
IBIS – Interoperability in Business Information Systems

-33- © IBIS – Issue 1 (1), 2006

Formulation Schema Matching Problem for
Combinatorial Optimization Problem

Zhi Zhang 1*, Haoyang Che 2, Pengfei Shi 1, Yong Sun 3, Jun Gu 3

1 Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong
University,

Shanghai 200030, China
2 Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China

3 Department of Computer Science, Science & Technology University of Hong Kong,
Hong Kong, China

Abstract: Schema matching is the task of finding semantic correspondences between
elements of two schemas, which plays a key role in many database applications. In this
paper, we cast the schema matching problem (SMP) into a multi-labeled graph
matching problem. First, we propose an internal schema model: multi-labeled graph
model, and transform schemas into multi-labeled graphs. Therefore, SMP reduce to a
labeled graph matching, which is a classic combinatorial problem. Secondly, we study a
generic graph similarity measure based on Contrast Model, and propose a versatile
optimization function to compare two multi-labeled graphs. Then, we can design the
optimization algorithm to solve the multi-labeled graph matching problem. Based on
the matching result obtained by greedy matching, we implement a fast hybrid search
algorithm to find the feasible matching results. Finally, we use several schemas to test
the hybrid search algorithm. The experimental results confirm that the algorithm
model and the hybrid algorithm are effective.

Introduction

The goal of schema matching is to find semantic correspondences between the
elements of two schemas. It plays a key role in many database applications such as
schema integration, data warehousing, e-business, XML message mapping, and
semantic query processing [19]. However schema matching still remains largely a
manual, labor-intensive, and expensive process.
Problem formulation is an extremely important part of problem solving. The choice
of a good formulation can result in order of magnitude savings in solving cost. In
this paper, we study how to cast the schema matching problem (SMP) into a multi-
labeled graph matching problem. For multi-labeled graph matching, which is a kind
of graph matching problems. It is well known that graph matching is a classic
combinational optimization problem. There are many approaches to deal with
graph matching problem. Therefore, based on the framework of graph matching,
we can design heuristic approach to attack schema matching.
First, we propose a meta-model: multi-labeled graph model, to represent various
kinds of schemas. We extract the elements of schema as the vertices of a graph,
and the properties of elements as the labels of vertices, where each vertex and
edge can be associated with a set of labels describing its properties. For labeled
graph matching, we want to obtain the correspondences between the vertices of
two graphs. Therefore, we discuss a generic graph similarity measure based on

* Corresponding author. E-mail address: zzh@sjtu.edu.cn (Z. Zhang).

http://www.ibis-journal.net ISSN:1862-6378

 -34-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

Contrast Model, and propose an optimization function based on multi-labeled graph
similarity. Up to now, we transform SMP into a multi-labeled graph matching
problem which is a classic combinational problem, and develop the algorithmic
model for SMP. Finally, we implement a hybrid search algorithm to find the
feasible matching correspondences.
The paper is organized as follows. Section 2 discusses related work on schema
matching. Section 3 presents a meta-model of schemas: multi-labeled graph.
Section 4 introduces the definition of SMP based on multi-labeled graph. We call
SMP as multivalent matching, which is composed of multivalent correspondences.
Then, we formulize SMP as a multi-labeled graph matching problem. Section 5
investigates a generic graph similarity measure based on Contrast Model, and
proposes an objective function to schema matching. Then, Section 6 studies a
hybrid search algorithm in detail. In section 7, we use some experiments to
evaluate our approach. Section 8 makes some concluding remarks and discusses our
future work.

Related Work

Numerous solutions have been proposed in specific applications to solve SMP.
Madhavan et al. [13, 18] implemented a Cupid system to achieve semi-automatic
schema matching, which uses a hybrid matching algorithm comprising linguistic and
structural schema matching techniques, and computes similarity coefficients with
the assistance of a precompiled thesaurus; Machine learning is a promising
technique especially for evaluating data instances to predict element similarity,
the LSD system [10] uses machine-learning techniques to match a pair of schemas.
The accuracy of the predictions depends on a suitable training. The predictions of
individual matchers are combined by a so called meta-learner, which weights the
predictions from a matcher according to its accuracy shown during the training
phase; Berlin and Motro [3] devised Automatch system for database schema
matching which also uses machine learning techniques, bases primarily on Bayesian
learning. Automatch acquires probabilistic knowledge from examples of schemas
that have been “mapped” by domain experts into a knowledge base of database
attributes called the attribute dictionary. Then, Automatch uses the attribute
dictionary to find an optimal matching; Melnik et al. [14, 15] used the graph
matching algorithm – Similarity Flooding to achieve schema matching, which can
measure the similarity between vertices of two schemas. The similarity between
pairs of vertices, described by a nonnegative vector, is computed iteratively until
convergence to a fixed point; Bouquet [5] viewed each semantic schema as a
context, and proposed an algorithm based on SAT solver to matching two schemas;
Furthermore, based on [5], Giunchiglia et al. [11] developed S-Match algorithm
which is a schema-based schema/ontology matching system implementing semantic
matching approach. It takes two graph-like structures (e.g., database schemas or
ontologies) as input and returns semantic relations between the nodes of the
graphs that correspond semantically to each other as output. They used five
semantic relations to represent the matching relationships between two elements:
equivalence, more general, less general, mismatch, and overlapping; Miller
proposed a semi-automated mapping tool Clio to obtain mappings between a given
target schema and a new schema [16]. The algorithm regards schema mapping as

IBIS – Interoperability in Business Information Systems

-35- © IBIS – Issue 1 (1), 2006

query discovery, which uses query search method to match the schemas; Do and
Rahm [8] devised the COMA schema matching system. It follows a composite
approach, which provides an extensible library of different matchers and supports
various ways for combining match results. For the details of SMP, we can refer to
two surveys of schema matching [9, 19].
Graphs are versatile representation tools that have been used in schema matching
[13, 14, 15]. In [24], Zhang et al. proposed a meta-meta structure based on
universal algebra, which is named multi-labeled schema. In [25], they use a multi-
labeled graph model as the internal schema model, which is an instance of multi-
labeled schema. As a result, SMP can be reduced to a graph matching problem. The
graph matching problem (i.e., graph homomorphism) is one of the classic
combinatorial optimization problems.
To retrieve similar case in a CBR system, Champin and Solnon [6] proposed a
generic similarity measure model to compare multi-labeled graphs based on
Contrast Model [21]. Contrast Model has been proposed by Tversky, wherein
similarity is determined by matching features of compared entities. Based on their
work, Zhang et al. [25] used the labeled graph similarity model to design a greedy
matching algorithm.
In this paper, we formulize the schema matching problem as a multi-labeled graph
matching problem. Then, we discuss the similarity measure of multi-labeled graph
based on Contrast Model, and propose the best matching result based on features
of two schemas. At last, we design a hybrid search algorithm to solve this
combinational optimization problem.

Multi-labeled Graph Model

Multi-labeled Schema

There are many kinds of schemas, such as relational model, object-oriented model,
ER model, conceptual graph, DTD, XML schema, etc. In [24], Zhang et al. proposed
a meta-meta model of schema: multi-labeled schema, which views schemas as
finite structures over the specific signatures.

Definition 1. (Schema) A schema S is a finite structure over a signature σ ,

consists of individual set SI , label collection SLab , function set SF ,
relation set SR , written a 4-tuples = S S S SS (, , ,)I Lab F R , where,

1. σ is a finite collection that is composed of individual symbols,
label symbols, function symbols, and relation symbols, where, each
function symbol f or relation symbol R, respectively comes associated
with an arity, ar(f) and ar(R), which are non-negative integers.

