
WebIQ: Learning from the Web to Match Deep-Web Query Interfaces

Wensheng Wu, AnHai Doan
University of Illinois, Urbana, USA

Clement Yu
University of Illinois, Chicago, USA

Abstract

Integrating Deep Web sources requires highly accurate
semantic matches between the attributes of the source query
interfaces. These matches are usually established by com-
paring the similarities of the attributes’ labels and in-
stances. However, attributes on query interfaces often have
no or very few data instances. The pervasive lack of in-
stances seriously reduces the accuracy of current matching
techniques. To address this problem, we describe WebIQ,
a solution that learns from both the Surface Web and the
Deep Web to automatically discover instances for interface
attributes. WebIQ extends question answering techniques
commonly used in the AI community for this purpose. We
describe how to incorporate WebIQ into current interface
matching systems. Extensive experiments over five real-
world domains show the utility of WebIQ. In particular, the
results show that acquired instances help improve match-
ing accuracy from 89.5% F-1 to 97.5%, at only a modest
runtime overhead.

1 Introduction
The World-Wide Web is often divided into the Surface

Web and the Deep Web [11, 22, 12, 28]. The Surface Web
consists of billions of browsable pages, while the Deep Web
fields hundreds of thousands of data sources [6], such as
amazon, expedia, and realestate.com.

Since Deep-Web data sources contain much valuable in-
formation hidden behind their query interfaces, many ef-
forts have focused on querying and integrating the sources.
Early works include [22, 8, 14, 16, 20] in the database and
AI communities. Recent efforts include [11, 3, 12, 28, 26,
1, 18, 27], and recent industrial activities involve many star-
tups, such as Transformic, Glenbrook Networks, and Web-
scalers. Given a domain of interest, such as book, movie,
real estate, or air travel, an important focus of these efforts
is to build a uniform query interface to the data sources in
the domain, thereby making access to the individual sources
transparent to users.

To build such a uniform query interface, a domain de-
veloper often must solve the interface matching problem:
given a large set of sources in a domain, find semantic cor-

Query interface Qa Query interface Qb

A
2
A
3

B
1

A
4

A
5

B
2

B
3

B
4

A
1

FIGURE 1: Two query interfaces in the air travel do-
main and semantic matches between them.
respondences, called matches, between the attributes of the
query interfaces of the sources [11, 28, 26]. Consider for ex-
ample two query interfaces Qa and Qb in Figure 1. Example
matches include attribute A1 = From city of Qa matching
B1 = Departure city of Qb, A5 = Airline matching B3 =
Carrier, and so on. Once the interfaces have been matched,
approaches such as [27] can be employed to construct a
uniform query interface and to facilitate querying the data
sources.

To match attributes of query interfaces, virtually all cur-
rent solutions exploit the similarity between labels as well
as that between data instances. Example labels include
From city for attribute A1 and Class of service for A4

(see Figure 1). Example instances include Economy for
attribute A4 and Air Canada for A5.

A major challenge facing these solutions, however, is
the pervasive lack of data instances. Query interfaces of-
ten contain many attributes with no instance at all, such as
attributes A1, B1, and B2 in Figure 1. Indeed, for the five
data sets used in our experiments (see Section 6), the per-
centage of attributes with no instance ranges from 28.1% to
as high as 74.6%. For attributes that come with instances,
the number of such instances is often small and even when
the attributes match, their instances are often dissimilar. For
example, the two attribute A5 = Airline and B3 = Carrier
match, but the former lists instances that are mostly North
American airliners (e.g., Air Canada) and the latter lists
mostly European airliners (e.g., Aer Lingus).

Matching attributes with no or dissimilar instances is
very challenging, since we can rely only on their labels,
which are often generic or similar to many other labels. For
example, the label of attribute B1, Departure city, is simi-
lar to that of both A1 (From city, a matching attribute) and
A2 (Departure date, a non-matching attribute). As another
example, the two matching attributes A5 = Airline, and B3

= Carrier, have no common word in their labels.
It is important to note that the lack of data instances

arises even in traditional schema matching contexts, such
as during schema or view integration [23]. However, there
the schemas to be matched often contain a variety of other
meta-data information that can be exploited effectively by
current matching techniques [23]. Examples of such meta
data include attribute types, cardinality, the structural infor-
mation among attributes, and semantic integrity constraints.
In contrast, by their nature, query interfaces on the Deep
Web contain very little or no such meta-data information.
Hence, here the lack of data instances severely exacerbates
the matching problem. Consequently, it is important to de-
velop solutions that discover data instances for interface at-
tributes, as these solutions can significantly improve the in-
terface matching accuracy.

