
An Iterative Algorithm for Ontology Mapping
Capable of Using Training Data

Andreas Heß

Vrije Universiteit Amsterdam University College Dublin
andreas@few.vu.nl

Abstract. We present a new iterative algorithm for ontology mapping
where we combine standard string distance metrics with a structural
similarity measure that is based on a vector representation. After all
pairwise similarities between concepts have been calculated we apply
well-known graph algorithms to obtain an optimal matching. Our algo-
rithm is also capable of using existing mappings to a third ontology as
training data to improve accuracy. We compare the performance of our
algorithm with the performance of other alignment algorithms and show
that our algorithm can compete well against the current state-of-the-art.

1 Introduction

In this paper, we present an iterative algorithm1 for ontology mapping that is
based on established string distance metrics that have been discussed in litera-
ture and on a structural similarity measure that is based on a vector represen-
tation of the relations between entities. Furthermore, we show how we can use
a given mapping to a third ontology as training data or background knowledge
to improve mapping accuracy.

The remainder of this paper is structured as follows: We start with a formal
problem formulation in section 2. We continue with a short discussion of related
work (section 3). Then, we present our algorithm in detail in section 4. We
discuss various parameters and design choices in section 5. Finally, we evaluate
the performance of different configurations of our algorithm and show that we
can compete well against the current state-of-the-art (see section 6) before we
conclude in section 7.

2 Problem Formulation

In various approaches such as [12], the schema mapping problem is cast as a
graph matching problem. We follow that notion and treat the entities that we

1 An implementation of our algorithm called dam2 is available at
http://www.few.vu.nl/∼andreas/projects/dam2/

are trying to match as nodes in a graph.2 Therefore, we use the words “node”,
“vertex” and “entity” synonymously.

We define the mapping problem as identifying pairs of vertices from two edge-
labelled directed graphs. Vertices represent entities in the ontology (i.e. classes
and properties). The arcs denote relations between these entities, and the labels
signify the kind of relation, e.g. “subclass of”, “domain” or “range”.

Definition 1. Let G = (V,A) and G′ = (V ′, A′) be two directed graphs with V
and V ′ as their set of vertices and A and A′ as their set of arcs. We define two
partial functions as:

map : V ⇀ V ′ map′ : V ′ ⇀ V

The ontology alignment problem formally consists of finding a number of
mappings v′ = map(v) for as many v ∈ V, v′ ∈ V ′ as possible. We restrict
ourselves to finding mappings for classes and properties only. We define the sets
of classes and properties as subsets of V resp. V ′ and only map classes to classes
and properties to properties. Furthermore, we restrict the mapping function to
being injective (but not necessarily surjective), i.e. we restrict ourselves to one-
to-one-mappings.

We split the problem into two parts: First, we define a similarity function:

Definition 2. To measure the similarity between vertices from G and G′, we
define two similarity functions as:

sim : V × V ′ → [0, 1] sim′ : V ′ × V → [0, 1]

We make use of different similarity functions that we denote with indices.
We use this similarity function to compute all pairwise similarities between all
v ∈ V and v′ ∈ V ′. Section 4 describes this step in detail.

The second part of the problem is to convert these pairwise similarities into
mappings. We treat the pairwise similarities as a bipartite graph B = (V +V ′, E)
with the entities from V and V ′ as nodes and a weighted edge where the similarity
between two entities sim(v, v′) > 0. The problem of obtaining the map-relation
is then equivalent to the problem of finding a matching in this bipartite graph.
We do in general not require that sim(v, v′) = sim′(v′, v). In that case, the
edges in the bipartite graph B are directed and the weights are not symmetric.
Section 4.5 describes the application of two well-known graph-algorithms to this
problem.

3 Related Work

While many approaches have been proposed for schema matching in the past
(e.g. Cupid [11]), dedicated algorithms for ontology matching are newer. Among
2 The paper mentioned, [12], but also newer algorithms such as [9] make use of derived

graphs or alternative representations such as the pairwise connectivity graph and the
similarity propagation graph in [12] or a bipartite graph representation of RDF as
in [9]. We do not use such derived graphs in our approach.

these are for example QOM [2] (which is optimised for speed) and OLA [4], which
combines a variety of different similarity measures. A very recent development
is the Falcon algorithm [9] that has been shown to perform very well.