2. = ⋅ ⋅ ⋅S
1 2{ , , , }nI s s s is a finite nonempty set that includes individuals,

which denote the prepared-matching objects. Each of them is
uniquely identified by an object identifier (OID).

http://www.ibis-journal.net ISSN:1862-6378

 -36-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

3. = ⋅ ⋅ ⋅S S S S
1 2{ , , , }iLab Lab Lab Lab is a finite constant collection that

includes the label sets for individuals. The labels are the strings for
describing the properties of individuals.

4. = ⋅ ⋅ ⋅S S S S
1 2{ , , }jF f f f is a finite set that includes the labeling

functions, which are partial function. The domain of each function is
the individual set, accordingly, the codomain is the label collection.

5. = ⋅ ⋅ ⋅S
1 2{ , , , }kR R R R is a finite nonempty set that includes the

relations between individuals. If R is a b-ary relation, then ⊆ S()bR I .

6. The size of schema S is the size of individuals and is denoted by
S| |I .

Multi-labeled Graph Model

Based on multi-labeled schema, Zhang et al. [25] proposed a multi-labeled graph
model, which is an instance of multi-labeled schema, to describe various schemas,
where each vertex and edge can be associated with a set of labels describing its
properties. Such a multi-labelling could be very useful to describe schemas more
accurately.

Definition 2. A schema S can be represented by a labeled graph structure

= S S
S S SS (, , , ,)V EV E Lab r r .

1. V is the finite set of vertices. Vertices are prepared-matching
objects, and each of them is uniquely identified by an object
identifier (OID).

2. ⊆ ×S S SE V V is the finite set of edges. Each of edges denotes the
relation between two vertices.

3. = S S
S { , }V ELab Lab Lab is the finite constant collection of labels.

The labels are strings for describing the properties of vertices and
edges. SVLab is the finite collection of vertex labels; SELab is the
finite collection of edge labels.

4. ⊆ ×S SV Vr V Lab is a relation associating labels to verteices, i.e., SVr
is the set of couples (,)iv l such that vertex vi is labeled by l. SVr is

called vertex feature of S.

5. ⊆ ×S SE Er E Lab is a relation associating labels to edges, i.e., SEr is
the set E of triples (, ,)i jv v l such that (,)i jv v is labeled by l. SEr is

called edge feature of S.

IBIS – Interoperability in Business Information Systems

-37- © IBIS – Issue 1 (1), 2006

6. = ∪S SS() V Edescr r r is the set of all vertex and edge features of a

schema S that completely describes the schema S.

7. =| |V n is the cardinality of schema S.

In Table 1, we show the correspondences between multi-labeled schema and multi-
labeled graph:

Multi-labeled schema Multi-labeled graph domain codomain
SI SV - -

SLab SLab - -
SR SE - -

→ S
S() Vf V Lab ⊆ ×S S

S
V Vr V Lab SV SVLab

SF
× → S

S S() Ef V V Lab ⊆ × S
S

E Er E Lab ×S SV V SVLab

Table 1. The correspondences between multi-labeled schema and multi-labeled graph

Encode schemas into labeled graphs

Encoding rules

For encoding relational schemas, XML schemas, SQL views, etc. as multi-labeled
graphs, we use the following rules:

1. A vertex of graph represents the prepared matching object of schema. V
is the vertex set that comprises all prepared matching objects of a
schema;

2. The labels of a vertex are composed of properties of a prepared
matching object;

3. An edge represents the relation between two prepared matching objects
of schema. E is the edge set that comprises all relations of schema
(⊆ ×E V V);

4. The labels of one edge comprise properties of two prepared matching
objects, such as is-a, part-of, etc.

Motivating Scenario

The SMP is a critical problem for interoperability in heterogeneous information
sources, which plays a key role in many database applications. In this section, we
introduce a real-life scenario happens in e-business to illustrate our algorithm
framework.

http://www.ibis-journal.net ISSN:1862-6378

 -38-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

<Schema name="Schema S "
xmlns="urn:schemas-microsoft-com:xml-data">
<ElementType name="AccountOwner">

<element type="Name"/>
<element type="Address"/>
<element type="Birthdate"/>
<element type="TaxExempt"/>

</ElementType>
<ElementType name="Address">

<element type="Street"/>
<element type="City"/>
<element type="State"/>
<element type="ZIP"/>

</ElementType>
</Schema>

<Schema name="Schema T "
xmlns="urn:schemas-microsoft-com:xml-data">
<ElementType name="Customer">

<element type="CFname"/>
<element type="CLname"/>
<element type="CAddress"/>

</ElementType>
<ElementType name="CustomerAddress">

<element type="Street"/>
<element type="City"/>
<element type="Province"/>
<element type="PostalCode"/>

</ElementType>
</Schema>

For a multinational company, there are two subsidiary companies locate at
different countries (company A in S area and company B in another T area), and
the companies want to share and interoperate their customers’ information by Web
Service. The XML description schemas are deployed on their own XML web services.
However, the XML schemas used by the company undergoes periodic changes due
to the dynamic nature of its business. If do the schema matching by manual
operate, it is a tiresome and costly work. Moreover, if the company A changes its
customer information database structure, and the XML schema is changed
synchronously, but they do not notice the company B to update its Web Service
correspondingly, under this conditions, if the interoperate wants to carry out
successfully, two web agents have to automatic matching their schemas again, and
need not manual acting. The automatic schema matching can improve the
reliability and usability of Web services. Now, two XML schemas are shown in Fig.1,
which are based on BizTalk Schema specification, where, Schema S is used by

company A, and Schema T is deployed by company B.

Fig. 1 Two XML schemas (BizTalk)

At first, from Fig.1, we can obtain the vertices and edges of two schemas, which
are shown in Fig.2, where, = ⋅ ⋅ ⋅S

1 2 11{ , , , }V s s s , = ⋅ ⋅ ⋅T
1 2 10{ , , , }V t s t .

Fig. 2 Vertices and edges of S and T

Then, by Definition 2, Table 2 shows the labels of vertices. LabV includes the name
set LabVname, the concept set LabVconcept or the type set LabVtype. In the same way,
LabE can include the labels for edges. Here, LabE = {part-of}.

S

s2

s6s5s4s3

s7

s11s10s9s8

s1

T

t2

t5t4t3

t6

t10t9t8t7

t1

IBIS – Interoperability in Business Information Systems

-39- © IBIS – Issue 1 (1), 2006

Labels of schema S Labels of schema T
OID

S
VnameLab S

VconceptLab S
VtypeLab T

VnameLab T
VconceptLab T

VtypeLab

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

Schema S
AccountOwner
Name
Address
Birthdate
TaxExempt
Address
Street
City
State
ZIP

Schema
account + owner
name
address
birthdate
tax-exempt
address
street
city
state
ZIP

Schema
ElementType
element
element
element
element
ElementType
element
element
element
element

Schema T
Customer
CFname
CLname
CAddress
CustomerAddress
Street
City
Province
PostalCode

schema
customer
first name
last name
address
address
street
city
province
postal code

Schema
ElementType
element
element
element
ElementType
element
element
element
element

Table 2. The labels of vertices

Multi-labeled Graph Matching

Schema Matching

The goal of schema matching is to find the semantic correspondences between the
elements of two schemas. We describe SMP informally as follows:

Problem 1. SMP
Instance: Given two schemas = S S

S S SS (, , , ,)V EV E Lab r r and

= T T
T T TT (, , , ,)V EV E Lab r r , S is a source schema, and T is a target schema.

Question: To find the semantic correspondences between vertices in SV and TV .

In [24, 26], Zhang et al. investigated the formal framework for SMP, they proposed
the concept of individual matching: if one or more labels of vertex s in S are

semantically related to corresponding labels of vertex t in T, or the relations of s
and the relations of t are semantically equivalent, then we define that s and t are
matched. Based on the definition of individual matching, they presented an important notion:
multivalent matching.

Multivalent Matching

Multivalent matching: a vertex of one schema may be associated with a set of
vertices of another schema, which can characterize the many-to-many matching
between two schemas [25].

