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Abstract: Schema matching is the task of finding semantic correspondences between 
elements of two schemas, which plays a key role in many database applications. In this 
paper, we cast the schema matching problem (SMP) into a multi-labeled graph 
matching problem. First, we propose an internal schema model: multi-labeled graph 
model, and transform schemas into multi-labeled graphs. Therefore, SMP reduce to a 
labeled graph matching, which is a classic combinatorial problem. Secondly, we study a 
generic graph similarity measure based on Contrast Model, and propose a versatile 
optimization function to compare two multi-labeled graphs. Then, we can design the 
optimization algorithm to solve the multi-labeled graph matching problem. Based on 
the matching result obtained by greedy matching, we implement a fast hybrid search 
algorithm to find the feasible matching results. Finally, we use several schemas to test 
the hybrid search algorithm. The experimental results confirm that the algorithm 
model and the hybrid algorithm are effective.  

Introduction 

The goal of schema matching is to find semantic correspondences between the 
elements of two schemas. It plays a key role in many database applications such as 
schema integration, data warehousing, e-business, XML message mapping, and 
semantic query processing [19]. However schema matching still remains largely a 
manual, labor-intensive, and expensive process.  
Problem formulation is an extremely important part of problem solving. The choice 
of a good formulation can result in order of magnitude savings in solving cost. In 
this paper, we study how to cast the schema matching problem (SMP) into a multi-
labeled graph matching problem. For multi-labeled graph matching, which is a kind 
of graph matching problems. It is well known that graph matching is a classic 
combinational optimization problem. There are many approaches to deal with 
graph matching problem. Therefore, based on the framework of graph matching, 
we can design heuristic approach to attack schema matching.  
First, we propose a meta-model: multi-labeled graph model, to represent various 
kinds of schemas. We extract the elements of schema as the vertices of a graph, 
and the properties of elements as the labels of vertices, where each vertex and 
edge can be associated with a set of labels describing its properties. For labeled 
graph matching, we want to obtain the correspondences between the vertices of 
two graphs. Therefore, we discuss a generic graph similarity measure based on 
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Contrast Model, and propose an optimization function based on multi-labeled graph 
similarity. Up to now, we transform SMP into a multi-labeled graph matching 
problem which is a classic combinational problem, and develop the algorithmic 
model for SMP. Finally, we implement a hybrid search algorithm to find the 
feasible matching correspondences. 
The paper is organized as follows. Section 2 discusses related work on schema 
matching. Section 3 presents a meta-model of schemas: multi-labeled graph. 
Section 4 introduces the definition of SMP based on multi-labeled graph. We call 
SMP as multivalent matching, which is composed of multivalent correspondences. 
Then, we formulize SMP as a multi-labeled graph matching problem. Section 5 
investigates a generic graph similarity measure based on Contrast Model, and 
proposes an objective function to schema matching. Then, Section 6 studies a 
hybrid search algorithm in detail. In section 7, we use some experiments to 
evaluate our approach. Section 8 makes some concluding remarks and discusses our 
future work. 

Related Work 

Numerous solutions have been proposed in specific applications to solve SMP. 
Madhavan et al. [13, 18] implemented a Cupid system to achieve semi-automatic 
schema matching, which uses a hybrid matching algorithm comprising linguistic and 
structural schema matching techniques, and computes similarity coefficients with 
the assistance of a precompiled thesaurus; Machine learning is a promising 
technique especially for evaluating data instances to predict element similarity, 
the LSD system [10] uses machine-learning techniques to match a pair of schemas. 
The accuracy of the predictions depends on a suitable training. The predictions of 
individual matchers are combined by a so called meta-learner, which weights the 
predictions from a matcher according to its accuracy shown during the training 
phase; Berlin and Motro [3] devised Automatch system for database schema 
matching which also uses machine learning techniques, bases primarily on Bayesian 
learning. Automatch acquires probabilistic knowledge from examples of schemas 
that have been “mapped” by domain experts into a knowledge base of database 
attributes called the attribute dictionary. Then, Automatch uses the attribute 
dictionary to find an optimal matching; Melnik et al. [14, 15] used the graph 
matching algorithm – Similarity Flooding to achieve schema matching, which can 
measure the similarity between vertices of two schemas. The similarity between 
pairs of vertices, described by a nonnegative vector, is computed iteratively until 
convergence to a fixed point; Bouquet [5] viewed each semantic schema as a 
context, and proposed an algorithm based on SAT solver to matching two schemas; 
Furthermore, based on [5], Giunchiglia et al. [11] developed S-Match algorithm 
which is a schema-based schema/ontology matching system implementing semantic 
matching approach. It takes two graph-like structures (e.g., database schemas or 
ontologies) as input and returns semantic relations between the nodes of the 
graphs that correspond semantically to each other as output. They used five 
semantic relations to represent the matching relationships between two elements: 
equivalence, more general, less general, mismatch, and overlapping; Miller 
proposed a semi-automated mapping tool Clio to obtain mappings between a given 
target schema and a new schema [16]. The algorithm regards schema mapping as 
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query discovery, which uses query search method to match the schemas; Do and 
Rahm [8] devised the COMA schema matching system. It follows a composite 
approach, which provides an extensible library of different matchers and supports 
various ways for combining match results. For the details of SMP, we can refer to 
two surveys of schema matching [9, 19]. 
Graphs are versatile representation tools that have been used in schema matching 
[13, 14, 15]. In [24], Zhang et al. proposed a meta-meta structure based on 
universal algebra, which is named multi-labeled schema. In [25], they use a multi-
labeled graph model as the internal schema model, which is an instance of multi-
labeled schema. As a result, SMP can be reduced to a graph matching problem. The 
graph matching problem (i.e., graph homomorphism) is one of the classic 
combinatorial optimization problems. 
To retrieve similar case in a CBR system, Champin and Solnon [6] proposed a 
generic similarity measure model to compare multi-labeled graphs based on 
Contrast Model [21]. Contrast Model has been proposed by Tversky, wherein 
similarity is determined by matching features of compared entities. Based on their 
work, Zhang et al. [25] used the labeled graph similarity model to design a greedy 
matching algorithm. 
In this paper, we formulize the schema matching problem as a multi-labeled graph 
matching problem. Then, we discuss the similarity measure of multi-labeled graph 
based on Contrast Model, and propose the best matching result based on features 
of two schemas. At last, we design a hybrid search algorithm to solve this 
combinational optimization problem. 

Multi-labeled Graph Model 

Multi-labeled Schema 

There are many kinds of schemas, such as relational model, object-oriented model, 
ER model, conceptual graph, DTD, XML schema, etc. In [24], Zhang et al. proposed 
a meta-meta model of schema: multi-labeled schema, which views schemas as 
finite structures over the specific signatures.  