The level of competition that came along with these different approaches has
led to ontology alignment contests. Such contests have taken place at the Infor-
mation Interpretation and Integration Conference (I3CON) in 2003, the Third
International Workshop on Evaluation of Ontology Based Tools in 2004 [15] and
at the Third International Conference on Knowledge Capture (K-CAP 2005) [5].
In section 6, we will compare our own algorithm to those presented at the latter
event.

Following [14], we refer to similarity measures that are based on inherent char-
acteristics of an entity as intrinsic, where as all structural similarity measures
that are based on relations to other entities are referred to as extrinsic. Most
mapping algorithms adhere to a simple structure: an initial calculation of an
intrinsic similarity measure is followed by an iterative calculation of an extrinsic
measure before finally the mappings are derived from the pairwise similarities.
Ehrig and Staab discuss this structure in greater detail in [2]. Our algorithm
adheres to this common structure, too. However, there are two features which
make it distinct from other algorithms that we are aware of. The first point
where our algorithm differs from others is the way how the extrinsic similarity
is computed. In a variety of approaches, extrinsic similarity is basically just the
propagated intrinsic similarity of the neighbouring entities. In our approach, we
compute extrinsic similarity by using a feature vector. Section 4.2 describes the
details.

The second important feature is the way how the similarities are transformed
into mappings. While Melnik et al. in [12] propose to compute either a stable
marriage or the maximum weighted matching in a bipartite graph to find a
good mapping, it seems that most newer ontology mapping algorithms do not
do this (e.g. Ehrig and Staab use a simple greedy approach in [2]). In section 4.5
we describe how these two well-known graph algorithms can be used, and an
empirical evaluation (see section 6) shows that it increases the performance of
the mapping algorithm.

4 The Algorithm

4.1 Computing Intrinsic Similarity

In our implementation, we use distance metrics from the well-known Second-
String library3 as intrinsic similarity measures.

We also experimented with a similarity measure based on WordNet.4 We used
a similarity metric based on Euzenat’s implementation in the OWL alignment
API [3]. We decided, however, not to use it in the current setup. Preliminary
experiments suggested that on many datasets no or only a marginal improvement
3 http://secondstring.sourceforge.net/, see also [1]
4 http://wordnet.princeton.edu/

can be achieved. This small benefit is, however, contrasted by a much greater
computational effort. It may be possible to overcome these limitations by using
a more sophisticated algorithm for computing a semantic similarity based on
WordNet. This is, however, deferred to future work.

We use URIs, labels, comments and text from individuals and property values
as text sources. We conducted experiments with the Jaro-Winkler metric [16]
and a version of Levenshtein edit distance [10] that is scaled to the range [0, 1]
for comparing labels and local names. We used a soft-token metric with Jaro-
Winkler resp. scaled Levenshtein edit distance as the base string distance metric
for comparing comments and instance data. To determine the overall intrinsic
similarity between two concepts, we use the maximum of these metrics. To avoid
overemphasising small similarities, we disregard similarities that are smaller than
a threshold of 0.4 and map similarities greater than 0.4 to the full range [0, 1].

4.2 Computing Extrinsic Similarity

The main difference between our approach and existing schema matching algo-
rithms is the way how the extrinsic similarity is computed. In many previous
approaches extrinsic or structural similarity is propagated through a graph struc-
ture that is determined by the schema or ontology.

In our approach, we use an extrinsic feature vector de(v) for each entity that
captures the relationship between this and other entities and then compute the
similarities between these vector representations. The intuition behind using this
vector representation is analogous to the assumption that the propagation-based
methods make: Two nodes are similar if they are related to similar nodes.

To formally define the extrinsic feature vector, we first have to introduce a
function that computes all entities that are connected to an entity v by a relation
l. We consider for example subsumption and domain and range of properties as
relations.