Definition 3. If S is the source schema, T is the target schema, the matching

result of two schemas is a set ⊆ ×m S TV V that contains every
matched couple ∈ ×S T(,)s t V V .

http://www.ibis-journal.net ISSN:1862-6378

 -40-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

The matching couples are called multivalent correspondences, which are binary
relationships that aiming to establish many-to-many correspondences between the
vertices of two schemas.

Matching State and Matching Space

By Definition 3, the matching result can be represent as a relation set m, we
introduce an equivalent concept: matching matrix or matching state to denote the
solution of schema matching.

Definition 4. (Matching Matrix) If S is the source schema, T is the target schema,

where, = ⋅ ⋅⋅S
1 2{ , , , }nV s s s and = ⋅ ⋅⋅T

1 2{ , , , }kV t t t denote vertex

sets of S and T respectively. A matching state m is a kn × 0-1 matrix:

⋅ ⋅ ⋅⎡ ⎤
⋅ ⋅ ⋅⎢ ⎥= ⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥⋅ ⋅ ⋅⎣ ⎦
M M Mm
1, 1 1, 2 1,

2, 1 2,2 2,

, 1 , 2 ,

k

k

n n n k

m m m
m m m

m m m
,

∈

= =S T

, {0, 1},

 | |, | |
i jm

n V k V
 1)

where, =, 1i jm denotes sj and tj are matched and =, 0i jm denotes sj
and tj are unmatched. All the matching couples compose the result of
schema matching.

Given an assignment to a ×S T| | | |V V matrix, we can obtain a possible matching
result of two schemas. All of these matching states constitute the matching space.

Definition 5. (Matching Space) If S is the source schema, T is the target schema,

where, = ⋅ ⋅⋅S
1 2{ , , , }nV s s s and = ⋅ ⋅⋅T

1 2{ , , , }kV t t t denote vertex

sets of S and T respectively. All the assignments of a ×S T| | | |V V
×()n k matrix constitute the matching space M, where,

{ }{ }∈ ⋅ ⋅⋅= ∈ ∈ ⋅ ⋅⋅,
{1, 2, , }: 0, 1 , {1, 2, , }i j

i nm j kM m 2)

The scale of matching space is the number of the matching states:
×=| | 2n kM .

Schema Homomorphism

Zhang et al. [24] prove that: Two schemas S and T are matched iff there exists a

semantic homomorphism from S to T, →S T . In Table 1, we show the
correspondences between multi-labeled schema and multi-labeled graph, here, we
present the definition of schema homomorphism based on the multi-labeled graph:

IBIS – Interoperability in Business Information Systems

-41- © IBIS – Issue 1 (1), 2006

Definition 6. A schema homomorphism (SHOM) ϕ →S T: from the source schema

S to the target schema T is a mapping ϕ →S T:V V , which is a set of
multivalent correspondences such that:

Condition 1. There exists a labeling function symbol f of arity n

ϕ ϕ ϕ⋅ ⋅ ⋅ = ⇒ ⋅ ⋅ ⋅ =S S T S
1 1(, ,) ((), , ()) ()n n n nf s s l f s s l , for ⋅ ⋅ ⋅ ∈ S

1, , ns s V ,
∈S S

nl Lab

Condition 2. There exists a semantic relation symbol R of arity m

ϕ ϕ⋅ ⋅ ⋅ ⇒ ⋅ ⋅ ⋅S T
1 1(, ,) ((), , ())m mR s s holds R s s holds , for ⋅ ⋅ ⋅ ∈ S

1, , ms s V

Because we use the multi-labeled graphs to represent the schemas, the schema
homomorphism problem is reduced to a graph homomorphism problem, also called
the graph matching problem. Now, we formulize SMP as a multi-labeled graph
matching problem, which is a NP-hard problem [2, 6].
Based on SHOM and the multi-labeled graph model, for solving SMP: we will find a
semantic homomorphism between two multi-labeled graphs, the homomorphic
mapping includes the matching correspondences between two graphs S and T. In
the rest sections, we will develop a practical matching algorithm to solve this
intractable problem.

Similarity of Multi-labeled Graphs Based on Contrast Model

There are many methods to compare the similarity of two graphs, such as graph
isomorphism, subgraph isomorphism, graph edit distance, maximum common
subgraph, iterative method [2, 4, 20, 25], etc.
In this paper, we propose the multi-labeled graph as the meta-model for schemas,
so we will study how to achieve schema matching by using the multi-labeled graph
matching method. Champin and Solnon [6] proposed a generic method to measure
the similarity of two directed multi-labeled graphs, which is based on the features
of vertices and edges, i.e., the Contrast Model of Tversky [21]. Based on Contrast
model, we investigate a schema matching approach based on common features
between two multi-labeled graphs.

Similarity Measure: Contrast Model

In [21], Tversky proposed a similarity approach: Contrast Model. In this model,
entities are represented as a collection of features (e.g., object a can be
represented by a feature set A), and similarity between objects a and b can be
computed by:

θ α β= ∩ − − − −(,) () () ()Tverskysim a b f A B f A B f B A 3)

http://www.ibis-journal.net ISSN:1862-6378

 -42-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

The similarity of A to B is expressed as a linear combination of the measure of the
common and distinctive features. The term ∩A B represents the features that
items A and B have in common. −()A B represents the features that A has but B
does not. −()B A represents the features of B that are not in A. θ , α , and β are
weights for the common and distinctive components, and the function f is often
simply assumed to be additive. A feature may be any property, characteristic or
aspect of an object [12]. Fig.3 shows the basic principle of Contrast Model.

g

f

f

e

d
c

s

r

q
op

n

m

l

k

jI
h

v

u

t
s

q

e
t

t

u

Unique to a
common

v
v

Object a A
Object b B

Unique to b

e
c

Fig.3 Representation of two objects that each contains its own unique features and also contains
common features. An important aspect of Tversky's model is that similarity depends not only on
the proportion of features common to the two objects but also on their unique features (i.e., the
differences between two objects). Each letter here represents a feature.

A number of models are similar to Contrast Model in basing similarity on features
and in using some combination of the ∩A B , −()A B , and −()B A , such as Sjoberg
proposes that similarity is defined as ∩ ∪()/ ()f A B f A B , Eisler and Ekmanclaim that
similarity is proportional to ∩ +()/ () ()f A B f A f B , Bush and Mosteller defines
similarity as ∩()/ ()f A B f A . As such, they differ from Contrast Model by applying a
ratio function as opposed to a linear contrast of common and distinctive features
[12]. These three models can all be considered specializations of the general
equation:

α β
∩

=
∪ − − − −

()
(,)

() () ()
Tversky

f A B
sim a b

f A B f A B f B A
 4)

Features of Schema

The features of a schema are composed of all the properties of the schema. In
section 3, we present the meta-model of schemas, i.e., multi-labeled graph model.
A schema can be represented by a graph, where each vertex and edge can be
associated with a set of labels describing its properties. Therefore, the feature set
of a schema is the vertices and edges of schema and the labels of them (From
Definition 2, a schema S is described by the feature set descr(S) of all its vertex

and edge features). For example, we show the feature sets of schema S and T as
follows:

1. Features of S: = S S{ , }V Edescr r r

=SVr {(s1, Schema S), (s1, schema), (s1, Schema);
(s2, AccountOwner), (s2, account + owner), (s2, ElementType);
(s3, AccountOwner.Name), (s3, name), (s3, element);…

IBIS – Interoperability in Business Information Systems

-43- © IBIS – Issue 1 (1), 2006

(s11, Address.ZIP), (s11, ZIP), (s11, element)}
=SEr {(s1, s2, part-of), (s2, s3, part-of), …, (s7, s11, part-of)}