Definition 1. (Schema) A schema S is a finite structure over a signature σ , 

consists of individual set SI , label collection SLab , function set SF , 
relation set SR , written a 4-tuples = S S S SS ( , , , )I Lab F R , where, 

1. σ  is a finite collection that is composed of individual symbols, 
label symbols, function symbols, and relation symbols, where, each 
function symbol f or relation symbol R, respectively comes associated 
with an arity, ar(f) and ar(R), which are non-negative integers. 

2. = ⋅ ⋅ ⋅S
1 2{ , , , }nI s s s  is a finite nonempty set that includes individuals, 

which denote the prepared-matching objects. Each of them is 
uniquely identified by an object identifier (OID).  
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3. = ⋅ ⋅ ⋅S S S S
1 2{ , , , }iLab Lab Lab Lab  is a finite constant collection that 

includes the label sets for individuals. The labels are the strings for 
describing the properties of individuals.  

4. = ⋅ ⋅ ⋅S S S S
1 2{ , , }jF f f f  is a finite set that includes the labeling 

functions, which are partial function. The domain of each function is 
the individual set, accordingly, the codomain is the label collection.  

5. = ⋅ ⋅ ⋅S
1 2{ , , , }kR R R R  is a finite nonempty set that includes the 

relations between individuals. If R is a b-ary relation, then ⊆ S( )bR I .  

6. The size of schema S is the size of individuals and is denoted by 
S| |I .  

Multi-labeled Graph Model 

Based on multi-labeled schema, Zhang et al. [25] proposed a multi-labeled graph 
model, which is an instance of multi-labeled schema, to describe various schemas, 
where each vertex and edge can be associated with a set of labels describing its 
properties. Such a multi-labelling could be very useful to describe schemas more 
accurately. 

Definition 2. A schema S can be represented by a labeled graph structure 

= S S
S S SS ( , , , , )V EV E Lab r r . 

1. V is the finite set of vertices. Vertices are prepared-matching 
objects, and each of them is uniquely identified by an object 
identifier (OID). 

2. ⊆ ×S S SE V V  is the finite set of edges. Each of edges denotes the 
relation between two vertices. 

3. = S S
S { , }V ELab Lab Lab  is the finite constant collection of labels. 

The labels are strings for describing the properties of vertices and 
edges. SVLab  is the finite collection of vertex labels; SELab  is the 
finite collection of edge labels.  

4. ⊆ ×S SV Vr V Lab is a relation associating labels to verteices, i.e., SVr  
is the set of couples ( , )iv l  such that vertex vi is labeled by l. SVr  is 

called vertex feature of S. 

5. ⊆ ×S SE Er E Lab  is a relation associating labels to edges, i.e., SEr  is 
the set E of triples ( , , )i jv v l  such that ( , )i jv v  is labeled by l. SEr  is 

called edge feature of S. 
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6. = ∪S SS( ) V Edescr r r  is the set of all vertex and edge features of a 

schema S that completely describes the schema S. 

7. =| |V n  is the cardinality of schema S.  

 
In Table 1, we show the correspondences between multi-labeled schema and multi-
labeled graph: 
 

Multi-labeled schema Multi-labeled graph domain codomain 
SI  SV  - - 

SLab  SLab  - - 
SR  SE  - - 

→ S
S( ) Vf V Lab  ⊆ ×S S

S
V Vr V Lab  SV  SVLab  

SF  
× → S

S S( ) Ef V V Lab ⊆ × S
S

E Er E Lab  ×S SV V  SVLab  

Table 1. The correspondences between multi-labeled schema and multi-labeled graph 

Encode schemas into labeled graphs 

Encoding rules 

For encoding relational schemas, XML schemas, SQL views, etc. as multi-labeled 
graphs, we use the following rules: 

1. A vertex of graph represents the prepared matching object of schema. V 
is the vertex set that comprises all prepared matching objects of a 
schema;  

2. The labels of a vertex are composed of properties of a prepared 
matching object;  

3. An edge represents the relation between two prepared matching objects 
of schema. E is the edge set that comprises all relations of schema 
( ⊆ ×E V V ); 

4. The labels of one edge comprise properties of two prepared matching 
objects, such as is-a, part-of, etc.  

Motivating Scenario 

The SMP is a critical problem for interoperability in heterogeneous information 
sources, which plays a key role in many database applications. In this section, we 
introduce a real-life scenario happens in e-business to illustrate our algorithm 
framework.  
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<Schema name="Schema S "  
xmlns="urn:schemas-microsoft-com:xml-data"> 
<ElementType name="AccountOwner"> 

<element type="Name"/> 
<element type="Address"/> 
<element type="Birthdate"/> 
<element type="TaxExempt"/> 

</ElementType> 
<ElementType name="Address"> 

<element type="Street"/> 
<element type="City"/> 
<element type="State"/> 
<element type="ZIP"/> 

</ElementType> 
</Schema> 

<Schema name="Schema T " 
xmlns="urn:schemas-microsoft-com:xml-data"> 
<ElementType name="Customer"> 

<element type="CFname"/> 
<element type="CLname"/> 
<element type="CAddress"/> 

</ElementType> 
<ElementType name="CustomerAddress"> 

<element type="Street"/> 
<element type="City"/> 
<element type="Province"/> 
<element type="PostalCode"/> 

</ElementType> 
</Schema> 

For a multinational company, there are two subsidiary companies locate at 
different countries (company A in S area and company B in another T area), and 
the companies want to share and interoperate their customers’ information by Web 
Service. The XML description schemas are deployed on their own XML web services. 
However, the XML schemas used by the company undergoes periodic changes due 
to the dynamic nature of its business. If do the schema matching by manual 
operate, it is a tiresome and costly work. Moreover, if the company A changes its 
customer information database structure, and the XML schema is changed 
synchronously, but they do not notice the company B to update its Web Service 
correspondingly, under this conditions, if the interoperate wants to carry out 
successfully, two web agents have to automatic matching their schemas again, and 
need not manual acting. The automatic schema matching can improve the 
reliability and usability of Web services. Now, two XML schemas are shown in Fig.1, 
which are based on BizTalk Schema specification, where, Schema S is used by 

company A, and Schema T is deployed by company B. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Two XML schemas (BizTalk) 

 
At first, from Fig.1, we can obtain the vertices and edges of two schemas, which 
are shown in Fig.2, where, = ⋅ ⋅ ⋅S

1 2 11{ , ,  , }V s s s , = ⋅ ⋅ ⋅T
1 2 10{ , ,  , }V t s t .  