Definition 3. We define a function from the set of vertices and the set of labels
L to the power set of vertices so that for a given vertex the function finds all
vertices adjacent through an arc with a given label:

rel : V × L→ 2V

Let G = (V,A) be a digraph with the set of vertices V and labelled arcs A as a
set of ordered triples (v, w, l) ∈ V × V × L. Then we define:

rel(v, l) = {x|v, x ∈ V ∧ (v, x, l) ∈ A}

The definition of rel′ : V ′ × L→ 2V ′
is analogous.

Next, as an intermediate step to our extrinsic feature vector function, we
define a dynamic intrinsic feature vector function that is basically a vector rep-
resentation of all similarities between an entity v and all entities v′ ∈ V ′. “In-
trinsic” means that these features are inherent to an entity. “Dynamic” means

that their value can change as we get more information about that entity, and
can thus make a better prediction about the similarities between this and other
entities. Note that the dynamic intrinsic features are typically what we want
to compute. In particular, this means that the dynamic intrinsic features are
initially unknown.

Definition 4. We define a dynamic intrinsic feature vector function as a func-
tion of an entity:

di : V → R|V ′|

Analogous to the matrix representation of a graph, we impose an arbitrary total
order on V ′ and denote the first element of V ′ as v′0 and the subsequent elements
as v′n for all n < |V ′|. Then we define di as follows:

di(v) = [sim(v, v′0), sim(v, v′1), . . . , sim(v, v′|V ′|−1)]

Dynamic extrinsic features are dynamic intrinsic features of related entities:

Definition 5. We define a dynamic extrinsic feature vector function as a func-
tion of an entity.

de : V → R|V ′|

Assuming a commutative and associative operator ⊕ on Rd and a function rel as
per definition 3, we define de(v) as some combination ⊕ of the dynamic intrinsic
features di(x) (see definition 4) of all related entities x ∈ rel(v).

de(v) =
⊕

x∈rel(v)

di(x)

The exact definition of the combination operator ⊕ is arbitrary. We use an
additive operator in our experiments.

Note that the elements in de(v) are based on the relations of v ∈ V , but
correspond to vertices in V ′. In order to compute an extrinsic similarity between
v and some v′, we have to define an extrinsic feature vector for v′ that is based
on the relations of v′ ∈ V ′.

Definition 6. We define an extrinsic feature vector function as a function of
an entity:

de′ : V ′ → R|V ′|

Based on the total order on V ′ from definition 4, we define that each element i
in de′ is 1, if v′i ∈ rel(v′) and 0 otherwise.

Given definitions 5 and 6 we can now easily define an extrinsic similarity
simext(v, v′) based on the similarity between the vectors de(v) and de′(v′). A
common similarity measure for two vectors is the dot product, but it is usually
better to normalise the similarity measure using the well-known cosine, Dice,
Jaccard or overlap coefficients, which are widely used in information retrieval.
The similarities based on the extrinsic feature vectors are not symmetric. Since
the feature vector is based on the best mapping for each concept, the fact that
v maps to v′ does not necessarily mean that the best mapping for v′ is v, if the
overall similarity sim(v, v′) is greater than the similarity of v to all other x′ ∈ V ′

but less than the similarity sim(v′, x) of v′ to some x ∈ V .

Algorithm 1 Iterative Similarity Calculation
for v ∈ V do

diint(v)← [simint(v, v′0), simint(v, v′1), . . . , simint(v, v′|V ′|−1)]
end for
/* Initially, use intrinsic similarity only */
de(v)←

L
x∈rel(v) diint(x)

for a fixed number of iterations do
for v ∈ V do

diext(v)← [simext(v, v′0), simext(v, v′1), . . . , simext(v, v′|V ′|−1)]
/* Combine intrinsic and extrinsic similarity */
di(v)← diint(v)⊗ diext(v)

end for
de(v)←

L
x∈rel(v) di(x)

end for
return ∀v ∈ V : di(v)

4.3 Iterative Algorithm

Algorithm 1 formally specifies the iterative method of calculating the overall
similarity. We are not restricted to computing sim(v, v′), calculating sim(v′, v) is
analogous. Recall that because of the way we the extrinsic similarity is defined
they are not necessarily equal.

