their immediate parents (B and B′) and finally to 8% of
the base similarity of their grandparents (A and A′). Experiments have shown
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Fig. 3. Applying the DSI method to calculate the similarity between C and C′

.

that 75% for the value of the MCP factor works well (in fact, any values in that
neighborhood performed similarly). The following example illustrates just one
such case.

Considering the case of Figure 2, the base similarity between the concepts
Intertidal in the source ontology and the concept Subtidal in the target ontology
is 37%. The base similarity between the concepts Marine in the source ontology
and the concept Marine in the target ontology is 100%. When applying the
DSI method with an MCP value of 75%, the DSI similarity between the concept
Reef that belongs to the Intertidal wetland subsystem in the source ontology and
the concept Reef that belongs to the Subtidal wetland subsystem in the target
ontology will be 88%. Applying the DSI method again between the concept Reef
that belongs to the Intertidal wetland subsystem in the source ontology and
the concept Reef that belongs to the Intertidal wetland subsystem in the target
ontology will yield a similarity of 100%. Therefore, we conclude that the last
match is the best one (in fact the optimal one). This is just one example that
shows how the DSI method can be useful in determining more accurate similarity
measures between concepts.

4.3 Sibling’s Similarity Contribution (SSC) method

In this method, siblings of a concept contribute to the identification of the con-
cept. This may further enhance the quality of the automatic alignment process.
Similarly to the DSI method, the SSC method reconfigures the base similarities
between concepts. We define the SSC similarity between a concept C in S and
a concept C ′ in T as SSC sim(C,C ′). In what follows, we present the details on
how to determine this similarity.

– Let sibling count(C) be the number of sibling concepts of concept C in S.
For example, in Figure 4, sibling count(C) = 2.

– Let sibling count(C ′) be the number of sibling concepts of concept C ′ in T .
For example, in Figure 4, sibling count(C ′) = 3.
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– Let SS(C) be the set of all the concepts that are siblings of C in S and
SS(C ′) be the set of all the concepts that are siblings of C ′ in T .

– Let Si be the ith sibling of concept C where Si ∈ SS(C), and 1 ≤ i ≤
sibling count(C).

– Let S′j be the jth sibling of concept C ′ where Sj ∈ SS(C ′), and 1 ≤ j ≤
sibling count(C ′).

– Define MCP as the main contribution percentage, which is the fraction of
the similarity measure between C and C ′ that will be used in determining
the overall SSC sim(C,C ′).

– If both SS(C) and SS(C ′) are not empty, we define SSC sim(C,C ′) as follows:

MCP·base sim(C, C ′)+
1−MCP

n

n∑

i=1

max(base sim(Si, S
′
1), . . . , base sim(Si, S

′
m))

where n = sibling count(C) and m = sibling count(C ′).

Fig. 4. Applying the SSC method to calculate the similarity between C and C′.

The main characteristic of the SSC method is that it allows for the siblings
of a given concept to play a role in the identification process of the concept. In
Figure 4 we show how the SSC similarity is determined between the concept C
in the source ontology S (shown on the left) and the concept C ′ in the target
ontology T (shown on the right) when applying the SSC method with an MCP
value of 75% . The SSC similarity is determined by adding 75% of the base sim-
ilarity between C and C ′ to (1) 12.5% of the maximum base similarity between
D and D′, D and E′, and D and F ′ and to (2) 12.5% of the maximum base
similarity between E and D′, E and E′, and E and F ′. As for the DSI method,
the value of 75% for the MCP factor was found to work well in practice.
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Table 1. Depth and number of concepts in the ontology sets.

Table 2. Performance results for the base similarity, DSI, SCC, and Similarity Flooding
algorithms in milliseconds.

4.4 Evaluation

To validate our approach from the point of view of efficiency and of effectiveness,
we have aligned the two geospatial wetland ontologies mentioned in Section 4.2
using our own base similarity method, the DSI method, and the SSC method.
We have also used our implementation of the Similarity Flooding algorithm in
the alignment of the set of wetland ontologies. In addition, to further evaluate
our methods, we run experiments on the alignment of four sets of ontologies pro-
vided by the Ontology Alignment Evaluation Initiative (OAEI) [19]. Of these,
the first set contains two ontologies describing classifications of various weapon
types, the second set contains two ontologies describing attributes of people and
pets, the third set contains two ontologies describing classifications of computer
networks and equipments, and, finally, the fourth set contains general informa-
tion about Russia. Each set contains a source ontology, a target ontology, and
the expected alignment results between them. Table 1 displays the depth and
number of concepts in the five ontology sets we consider.