 
 
 
 
 
 
 

Fig. 2  Vertices and edges of S and T 

 
Then, by Definition 2, Table 2 shows the labels of vertices. LabV includes the name 
set LabVname, the concept set LabVconcept or the type set LabVtype. In the same way, 
LabE can include the labels for edges. Here, LabE = {part-of}. 
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Labels of schema S  Labels of schema T 
OID 

S
VnameLab  S

VconceptLab  S
VtypeLab  T

VnameLab  T
VconceptLab  T

VtypeLab  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 

Schema S 
AccountOwner 
Name 
Address 
Birthdate 
TaxExempt 
Address 
Street 
City 
State 
ZIP 

Schema 
account + owner 
name 
address 
birthdate 
tax-exempt 
address 
street 
city 
state 
ZIP 

Schema 
ElementType 
element 
element 
element 
element 
ElementType 
element 
element 
element 
element 

Schema T 
Customer 
CFname 
CLname 
CAddress 
CustomerAddress 
Street 
City 
Province 
PostalCode 

schema 
customer 
first name 
last name 
address 
address 
street 
city 
province 
postal code 

Schema 
ElementType 
element 
element 
element 
ElementType 
element 
element 
element 
element 

Table 2. The labels of vertices 

Multi-labeled Graph Matching 

Schema Matching 

The goal of schema matching is to find the semantic correspondences between the 
elements of two schemas. We describe SMP informally as follows: 
 
Problem 1. SMP 
Instance: Given two schemas = S S

S S SS ( , , , , )V EV E Lab r r  and 

= T T
T T TT ( , , , , )V EV E Lab r r , S is a source schema, and T is a target schema. 

Question: To find the semantic correspondences between vertices in SV  and TV . 
 
In [24, 26], Zhang et al. investigated the formal framework for SMP, they proposed 
the concept of individual matching: if one or more labels of vertex s in S are 

semantically related to corresponding labels of vertex t in T, or the relations of s 
and the relations of t are semantically equivalent, then we define that s and t are 
matched. Based on the definition of individual matching, they presented an important notion: 
multivalent matching. 

Multivalent Matching 

Multivalent matching: a vertex of one schema may be associated with a set of 
vertices of another schema, which can characterize the many-to-many matching 
between two schemas [25]. 

Definition 3. If S is the source schema, T  is the target schema, the matching 

result of two schemas is a set ⊆ ×m S TV V  that contains every 
matched couple ∈ ×S T( , )s t V V .  
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The matching couples are called multivalent correspondences, which are binary 
relationships that aiming to establish many-to-many correspondences between the 
vertices of two schemas.  

Matching State and Matching Space 

By Definition 3, the matching result can be represent as a relation set m, we 
introduce an equivalent concept: matching matrix or matching state to denote the 
solution of schema matching. 

Definition 4. (Matching Matrix) If S is the source schema, T is the target schema, 

where, = ⋅ ⋅⋅S
1 2{ , , , }nV s s s  and = ⋅ ⋅⋅T

1 2{ , , , }kV t t t  denote vertex 

sets of S and T respectively. A matching state m is a kn ×  0-1 matrix: 

⋅ ⋅ ⋅⎡ ⎤
⋅ ⋅ ⋅⎢ ⎥= ⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥⋅ ⋅ ⋅⎣ ⎦
M M Mm
1, 1 1, 2 1, 

2, 1 2,2 2, 

, 1 , 2 , 

k

k

n n n k

m m m
m m m

m m m
, 

∈

= =S T

,  {0, 1},

 | |, | |
i jm

n V k V
                  1) 

where, =, 1i jm  denotes sj and tj are matched and =, 0i jm  denotes sj 
and tj are unmatched. All the matching couples compose the result of 
schema matching. 

Given an assignment to a ×S T| | | |V V  matrix, we can obtain a possible matching 
result of two schemas. All of these matching states constitute the matching space. 

Definition 5. (Matching Space) If S is the source schema, T is the target schema, 

where, = ⋅ ⋅⋅S
1 2{ , , , }nV s s s  and = ⋅ ⋅⋅T

1 2{ , , , }kV t t t  denote vertex 

sets of S and T respectively. All the assignments of a ×S T| | | |V V  
×( )n k  matrix constitute the matching space M, where,  

{ }{ }∈ ⋅ ⋅⋅= ∈ ∈ ⋅ ⋅⋅, 
{1, 2, , }:   0, 1 , {1, 2, , }i j

i nm j kM m                             2) 

The scale of matching space is the number of the matching states: 
×=| | 2n kM . 

Schema Homomorphism 

Zhang et al. [24] prove that: Two schemas S and T are matched iff there exists a 

semantic homomorphism from S to T, →S T . In Table 1, we show the 
correspondences between multi-labeled schema and multi-labeled graph, here, we 
present the definition of schema homomorphism based on the multi-labeled graph: 
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Definition 6.  A schema homomorphism (SHOM) ϕ →S T:  from the source schema 

S to the target schema T is a mapping ϕ →S T:V V , which is a set of 
multivalent correspondences such that:  

Condition 1. There exists a labeling function symbol f of arity n 

ϕ ϕ ϕ⋅ ⋅ ⋅ = ⇒ ⋅ ⋅ ⋅ =S S T S
1 1( , , ) ( ( ), , ( )) ( )n n n nf s s l f s s l ,  for ⋅ ⋅ ⋅ ∈ S

1, ,  ns s V , 
∈S S

nl Lab  

Condition 2. There exists a semantic relation symbol R of arity m  

ϕ ϕ⋅ ⋅ ⋅ ⇒ ⋅ ⋅ ⋅S T
1 1( , , ) ( ( ), , ( ))m mR s s  holds R s s  holds ,  for ⋅ ⋅ ⋅ ∈ S

1, ,  ms s V  

Because we use the multi-labeled graphs to represent the schemas, the schema 
homomorphism problem is reduced to a graph homomorphism problem, also called 
the graph matching problem. Now, we formulize SMP as a multi-labeled graph 
matching problem, which is a NP-hard problem [2, 6]. 
Based on SHOM and the multi-labeled graph model, for solving SMP: we will find a 
semantic homomorphism between two multi-labeled graphs, the homomorphic 
mapping includes the matching correspondences between two graphs S and T. In 
the rest sections, we will develop a practical matching algorithm to solve this 
intractable problem. 

Similarity of Multi-labeled Graphs Based on Contrast Model 

There are many methods to compare the similarity of two graphs, such as graph 
isomorphism, subgraph isomorphism, graph edit distance, maximum common 
subgraph, iterative method [2, 4, 20, 25], etc.  
In this paper, we propose the multi-labeled graph as the meta-model for schemas, 
so we will study how to achieve schema matching by using the multi-labeled graph 
matching method. Champin and Solnon [6] proposed a generic method to measure 
the similarity of two directed multi-labeled graphs, which is based on the features 
of vertices and edges, i.e., the Contrast Model of Tversky [21]. Based on Contrast 
model, we investigate a schema matching approach based on common features 
between two multi-labeled graphs. 