2. Features of T: = T T{ , }V Edescr r r

=TVr {(t1, Schema T), (t1, schema), (t1, Schema);
(t2, Customer), (t2, customer), (t2, ElementType); …
(t10, PostalCode), (t10, postal code), (t10, element)};

=TEr {(t1, t2, part-of), (t2, t3, part-of), …, (t6, t10, part-of)}

Common features with respect to a matching state

Based on Contrast Model, the similarity of two different schemas S and T depends

on both the common features of descr(S) and descr(T). Given a matching state

∈m M, we can calculate the common features of descr(S) and descr(T):

′ ′ ′

∩ =

⎧ ⎫∈ ∃ = ∈⎪ ⎪
⎨ ⎬

∈ ⋅ ⋅⋅ ∈ ⋅ ⋅⋅⎪ ⎪⎩ ⎭
∈ ∃ = ∈⎧ ⎫

∪ ⎨ ⎬
∈ ⋅ ⋅⋅ ∈ ⋅ ⋅⋅⎩ ⎭

∈ ∃ = ∃
∪

&m

S T

T S

S

S T() ()

(,) 1, (,)

{1, 2, , }, {1, 2, , }

(,) 1, (,)

{1, 2, , }, {1, 2, , }

(, ,) 1,

a aj jV V

b ib iV V

c c cj cE

descr descr

s l r m t l r

a n j k

t l r m s l r

b k i n

s s l r m m ′

′ ′ ′ ′

⎧ ⎫= ∈⎪ ⎪
⎨ ⎬′ ′∈ ⋅ ⋅⋅ ≠⎪ ⎪⎩ ⎭

∈ ∃ = ∃ = ∈⎧ ⎫
∪ ⎨ ⎬′ ′∈ ⋅ ⋅⋅ ≠⎩ ⎭

T

T S

1, (, ,)

, {1, 2, , },

(, ,) 1, 1, (, ,)

, {1, 2, , },

j j j E

c c ic i c i iE E

t t l r

c c n c c

t t l r m m s s l r

c c k c c

 5)

Splits with respect to a matching state

For SMP, we allow a vertex of S can be matched with a set of vertex of T,
therefore, if given a multivalent mapping m, we also have to identify the set of
split vertices, i.e., the set of vertices that are mapped to more than one vertex,
each split vertex v being associated with the set pv of its mapped vertices:

{ }
⎧ ⎫∈ ≥
⎪ ⎪= ⎨ ⎬== ∈⎪ ⎪∈ ⋅ ⋅⋅⎩ ⎭
⎧ ⎫∈ ≥
⎪ ⎪

∪ =⎧ ⎫⎨ ⎬
= ∈⎨ ⎬⎪ ⎪∈ ⋅ ⋅⋅⎩ ⎭⎩ ⎭

m

S

T

T

S

,

,

 , 2
() : (,) 1 {1, 2, , }

 , 2

 (,) 1

 {1, 2, , }

s

s s t
s

t

t s t
t

s V p
splits s p mp t V t k

t V p

t p m
p s V

s n

 6)

The more detailed discussions can see [6, 25], and we give an example in section
5.7.2 to explain the reason that we should identify the set of split vertices.

http://www.ibis-journal.net ISSN:1862-6378

 -44-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

Similarity function

By Eq.4, let α = 0 , β = 0 , the similarity of S and T with respect to a matching
state m is defined by:

∩ −
=

∪
m

m
msim S T

S T
S T

(() ()) (())
(,)

(() ())
f descr descr g splits

f descr descr
 7)

where f and g are two functions that are introduced to weigh features and splits,
depending on the desired application.
Indeed, we can design different similarity function to compare two schemas based
on the variants of Contrast Model, i.e., we can obtain the other similarity measures
by Eq.4. Here, f and g are cardinality functions:

= ⋅ + ⋅ + ⋅ + ⋅S S S SS(()) name name concept concept type type EV V V Ef descr w r w r w r w r 8)

′= ⋅m m(()) ()g splits w splits 9)

Finally, the maximal similarity sim(S, T) of two schemas S and T is the greatest
similarity with respect to all possible matching states:

⊆

∩ −
=

∪
msim S T

S T
S T

(() ()) (())
(,) max

(() ())
f descr descr g splits

f descr descr
m

m M
 10)

The denominator)()(TS descrf(descr ∪ of Eq.7 does not depend on the matching
states, which is introduced to normalize the similarity value to the 0-1 range [6].
Hence, to compute the maximum similarity between two graphs S and T, one has
to find the matching state m that maximizes the score function:

= ∩ −S T S T(,) (() ()) (())score f descr descr g splitsm m 11)

The Best Matching State Based on Contrast Model

Based on the similarity principles of Contrast Model, for multi-labeled graph, the
more common features a matching state m has, the better the matching state is.
Therefore, we propose the concept of best matching result:

Definition 7. (The best matching state) Suppose that = S S
S S SS (, , , ,)V EV E Lab r r is

the source schema,),(TT
TTTT EV rr,Lab,E,V= is the target schema,

there exist a best matching state m, such that:

′≥sim simS T S T(,) (,)m m , ∈m M , ′ ∈m M , ′≠m m

where, sim S T(,)m and ′sim S T(,)m can be computed by Eq.7.

In other words, the best matching state is one that maximizes the common features
and minimizes the distinctive features.

IBIS – Interoperability in Business Information Systems

-45- © IBIS – Issue 1 (1), 2006

The algorithmic model of SMP

Based on Eq.10, we have the optimization function for the multi-labeled graph
matching, then, we present the algorithmic model for SMP in Fig. 4. The purpose of
the algorithm is to find the best matching state between two schemas.

Input: Schemas S and T
Object: Find a matching state that maximize the similarity of graph G1 and G2,
 namely, to find the best matching state
Output: The semantic correspondences between S and T
1. G1 = Multi_labeled_Graph(S); G2 = Multi_labeled_Graph (T);
2. Iteratively search the matching space to find a matching state m, such that

similarity(G1,G2)m is the maximum one among the matching states (Eq.10);
3. m is the matching result of G1 and G2.

Fig. 4 Algorithm model of SMP based on Multi-labeled graph matching

Examples

To illustrate the similarity computation, we take a matching state for example. For
two schemas in Fig. 1, based on Fig. 2 and Table 2, we can obtain all the features
of two schemas:

∪ = ∪ ∪ ∪ ∪
∪ ∪ ∪

S T S T S T
S T S T

() () () ()| () ()|
 () ()| () ()|

concept name

type edge

descr descr descr descr descr descr
descr descr descr descr

∪ = + ⋅ + +

= + × + + =

S T(() ()) 4

 21 4 21 21 19 145
V name V concept Vtype Ef descr descr r r r r

,

where, = 4conceptw , = 1namew , = 1typew , = 1Ew .

Remark: For Eq.8, = 4conceptw , because the semantic matching is stronger than
other label matchings [24].
Suppose that there is a mapping state of S and T:

 i.e., m1= {(s1, t1), (s2, t2), (s3, t3), (s3, t4), (s4,

t5), (s7, t6), (s8, t7), (s9, t8), (s10,
t9), (s11, t10)}.