4.4 Using Training Data

It is quite straightforward to use a previously known mapping to a third ontol-
ogy to improve mapping accuracy. We assume a third ontology V ′′ and known
mappings of the form (v′, v′′) with v′ ∈ V ′ and v′′ ∈ V ′′. We compute the
pairwise similarities between all v ∈ V and both v′′ ∈ V ′′ and v′ ∈ V ′ as in
algorithm 1. Then, for each pair (v′, v′′) we assume the maximum5 of sim(v, v′)
and sim(v, v′′) as the joint similarity and substitute the similarity values in the
mapping algorithm with the joint similarity. Let v′′ be the entity that is mapped
to v′ as by the background knowledge. Then, we substitute the assignments of
di in algorithm 1 with:

di(v)← [max(sim(v, v′0), sim(v, v′′0)), . . . ,max(sim(v, v′|V ′|−1), sim(v, v′′|V ′|−1))]

Note that this replacement takes places for both the intrinsic and the extrinsic
similarity and therefore the subscript has been omitted.

It is of course in principle also possible to use more than one known mapping
as training data, but for our experiments we restricted ourselves to cases with a
known mapping to just one other ontology. Furthermore, it would be possible to
replace the entire similarity function with the output of a machine learning al-
gorithm. In fact, algorithm 1 is very similar to the supervised learning algorithm
that we presented in [8] and could be seen as a generalisation thereof.
5 Other ways of defining the joint similarity, for example using the average, are think-

able. Using the maximum is like using a nearest-neighbour classifier.

4.5 Postprocessing Steps

Once we have computed the overall similarities, we have to compute the actual
one-to-one mapping. This is the problem of finding a matching in a bipartite
graph. A bipartite graph B = (V + V ′, E) is a graph where the nodes can be
split in two groups such that every edge connects two nodes from both partitions.
Every similarity that has been calculated in the previous step corresponds to a
weighted edge in such a bipartite graph.6 A matching M in a graph is a set of
edges such that no node is incident to more than one edge. In our setting this
corresponds to a one-to-one mapping: For every entity in one ontology we want
to find one entity in the other ontology. M is called maximum-weighted, if there
is no other matching where the sum of all edge weights in the matching is bigger.
M is called a stable marriage, if there are no nodes v ∈ V and v′ ∈ V ′ such that
the edge between v and v′ in B is not in M , but has a higher weight than the
edges in M that are incident in v and v′.

Gale and Shapley have shown in [6] that for bipartite graphs where the two
partitions are of the same size a stable marriage always exists and presented an
algorithm for finding such a matching. Because the number of vertices in V and
V ′ is not necessarily equal in our case (if the two ontologies are of different size),
a perfect match (in the graph-theoretic sense) is not always possible. It is there-
fore necessary to modify the termination criterion of the original Gale/Shapley
algorithm slightly in a way that is equivalent to adding pseudo nodes and edges
with weight zero to the bipartite graph.

Melnik et al. in [12] propose to compute either a stable marriage or the
maximum weighted matching to find a good mapping. We compared the two
approaches empirically on our data. We used an off-the-shelf implementation of
James Munkres’ algorithm [13] (also referred to as the Hungarian algorithm) to
compute maximum-weighted matchings. As opposed to the Gale/Shapley algo-
rithm, Munkres’ algorithm is not suited for graphs with directed edges and asym-
metric weights. Due to the way the extrinsic similarity is computed, the edge
weights are not necessarily symmetric in our case, but it is of course straightfor-
ward to create a graph with undirected edges and symmetric weights simply by
addition.

5 Parameters

Our matching algorithm as presented in this paper has various parameters.
In this section, we discuss various options and design choices. The experi-

ments in section 6 show empirically the influence of the parameter settings on
the overall performance.

6 Note that this bipartite graph must not be confused with the graph interpretation
of the two ontologies! We use a bipartite graph only to determine the final matching
once the pairwise similarities have been calculated.