Similarity Measure: Contrast Model 

In [21], Tversky proposed a similarity approach: Contrast Model. In this model, 
entities are represented as a collection of features (e.g., object a can be 
represented by a feature set A), and similarity between objects a and b can be 
computed by: 

θ α β= ∩ − − − −( , ) ( ) ( ) ( )Tverskysim a b f A B f A B f B A                         3) 
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The similarity of A to B is expressed as a linear combination of the measure of the 
common and distinctive features. The term ∩A B  represents the features that 
items A and B have in common. −( )A B  represents the features that A has but B 
does not. −( )B A  represents the features of B that are not in A. θ , α , and β  are 
weights for the common and distinctive components, and the function f is often 
simply assumed to be additive. A feature may be any property, characteristic or 
aspect of an object [12]. Fig.3 shows the basic principle of Contrast Model. 
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Fig.3 Representation of two objects that each contains its own unique features and also contains 
common features. An important aspect of Tversky's model is that similarity depends not only on 
the proportion of features common to the two objects but also on their unique features (i.e., the 
differences between two objects). Each letter here represents a feature.  

 

A number of models are similar to Contrast Model in basing similarity on features 
and in using some combination of the ∩A B , −( )A B , and −( )B A , such as Sjoberg 
proposes that similarity is defined as ∩ ∪( )/ ( )f A B f A B , Eisler and Ekmanclaim that 
similarity is proportional to ∩ +( )/ ( ) ( )f A B f A f B , Bush and Mosteller defines 
similarity as ∩( )/ ( )f A B f A . As such, they differ from Contrast Model by applying a 
ratio function as opposed to a linear contrast of common and distinctive features 
[12]. These three models can all be considered specializations of the general 
equation: 

α β
∩

=
∪ − − − −

( )
( , )

( ) ( ) ( )
Tversky

f A B
sim a b

f A B f A B f B A
                        4) 

Features of Schema 

The features of a schema are composed of all the properties of the schema. In 
section 3, we present the meta-model of schemas, i.e., multi-labeled graph model. 
A schema can be represented by a graph, where each vertex and edge can be 
associated with a set of labels describing its properties. Therefore, the feature set 
of a schema is the vertices and edges of schema and the labels of them (From 
Definition 2, a schema S is described by the feature set descr(S) of all its vertex 

and edge features). For example, we show the feature sets of schema S and T as 
follows: 

1. Features of S: = S S{ , }V Edescr r r  

=SVr {(s1, Schema S), (s1, schema), (s1, Schema); 
(s2, AccountOwner), (s2, account + owner), (s2, ElementType);  
(s3, AccountOwner.Name), (s3, name), (s3, element);… 
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(s11, Address.ZIP), (s11, ZIP), (s11, element)} 
=SEr {(s1, s2, part-of), (s2, s3, part-of), …, (s7, s11, part-of)} 

2. Features of T: = T T{ , }V Edescr r r  

=TVr {(t1, Schema T ), (t1, schema), (t1, Schema);  
(t2, Customer), (t2, customer), (t2, ElementType); … 
(t10, PostalCode), (t10, postal code), (t10, element)};    

=TEr {(t1, t2, part-of), (t2, t3, part-of), …, (t6, t10, part-of)} 

Common features with respect to a matching state 

Based on Contrast Model, the similarity of two different schemas S and T depends 

on both the common features of descr(S) and descr(T ). Given a matching state 

∈m M, we can calculate the common features of descr(S) and descr(T ): 

′ ′ ′

∩ =

⎧ ⎫∈ ∃ = ∈⎪ ⎪
⎨ ⎬

∈ ⋅ ⋅⋅ ∈ ⋅ ⋅⋅⎪ ⎪⎩ ⎭
∈ ∃ = ∈⎧ ⎫

∪ ⎨ ⎬
∈ ⋅ ⋅⋅ ∈ ⋅ ⋅⋅⎩ ⎭

∈ ∃ = ∃
∪

&m

S T

T S

S

S T( ) ( )

( , ) 1, ( , )  
     

{1, 2, , }, {1, 2, , } 

( , ) 1, ( , )  
 

{1, 2, , },  {1, 2, , }

( , , ) 1, 
 

a aj jV V

b ib iV V

c c cj cE

descr descr

s l r m t l r

a n j k

t l r m s l r

b k i n

s s l r m m ′

′ ′ ′ ′

⎧ ⎫= ∈⎪ ⎪
⎨ ⎬′ ′∈ ⋅ ⋅⋅ ≠⎪ ⎪⎩ ⎭

∈ ∃ = ∃ = ∈⎧ ⎫
∪ ⎨ ⎬′ ′∈ ⋅ ⋅⋅ ≠⎩ ⎭

T

T S

1, ( , , )

, {1, 2, , }, 

( , , ) 1, 1, ( , , )
 

, {1, 2, , }, 

j j j E
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c c n c c

t t l r m m s s l r

c c k c c

                     5) 

Splits with respect to a matching state 

For SMP, we allow a vertex of S can be matched with a set of vertex of T, 
therefore, if given a multivalent mapping m, we also have to identify the set of 
split vertices, i.e., the set of vertices that are mapped to more than one vertex, 
each split vertex v being associated with the set pv of its mapped vertices:  

{ }
⎧ ⎫∈ ≥
⎪ ⎪= ⎨ ⎬== ∈⎪ ⎪∈ ⋅ ⋅⋅⎩ ⎭
⎧ ⎫∈ ≥
⎪ ⎪

∪ =⎧ ⎫⎨ ⎬
= ∈⎨ ⎬⎪ ⎪∈ ⋅ ⋅⋅⎩ ⎭⎩ ⎭

m

S

T

T

S

,

,

 , 2 
( ) : ( , ) 1              {1, 2, , }

 , 2

              ( , )  1
 

 {1, 2, , }

s

s s t
s

t

t s t
t

s V p
splits s p mp t V t k

t V p

t p m
p s V

s n

                      6) 

The more detailed discussions can see [6, 25], and we give an example in section 
5.7.2 to explain the reason that we should identify the set of split vertices. 
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Similarity function 

By Eq.4, let α = 0 , β = 0 , the similarity of S and T with respect to a matching 
state m is defined by: 

∩ −
=

∪
m

m
msim S T

S T
S T

( ( ) ( )) ( ( ))
( , )

( ( ) ( ))
f descr descr g splits

f descr descr
                                7) 

where f and g are two functions that are introduced to weigh features and splits, 
depending on the desired application.  
Indeed, we can design different similarity function to compare two schemas based 
on the variants of Contrast Model, i.e., we can obtain the other similarity measures 
by Eq.4. Here, f and g are cardinality functions:  

= ⋅ + ⋅ + ⋅ + ⋅S S S SS( ( )) name name concept concept type type EV V V Ef descr w r w r w r w r       8) 

′= ⋅m m( ( )) ( )g splits w splits                                                                      9) 

Finally, the maximal similarity sim(S, T ) of two schemas S and T is the greatest 
similarity with respect to all possible matching states: 