In this paper we describe WebIQ, a solution that learns
from both the Surface Web and the Deep Web to automat-
ically discover instances for interface attributes. The solu-
tion consists of the following three components:

Discover Instances from the Surface Web: Given an at-
tribute A, such as Departure city, WebIQ formulates ex-
traction queries such as “departure cities such as”, using the
attribute label and a set of lexico-syntactic rules [13]. For
instance, a rule may specify that “if the label L is a singular
noun phrase, then form the query ‘[plural form of L] such
as”’.

Next, WebIQ poses the queries to a search engine (e.g.,
Google), to obtain a set of result snippets. Figure 2 shows
such a snippet, in response to the above query.

FIGURE 2: A result snippet from Google.

WebIQ then examines the snippets to extract candidate in-
stances. From the above snippet, WebIQ will extract three
instances Boston, Chicago, and LAX.

Similar query-the-Surface-Web approaches have also
been studied in the AI community, for example to populate
ontologies [10]. However, in the context of interface match-
ing, formulating extraction queries is significantly more
challenging. This is because attribute labels often take syn-
tactic forms that are not nouns or noun phrases, such as
From city (a prepositional phrase). To address this prob-
lem, WebIQ performs a shallow syntactic analysis on the
attribute label, using part-of-speech (POS) tagging [5] and
pattern matching, then uses the analysis results to form ap-
propriate queries. It also adds to such queries keywords
formed from labels of other attributes, to narrow the scope
of the queries.

Since the Web is often noisy, in the next step WebIQ

must ensure that the extracted instances are indeed instances
of the attribute. Toward this goal, it employs a two-phased
validation process. First, in the outlier detection phase, We-
bIQ detects and removes false instances by performing dis-
cordancy tests [4], based on a set of type-specific test statis-
tics. Second, in the Web validation phase, WebIQ forms
a set of validation queries, using the attribute label, the
extracted instance candidates, and a set of validation pat-
terns. For example, a validation query for instance candi-
date Boston is “Departure city Boston”. WebIQ then poses
validation queries to the Surface Web, computes for each in-
stance candidate a validation score, and returns those with
sufficiently high scores. This two-phase validation process
has an additional advantage that it greatly reduces the num-
ber of validation queries posed to search engines.

Borrow Instances from Other Attributes: Given an at-
tribute A, WebIQ also attempts to “borrow” instances for A
from other attributes. Specifically, suppose b is an instance
of attribute B, then WebIQ will try to ascertain if b can also
be an instance of A. Note that this can significantly help us
to match A and B. In Figure 1, for example, WebIQ can
try to ascertain if instance Jan of attribute A2 = Departure
date can also be an instance of attribute B2 = Departure
on, or if instance Aer Lingus of B3 = Carrier can also be
an instance of A5 = Airline.

To verify that an instance b of attribute B is also an in-
stance of A, one approach is to obtain a set of instances
from the Surface Web for A, then check if b is among them.
We found that this approach does not work well because b
often is not in the top instances for A (as discovered from
the Surface Web). Another approach is to form validation
queries as described earlier, but using the label of A and the
instance b, then check if the validation scores are compara-
ble to those for the (existing) instances of A. We found that
this approach does not work well because validation scores
for b (e.g., Aer Lingus) are often much lower than those for
the existing instances of A (e.g., Air Canada).

We observed that a more reliable way to assess the val-
idation scores for b is to compare them with those for the
non-instances of A (e.g., if A is Airline then Economy
from attribute Class of service is a non-instance of A).
The intuition is that the validation scores for the instances
and the non-instances of an attribute are likely to be quite
separable, and this separation can be exploited to accurately
classify new instances. Based on this intuition, WebIQ first
trains a validation-based classifier for A using the instances
of other attributes on A’s interface as negative examples,
then employs the classifier to predict the membership of b.