Similarly to the Similarity Flooding algorithm [14], both our DSI and SSC
methods depend on establishing initial similarities between concepts before they
can be executed. However, unlike the Similarity Flooding algorithm, our DSI
and SSC methods do not run in multiple iterations that keep reconfiguring the
similarities between concepts until the similarities become stable.

We conducted experiments to determine the running time of all the four
methods (base similarity, DSI, SSC, and Similarity Flooding) for the previously
mentioned five ontology sets. We have implemented all the methods using Java
and have run them on an 1.6 GHz Intel Centrino Duo with 1GB of RAM, running
Windows XP. The results are shown in Table 2.
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Looking at the performance results of Table 2, the running time for the DSI,
SSC, and Similarity Flooding algorithms include the running time for the base
similarity method because they rely on it to run. Therefore, the base similarity
algorithm takes the least amount of time. Examining the results with the ex-
clusion of the base similarity method, the DSI method has the best run time
performance for four of the test cases, while the Similarity Flooding algorithm
has the best running time performance for one test case only. The SSC method
has the worst performance in three test cases while it performs better than the
Similarity Flooding algorithm in two test cases. As compared to the Similar-
ity Flooding algorithm, the DSI method only runs once to complete, whereas
the Similarity Flooding algorithm will need several iterations to complete. The
SSC method depends on the number of siblings for a given concept, therefore
the larger the number of siblings the worse it performs. In other words, if the
ontology trees are wide, then the performance of SSC will suffer. Similarly, the
running time of the DSI method degrades for deep ontology trees. In our future
work we are planning to examine ways to improve the running time of the DSI
and SSC methods.

To compare the effectiveness of the four methods, we started by aligning the
set of ontologies for the wetlands as described in Section 4.2 and did the same
for the other four sets of ontologies. In the wetlands example, we have captured
the number of discovered relations between the concepts of the source ontology
(“Cowardin”) and the concepts of the target ontology (“South African”) for each
method. Each relationship represents a mapping from a concept C in the source
ontology S to a matching target ontology concept C ′ ∈ MS(C) with the highest
similarity measure. We note that there may be concepts in S that are not mapped
to any concepts in the target ontology (corresponding to an empty mapping set).
After capturing the discovered relations, we count how many of these relations
are valid when compared with the expected alignment results. Having figured
the number of correct relations, we calculate both the precision and the recall
values. The precision is calculated by dividing the number of discovered valid
relations to the total number of discovered relations, the recall is calculated by
dividing the number of discovered valid relations to the total number of valid
relations as provided by the expected alignment results.

In the alignment of the wetland ontologies, the DSI method yielded slightly
higher precision and recall values than the Similarity Flooding algorithm which
in turn yielded higher values than the SSC method. Overall, these three methods
significantly enhanced the precision and recall values obtained by applying the
base similarity method only. Table 3 shows the complete results for this test
case. The following tests pertain to the four sets of ontologies of the OAEI
initiative. In the alignment of the ontologies in the first OAEI set (Weapons),
the DSI method yielded slightly higher precision and recall values than both the
SSC and the Similarity Flooding methods as shown in Table 4.

All four methods yielded the same results for recall and precision in the
alignment of the second OAEI set (People and pets) as shown in Table 5. This is
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Table 3. Applying the base similarity, DSI, SSC, and Similarity Flooding algorithms
to align the geospatial wetland ontologies.

Table 4. Applying the base similarity, DSI, SSC, and Similarity Flooding algorithms
on the ontology set describing weapons.

Table 5. Applying the base similarity, DSI, SSC, and Similarity Flooding algorithms
on the ontology set describing people and pets.

Table 6. Applying the base similarity, DSI, SSC, and Similarity Flooding algorithms
on the ontology set describing computer networks.

an indication that the locality of all the concepts in the ontologies of the second
set are irrelevant in distinguishing their identity.