⊆

∩ −
=

∪
msim S T

S T
S T

( ( ) ( )) ( ( ))
( , ) max

( ( ) ( ))
f descr descr g splits

f descr descr
m

m M
                           10) 

The denominator )()( TS descrf(descr ∪  of Eq.7 does not depend on the matching 
states, which is introduced to normalize the similarity value to the 0-1 range [6]. 
Hence, to compute the maximum similarity between two graphs S and T, one has 
to find the matching state m that maximizes the score function: 

= ∩ −S T S T( , ) ( ( ) ( )) ( ( ))score f descr descr g splitsm m                               11) 

The Best Matching State Based on Contrast Model 

Based on the similarity principles of Contrast Model, for multi-labeled graph, the 
more common features a matching state m has, the better the matching state is. 
Therefore, we propose the concept of best matching result: 

Definition 7. (The best matching state) Suppose that = S S
S S SS ( , , , , )V EV E Lab r r  is 

the source schema, ),( TT
TTTT EV rr,Lab,E,V=  is the target schema, 

there exist a best matching state m, such that: 

′≥sim simS T S T( , ) ( , )m m , ∈m M , ′ ∈m M , ′≠m m  

where, sim S T( , )m  and ′sim S T( , )m  can be computed by Eq.7. 

In other words, the best matching state is one that maximizes the common features 
and minimizes the distinctive features. 
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The algorithmic model of SMP 

Based on Eq.10, we have the optimization function for the multi-labeled graph 
matching, then, we present the algorithmic model for SMP in Fig. 4. The purpose of 
the algorithm is to find the best matching state between two schemas. 
 
 

Input: Schemas S and T 
Object: Find a matching state that maximize the similarity of graph G1 and G2, 
       namely, to find the best matching state 
Output: The semantic correspondences between S and T 
1. G1 = Multi_labeled_Graph(S ); G2 = Multi_labeled_Graph (T ); 
2. Iteratively search the matching space to find a matching state m, such that 

similarity(G1,G2)m is the maximum one among the matching states (Eq.10); 
3. m is the matching result of G1 and G2. 

Fig. 4  Algorithm model of SMP based on Multi-labeled graph matching 

 

Examples 

To illustrate the similarity computation, we take a matching state for example. For 
two schemas in Fig. 1, based on Fig. 2 and Table 2, we can obtain all the features 
of two schemas:  

∪ = ∪ ∪ ∪ ∪
∪ ∪ ∪

S T S T S T
S T S T

( ) ( ) ( ) ( )| ( ) ( )|
                               ( ) ( )| ( ) ( )|

concept name

type edge

descr descr descr descr descr descr
descr descr descr descr

 

∪ = + ⋅ + +

= + × + + =

S T( ( ) ( )) 4

                               21 4 21 21 19 145
V name V concept Vtype Ef descr descr r r r r

,  

where, = 4conceptw , = 1namew , = 1typew , = 1Ew .  

Remark: For Eq.8, = 4conceptw , because the semantic matching is stronger than 
other label matchings [24]. 
Suppose that there is a mapping state of S and T: 

 
 
 
                                                       i.e., m1= {(s1, t1), (s2, t2), (s3, t3), (s3, t4), (s4, 

t5), (s7, t6), (s8, t7), (s9, t8), (s10, 
t9), (s11, t10)}. 

 
 
 

Similarity of Matching State 

1. Common Features of Matching State 

=1m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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At first, we calculate the common features between two schemas based on m1.  
a. To compare the name labels of schemas to obtain the name features. There are 
many methods to measure similarity of names [7, 13, 19]. For example we use the 
Levenshtein distance (i.e., edit distance) to compare the name string of vertices 
[7], =1 1( ,  ) 0.875namesim s t . Suppose the threshold of name matching thname = 0.4, 

the name common features of descr(S ) and descr(T ): 
 

∩ =mS T1( ) ( )|namedescr descr {(s1, Schema S), (s2, AccountOwner), (s3, 
AccountOwner.Name), (s4, AccountOwner.Address), (s7, Address), (s8, 
Address.Street), (s9, Address.City), (t1, Schema T), (t2, Customer), (t3, 
Customer.Cfname), (t4, Customer.Clname), (t5, Customer.CAddress) (t6, 
CustomerAddress), (t7, CustomerAddress.Street), (t8, CustomerAddress.City)}  

 
b. To obtain the common concept features, we need compare the concept labels of 
two vertices. We can use some semantic distances to compare similarity of two 
concepts, such as hso, wup, res, lin, and jcn, etc [17]. By wup [22], 

=2 2( , ) 0.67conceptsim s t . If thconcept = 0.55, for m1, the intersection features of 

descr(S) and descr(T ): 
 

∩ =mS T1( ) ( )|conceptdescr descr {(s1, schema), (s2, account + owner), (s3, name), (s4, 
address), (s7, address), (s8, street), (s9, city), (s10, state), (s11, ZIP), (t1, schema), 
(t2, customer), (t3, first name), (t4, last name), (t5, address) (t6, address), (t7, 
street), (t8, city), (t9, province), (t10, postal code)}  
 

Unlike the semantic matching method proposed by Giunchiglia et al. [11], our 
method based on the structural relations of two concepts in WordNet. The 
semantic matching result of two elements is a real value between 0 and 1. 

 
c. The common type features of two schemas:  

 
∩ =mS T1( ) ( )|typedescr descr {(s1, Schema), (s2, ElementType), (s3, element), (s4, 

element), (s7, ElementType), (s8, element), (s9, element), (s10, element), (s11, 
element), (t1, Schema), (t2, ElementType), (t3, element), (t4, element), (t5, 
element) (t6, ElementType), (t7, element), (t8, element), (t9, element), (t10, 
element)} 
 

d. The common edge features of descr(S) and descr(T ): 
 

∩ =mS T1( ) ( )|edgedescr descr {(s1, s2, part-of), (s2, s3, part-of), (s2, s4, part-of), (s1, 
s7, part-of),  (s7, s8, part-of), (s7, s9, part-of), (s7, s10, part-of), (s7, s11, part-of), 
(t1, t2, part-of), (t2, t3, part-of), (t2, t4, part-of), (t2, t5, part-of), (t1, t6, part-
of), (t6, t7, part-of), (t6, t8, part-of), (t6, t9, part-of), (t6, t10, part-of)} 
 

e. If we use all of the vertex and edge features of schemas together, we can get 
the intersection features of descr(S) and descr(T ) as follows: 

∩ = ∩ ∪ ∩
∪ ∩ ∪ ∩

S T S T S T
S T S T

1 1 1

1 1

( ) ( ) ( ) ( )|  ( ) ( )|
                                 ( ) ( )|  ( ) ( )|

concept name

type edge

descr descr descr descr descr descr
descr descr descr descr

m m m

m m
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∩ = + × + + =S T1( ( ) ( )) 15 4 19 19 17 127f descr descrm   