5.1 Structure

Depending on the expressiveness of the underlying ontology language, several
relations between classes or properties are defined. We considered super- and
subclass-relations, super- and subproperties, defined properties for a class, do-
main and range of a property and siblings of classes and properties as possible
relations. We performed preliminary experiments on three different combinations
of those features: First, we used all available relations. Second, we used all rela-
tions except for siblings, and third, we used the subsumption relation only. These
experiments have shown that the second setup consistently performed best. In
our final evaluation (see next section), we call this configuration “dublin2”7.

5.2 Number of Iterations

As in our experiments with iterative ensemble classification, we decided to use
a fixed number of iterations as termination criterion for reasons of simplicity,
and because it is not proven that the algorithm converges. Preliminary empiri-
cal experiments suggested that the algorithm is not very sensitive to the exact
number of iterations. We set the number of iterations to five, the same as in our
earlier work on web service annotation [8].

5.3 Inference

When mapping rich ontologies, it is sometimes possible to exploit knowledge
drawn from the ontologies itself to impose constraints on the mappings or to
infer mappings. Although we believe that for some mapping tasks exploiting
such knowledge could increase the mapping accuracy, such an approach is out
of scope of this thesis. We restrict ourselves to using the information obtained
through the iterative relational algorithm to compute the final mappings. The
set of ontologies we used for evaluating our algorithm does not have a very rich
structure, so in comparison with other algorithms that may use such inference,
our algorithm has no disadvantage.

5.4 Post-processing

As discussed above, we have to consider at least two ways of creating a map-
ping from the acquired similarities, if we demand a one-to-one mapping. We
can compute either a stable marriage or a maximum weighted matching. In our
empirical experiments, we tried both approaches. In the graphs and tables pre-
senting our results we denote configurations that use the Gale/Shapley algorithm
(as opposed to a maximum weighted matching) with the letter “g”.

We also tried both possible answers to the question when the post-processing
step should be applied. We denote the configurations where we applied the post-
processing step also in between iterations with the letter “e”. In the other exper-
iments, the post-processing step (i.e. applying the Gale/Shapley or Hungarian
7 The OAEI 2005 contest lists our results as “dublin”, we keep the name here.

algorithm) was only performed after the iteration phase of the algorithm has
been completed.

5.5 Intrinsic Similarity

We already discussed the way we compute the intrinsic similarity between two
concepts above in section 4.1. However, we could plug an arbitrary string distance
metric in our framework. A great variety of string distance metrics – established
algorithms as well as ad-hoc measures – is available off-the-shelf in libraries such
as the already mentioned SecondString. As mentioned above, we considered the
Jaro-Winkler and Levenshtein metrics. Preliminary experiments have shown that
with our data, a scaled version of the Levenshtein metric works generally better
than Jaro-Winkler. Therefore, we decided to use only the scaled Levenshtein
metric in our final experiments. We set the threshold for the soft-token metric
to 0.9, i.e. two tokens that have a string similarity greater or equal than 0.9
are considered the same. The suitability of different string distance metrics for
several tasks has been extensively discussed in literature, e.g. [1].

5.6 Thresholds

In order to avoid spurious mappings it makes sense to use a minimum similarity
threshold. In the ontology mapping scenario, it is not guaranteed that for some
concept in one ontology a concept in another ontology actually exists. In these
cases, not making a prediction is the correct answer. But also in other cases it is
in several scenarios useful not to make a prediction at all rather than making a
bad prediction. For example, consider a semi-automated setting where a human
annotator has to review suggestions made by the algorithm.

For the precision/recall-graphs, we varied the threshold between 0 and 1 in
steps of 0.05. When comparing the different configurations of our algorithm and
for comparison with the algorithms from the OAEI 2005 contest we used a zero
threshold.

6 Evaluation

We evaluated our algorithm on the benchmark ontologies from the 2005 Ontol-
ogy Alignment Evaluation Initiative (OAEI 2005, [5]). Most of the benchmark
ontologies consist of versions of a base ontology, where different aspects have
been changed. For most of the following tests, we concentrate on six interesting
ontologies: In two cases (ontologies 205 and 206 from the test suite), all names
and labels have been replaced with synonyms or foreign words, and in four cases,
independently developed “real-world” ontologies that describe the same domain
have been used (301-304).