Similarity of Matching State

1. Common Features of Matching State

=1m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

http://www.ibis-journal.net ISSN:1862-6378

 -46-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

At first, we calculate the common features between two schemas based on m1.
a. To compare the name labels of schemas to obtain the name features. There are
many methods to measure similarity of names [7, 13, 19]. For example we use the
Levenshtein distance (i.e., edit distance) to compare the name string of vertices
[7], =1 1(,) 0.875namesim s t . Suppose the threshold of name matching thname = 0.4,

the name common features of descr(S) and descr(T):

∩ =mS T1() ()|namedescr descr {(s1, Schema S), (s2, AccountOwner), (s3,
AccountOwner.Name), (s4, AccountOwner.Address), (s7, Address), (s8,
Address.Street), (s9, Address.City), (t1, Schema T), (t2, Customer), (t3,
Customer.Cfname), (t4, Customer.Clname), (t5, Customer.CAddress) (t6,
CustomerAddress), (t7, CustomerAddress.Street), (t8, CustomerAddress.City)}

b. To obtain the common concept features, we need compare the concept labels of
two vertices. We can use some semantic distances to compare similarity of two
concepts, such as hso, wup, res, lin, and jcn, etc [17]. By wup [22],

=2 2(,) 0.67conceptsim s t . If thconcept = 0.55, for m1, the intersection features of

descr(S) and descr(T):

∩ =mS T1() ()|conceptdescr descr {(s1, schema), (s2, account + owner), (s3, name), (s4,
address), (s7, address), (s8, street), (s9, city), (s10, state), (s11, ZIP), (t1, schema),
(t2, customer), (t3, first name), (t4, last name), (t5, address) (t6, address), (t7,
street), (t8, city), (t9, province), (t10, postal code)}

Unlike the semantic matching method proposed by Giunchiglia et al. [11], our
method based on the structural relations of two concepts in WordNet. The
semantic matching result of two elements is a real value between 0 and 1.

c. The common type features of two schemas:

∩ =mS T1() ()|typedescr descr {(s1, Schema), (s2, ElementType), (s3, element), (s4,

element), (s7, ElementType), (s8, element), (s9, element), (s10, element), (s11,
element), (t1, Schema), (t2, ElementType), (t3, element), (t4, element), (t5,
element) (t6, ElementType), (t7, element), (t8, element), (t9, element), (t10,
element)}

d. The common edge features of descr(S) and descr(T):

∩ =mS T1() ()|edgedescr descr {(s1, s2, part-of), (s2, s3, part-of), (s2, s4, part-of), (s1,
s7, part-of), (s7, s8, part-of), (s7, s9, part-of), (s7, s10, part-of), (s7, s11, part-of),
(t1, t2, part-of), (t2, t3, part-of), (t2, t4, part-of), (t2, t5, part-of), (t1, t6, part-
of), (t6, t7, part-of), (t6, t8, part-of), (t6, t9, part-of), (t6, t10, part-of)}

e. If we use all of the vertex and edge features of schemas together, we can get
the intersection features of descr(S) and descr(T) as follows:

∩ = ∩ ∪ ∩
∪ ∩ ∪ ∩

S T S T S T
S T S T

1 1 1

1 1

() () () ()| () ()|
 () ()| () ()|

concept name

type edge

descr descr descr descr descr descr
descr descr descr descr

m m m

m m

IBIS – Interoperability in Business Information Systems

-47- © IBIS – Issue 1 (1), 2006

∩ = + × + + =S T1(() ()) 15 4 19 19 17 127f descr descrm

2. Splits of Matching State
The matching state m1 has the following splits:

(){ }=1 3 3 4() , { , }splits s t tm = =1(()) | ()| 3g splits splits mm

3. Score and Similarity of Matching State
By Eq.11, the score of S and T based on m1 is:

1243)-(127),(1 ==TS mscore

Then, by Eq.10, the similarity of two schemas S and T based on m1 is:

0.8553)/145-(127),(1 ==TS mSim

Comparison of Two Matching States

Now, we expound the reason why we calculate the splits.
Suppose that we add a matching couple (s7, t5) into m1, then we obtain the
matching state: m2= {(s1, t1), (s2, t2), (s3, t3), (s3, t4), (s4, t5), (s7, t5), (s7, t6), (s8,
t7), (s9, t8), (s10, t9), (s11, t10)}. If we do not consider the splits of m2, the common
features of m2 more than m1:

∩ = + × + + =S T2(() ()) 16 4 20 19 17 132f descr descrm

Therefore, the similarity of m2 is higher than the similarity of m1. However, if we
compute the splits of the matching states, then we get:

() () (){ }=2 3 3 4 7 5 6 5 4 7() , { , } , , { , } , , { , }splits s t t s t t t s sm

0.8489)/145-(132),(1 ==TS mSim

We can see that, although the common features of m2 is greater than m1, the
similarity of m2 is lower than m1, because the splits is greater than m1. In fact, we
have the matching state m1 is better than m2.

Hybrid Search algorithm for Multi-labeled Graph Matching

Complete Search

As we known it, to compute the maximum similarity of labeled graphs, which is
highly combinatorial, and is a NP-hard problem [2, 20]. It can be explored in an
exhaustive way with a “branch and bound” approach, which is an algorithmic
technique to find the optimal solution by keeping the best solution found so far. If
a partial solution cannot improve on the best, it is abandoned. Such a complete
approach is actually tractable if there exists a “good” bounding function that can
detect as soon as possible when a node can be pruned [6], i.e., when the score of

http://www.ibis-journal.net ISSN:1862-6378

 -48-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

all the matching states that can be constructed from the current state is worse
than the best score found so far.
In Definition 5, we present the concept of matching matrix, and all of these
matching matrixes are the matching states that constitute the matching space.
Suppose the current matching state is m, all the matching states m' such that

′ − ≥ 0m m are the potential successors of m, and m' is the superset of m, ′ ⊇m m .
The score function (Eq.11) is not monotonic with respect to set inclusion, i.e., the
score of a mapping may either increase or decrease when one adds a new couple to
it [6]. Indeed, this score is defined as a difference between a function of the
common features and a function of the splits, and both sides of this difference may
increase when adding a couple to a mapping. In [6], Champin and Solnon study the
bounding function, for every matching state m', ′ ⊇m m :

′ ′ ′= ∩ −
≤ ∪ −

S T S T
S T

(,) (() ()) (())
 (() ()) (())
score f descr descr g splits

f descr descr g splits
m m m

m

If ∪ −S T(() ()) (())f descr descr g splits m is smaller or equal to the score of the best
matching state mbest found so far, then the search path can be pruned. In other
words, all the supersets of m will not be explored as their score cannot be higher
than the best score found so far.
Obviously, although the branch and bound approach can find the best matching
state, it is a costly search process. Therefore, we want to find other approximate
methods to solve schema matching. Local search has been applied to solve NP-hard
optimization problems [1, 20, 25]. The principle of local search is to refine a given
initial solution point in the solution space by searching through the neighborhood of
the solution point. However, the performance of local search relies on the initial
state, we need obtain a good initial state for local search. As a result, we first use
a greedy matching algorithm to find a good initial state.

Greedy Matching Algorithm

The greedy strategy is a fundamental technique to solve NP-hard problem [23].
Based on [6], Zhang et al. [25] designed a greedy algorithm to solve SMP:
iteratively picks the couple that most increase the score function and has the
greatest looked-ahead common edge features. The algorithm stops iterating when
every couple neither directly increases the score function nor has looked-ahead
common edge features. Now, we discuss the computation of incremental score and
the greedy strategies in detail.
Here, the functions f and g are the cardinality functions, so we define the
increment of common features as follows:

Δ ∪= ∩ − ∩S T S T(,)(,) (() ()) (() ())i ji j s tdescr s t f descr descr f descr descrm m m 12)

IBIS – Interoperability in Business Information Systems

-49- © IBIS – Issue 1 (1), 2006

Δ

= =

= =

= =

= =

⎧
+ = =⎪

⎪
⎪ + ≥ =
⎪≤ ⎨
⎪ + = ≥
⎪
⎪ + ≥ ≥⎪
⎩

∑ ∑

∑ ∑

∑ ∑

∑ ∑

, ,
1 1

, ,
1 1

, ,
1 1

, ,
1 1

 1, 1

0 2, 1
(,)

0 1, 2

0 0 2, 2

n k

i c i c
c c
n k

i c i c
c c

i j n k

i c i c
c c
n k

i c i c
c c

e e m m

e m m
descr s t

e m m

m m

m 13)

where, e is the number of vertex and edge features (i.e., the number of vertex and
edge labels), = + + +name concept type Ee w w w w . For the example in section 5.7,

= + + + =1 4 1 1 7e . If all the features of si and tj are all matched, the
Δ = +(,)i jdescr s t e e ; If partial of features of si and tj are matched, then
Δ ≤ +(,)i jdescr s t e e .