2. Splits of Matching State 
The matching state m1 has the following splits: 

( ){ }=1 3 3 4( ) , { , }splits s t tm  = =1( ( )) | ( )| 3g splits splits mm  

3. Score and Similarity of Matching State 
By Eq.11, the score of S and T based on m1 is: 

1243)-(127),(1 ==TS  mscore  

Then, by Eq.10, the similarity of two schemas S and T based on m1 is: 

0.8553)/145-(127),(1 ==TS  mSim  

Comparison of Two Matching States 

Now, we expound the reason why we calculate the splits. 
Suppose that we add a matching couple (s7, t5) into m1, then we obtain the 
matching state: m2= {(s1, t1), (s2, t2), (s3, t3), (s3, t4), (s4, t5), (s7, t5), (s7, t6), (s8, 
t7), (s9, t8), (s10, t9), (s11, t10)}. If we do not consider the splits of m2, the common 
features of m2 more than m1: 

∩ = + × + + =S T2( ( ) ( )) 16 4 20 19 17 132f descr descrm  

Therefore, the similarity of m2 is higher than the similarity of m1. However, if we 
compute the splits of the matching states, then we get: 

( ) ( ) ( ){ }=2 3 3 4 7 5 6 5 4 7( ) , { , } , , { , } , , { , }splits s t t s t t t s sm  

0.8489)/145-(132),(1 ==TS  mSim  

We can see that, although the common features of m2 is greater than m1, the 
similarity of m2 is lower than m1, because the splits is greater than m1. In fact, we 
have the matching state m1 is better than m2. 

Hybrid Search algorithm for Multi-labeled Graph Matching 

Complete Search 

As we known it, to compute the maximum similarity of labeled graphs, which is 
highly combinatorial, and is a NP-hard problem [2, 20]. It can be explored in an 
exhaustive way with a “branch and bound” approach, which is an algorithmic 
technique to find the optimal solution by keeping the best solution found so far. If 
a partial solution cannot improve on the best, it is abandoned. Such a complete 
approach is actually tractable if there exists a “good” bounding function that can 
detect as soon as possible when a node can be pruned [6], i.e., when the score of 
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all the matching states that can be constructed from the current state is worse 
than the best score found so far.  
In Definition 5, we present the concept of matching matrix, and all of these 
matching matrixes are the matching states that constitute the matching space. 
Suppose the current matching state is m, all the matching states m' such that 

′ − ≥ 0m m  are the potential successors of m, and m' is the superset of m, ′ ⊇m m . 
The score function (Eq.11) is not monotonic with respect to set inclusion, i.e., the 
score of a mapping may either increase or decrease when one adds a new couple to 
it [6]. Indeed, this score is defined as a difference between a function of the 
common features and a function of the splits, and both sides of this difference may 
increase when adding a couple to a mapping. In [6], Champin and Solnon study the 
bounding function, for every matching state m', ′ ⊇m m : 

′ ′ ′= ∩ −
≤ ∪ −

S T S T
S T

( , ) ( ( ) ( )) ( ( ))
                   ( ( ) ( )) ( ( ))
score f descr descr g splits

f descr descr g splits
m m m

m
 

If ∪ −S T( ( ) ( )) ( ( ))f descr descr g splits m  is smaller or equal to the score of the best 
matching state mbest found so far, then the search path can be pruned. In other 
words, all the supersets of m will not be explored as their score cannot be higher 
than the best score found so far. 
Obviously, although the branch and bound approach can find the best matching 
state, it is a costly search process. Therefore, we want to find other approximate 
methods to solve schema matching. Local search has been applied to solve NP-hard 
optimization problems [1, 20, 25]. The principle of local search is to refine a given 
initial solution point in the solution space by searching through the neighborhood of 
the solution point. However, the performance of local search relies on the initial 
state, we need obtain a good initial state for local search. As a result, we first use 
a greedy matching algorithm to find a good initial state. 

Greedy Matching Algorithm 

The greedy strategy is a fundamental technique to solve NP-hard problem [23]. 
Based on [6], Zhang et al. [25] designed a greedy algorithm to solve SMP: 
iteratively picks the couple that most increase the score function and has the 
greatest looked-ahead common edge features. The algorithm stops iterating when 
every couple neither directly increases the score function nor has looked-ahead 
common edge features. Now, we discuss the computation of incremental score and 
the greedy strategies in detail. 
Here, the functions f and g are the cardinality functions, so we define the 
increment of common features as follows: 

Δ ∪= ∩ − ∩S T S T( , )( , ) ( ( ) ( )) ( ( ) ( ))i ji j s tdescr s t f descr descr f descr descrm m m      12) 
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e m m
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m                                   13) 

where, e is the number of vertex and edge features (i.e., the number of vertex and 
edge labels), = + + +name concept type Ee w w w w . For the example in section 5.7, 

= + + + =1 4 1 1 7e . If all the features of si and tj are all matched, the 
Δ = +( , )i jdescr s t e e ; If partial of features of si and tj are matched, then 
Δ ≤ +( , )i jdescr s t e e . 

At the same time, the splits will increase with ∈ ×S T( , )i js t V V  enter m. We 
evaluate the increment of splits as follows:  

Δ = ∪ −m m m( , ) ( ( ( , ))) ( ( ))i j i jsplits s t g splits s t g splits                              14) 

Since g is the cardinality function, we show the evaluation of splits in Eq.15:  
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                             15) 

Based on Eq.9 and Eq.11, we get the incremental score: 

Δ Δ Δ = − ∪( , ) ( , ) ( ( , ))i j i j i jscore s t descr s t splits s tm m m m                    16) 

As the complete search methods are not feasible, by Eq.16, we can design the 
greedy search strategies: 

1. The matching candidates are the zero elements in the current matching 
state m. If =, 0i jm , and Δ ( , )i jscore s tm  is the maximum one among the 
matching candidates, we will let =, 1i jm , i.e., ( , )i js t  will enter m. 

2. In addition, if there are several matching candidates have the maximum 
score value, then we will choose the one which has more potential common 
edge features, i.e., _ ( , )i jlook ahead s t  is the maximal one. 
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              17) 

The look_ahead means that this matching couple will increase the common 
edge features, therefore, we pick the one has the greatest looked-ahead 
value. 

3. If there are several matching couples both have the maximum score and 
look_ahead value, then the algorithm can pick a matching couple randomly 
in the matching candidates.  