The SSC method yielded better recall and precision results than the Similar-
ity Flooding algorithm, which in turn yielded better results the the DSI method
when aligning the third OAEI set (Computer networks) as shown in Table 6.
Finally, as shown in Table 7, in the alignment of the fourth OAEI set (Russia),
the DSI method yielded the highest results for precision and recall than either
the SSC method or the Similarity Flooding algorithm.
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Table 7. Applying the base similarity, DSI, SSC, and Similarity Flooding algorithms
on the ontology set about Russia.

The differences found in the recall and precision values for a given method
when applied across different test cases are mainly due to the characteristics of
the ontologies. For example, in the first OAEI set (Weapons) and the second
OAEI set (People and pets), the relations between the concepts, their parents,
and their siblings do not contribute to refining the base similarity results. How-
ever, the relationships between the concepts and their siblings added value in
refining the base similarity results when aligning the third OAEI set (Computer
networks). The relationships between the concepts and their parents added value
in refining the results when aligning the fourth OAEI set (Russia). Therefore,
the selection of an appropriate matching method should be done after a prelim-
inary examination of the concepts in the ontologies and how they relate to each
other. Mochol et al. [15] present a methodology on how to select an appropriate
matching method for a specific alignment case by having a domain expert fill a
questionnaire about the nature of the ontologies to be aligned.

5 Conclusions

The subject of automatic ontology alignment has been receiving a lot of atten-
tion recently. In this paper, we have proposed two methods that will enhance
our multi-layer approach to ontology alignment, which is supported by a visual
interface. Our methods use the structure of the ontology graph for contextual
information thus providing the matching process with more semantics.

The two methods that we propose, the Descendants’ Similarity Inheritance
(DSI) method and the Sibling’s Similarity Contribution (SSC) method use re-
spectively the information associated with the descendants and with the siblings
of each concept. Our main test case is provided by a geospatial domain applica-
tion for wetlands. Other ontologies were also tested in the spirit of the Ontology
Alignment Evaluation Initiative (OAEI) [19], which currently does not include
geospatial ontologies in their repository of ontologies, but is now widely regarded
as the repository with which to study the effectiveness of ontology alignment
methods. The pairs of ontologies in the OAEI repository have associated with
them the correct mappings that should be derived by any automatic alignment
method, thus enabling an objective effectiveness comparison.

In addition to implementing our own methods, we have also implemented the
Similarity Flooding algorithm [14] and tested our new methods against: (1) our
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base technique that uses a similarity comparison among individual concepts and
(2) the Similarity Flooding algorithm. The experimental results show that from
an effectiveness viewpoint at least one of our new methods is as good or better
than the results obtained with the previously proposed methods.

Much work remains to be accomplished in the general area of ontology align-
ment and in the particular area of geospatial ontology alignment. A research
subject involves the determination of which methods to use depending on the
ontologies involved and on their particular topologies. For example, the fact that
the most effective method is not always the same and that sometimes all the four
methods have similar results shows that: (1) the best method depends on the
topology of the ontology graph and (2) for certain topologies, structure-based
methods do not play an important role. Both of these conclusions have been ar-
rived at by others [15] and they further justify our multi-layered approach where
several techniques can be used and combined [7].

The knowledge of the best method to apply will directly impact our consoli-
dation layer in which priority weights are given to the different matching layers.
If such priority weights can be automatically determined, then our overall ap-
proach will further attain automation. Another subject of research would be the
“fusion” in the same method of different techniques (e.g., DSI, SCC, and Simi-
larity Flooding), where such fusion could be guided again by the characteristics
of the topologies at hand. A comparison of these two alternatives can then be
undertaken.

Many more test cases and studies are needed: the introduction of geospatial
ontologies in the OAEI repository will allow for a wide variety of researchers to
explore their methods in the geospatial domain; also, there is the need for many
more geospatial ontologies to become available. In particular, initiatives such as
the Open Geospatial Consortium (http://www.opengeospatial.org/) will likely
bring about a plethora of standardized and much larger ontologies that must be
semantically aligned to promote data sharing and interoperability.
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