We tested various configurations of our algorithm and compared the results
from these different setups against each other as well as against the published re-
sults from the other participants of the contest. The experiments were conducted
in order to answer the five basic (groups of) questions:

1. Do we get any benefit from the extrinsic features as opposed to using the
intrinsic similarity only?

2. Is it better to compute the maximum weighted matching or is a stable mar-
riage more important? Should we apply this step only after all similarities
are computed, or also between iterations?

3. What threshold is optimal?
4. How does our algorithm perform compared to other algorithms in literature?

What are the strengths and weaknesses?
5. What is the benefit of using known mappings as training data?

It is important to note that in most of the experiments the difference in
performance between the different configurations was quite low, although there
are visible trends. However, what the experiments clearly show is that the overall
accuracy of ontology mapping is based largely on the initial intrinsic (lexical)
mapping. Unfortunately, because it is rarely published what the contributions of
the lexical and structural similarities are, it is difficult to compare the strengths
and weaknesses to other algorithms. Space restrictions prevent us to present all
our results here. For a more detailed discussion, the reader is referred to [7].

6.1 Extrinsic vs. Intrinsic Features

The first question is of course the most crucial one: Is the way how we use
the additional relational information, that differs from other methods known
in literature, useful? Does it work? To answer this question, we compared the
“dublin10” setup with the “dublin2e0” and “dublin20” setup. The “dublin10”
setup uses only intrinsic features, “dublin20” and “dublin2e0” use extrinsic fea-
tures (in five iterations) as well. Both setups compute a maximum-weighted
matching, the “dublin2e” configuration also enforces one-to-one mappings in
between iterations.

The results in figure 1 (note that the scale starts with 0.4 to emphasise the
difference between configurations) show that on four ontologies the configuration
that uses extrinsic features performs better or equal than the configuration with
only the intrinsic features. However, in two of the “real-world” ontologies, using
the extrinsic features affects the performance in a negative way. The reason for
this is that the ontologies 303 and 304 are structurally different from the base
ontology and our algorithm is mislead by this structural difference. In that case,
any attempt to make predictions based on the structure must fail. The other
four ontologies, especially 205 and 206, are structurally quite similar to the base
ontology. Here using the extrinsic features helps.

We conclude from these results that using relational features can improve
the performance, but only if the ontologies that are to be matched are not
structurally different. This is not only true for our approach. For example, in [9],
the authors make the same observation for the Falcon algorithm.

205 206 301 302 303 304
0.4

0.5

0.6

0.7

0.8

0.9

dublin1g0

dublin10

dublin2g0

dublin20

dublin2e0

F
1

Fig. 1. Comparison of different configurations of our algorithm

6.2 Stable Marriage vs. Maximum-Weighted Matching

As far as we are aware, most other current algorithms do not explicitly compute
stable marriages or maximum-weighted matchings to determine a one-to-one
mapping. The Similarity Flooding algorithm [12] is a notable exception. We
compared configurations that use a stable marriage with configurations with a
maximum-weighted matching. The “dublin2g0” and “dublin1g0” configurations
use the Gale/Shapley algorithm to compute a stable marriage while “dublin20”
and “dublin10” computes a maximum-weighted matching. Both configurations
use no threshold. The “dublin1g0” and “dublin10” configurations do not use
extrinsic features. Figure 1 clearly shows that it is better to compute a maximum-
weighted matching. This setup outperforms the stable-marriage configuration in
almost all cases, sometimes drastically.

In the “dublin2e0” setup, a maximum-weighted matching is applied also in
between iterations, where as for “dublin2g0” and “dublin20” the Gale/Shapley
resp. the Hungarian algorithm is only applied after the last iteration. This con-
figuration can therefore not directly be compared with “dublin2g0”, but in com-
parison with “dublin20” it becomes clear that enforcing a one-to-one-mapping
also in between iterations is better than doing so after the last iteration only.