In [25], the authors used an example to present the greedy matching process in 
detail.  
For this greedy algorithm, the computations of the f function has a polynomial time 
complexity of ×S T 2((| | | |) )O V V ; g functions has a linear time complexities with 
respect to the size of the schemas (Max(| |,| |)O V VS T ; The computation of “look ahead” 
sets has a polynomial time complexity of ×S T(| | | |)O V V , and can be computed in 
an incremental way [6]. Therefore, the greedy algorithm has a polynomial time 
complexity of ×S T 2((| | | |) )O V V . 
Just as the greedy algorithm of knapsack problem, at each step of search process, 
the greedy algorithm only iteratively selects the matching couple which make the 
score function is the maximum one. The algorithm only tracks one search path and 
do not compare with matching results that obtained by the other search paths. 
Therefore, the greedy algorithm is not a complete algorithm. Based on [25], We 
design a local search algorithm to improve the matching result. 

Local Search for Multi-labeled Graph Matching 

Local search is class of effective approximation algorithms for combinatorial 
optimization [1], which tries to improve a solution by locally exploring its 
neighborhood. The neighbors of m are the mapping states that can be obtained by 
adding or removing one couple of vertices to m, ∀ ∈m M . The size of ( )N m  is 

× = ×1
n kC n k . 

==

= =

⎧ ⎫⎪ ⎪′ ′ ′ ′= − = − ≤ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ , ,
1 1

( ) : 1, 
j ki n

i j i j
i j

N m mm m m m m M                     18) 

If we define l elements of current state m can be changed at the same time, then 
we obtain the neighborhood: 

==

= =

⎧ ⎫⎪ ⎪′ ′ ′ ′= − = − ≤ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ , ,
1 1

( ) : , 
j ki n

l i j i j
i j

N m m lm m m m m M                     19) 
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Therefore, the size of ( )lN m  is × × ×+ + ⋅ ⋅ ⋅ +1 2 l
n k n k n kC C C . Fig. 5 shows the local search 

algorithm, which randomly select a matching couple in ( )N m . 
 

function S TLocal_Search( , )  
begin  

k ← 0; 
m ← S TGreedy( , ) ; 
M ← ( )N m ; ←bestm m ; 
while ( k++ < Max_iteration ) do /* search */ 

if >sim simS T S T( , ) ( , )bestm m  then 
best ←m m ; 

end if 
choose randomly ∈m M ; 

← −M M m ; 
if = ∅M  then return bestm ; 

end 
return bestm ; 

end 

Fig. 5  Local Search for Schema Matching 

 
Provided that we want to obtain all the feasible mapping states for users, we can 
set a threshold of schema similarity to obtain the matching states which greater 
than the given similarity value. For instance, given a matching state m, if 

≥S T( , ) thm simsim , then m is a possible matching result. 

Evaluation of Algorithm 

Experimental Design 

We have carried out some experiments to evaluate our approach. We tested the 
hybrid algorithm on seven samples: Biztalk (Fig. 1), Library (XML) [14], University 
(XML) [14], Property Listing (XML) [14], Purchase order (relational & XML) [8], 
Financial (XML) [27], Student (XML) [27]. The seven schemas are classified into 
three different kinds: 

1. matching of XML schemas (Biztalk, Library, Property Listing, Financial, 
Student) 

2. matching of XML schemas using XML data instances (University) 

3. matching of relational schema and XML schemas (Purchase order) 

For these samples, Table 3 shows the scales of them, includes the numbers of 
vertex, edge, and the depths of schema structure: 
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Scale of S Scale of T   
vertex edge depth vertex edge depth 

Biztalk 11 10 3 10 9 3 
Library 15 14 3 16 15 3 
University 10 9 3 7 6 3 
Property 12 11 4 13 12 4 
Purchase 

d  
13 12 2 9 8 3 

Financial 14 13 3 14 13 5 
Student 18 17 4 15 14 6 

Table 3  The number of vertex and edge 

Parameter Tuning 

Because schema matching is a heuristic operation, we should use some meta-
strategies to change the parameters of similarity evaluation function during the 
search process. The optimization function (Eq.10) is very important to achieve the 
optimal matching result. To obtain the optimal matching results, we should adjust 
the functions f and g, i.e., tune different weights of Eq.8 and Eq.9, including the 
weight of splits w', the weight of vertex wname, wconcept and wtype, and edge features 
wE.  
First, for function f, the concept feature has greater weight than name and type 
feature. If the concepts of two vertices are matchable, then the matching 
probability of two vertices is higher than only name or type matchable. For 
example, if = 4conceptw , ′ = 1w , the greedy algorithm will obtain the couples (s3, t3) 
and (s3, t4), however, if ≤ 2conceptw , ′ = 1w , the algorithm cannot obtain both (s3, t3) 
and (s3, t4), and will obtain (s5, t4). Second, the function g determines the number 
of multivalent mappings. The greater weight of g is, the more difficult to obtain 
multivalent mapping. For example, if = 4conceptw , ′ = 3w , then the algorithm cannot 
obtain many-to-many matching, and will obtain one-to-one mapping result. 
By different weights, we obtain a reasonable proportion of functions of f and g, 
and then we can obtain the desired multivalent correspondences. Table 4 shows 
the weights of f and g that are used in greedy and local search algorithms. 
 

 
Schema wna wconcept wtype wE w' 

Biztalk/Purchase order 1 4 1 1 1 

Library/Financial 1 4 2 1 1.5 

University/Property 1 4 1 2 1.5 

Student 1 4 2 1 1 

Table 4. The weights of function f and g 

 
In fact, we only consider the three features of schemas (i.e., name, concept, and 
type) in this paper, and in the near future, we can consider the more features of 
schemas for matching. Therefore, we should modify the function f and g, and 
adjust the weights of different features. 
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The similarity measure of schemas based on Contrast Model and the multi-labeled 
graph is an open framework for schema matching. In light of different applications, 
we can choose appropriate features to describe schemas and encode these features 
as the labels of multi-labeled graph, then, we can use the hybrid matching method 
to obtain the desired matching result. 

Experimental Results 

We evaluate the “accuracy” of the algorithm by counting the number of needed 
adjustments, therefore, in this paper, provided that the best matching state of two 
schemas is fixed in the matching tests. Under these conditions, the performance of 
hybrid search algorithm is very well.  
Fig. 6 shows the average Precision of seven matching samples by the hybrid 
algorithm, the total average Precision is 87%. 
 

 
Fig. 6  Average Precision of matching samples by hybrid search 

 

 
Fig. 7  Average Recall of matching samples by hybrid search 

 

Moreover, the algorithm achieves the total average Recall nearly of 97.2% (See Fig. 
7), and total average Overall of 83.6%. Fig. 8 presents average Precision, Recall, 
and Overall of samples by the hybrid algorithm. 
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Fig. 8  Average quality of matching samples by hybrid search 

The hybrid algorithm has been implemented in Visual C++. Experiment settings: P4 
2.4G, 224M DDR RAM. On these tests, the algorithm is very fast and obtains feasible 
matching results. 
For seven samples, Table 5 shows iteration times and average running time of 
greedy algorithm. 
 