Validate Borrowed Instances via the Deep Web: Con-
sider again an attribute A. As discussed earlier, if A’s la-
bel is not in “benign” syntactic form (e.g., noun or noun
phrase), it may be difficult to formulate reliable extraction
queries. Furthermore, the extraction queries may fail to ob-

Formulate

extraction queries

Analyze

L�s syntax

Extract

instances

Attribute

with label L

Remove

outliers

Validate

instances
Instances

(a) Instance extraction (b) Instance verification

FIGURE 3: Steps in discovering instances from the Surface Web.

tain instances from the Surface Web.
In these cases, we can borrow instances for A from other

attributes, as just discussed. However, it is unlikely that
validating them via the Surface Web will work well, given
that it is hard to formulate reliable extraction queries or that
these queries have not returned instances.

To address this problem, WebIQ develops a solution to
validate instances via the Deep-Web sources. Specifically,
to verify that b is an instance of attribute A, WebIQ submits
a query to the data source of A, with A’s value set to b, then
observes the response from the source. The key intuition is
that in many cases the Deep-Web source will be able to dis-
tinguish instances of an attribute from non-instances even if
the Surface Web cannot. For example, consider an attribute
with label from (for the flight origin) on an airfare inter-
face. While both from January and from Chicago might
frequently occur on the Surface Web (thus making validat-
ing via the Surface Web difficult), often querying the source
with attribute from set to Chicago will yield some mean-
ingful results, whereas querying with from set to January
will not.

In summary, we make the following contributions:

• A set of novel techniques, as embodied by the We-
bIQ system, that automatically acquire instances for
attributes of query interfaces from the Surface Web and
the Deep Web (Sections 2-4). The techniques also have
potential applications in the general schema matching
contexts (Section 8).

• The incorporation of the above techniques into a state-
of-the-art interface matching system (Section 5).

• Extensive experiments over five real-world domains
that demonstrate the utility of our techniques. In par-
ticular, the results show that acquired instances help
improve matching accuracy from 89.5% F-1 to 97.5%,
at only a modest runtime overhead (Section 6).

2 Discover Instances from the Surface Web
We now describe the three components of WebIQ. This

section describes Surface, the component that discovers in-
stances from the Surface Web, while the next two sections
describe the remaining two components. Section 5 then dis-
cusses how the components are incorporated into IceQ [28],
a recently developed interface matching system.

Given an attribute A and a constant k, Surface returns
up to k instances of A, as gleaned from the Surface Web.

It operates in two phases: extraction and verification (Fig-
ures 3.a-b, respectively).

In the extraction phase, Surface analyzes the syntax of
A’s label, and formulates a set of extraction queries. It then
poses the queries to a search engine, obtains the results, and
extracts instance candidates. In the verification phase, Sur-
face first removes statistical outlier candidates, then veri-
fies the rest of the candidates via the Surface Web. Finally,
it returns the top k candidates, as ranked by their valida-
tion scores (if there are fewer than k candidates, then it re-
turns all of them). The rest of this section describes the two
phases in detail.

2.1 The Instance Extraction Phase
Analyze Label Syntax: As discussed earlier, an attribute
label may take a variety of syntactic forms such as noun
phrase (e.g., Departure city and Type of job), preposi-
tional phrase (e.g., From and From city), verb phrase (e.g.,
Depart from), and even a sentence. Intuitively, it is rela-
tively easier to formulate reliable extraction queries using
nouns or noun phrases than other more open-ended forms
such as prepositions. As such, this step analyzes an attribute
label to extract nouns or noun phrases, which are then used
in subsequent steps to form extraction queries.

Specifically, given an attribute A, Surface checks A’s
label for the occurrence of either a noun phrase, a prepo-
sitional phrase (a preposition followed by a noun phrase),
or a noun phrase conjunction (a set of noun phrases con-
nected by conjunctives such as “and” and “or”, e.g., First
name or last name). For a prepositional phrase, the noun
phrase after the preposition is obtained. For a noun phrase
conjunction, all noun phrases in the conjunction are ob-
tained, and the rest of the instance discovery process is re-
peated for each noun phrase. If the label does not contain
noun phrases, the extraction phase terminates and returns an
empty set of instances.

To determine the syntactic form of the label, Surface
employs a shallow syntactic analysis approach, which in-
volves part-of-speech (POS) tagging and pattern matching.
Specifically, first Brill’s tagger [5] is employed to tag the
label. The obtained POS tags are then matched against a set
of pre-determined patterns to identify the interesting syn-
tactic forms (as described above). For example, the pattern
for noun phrases is:

optional determiner + optional modifiers
(adjectives/noun-adjectives) + noun + optional
post-modifier (e.g., prepositional phrase).