6.3 Threshold

To find out what value for the threshold is best, we took a closer look at on-
tologies 205 and 303. Figure 2 shows the relation between the threshold and the
precision, recall and F1 measures on ontologies 205 resp. 303. Note that vary-
ing the threshold has a quite different effect on the two ontologies. In ontology

205, recall drops faster than precision increases. The maximum F1 is reached
at a threshold of 0.05. In ontology 303, precision and recall at threshold 0 are
lower than in ontology 205. When raising the threshold, recall drops only slightly
while precision increases rather quickly. Maximum F1 is reached at a threshold
between 0.7 and 0.85. We have to conclude that the best cut-off value for our
mapping algorithm depends strongly on the dataset. On the “real world” ontolo-
gies 301–304 the threshold is higher, while for the artificial benchmark ontologies
the best F1 is reached at a very low threshold.

Fig. 2. Relation between threshold and precision, recall and F1 for ontologies 205 (left)
and 303 (right)

6.4 Comparison with other Algorithms

To evaluate our own method, we compared our results against the published
results from the 2005 Ontology Alignment Evaluation Initiative ([5]).

The algorithm that performed best in the 2005 contest was the Falcon algo-
rithm [9] by the Southeast University of Nanjin. Falcon uses a bipartite graph
representation of an RDF graph to compute structural similarity.

Our own algorithm can, however, compete well with the “FOAM” algorithm
developed in Karlsruhe and the “OLA” algorithm. “Edna” is simple algorithm
that is based on edit distance of the labels and was included by the organisers of
the contest as a baseline. Our algorithm in the “dublin20” setting as submitted
to the organisers of the OAEI 2005 performs second best after Falcon. From
the 2004 algorithms, the algorithm developed at Stanford has a higher average
precision, but a lower average recall than ours. These results are in greater detail
presented in [5]. Figure 3 shows the F1 score. To aggregate the results of the
individual tests, the organisers of the contest calculated the precision and recall
over all mappings of all test.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

falcon

dublin20

foam

ola

edna

omap

cms

ctxMatch2-1

F
1

Fig. 3. Overall F1 of the OAEI 2005 alignments

6.5 Using Training Data

To test the effect of background knowledge on the performance of the alignment,
we conducted experiments where we used a given mapping from the target ontol-
ogy to a third (background) ontology. It is clear that we can expect the biggest
improvement in accuracy if the background ontology is very similar to the source
ontology. Vice versa, if the source ontology is very dissimilar, we cannot expect
an improvement. Our experiments confirmed this intuition. We noticed that in
the worst case using background knowledge does not improve the performance
at all or could even negatively affect the performance slightly. If the right back-
ground mapping is selected, however, the performance can be increased by quite
a lot. In figure 4, the experiments with training data are denoted as “amster-
dam10”8 for an experiment with intrinsic similarity only and as “amsterdam2e0”
for an experiment using extrinsic similarity as well. When testing ontology 205,
we used 206 as background ontology and vice versa, for 301 we used 302 as
background and vice versa, and for 303 we used 304 and vice versa.

Clearly, the performance on ontologies 205 and 206 are examples for the
worst case. The reason for that becomes clear if we look at the performance of
the mapping from ontology 205 to 206, i.e. when mapping to the background
ontology only instead of the reference ontology 101. For comparison, we include
these results in the diagram and denote this configuration as “amsterdam10b ”
resp. “amsterdam2e0b”. From these results, we can also see that the improve-
ment of using training data in the 30x ontologies is not only due to the fact that
mappings between 301 and 302 resp. 303 and 304 are easy. Rather, the combined
approach of using background knowledge outperforms both the simple mapping
between the source and the reference ontology and also between the source and
the background ontology. We conclude that using known mappings as training
8 This part of the research was carried out in Amsterdam, hence this name for the

algorithm.

data can generally improve the results, but that the algorithm can also be misled,
if the background ontology is too different from the source ontology.

205 206 301 302 303 304
0.4

0.5

0.6

0.7

0.8

0.9

dublin10

amsterdam10

amsterdam10b

dublin2e0

amsterdam2e0

amsterdam2e0b

F
1

Fig. 4. Performance (F1) of setup with training data compared to normal setup

7 Conclusion

We have presented a new method for ontology mapping that uses established
string distance metrics and an extrinsic feature representation as known from
relational learning algorithms. We treat the results of the similarity computa-
tion as a bipartite graph and use well-known algorithms from graph theory to
compute an optimal one-to-one mapping. With an empirical evaluation, we have
shown that our basic ideas work, and that our algorithm can compete with other
approaches. Furthermore, we have shown how our algorithm can be used in a
supervised way in order to exploit background knowledge.