 Biztalk Library University Property Purchase order Financial Student 

Iteration 12 20 10 21 9 18 25 

Time (s) 0.310 0.712 0.045 0.325 0.312 0.452 0.798 

Table 5. The average iterations of greedy algorithm 

 
Table 6 shows the total average running times of hybrid algorithm, where, the 
maximum iteration of local search is 5000, i.e., Max_iteration = 5000 (see Fig. 5). 
 

 Biztalk Library University Property Purchase order Financial Student 

Time (s) 0.680 1.846 0.357 1.003 0.640 1.738 1.873 

Table 6. The total average times of hybrid search algorithm 

 
The similarity measure of multi-labeled graph can combine all the properties and 
features of two schemas, especially the matching method considers the edge 
features between two schemas, therefore, the matching performance is better 
than existed prototypes. To compare with Similarity Flooding [14], Automatch [3], 
and LSD [10], the average “accurate” is higher than these matching methods. In 
particular, for Biztalk, Library, University, and Property Listing, the matching 
results are better than Similarity Flooding. In addition, the time cost of our 
algorithm is lower than other algorithms.  
By the multi-labeled graph matching, the algorithm model can implement not 
merely instance-level matching (University), but also schema-level matching 
(Biztalk, etc.). Moreover, by our matching method, the users can obtain element-
level n:m matching result. If we tune the parameters of optimization function, the 
matching algorithm can obtain different matching results for users. 
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A Comparison between Greedy Matching and Hybrid Search 

We use an experiment to compare the performance of greedy matching and hybrid 
search. For seven samples in section 7.1, Fig. 9 shows the average Precision, Recall, 
and Overall of samples by using greedy matching algorithm. To compare with the 
matching result of hybrid algorithm (see Fig. 8), we can see that the quality of 
matching results is improved by local search. The comparison graph between 
greedy matching and hybrid search is shown in Fig. 10. 

 
Fig. 9  Average quality of matching samples by greedy matching 

 
Fig. 10  Comparison of greedy matching and hybrid search 

Comparative Results and Conclusions 

Comparative Results 

In Table 7, we compare the characteristics of five published matching methods 
with our Multi-labeled Graph Matching method. 
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Similarity 

Flooding [14] 
LSD [10] Cupid [13] COMA [8] S-Match [11] 

Multi-labeled 
Graph 

Matching 
Tested schema 

types 
XML, relational XML XML, relational XML XML XML, relational 

Metadata 
representation 

Directed 
labeled graph 

XML schema 
trees 

extended ER DAG tree 
Multi-labeled 

graph 

Match 
granularity 

element /  
structure level 

element /  
structure level 

element /  
structure level 

 
element /  

structure level 
element /  

structure level 

Match 
cardinality 

n:m 1:1 1:1 and n:1 1:1 1:1 n:m 

Combination of 
matchers 

hybrid 

Composite 
matcher with 

automatic 
combination of 
matcher results 

hybrid hybrid, composite 
semantic 
matcher 

hybrid 

Manual work / 
user input 

user can adjust 
threshold 
weights 

user-supplied 
matches for 

training sources; 
user can specify 

tuning 
parameters and 

integrity 
constraints to 

guide selection 
of match 

candidates 

user can adjust 
threshold 
weights 

user-Feedback 
matcher to 

capture match and 
mismatch 

information 
provided by the 
user including 

corrected match 
results from the 
previous match 

iteration. 

- 

user can adjust 
weights of 
objective 
function, 

threshold weights, 
choose intial 

matching 
candidates 

Schema level  
match 

syntactic syntactic syntactic syntactic semantic 
syntactic / 
semantic 

Instance level 
matchers 

syntactic syntactic - - - 
syntactic / 
semantic 

Reuse / 
auxiliary 

information 
used 

thesauri, 
glossaries 

comparison with 
training 

matches; lookup 
for valid domain 

values 

thesauri, 
glossaries 

reuse, 
thesauri, 
glossaries 

WordNet, 
thesauri, 
glossaries 

WordNet, 
thesauri, 
glossaries 

Pre-match 
effort 

- 

training, 
specifying 
domain 

synonyms, 
constraints 

specifying 
domain 

synonyms 

specifying domain 
synonyms 

WordNet 
specifying domain 

synonyms, 
WordNet 

Subjectivity  7 users 1 user 1 user 1 user 1 user 5 users 

Application 
area 

metadata 
management 

data integration 
with pre-defined 
global schema 

data 
translation, but 
intended to be 

generic 

integration of web 
data sources, data 
warehouse loading 
and XML message 

mapping 

semantic 
integration 

XML message 
mapping, 
semantic 

integration 

Employed 
quality 

measures 
Overall Recall - 

Precision, Recall, 
Overall 

Precision, 
Recall, 

Overall, F-
measure 

Precision, Recall, 
Overall 

Precision - ~0.8 - 0.93 ~1.0 ~0.87 

Recall - 0.8 - 0.89 ~0.88 ~0.97 

Overall ~0.6 ~0.6 - 0.82 ~0.88 ~0.83 

F-measure     ~0.94  

Table 7.  Characteristics of proposed schema match approaches 

Conclusion and Future work 

In this paper, we focus on how to formulize SMP as a combinational optimization 
problem, and study the approximate matching algorithm to solve this optimization 
problem. We show the definition of multi-labeled graph at first. Therefore, we can 
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transform SMP into a multi-labeled graph matching problem. We present a 
similarity measure of multi-labeled graph based on Contrast Model, and we propose 
the best matching result based on features of two schemas. Then, by the objective 
function of multi-labeled graph matching (Eq.10), we discuss the branch and bound 
method briefly, which is a complete algorithm for SMP. Because it is a costly 
method, we propose a hybrid matching algorithm to solve graph matching problem, 
which combine the greedy matching algorithm and local search together. The 
experimental results confirm that the hybrid algorithm is effective. 
In fact, we mainly use three kinds of label features, i.e., name, concept, type, and 
one kind of relation, i.e., part-of. Nevertheless, the other features also can be 
labeled to vertices and edges of multi-labeled graph. Our matching method also 
solves the extended multi-labeled graph effectively and easily. The multi-labeled 
graph model can integrate all of available features of schemas flexibly. Therefore, 
at first, we will use all features together to obtain more accurate matching result, 
such as data types and value ranges, uniqueness, optionality, relationship types 
and cardinalities, etc. Secondly, we will design some meta-heuristic strategies to 
tune the weights of functions during the search process. We also can introduce the 
fuzzy strategies to adjust the weights of Eq.8 and Eq.9. So we can find a desired 
matching state fast and accurately. Thirdly, for large-scale schema matching (XML, 
relational schema, etc.), we will design sub-labeled graph matching methods. We 
can use schema segmentation to obtain subschemas at first, and then use subgraph 
matching algorithms to achieve subschema matching. Moreover, we are going to 
design incremental algorithms for large-scale schema matching, and design reuse 
framework for schema matching based on CBR model. 
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