Set extraction patterns:
s1: Ls such as NP1, ..., NPn s3: Ls including NP1, ..., NPn

s2: such Ls as NP1, ..., NPn s4: NP1, ..., NPn, and other Ls

Singleton extraction patterns:
g1: the L of the O is NP g3: NP is the L of the O
g2: the L is NP g4: NP is the L

FIGURE 4: Extraction patterns (L: label; Ls: L’s plural
form; NP: noun phrase; O: object name)

Such a pattern matching approach has been shown to be
more accurate in many applications than more sophisticated
syntactic parsing [17].

Formulate Extraction Queries: Given the noun phrases,
this step formulates a set of extraction queries for attribute
A. At a high level, we view instance discovery as a ques-
tion answering problem, as commonly understood in AI:
we pose a question, the extraction query, to a search engine
to obtain a set of instances as the answer. The extraction
queries can be regarded as incomplete sentences, and the
job of the search engine is to complete the sentences with
instances.

Specifically, Surface formulates extraction queries us-
ing the noun phrases obtained from the label of A and some
domain information from the schema1 of A. Domain infor-
mation is used to narrow the scope of formulated queries
as much as possible. We consider the following types of
domain information:

• The name of the real-world entity that A is associated
with (e.g., “book” on a bookstore interface).

• The name of the domain (e.g. “real estate” for a real
estate interface), and

• The labels and instances of other attributes in the
schema (e.g., “title” and “isbn” in a bookstore
schema).

We note that the name of the object is typically the same as
the name of the domain, and further that these information
can be obtained automatically.

Extraction queries fall into two categories: set extraction
queries and singleton extraction queries, with the former ex-
tracting a set of instances and the latter one instance at a
time. The formulation of both types of queries is based on
a set of generic extraction patterns listed in Figure 4, where
si’s (gj’s) are the set (singleton) extraction patterns, respec-
tively. Note that the set extraction patterns are similar to
those used in [13] for the acquisition of hyponyms from nat-
ural language texts. Each extraction pattern consists of two
parts: cue phrase (shown in italic) and completion (NP or
NPi’s). For example, the cue phrase in s1 is Ls such as,

1In the rest of the paper, we use the terms “schema” and “query inter-
face” interchangeably.

where Ls is the plural form of the label L, and the comple-
tion is a list of noun phrases: NP1, ..., NPn, each considered
to be an instance candidate for the attribute.

Given the set of extraction patterns, the extraction
queries are formed using the cue phrases in the patterns.
Specifically, for each pattern, its cue phrase is first materi-
alized by replacing L with the noun phrase obtained from
the label of attribute A. For example, suppose that A is
an attribute in a bookstore schema and has a label author.
Then, s1 will generate authors such as and g1 will yield
the author of the book is. Next, the cue phrases are aug-
mented with the domain information and properly format-
ted according to the query syntax of search engines, result-
ing in the final extraction queries. For example, one such
extraction query to Google is

“authors such as” +book +title +isbn

where book is the name of the domain, title and isbn are the
labels of some attributes in the schema. Note that double
quotes enclose a phrase, while ‘+’ signs request Google to
ensure that the results contain the specified keywords.

Extract Instances from the Surface Web: The extrac-
tion queries are then posed to a search engine, which
is Google in our experiments (using its Web API at
www.google.com/apis). For each extraction query, we
download top k snippets returned from Google. Finally, we
employ a set of extraction rules to obtain instance candi-
dates from the snippets. Each rule corresponds to one ex-
traction pattern in Figure 4. An extraction rule consists of
two parts: the first part identifies the cue phrase and the
second part extracts the completion. For example, the ex-
traction rule for the snippet in Figure 2 is: (1) identify the
occurrence of the cue phrase “departure cities such as” in
the snippet; and (2) extract the list of noun phrases which
immediately follow the cue phrase, i.e., Boston, Chicago,
and LAX.

2.2 The Instance Verification Phase
Remove Outliner Instance Candidates: Given a set of
instance candidates, Surface prunes the set further in two
steps: pre-processing, which determines the type of the in-
stance domain and removes candidates which are not the de-
termined type; and type-specific detection, which employs
a set of type-specific test statistics to detect and remove fur-
ther outlier candidates.