In the more detailed comparison in [7] we have shown that each algorithm
has specific strengths and weaknesses. Therefore, we believe that there is a great
potential for a combination of some of our ideas with methods used by others.
We ignore some valuable information that comes from the ontologies, because
we do not do any logical reasoning or inference. On the other hand, some of the
methods proposed here, for example the post-processing steps, could be useful
in conjunction with other base algorithms as well.

Acknowledgments. Most of the research presented in this paper was done when
the author was at University College Dublin and was supported by grants from

Science Foundation Ireland and the US Office of Naval Research. The author
would like to thank Nicholas Kushmerick for valuable feedback and support.

References

1. William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison
of string distance metrics for name-matching tasks. In Proceedings of the IJCAI-03
Workshop on Information Integration on the Web (IIWeb-03), pages 73–78, 2003.

2. Marc Ehrig and Steffen Staab. QOM – quick ontology mapping. In 3rd Interna-
tional Semantic Web Conference, Hiroshima, Japan, 2004.

3. Jérôme Euzenat. An API for ontology alignment. In 3rd International Semantic
Web Conference, Hiroshima, Japan, 2004.

4. Jérôme Euzenat, David Loup, Mohamed Touzani, and Petko Valtchev. Ontology
alignment with OLA. In York Sure, Oscar Corcho, Jérôme Euzenat, and Todd
Hughes, editors, Proceedings of the 3rd International Workshop on Evaluation of
Ontology based Tools (EON), Hiroshima, Japan, 2004.

5. Jérôme Euzenat, Heiner Stuckenschmidt, and Mikalai Yatskevich. Introduction to
the ontology alignment evaluation 2005. In K-CAP 2005 Integrating Ontologies
Workshop, Banff, Alberta, Canada, 2005.

6. David Gale and Lloyd Stowell Shapley. College admissions and the stability of
marriage. American Mathematical Monthly, 1962.

7. Andreas Heß. Supervised and Unsupervised Ensemble Learning for the Semantic
Web. PhD thesis, School of Computer Science and Informatics, University College
Dublin, Dublin, Ireland, 2005.

8. Andreas Heß and Nicholas Kushmerick. Iterative ensemble classification for re-
lational data: A case study of semantic web services. In Proceedings of the 15th
European Conference on Machine Learning, Pisa, Italy, 2004.

9. Wei Hu, Ningsheng Jian, Yuzhong Qu, and Qanbing Wang. GMO: A graph match-
ing for ontologies. In K-CAP 2005 Integrating Ontologies Workshop, Banff, Al-
berta, Canada, 2005.

10. Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. In Russian.
English Translation in Soviet Physics Doklady, 10(8) p. 707–710, 1966.

11. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic Schema Match-
ing with Cupid. In Proceedings of the 27th International Conference on Very Large
Databases, pages 129–138, Rome, Italy, 2001.

12. S. Melnik, H. Molina-Garcia, and E. Rahm. Similariy flooding: A versatile graph
matching algorithm. In Int. Conference on Data Engineering (ICDE), 2002.

13. James Munkres. Algorithms for the assignment and transportation problems.
SIAP, 5(1):32–38, 1957.

14. Jennifer Neville and David Jensen. Iterative classification in relational data. In
AAAI Workshop Statistical Relational Learning, 2000.

15. York Sure, Oscar Corcho, Jérôme Euzenat, and Todd Hughes, editors. 3rd Int.
Workshop on Evaluation of Ontology based Tools (EON), Hiroshima, Japan, 2004.

16. William E. Winkler and Yves Thibaudeau. An application of the Fellegi-Sunter
model of record linkage to the 1990 U.S. decennial census. Technical report, U.S.
Bureau of the Census, Washington, D.C., 1991. Statistical Research Report Series
RR91/09.

