
AUTOMS-F: A Java Framework for Synthesizing
Ontology Mapping Methods

Alexandros G. Valarakos
(AI Lab, Inf. & Comm. Systems Engineering Dept., University of the Aegean, Samos, Greece

alexv@aegean.gr)

Vassilis Spiliopoulos
(AI Lab, Inf. & Comm. Systems Engineering Dept., University of the Aegean, Samos, Greece

and Inst. of Informatics & Telecomm., NCSR “Demokritos”, Greece
vspiliop@aegean.gr)

Konstantinos Kotis

(AI Lab, Inf. & Comm. Systems Engineering Dept., University of the Aegean, Samos, Greece
kotis@aegean.gr)

George Vouros

(AI Lab, Inf. & Comm. Systems Engineering Dept., University of the Aegean, Samos, Greece
georgev@aegean.gr)

Abstract: Although ontologies promise an effective technology for information integration, it
is often the case that two or more information providers do not share the same ontology.
Several (semi)-automated ontology mapping methods have been developed towards solving
this problem. This paper presents AUTOMS-F, a framework implemented as a Java API, which
aims to facilitate the rapid development of tools for automatic mapping of ontologies by
synthesizing several individual ontology mapping methods. Towards this goal, AUTOMS-F
provides a highly extensible and customizable application programming interface. AUTOMS is
a case study ontology mapping tool that has been implemented using the AUTOMS-F
framework, and has been successfully evaluated in the international OAEI 2006 contest.

Keywords: Ontology Mapping, Information Integration, Semantic Web, Semantic Technology,
Java Framework
Categories: I. 2. 4, D.2.7

1 Introduction

Ontologies have been realized as the key technology to shaping and exploiting
information for the effective management of knowledge and for the evolution of the
Semantic Web and its applications. In such a distributed setting, ontologies establish a
common vocabulary for community members to interlink, combine, and communicate
knowledge shaped through practice and interaction, binding the knowledge processes
of creating, importing, capturing, retrieving, and using knowledge. However, it seems
that there will always be more than one ontology even for the same domain. In such a
setting, where different conceptualizations of the same domain exist, information
services must effectively answer queries, bridging the gaps between
conceptualizations of the same domain. Towards this target, networks of semantically
related information must be created at-request. Therefore mapping of ontologies is a

mailto:mlux@know-center.at
mailto:mlux@know-center.at
mailto:mlux@know-center.at
mailto:mlux@know-center.at

major challenge for bridging the gaps between agents (software and human) with
different conceptualizations.

 “Simple” cases of heterogeneity include ontologies that use different
lexicalizations of the same ontology element (e.g. “car” and “road-vehicle”). More
complicated situations appear in cases where ontologies are structured (in terms of
concepts’ relations) in completely different ways.

Information integration and effective management of information will be
admittedly achieved through reaching an agreement, by producing a single,
commonly-agreed and shared reference ontology, or by achieving coordination so that
each party uses its own ontology, but with it also establishes concept and relation
mappings with other ontologies. In any case, tools for supporting the ontology
mapping task are of paramount importance. Specifically, given two ontologies O1 and
O2, establishing a mapping between them involves computing pairs of ontology
elements (one from O1 and one from O2) that have the same intended meaning.

AUTOMS-F (AUTomated Ontology Mapping through Synthesis - Framework) is a
Java application programming interface (API) that aims to facilitate the development
of integrated tools for automatic one-to-one mapping of domain ontologies. The main
concern of AUTOMS-F is the provision of facilities for the synthesis of several
ontology mapping methods. The ultimate goal is to provide synthesized approaches
realized as integrated tools that produce better results and performance measures than
each of the synthesized individual mapping methods alone. The framework has been
used for the implementation of the AUTOMS mapping method [Kotis, 06] which is
described as a case study in the fourth section of this article.

The paper is structured as follows: Section 2 presents the ontologies mapping
problem, the requirements and the assumptions made towards implementing
AUTOMS-F. Section 3 describes AUTOMS-F in detail. Section 4 presents
AUTOMS, a specific mapping tool implemented using AUTOMS-F, as a case study
of using the proposed framework. Section 5 presents related work, and section 6
concludes the paper, sketching our future plans.

2 Problem Statement

A mapping between two ontologies is mainly expressed by a one-to-one function
between ontology elements (i.e. the concepts and the properties of ontologies).
Therefore, establishing a mapping between ontology elements [INTEROP, 04],
involves the computation of pairs of elements whose meaning is assessed to be
similar. Similarity in meaning can be computed using a number of metrics that exploit
ontology elements’ features. It is important to note that the mapping process does not
modify the involved ontologies: It produces, as output, a set of mapping pairs
together with their computed similarity measure.