At the same time, the splits will increase with ∈ ×S T(,)i js t V V enter m. We
evaluate the increment of splits as follows:

Δ = ∪ −m m m(,) (((,))) (())i j i jsplits s t g splits s t g splits 14)

Since g is the cardinality function, we show the evaluation of splits in Eq.15:

Δ

= =

= =

= =

= =

= =

= = =

= = =

= = =
=

> = =

= > =

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

, , ,
1 1

, , ,
1 1

, , ,
1 1

, , ,
1 1

, , ,
1 1

0 1, 1, 1

3 2, 1, 1

3 1, 2, 1
(,)

1 2, 1, 1

1 1, 2, 1

2

k n

i c c j i j
c c
k n

i c c j i j
c c
k n

i c c j i j
c c

i j k n

i c c j i j
c c
k n

i c c j i j
c c

m m m

m m m

m m m
splits s t

m m m

m m m

m

= =

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪ > > =
⎪⎩

∑ ∑, , ,
1 1

 2, 2, 1
k n

i c c j i j
c c

m m m

 15)

Based on Eq.9 and Eq.11, we get the incremental score:

Δ Δ Δ = − ∪(,) (,) ((,))i j i j i jscore s t descr s t splits s tm m m m 16)

As the complete search methods are not feasible, by Eq.16, we can design the
greedy search strategies:

1. The matching candidates are the zero elements in the current matching
state m. If =, 0i jm , and Δ (,)i jscore s tm is the maximum one among the
matching candidates, we will let =, 1i jm , i.e., (,)i js t will enter m.

2. In addition, if there are several matching candidates have the maximum
score value, then we will choose the one which has more potential common
edge features, i.e., _ (,)i jlook ahead s t is the maximal one.

http://www.ibis-journal.net ISSN:1862-6378

 -50-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

= ∈ ∃ ∈ ∈ ∪

∈ ∃ ∈ ∈ ∪

∈ ∃ ∈ ∈

S T

T S

S T

T

S

T

_ (,) {(, ,) | , (, ,) }

 {(, ,) | , (, ,) }

 {(, ,) | , (, ,)

i j i jE E

j iE E

i jE E

look ahead s t s s l r t V t t l r

t t l r s V s s l r

s s l r t V t t l r

∪

∪

∈ ∃ ∈ ∈
− ∩

T S
S

S T{(,)}

}

 {(, ,) | , (, ,) }

 () ()i j

j iE E

m s t

t t l r s V s s l r

descr descr

 17)

The look_ahead means that this matching couple will increase the common
edge features, therefore, we pick the one has the greatest looked-ahead
value.

3. If there are several matching couples both have the maximum score and
look_ahead value, then the algorithm can pick a matching couple randomly
in the matching candidates.

In [25], the authors used an example to present the greedy matching process in
detail.
For this greedy algorithm, the computations of the f function has a polynomial time
complexity of ×S T 2((| | | |))O V V ; g functions has a linear time complexities with
respect to the size of the schemas (Max(| |,| |)O V VS T ; The computation of “look ahead”
sets has a polynomial time complexity of ×S T(| | | |)O V V , and can be computed in
an incremental way [6]. Therefore, the greedy algorithm has a polynomial time
complexity of ×S T 2((| | | |))O V V .
Just as the greedy algorithm of knapsack problem, at each step of search process,
the greedy algorithm only iteratively selects the matching couple which make the
score function is the maximum one. The algorithm only tracks one search path and
do not compare with matching results that obtained by the other search paths.
Therefore, the greedy algorithm is not a complete algorithm. Based on [25], We
design a local search algorithm to improve the matching result.

Local Search for Multi-labeled Graph Matching

Local search is class of effective approximation algorithms for combinatorial
optimization [1], which tries to improve a solution by locally exploring its
neighborhood. The neighbors of m are the mapping states that can be obtained by
adding or removing one couple of vertices to m, ∀ ∈m M . The size of ()N m is

× = ×1
n kC n k .

==

= =

⎧ ⎫⎪ ⎪′ ′ ′ ′= − = − ≤ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ , ,
1 1

() : 1,
j ki n

i j i j
i j

N m mm m m m m M 18)

If we define l elements of current state m can be changed at the same time, then
we obtain the neighborhood:

==

= =

⎧ ⎫⎪ ⎪′ ′ ′ ′= − = − ≤ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ , ,
1 1

() : ,
j ki n

l i j i j
i j

N m m lm m m m m M 19)

IBIS – Interoperability in Business Information Systems

-51- © IBIS – Issue 1 (1), 2006

Therefore, the size of ()lN m is × × ×+ + ⋅ ⋅ ⋅ +1 2 l
n k n k n kC C C . Fig. 5 shows the local search

algorithm, which randomly select a matching couple in ()N m .

function S TLocal_Search(,)
begin

k ← 0;
m ← S TGreedy(,) ;
M ← ()N m ; ←bestm m ;
while (k++ < Max_iteration) do /* search */

if >sim simS T S T(,) (,)bestm m then
best ←m m ;

end if
choose randomly ∈m M ;

← −M M m ;
if = ∅M then return bestm ;

end
return bestm ;

end

Fig. 5 Local Search for Schema Matching

Provided that we want to obtain all the feasible mapping states for users, we can
set a threshold of schema similarity to obtain the matching states which greater
than the given similarity value. For instance, given a matching state m, if

≥S T(,) thm simsim , then m is a possible matching result.

Evaluation of Algorithm

Experimental Design

We have carried out some experiments to evaluate our approach. We tested the
hybrid algorithm on seven samples: Biztalk (Fig. 1), Library (XML) [14], University
(XML) [14], Property Listing (XML) [14], Purchase order (relational & XML) [8],
Financial (XML) [27], Student (XML) [27]. The seven schemas are classified into
three different kinds:

1. matching of XML schemas (Biztalk, Library, Property Listing, Financial,
Student)

2. matching of XML schemas using XML data instances (University)

3. matching of relational schema and XML schemas (Purchase order)

For these samples, Table 3 shows the scales of them, includes the numbers of
vertex, edge, and the depths of schema structure:

http://www.ibis-journal.net ISSN:1862-6378

 -52-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

Scale of S Scale of T
vertex edge depth vertex edge depth

Biztalk 11 10 3 10 9 3
Library 15 14 3 16 15 3
University 10 9 3 7 6 3
Property 12 11 4 13 12 4
Purchase

d
13 12 2 9 8 3

Financial 14 13 3 14 13 5
Student 18 17 4 15 14 6

Table 3 The number of vertex and edge

Parameter Tuning

Because schema matching is a heuristic operation, we should use some meta-
strategies to change the parameters of similarity evaluation function during the
search process. The optimization function (Eq.10) is very important to achieve the
optimal matching result. To obtain the optimal matching results, we should adjust
the functions f and g, i.e., tune different weights of Eq.8 and Eq.9, including the
weight of splits w', the weight of vertex wname, wconcept and wtype, and edge features
wE.
First, for function f, the concept feature has greater weight than name and type
feature. If the concepts of two vertices are matchable, then the matching
probability of two vertices is higher than only name or type matchable. For
example, if = 4conceptw , ′ = 1w , the greedy algorithm will obtain the couples (s3, t3)
and (s3, t4), however, if ≤ 2conceptw , ′ = 1w , the algorithm cannot obtain both (s3, t3)
and (s3, t4), and will obtain (s5, t4). Second, the function g determines the number
of multivalent mappings. The greater weight of g is, the more difficult to obtain
multivalent mapping. For example, if = 4conceptw , ′ = 3w , then the algorithm cannot
obtain many-to-many matching, and will obtain one-to-one mapping result.
By different weights, we obtain a reasonable proportion of functions of f and g,
and then we can obtain the desired multivalent correspondences. Table 4 shows
the weights of f and g that are used in greedy and local search algorithms.