The pre-processing step employs a set of type-
recognizing regular expressions to determine the type of the
instance domain. Currently we consider only two types: nu-
meric and string. If the majority of instance candidates (e.g.,
80% in our experiment) are either monetary values (e.g.,
$15,200), integers, or real numbers, the instance domain
will be determined to be numeric; otherwise it is string.

Next, the type-specific detection step performs discor-
dancy tests [4] with a set of test statistics, all assumed to be

normally distributed. An instance candidate is considered
to be an outlier if its test statistic is at least three standard
deviations away from the average over all the candidates.

For instances of numeric type, the test statistics are their
values. For example, it is unusual for the price of a book to
be $10,000. For instances of string type, the test statistics
are:

• the number of words in the instance, e.g., it is unusual
for a person’s name to have more than four words;

• the number of capital letters in the instance, e.g., the
first letter of a city name is typically capitalized;

• the length of the instance (i.e., the number of charac-
ters in the instance), e.g., it is unusual for the make
of a vehicle (such as Honda, Toyota) to have over 20
characters; and

• the percentage of numerical characters in the instance,
e.g., the isbn of a book typically has ten digits and no
more than three hyphens or white spaces.

Validate Instances via Surface Web: Web validation fur-
ther removes false instances from the candidate set by as-
sessing the semantic connection between the candidates and
the attribute, based on their co-occurrence statistics on the
Surface Web. The idea is that the meaning of an instance x
can be partly characterized by the contexts where x appears.
As such, if x is indeed an instance of attribute A, we expect
that the label of A may frequently co-occur with x. Such
co-occurrence statistics can then be exploited to measure
the semantic connection between A and x.

As an example, suppose that A has label make (for au-
tomobiles). Consider Honda, one of A’s instances. We
would expect that make can often be found in the con-
text of Honda in varied ways over the Surface Web pages,
e.g., “a variety of makes such as Honda, Mitsubishi”,
“Make: Honda, Model: Accord”, and “This car’s make
is Honda”, as indicated by Google.

Based on the above observation, for each instance can-
didate x of attribute A, we form several validation queries
using a set of validation patterns. Each validation pattern
has two parts: a validation phrase V and the candidate x.
Currently, we consider two types of validation patterns:

• Proximity-based pattern “L x”, where V = L, the la-
bel of A. This pattern simply considers the proxim-
ity of L and x. For example, this pattern gives “make
honda” as the validation query for L = make and x =
Honda.

• Cue phrase-based patterns such as Ls such as x and
such Ls as x, which utilize the cue phrases in the ex-
traction patterns (Figure 4) as the validation phrases.
For example, makes such as Honda is a validation
query formed by these patterns.

Intuitively, validation phrases serve the purpose of distin-
guishing instances of an attribute from non-instances. In
other words, we expect that instances of an attribute tend
to occur more frequently with the validation phrases than
non-instances. A possible measure on the co-occurrence of
an instance with a validation phrase is the number of hits
obtained from a search engine for the validation queries
constructed as above. A problem with this measure is the
potential bias towards popular instances (or non-instances).

To handle this problem, we adapt the pointwise mu-
tual information (PMI) [10] to measure the co-occurrence.
Specifically, consider a validation phrase V and an instance
candidate x. Let V +x be the validation query (which com-
bines V and x). The PMI between V and x, denoted as
PMI(V, x), is then given by:

NumHits(V + x)

NumHits(V) ∗ NumHits(x)
,

where NumHits(V) and NumHits(x) are respectively the
number of hits obtained from a search engine on the valida-
tion phrase and the instance candidate, and NumHits(V +
x) is the number of hits on the validation query. Intuitively,
PMI between V and x measures the statistical dependence
of V and x such that a larger PMI indicates a stronger de-
pendence.

Denote the set of validation phrases for attribute A as
V = {V1, V2, ..., Vn}. The confidence score of x being an
instance of A is then taken to be the average PMI score
of x, i.e.,

∑
i(PMI(Vi, x))/n. Surface then returns the k

instance candidates with top score.

3 Borrow Instances from Other Attributes
Given an attribute A, WebIQ can also “borrow” in-

stances for A from other attributes. Specifically, suppose b
is an instance of attribute B, then WebIQ will try to verify
if b can also be an instance of A. This verification process
can be done via the Surface Web or the Deep Web. This
section describes Attr-Surface, the WebIQ component that
verifies instances via the Surface Web. The next section de-
scribes Attr-Deep, the component that verifies instances via
the Deep Web.