The majority of the mapping methods/tools can be described by the generic
mapping process [Ehrig, 04] depicted in Figure 1. The discrete steps of this process are
as follows:

1. Feature Engineering: Ontologies are transformed into an internal
representation. This step selects a fragment of the ontology to be processed.

2. Search Step Selection: Element pairs from the two input ontologies are being
selected, with the one element belonging to the first ontology and the other

to the second. Depending on the mapping method, all element pairs or only a
subset of them may be considered. The set of pairs constitute the search
space of the method.

3. Similarity Computation: This step computes the similarity of the previously
selected pairs. Many different similarity metrics may be utilized by a single
method.

4. Similarity Aggregation: In this step all similarity metrics are aggregated into
a single one.

5. Interpretation: This step concludes to a set of mapping pairs by exploiting
the aggregated similarities computed in the previous step (e.g. this can be
done using threshold value(s)).

6. Iteration: The whole process may be repeated several times, by propagating
and updating the assessed similarities, taking into account the structure of the
input ontologies.

Figure 1: The generic and commonly accepted discrete steps of a mapping process.

We conjecture that any framework that aims to facilitate the development of ontology
mapping tools must support the development of the generic steps shown in Figure 1.
AUTOMS-F, aiming to the provision of a generic framework for the development of
mapping tools, in accordance to the steps proposed, poses a number of requirements:

1. According to the Feature Engineering step, a mapping method may utilize only
a subset of the available information provided by the input ontologies. Different
mapping methods should be able to use different sets of features.

2. According to the Search Step Selection step, a method may examine only a
subset of the possible mapping pairs, while different methods should be able to
select different subsets of pairs, using well-defined conditions.

3. According to the Similarity Computation step, different mapping methods may
need to compute different similarity measures for the assessment of mapping
pairs.

4. According to the Similarity Aggregation step, the synthesis of mapping methods
and the aggregation of their corresponding similarity measures should be robust,
expandable and be easily supported by the mapping framework.

5. According to the Interpretation step, the mapping pairs may be produced based
on the aggregated similarity values of custom mapping methods.

3 AUTOMS-F: Architecture and Implementation

AUTOMS-F is an open-source application programming interface (API) implemented
in Java which aims to provide a basic framework towards synthesizing ontology
mapping methods.

3.1 Framework’s Conceptualization

The main concept of AUTOMS-F is the mapping method. A mapping method exploits
all the information concerning the mapping process: The pair of ontologies involved
and functional information regarding the execution of the mapping steps specified in
section 2. This is done by linking the mapping method to:

a) one or more mapping methods. When a mapping method is associated with at
least another mapping method or another association of mapping methods, then
this association constitutes a “task” (or synthesized mapping method). A task
specifies the synthesis of different (atomic or synthesized) methods. Tasks, due
to their recursive definition specify a hierarchical tree of arbitrary complexity,
which is named the “mapping association tree”.

b) a parser. This is responsible for collecting the appropriate elements of the
ontologies that are involved in the mapping process. This collection defines the
potential mapping pairs and results in an (n x m) similarity matrix, where n and
m are the number of elements of the target and source ontology, respectively.
The value of each matrix entry specifies the similarity of the specific pair to
which the entry corresponds. A parser is associated to a task and is applied to its
subsequent methods. Moreover, a parser is inherited to subsequent tasks (i.e.
tasks lower in the hierarchy). In order to support parser inheritance property, we
assume that tasks in the mapping association tree use parsers that collect pairs of
ontological elements that are super-sets of the one collected by subsequent tasks’
parsers.

c) a similarity method. Such a method specifies the way similarities between pairs
of ontological elements are being computed. Such method results to an (n x m)
similarity matrix.

d) an aggregation operator. This is responsible for specifying the way similarity
matrices are being combined. Aggregation operators, as well as results, are
associated with the task that combines the specific methods.

e) a pairs filter. This defines the criteria for selecting the best mapping pairs from
the resulted similarity matrix.

f) a results renderer, which is responsible for the presentation of the mapping
pairs.

T0

T2 m3

m5 m6

m4

Root task

T1 m1 m2

Operator 2

Operator 1

Operator 3

Figure 2: An example of a mapping association tree.

According to the above, the synthesis of mapping methods in AUTOMS-F is
supported in two ways: a) by allowing a mapping method to have direct access to the
similarity matrix computed by another method, and b) by combing the similarity
matrices of mapping methods using specific aggregation operators. Figure 2 depicts
an example of a mapping association tree in which aggregation operators are shown
with dashed line rectangulars: They are attached to tasks (rectangulars), and each task
aggregates one or more methods (shown in ovals).