Schema wna wconcept wtype wE w'

Biztalk/Purchase order 1 4 1 1 1

Library/Financial 1 4 2 1 1.5

University/Property 1 4 1 2 1.5

Student 1 4 2 1 1

Table 4. The weights of function f and g

In fact, we only consider the three features of schemas (i.e., name, concept, and
type) in this paper, and in the near future, we can consider the more features of
schemas for matching. Therefore, we should modify the function f and g, and
adjust the weights of different features.

IBIS – Interoperability in Business Information Systems

-53- © IBIS – Issue 1 (1), 2006

The similarity measure of schemas based on Contrast Model and the multi-labeled
graph is an open framework for schema matching. In light of different applications,
we can choose appropriate features to describe schemas and encode these features
as the labels of multi-labeled graph, then, we can use the hybrid matching method
to obtain the desired matching result.

Experimental Results

We evaluate the “accuracy” of the algorithm by counting the number of needed
adjustments, therefore, in this paper, provided that the best matching state of two
schemas is fixed in the matching tests. Under these conditions, the performance of
hybrid search algorithm is very well.
Fig. 6 shows the average Precision of seven matching samples by the hybrid
algorithm, the total average Precision is 87%.

Fig. 6 Average Precision of matching samples by hybrid search

Fig. 7 Average Recall of matching samples by hybrid search

Moreover, the algorithm achieves the total average Recall nearly of 97.2% (See Fig.
7), and total average Overall of 83.6%. Fig. 8 presents average Precision, Recall,
and Overall of samples by the hybrid algorithm.

http://www.ibis-journal.net ISSN:1862-6378

 -54-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

Fig. 8 Average quality of matching samples by hybrid search

The hybrid algorithm has been implemented in Visual C++. Experiment settings: P4
2.4G, 224M DDR RAM. On these tests, the algorithm is very fast and obtains feasible
matching results.
For seven samples, Table 5 shows iteration times and average running time of
greedy algorithm.

 Biztalk Library University Property Purchase order Financial Student

Iteration 12 20 10 21 9 18 25

Time (s) 0.310 0.712 0.045 0.325 0.312 0.452 0.798

Table 5. The average iterations of greedy algorithm

Table 6 shows the total average running times of hybrid algorithm, where, the
maximum iteration of local search is 5000, i.e., Max_iteration = 5000 (see Fig. 5).

 Biztalk Library University Property Purchase order Financial Student

Time (s) 0.680 1.846 0.357 1.003 0.640 1.738 1.873

Table 6. The total average times of hybrid search algorithm

The similarity measure of multi-labeled graph can combine all the properties and
features of two schemas, especially the matching method considers the edge
features between two schemas, therefore, the matching performance is better
than existed prototypes. To compare with Similarity Flooding [14], Automatch [3],
and LSD [10], the average “accurate” is higher than these matching methods. In
particular, for Biztalk, Library, University, and Property Listing, the matching
results are better than Similarity Flooding. In addition, the time cost of our
algorithm is lower than other algorithms.
By the multi-labeled graph matching, the algorithm model can implement not
merely instance-level matching (University), but also schema-level matching
(Biztalk, etc.). Moreover, by our matching method, the users can obtain element-
level n:m matching result. If we tune the parameters of optimization function, the
matching algorithm can obtain different matching results for users.

IBIS – Interoperability in Business Information Systems

-55- © IBIS – Issue 1 (1), 2006

A Comparison between Greedy Matching and Hybrid Search

We use an experiment to compare the performance of greedy matching and hybrid
search. For seven samples in section 7.1, Fig. 9 shows the average Precision, Recall,
and Overall of samples by using greedy matching algorithm. To compare with the
matching result of hybrid algorithm (see Fig. 8), we can see that the quality of
matching results is improved by local search. The comparison graph between
greedy matching and hybrid search is shown in Fig. 10.

Fig. 9 Average quality of matching samples by greedy matching

Fig. 10 Comparison of greedy matching and hybrid search

Comparative Results and Conclusions

Comparative Results

In Table 7, we compare the characteristics of five published matching methods
with our Multi-labeled Graph Matching method.

http://www.ibis-journal.net ISSN:1862-6378

 -56-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

Similarity

Flooding [14]
LSD [10] Cupid [13] COMA [8] S-Match [11]

Multi-labeled
Graph

Matching
Tested schema

types
XML, relational XML XML, relational XML XML XML, relational

Metadata
representation

Directed
labeled graph

XML schema
trees

extended ER DAG tree
Multi-labeled

graph

Match
granularity

element /
structure level

element /
structure level

element /
structure level

element /

structure level
element /

structure level

Match
cardinality

n:m 1:1 1:1 and n:1 1:1 1:1 n:m

Combination of
matchers

hybrid

Composite
matcher with

automatic
combination of
matcher results

hybrid hybrid, composite
semantic
matcher

hybrid

Manual work /
user input

user can adjust
threshold
weights

user-supplied
matches for

training sources;
user can specify

tuning
parameters and

integrity
constraints to

guide selection
of match

candidates

user can adjust
threshold
weights

user-Feedback
matcher to

capture match and
mismatch

information
provided by the
user including

corrected match
results from the
previous match

iteration.

-

user can adjust
weights of
objective
function,

threshold weights,
choose intial

matching
candidates

Schema level
match

syntactic syntactic syntactic syntactic semantic
syntactic /
semantic

Instance level
matchers

syntactic syntactic - - -
syntactic /
semantic

Reuse /
auxiliary

information
used

thesauri,
glossaries

comparison with
training

matches; lookup
for valid domain

values

thesauri,
glossaries

reuse,
thesauri,
glossaries

WordNet,
thesauri,
glossaries

WordNet,
thesauri,
glossaries

Pre-match
effort

-

training,
specifying
domain

synonyms,
constraints

specifying
domain

synonyms

specifying domain
synonyms

WordNet
specifying domain

synonyms,
WordNet

Subjectivity 7 users 1 user 1 user 1 user 1 user 5 users

Application
area

metadata
management

data integration
with pre-defined
global schema

data
translation, but
intended to be

generic

integration of web
data sources, data
warehouse loading
and XML message

mapping

semantic
integration

XML message
mapping,
semantic

integration

Employed
quality

measures
Overall Recall -

Precision, Recall,
Overall

Precision,
Recall,

Overall, F-
measure

Precision, Recall,
Overall

Precision - ~0.8 - 0.93 ~1.0 ~0.87

Recall - 0.8 - 0.89 ~0.88 ~0.97

Overall ~0.6 ~0.6 - 0.82 ~0.88 ~0.83

F-measure ~0.94

Table 7. Characteristics of proposed schema match approaches

Conclusion and Future work

In this paper, we focus on how to formulize SMP as a combinational optimization
problem, and study the approximate matching algorithm to solve this optimization
problem. We show the definition of multi-labeled graph at first. Therefore, we can

IBIS – Interoperability in Business Information Systems

-57- © IBIS – Issue 1 (1), 2006

transform SMP into a multi-labeled graph matching problem. We present a
similarity measure of multi-labeled graph based on Contrast Model, and we propose
the best matching result based on features of two schemas. Then, by the objective
function of multi-labeled graph matching (Eq.10), we discuss the branch and bound
method briefly, which is a complete algorithm for SMP. Because it is a costly
method, we propose a hybrid matching algorithm to solve graph matching problem,
which combine the greedy matching algorithm and local search together. The
experimental results confirm that the hybrid algorithm is effective.
In fact, we mainly use three kinds of label features, i.e., name, concept, type, and
one kind of relation, i.e., part-of. Nevertheless, the other features also can be
labeled to vertices and edges of multi-labeled graph. Our matching method also
solves the extended multi-labeled graph effectively and easily. The multi-labeled
graph model can integrate all of available features of schemas flexibly. Therefore,
at first, we will use all features together to obtain more accurate matching result,
such as data types and value ranges, uniqueness, optionality, relationship types
and cardinalities, etc. Secondly, we will design some meta-heuristic strategies to
tune the weights of functions during the search process. We also can introduce the
fuzzy strategies to adjust the weights of Eq.8 and Eq.9. So we can find a desired
matching state fast and accurately. Thirdly, for large-scale schema matching (XML,
relational schema, etc.), we will design sub-labeled graph matching methods. We
can use schema segmentation to obtain subschemas at first, and then use subgraph
matching algorithms to achieve subschema matching. Moreover, we are going to
design incremental algorithms for large-scale schema matching, and design reuse
framework for schema matching based on CBR model.