The “mapping association tree” specifies also the execution order of the mapping
methods and the application of the operators and parsers. The top-most task in the tree
is named the “root task”. This is the T0 task in Figure 2. We assume a right-to-left
bottom-up execution order of the methods in a tree. Hence, according to Figure 2, the
method m5 follows the execution of method “m6”. “m4” executes and may exploit the
aggregated results that are produced by the methods “m6” and “m5”. The aggregation
of “m6” and “m5” methods is being preformed by an aggregation operator associated
to task T2.

Parsers are associated to tasks and apply to tasks’ subsequent methods. However,
different parsers can be defined at any level of the tree. Because of that, different
methods may exploit different collections of element pairs: Generally, the similarity
matrix of a method “contributes” to the computation of the similarity matrix of the
root task, which always contains the super-set collection of ontological element pairs.

The root task comprises a pair filter that selects the pairs that specify “best
mappings” (e.g. whose similarities are above a specific threshold value). Finally, the
renderer presents the mapping pairs.

3.2 Implementation Issues

AUTOMS-F has being developed using the Jena Framework [Jena, 07]. It has been
implemented in Java for ensuring platform independency and uses various well-
established design patterns [Brandon, 02] for ensuring usability, reuse, extensibility
and abstraction.

Figure 3: UML diagram of the main AUTOMS-F classes, attributes and operations.

Figure 3 depicts a UML diagram of the main classes of the framework according to its
conceptualization (section 3.1). The “MappingMethodImpl” class is linked through an
aggregation relation with itself and it aggregates at least one “MappingMethodImpl”
class. Also, the same class is linked with exactly one of the following abstract classes:

“SimilarityMethod”, PairFilter”, “Parser”, “Operator” and “ResultRenderer”. The
“MappingMethodImpl” class stores a list with the methods-tasks to which it is linked
using the “mappingMethodList” attribute. This method is responsible for doing the
necessary initializations (“initialize” operation) and for performing the mapping
operations (the “match” operation of the “MappingMethodImpl” class). The
“SimilarityMethod” class supports various manipulations of the similarity matrices to
support the synthesis of methods. Due to space restrictions we present only some of
the attributes and operations of the system. All the classes, except the
“MappingMethodImpl” class, constitute hot spots for the framework, hence are the
classes that can be further extended.

The Strategy pattern - behavioral design pattern - is used in the
“MappingMethodImpl” class to support the creation of different mapping methods.
The template method pattern in the “SimilarityMethod” class - a behavioral pattern -
is used for the computation of the similarity of a pair of ontological elements. Thus,
instantiating the framework, one can define - override - the methods that measure the
similarity between a pair of ontological elements and leave the construction of the
similarity matrix to the “SimilarityMethod” class. Also, the composition pattern - a
structural pattern - is exploited for the specification of the “mapping association tree”.
AUTOMS-F, as it exploits Jena’s model loader, can handle ontologies that are
implemented in RDF, RDFS, OWL and DAML+OIL formalisms. The ontologies can
be read from the local disk or be accessed through their URLs. An ontology element
can be any of Jena’s ontology class (OntClass) or property (OntProperty) objects.
Hence, a method can retrieve any information about an ontology element, i.e. label,
super-concepts, class properties etc.

AUTOMS-F contains samples of all the extensible classes resulting in a default
mapping method. More advanced mapping methods can be developed by extending
the “SimilarityMethod” class and overriding the methods that measure the similarity
between ontology elements. Also, someone may integrate a method to the framework
by extending the “SimilarityMethod” class and overriding only its “compute”
operation, which is responsible for executing the similarity method. This means that
the new class computes the mapping and the similarity matrix, which is defined in the
extended class. Following the latter case, special attention should be given to the
collection of the ontological elements pairs used: This must be consistent with the
collection of the T0 task. To ensure this consistency, we recommend the use of a
framework-based defined parser and not the use of any user–specific manipulation of
the ontological elements pairs.

4 A Case Study: The AUTOMS tool

AUTOMS-F has been used for the development of the AUTOMS ontology mapping
tool which synthesizes 6 mapping methods [Kotis, 06]: The lexical, semantic, simple
structural, properties-based, instances-based and the iterative structural method.
Figure 4 depicts the association tree of AUTOMS and the position of the mapping
methods in it. The lexical and semantic methods are executed first. Then the structural
matching method follows by exploiting the results of the previously run methods,
whose results have been aggregated by task T2. Afterwards, AUTOMS executes the
properties-based and instances-based mapping methods, and finally, the iterative

structural matching method is being executed by exploiting results from the other
methods in its level as well as from the task that aggregates results from lower levels.
AUTOMS uses the same parser and aggregation operator in any of its tasks. The
parser is defined in the T0 task and the operator of each task unifies the matrices of
constituent methods.

Iterative structural matching Instance-based matching Properties-based matching

T0

T1

T2Simple structural matching

Semantic matching Lexical matching

Figure 4: AUTOMS’s mapping association tree.