Acknowledgment

This work was supported by the National 973 Information Technology and High-Performance
Software Program of China under Grant No.G1998030408.

References

[1] E. Aarts, J. K. Lenstra. Local Search in Combinatorial Optimization. John Wiley & Sons,
Chichester, 1997.

[2] E. Bengoetxea. Inexact Graph Matching Using Estimation of Distribution Algorithms. Ecole
Nationale Supérieure des Télécommunications. 2002, PhD thesis.

[3] J. Berlin, A. Motro, Database Schema Matching Using Machine Learning with Feature
Selection. LNCS 2348: 452-466.

[4] V. Blondel, L. Ninove, P. V. Dooren, Convergence of graph similarity algorithms, Proceedings
of the 23rd Benelux Meeting on Systems and Control, Helvoirt, The Netherlands, paper
FrP06-4, March 17-19, 2004.

[5] P. Bouquet, B. Magnini, L. Serafini, S. Zanobini, A SAT-Based Algorithm for Context Matching.
LNAI 2680: 66-79.

[6] P. A. Champin, C. Solnon. Measuring the similarity of labeled graphs. Springer-Verlag, ICCBR
2003, LNAI 2689: 80–95.

[7] W. W. Cohen, P. Ravikumar, S. E. Fienberg, A Comparison of String Distance Metrics for
Name-Matching Tasks. 2003, IJCAI-03: 3-78.

http://www.ibis-journal.net ISSN:1862-6378

 -58-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

[8] H. H. Do, E. Rahm. COMA - A system for flexible combination of schema matching approaches.
VLDB 2002.

[9] H. H. Do, S. Melnik, E. Rahm. Comparison of schema matching evaluations. LNCS 2693: 221–
237.

[10] A. Doan, P. Domingos, A. Halevy, Learning to Match the Schemas of Data Sources: A
Multistrategy Approach. Machine Learning. Kluwer Academic Publishers, 2003 (60):279-301.

[11] F. Giunchiglia, P. Shvaiko, M. Yatskevich. S-Match: An algorithm and an implementation of
semantic matching. In Proceedings of ESWS'04.

[12] R. L. Goldstone. Similarity. MIT encylopedia of the cognitive sciences. Cambridge, MA: MIT
Press, 763-765.

[13] J. Madhavan, P. A. Bernstein, E. Rahm, Generic Schema Matching with Cupid. 27th VLDB
Conference.

[14] S. Melnik, Generic model management - concepts and algorithms, Springer, 2004, LNCS 2967.
[15] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity Flooding: A Versatile Graph Matching

Algorithm. ICDE 2002.
[16] R. J. Miller, L.M. Haas, M.A. Hernández, Clio: Schema Mapping as Query Discovery. VLDB

2000.
[17] T. Pedersen, S. Patwardhan, S. Patwardhan, WordNet::Similarity - Measuring the Relatedness

of Concepts. Proceedings of the Nineteenth National Conference on Artificial Intelligence,
2004, San Jose, CA.

[18] E. Rahm, P. A. Bernstein, On matching schemas automatically. Microsoft Research, Redmon,
WA. Technical Report MSR-TR-2001-17, 2001.

[19] E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema matching. The VLDB
Journal, 2001(10):334-350.

[20] S. Sorlin, C. Solnon: Reactive Tabu Search for Measuring Graph Similarity. GbRPR 2005: 172-
182.

[21] A. Tversky. Features of similarity. Psychological Review, 84, 327-352.
[22] Z. B. Wu, M. Palmer. Verb semantics and lexical selection. In Proceedings of the 32nd Annual

Meeting of the Association for Computational Linguistics, 1994, 133-138.
[23] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.
[24] Z. Zhang, H. Y. Che, P. F. Shi, Y. Sun, J. Gu. An algebraic framework for schema matching.

WAIM 2005, LNCS 3739.
[25] Z. Zhang, H. Y. Che, P. F. Shi, Y. Sun, J. Gu. Multi-labeled graph matching - An algorithm

model for schema matching. ASIAN'05.
[26] Z. Zhang, H. Y. Che, P. F. Shi, Y. Sun, J. Gu. Schema homomorphism – An algebraic

framework for schema matching. ASIAN'05.
[27] http://www.almaden.ibm.com/software/km/clio/clioxmldemo.shtml

IBIS – Interoperability in Business Information Systems

-59- © IBIS – Issue 1 (1), 2006

Zhi Zhang received the B.S. and M.S. degrees in Mechanical
Engineering from Sichuan University in 1998 and Southwest
Jiaotong University in 2002, respectively. He is currently
working towards the Ph.D. degree in Pattern Recognition and
Intelligent system with Institute of Image Processing and
Pattern Recognition, Shanghai Jiaotong University, China. His
research interests include Metadata Management, Semantic
Interoperability, Information/Data Integration, and
Approximation Algorithm.

Haoyang Che received the B.S. and M.S. degrees in Electrical
Engineering from Beijing Normal University in 1998 and 2001,
respectively. He is currently working towards the Ph.D. degree
in Computer Science with Institute of Software, the Chinese
Academy of Sciences, China. His research interests include trust
management, software engineering, and P2P networks.

Pengfei Shi received the Bachelor’s and Master’s degrees in
electrical engineering from Shanghai Jiao Tong University (SJTU),
Shanghai, China, in 1962 and 1965, respectively. In 1980, he
joined the Institute of Image Processing and Pattern Recognition
(IPPR), SJTU. During the past 23 years, he worked in the area of
image analysis, pattern recognition, and visualization. He has
published more than 80 papers. He is currently the director of
the Institute of IPPR at SJTU and a professor of pattern
recognition and intelligent systems on the Faculty of Electronic
and Information Engineering. He is a senior member of the IEEE.

 Jun Gu received the BS degree in electrical engineering from
the University of Science and Technology of China in 1982 and
the PhD degree in computer science from the University of Utah
in 1989. He has been the associate editor-in-chief of the IEEE
Computer Society Press Editorial Board, an associate editor of
the IEEE Transactions on Knowledge and Data Engineering, the
IEEE Transactions on VLSI Systems, the Journal of Global
Optimization, the Journal of Combinatorial Optimization, and
the Journal of Computer Science and Technology, and is on the

advisory board of International Book Series on Combinatorial Optimization. He was
a chair of the 1995 National Academy of Sciences Information Technology Forum
and was a chair of the 1996 National Science Foundation special event in
celebration of 25 years of research on the satisfiability problem. He is a member of

http://www.ibis-journal.net ISSN:1862-6378

 -60-

IBIS – Issue 1 (1), 2006

 © IBIS – Issue 1 (1), 2006

the ACM, the ISA, the ISTS, the INNS, a senior member of the IEEE, and a life
member of the AAAI.