The requirements of AUTOMS have been satisfied by the flexibility and extensibility
provided by AUTOMS-F. The learning curve of the framework was rather short. In
some cases, AUTOMS developers needed to extend the framework for capturing
OAEI contest’s requirements [OAEI, 06]; however this did not effect the development
of AUTOMS, and AUTOMS-F proved to be a very robust and flexible framework.
AUTOMS developers have been provided with an optimized version of AUTOMS-F,
resulting to quite short (comparing to other tools of the OAEI contest) execution
times. Scalability was a weak point at the time AUTOMS-F was used to develop
AUTOMS, since very large ontologies (~30MB) provided by the OAEI organizers
could not be loaded and parsed. AUTOMS tool was evaluated in the OAEI 2006
contest among 10 other systems, achieving very high precision and recall measures,
providing evidence for the potential of AUTOMS-F to this direction. For a detailed
view of contest’s results and AUTOMS performance please visit OAEI 2006 results
Web page at http://oaei.ontologymatching.org/2006/results/benchmarks/.

5 Related Work

To the best of our knowledge the only work that is related to the presented one is the
Alignment API [4]. It is used for the evaluation of the ontology mapping tools that
participated in the OAEI contest [5]. It has been implemented using Java and provides
an API for incorporating, evaluating and presenting the results of different tools.

AUTOMS-F and the Alignment API are based on different technologies.
AUTOMS-F uses the Jena framework whereas the Alignment API uses the OWL API
[OWL API, 07]. Moreover, the Alignment API executes mapping methods in a pipe
line, in contrast to AUTOMS-F which defines an execution structure of the mapping
methods - the “mapping association tree” - facilitating the effective synthesis of
different mapping methods as well as their parallel execution by exploiting the thread
mechanism. The Alignment API supports the combination of two methods by means
of fixed operators i.e. compose, join, inverse and meet which combine the result
matrices of the constituent methods. However, these operators have not been fully

http://oaei.ontologymatching.org/2006/results/benchmarks/

implemented as far as the version 2.5 is concerned. On the other hand, using
AUTOMS-F one has the flexibility to define her own aggregation operators,
combining more than two matrices. Also, AUTOMS-F supports the use of different
parsers for collecting ontology elements. Different parsers can be applied in the
context of a specific method or task. At the current version, AUTOMS-F does not
provide any evaluation utilities, whereas the Alignment API does. In general,
AUTOMS-F provides more hot spots than the Alignment API, thus making itself
more extensible and customizable. Alignment API is under LGPL license. AUTOMS-
F will be available soon in www.icsd.aegean.gr/ai-lab under GPL licence.

6 Concluding Remarks and Future Work

AUTOMS-F addresses the ontology mapping problem by providing advanced
facilities for the development of synthesized ontology mapping methods. AUTOMS is
an evaluated case of the framework’s potential. Although the full automation of
ontology mapping is still a challenge, AUTOMS-F provides a robust framework for
the synthesis of different mapping methods, increasing the benefits of deploying state
of the art mapping technology.

We plan to extent AUTOMS-F in several ways. Firstly, execution threads will be
added to the methods of a task at each task level, in order to decrease the execution
time. Secondly, we will introduce a consistency checking method that will ensure
consistency between the mapping result pairs according to ontologies specification
semantics. Thirdly, we will investigate a way to introduce iterative execution in the
framework, hence satisfying all the steps of the generic mapping process shown in
Figure 1. Finally, we will investigate scalability issues and evaluation utilities.

Acknowledgements

This work was supported by the ONTOSUM project (www.ontosum.org).

References

[Alignment API, 07] Alignment API, http://alignapi.gforge.inria.fr/

[Brandon, 02] G. Brandon, The Joy of Patterns, Addison-Wesley, ISBN 0-201-65759-7, 2002.

[Ehrig, 04] M. Ehrig, S. Staab, QOM - Quick Ontology Mapping, GI Jahrestagung (1), 2004.

[INTEROP, 04] INTEROP - Network of Excellence, State of the art and state of the practice
including initial possible research orientations. Project n. 508011, 2004.

[Jena, 07] Jena Java Framework, http://jena.sourceforge.net/

[Kotis, 06] K. Kotis, et al., AUTOMS: Automating Ontology Mapping through Synthesis of
Methods, OAEI 2006 contest, Ontology Matching International Workshop, USA, 2006.

[OAEI, 06] OAEI: Ontology Alignment Evaluation Initiative.
http://oaei.ontologymatching.org/2006/

[OWL API, 07] OWL API, http://owl.man.ac.uk/api/readme.html/

http://www.icsd.aegean.gr/ai-lab
http://en.wikipedia.org/w/index.php?title=Brandon_Goldfedder&action=edit
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0201657597
http://jena.sourceforge.net/
http://oaei.ontologymatching.org/2006/