To verify if instances of B can be instances of A, Attr-
Surface first learns an instance classifier for A from a train-
ing set, then employs the learned classifier to classify the
instances of B. Many previous works on schema match-
ing [9, 23] have utilized varied forms of instance classifiers,
but they all rely on a large number of training examples.
Such a large training set is not available from the interfaces,
since an interface attribute typically has only a handful of
instances available on its interface. Furthermore, it might
be expensive to obtain a large number of instances from the
Web. To address these challenges, we develop a novel ap-
proach to learning an instance classifier for an interface at-
tribute. The learned classifier can be regarded as a variant of

T2

Validation phrase 2: (Airline is)

P(f1=0|+) = 1/4
P(f1=1|−) = 1/4
P(f1=0|−) = 3/4

P(f1=1|+) = 3/4

P(+) = P(−) = 1/2

P(f2=0|+) = 1/4
P(f2=1|−) = 1/2
P(f2=0|−) = 1/2

P(f2=1|+) = 3/4

.3 +.5Air Canada
American .8 .1 +
Delta .6 .3 +
United .9 .4 +

1 .3 .09 −
−Jan .1 .06

First Class .2 .05 −
Economy .4 .03 −

ClassExample M1 M2

Air Canada .3 +.5
American .8 .1 +
Economy .4 .03 −
First Class .2 .05 −

Example M1 M2 Class

Delta .6 .3 +
United .9 .4 +
Jan .1 .06 −
1 .3 .09 −

ClassExample M1 M2
Delta 1 1 +
United 1 1 +
Jan 0 0 −
1 0 1 −

Example f1 f2 Class

(.03,−)(.05,−)(.1,+)(.3,+) t2: .075

(.2,−)(.4,−)(.5,+)(.8,+) t1: .45

(d)

(e) (g)

T2’

(f)

(a)

Instances: (Air Canada, American, Delta, United)
Non−instances: (Economy, First Class, Jan, 1)

Attribute: Airline

(h)

(b)

(c)

T

T1

Validation phrase 1: (Airlines such as)

FIGURE 5: An example on training the validation-based classifier.

traditional naive Bayes classifier, but based on a validation
scheme. Another distinct aspect of the approach is that the
training of the classifier is fully automatic, with no needs
for manually prepared training examples. We now describe
the classifier and its training algorithm in detail.

3.1 A Validation-based Naive Bayes Classifier
A naive Bayes classifier [19] is a probabilistic function

which, given an object represented by a feature-value vector
and a finite set of classes, predicts the class membership of
the object. The prediction is based on prior probabilities of
the classes, class-conditional probabilities of the object, and
the assumption that the features of an object are independent
of each other given its class label.

More precisely, consider an object x represented by a
vector <f1, f2, ..., fn>, where fi is the value of the i-th
feature of x. Assume two classes: c and ¬c. The probability
of x belonging to the class c, denoted by P (c|x), is then
given by:

P (c)ΠiP (fi|c)

P (c)ΠiP (fi|c) + P (¬c)ΠiP (fi|¬c)
. (1)

Clearly, features for a class should capture the salient as-
pects of the instances of the class so that they can be distin-
guished from the non-instances of the class. Our key obser-
vation is that the statistics obtained from the Surface Web
on the validation queries for an attribute can be utilized as
the features for the attribute. Specifically, we expect that the
PMI scores of validation queries for instances of an attribute
are likely to be much higher than those for non-instances of
the attribute, and that this distinction can be exploited to
perform classification.

Motivated by the above observation, we represent an ob-
ject by its thresholded validation scores. Specifically, con-
sider attribute A and an object x. Let V = {V1, ..., Vn}
be the set of validation phrases associated with A. First,
we obtain x’s validation scores and store them in a valida-
tion vector M = <m1, ..., mn>, where mi is x’s valida-
tion score on the i-th validation query of A. Let ti be the
threshold for the i-th validation score (which we show how
to estimate in the next subsection). Then we use the ti’s

to represent x with an n-dimensional vector <f1, ..., fn>,
where fi = 1 if mi > ti, and 0 otherwise. Intuitively, the
thresholds characterize the separation in validation scores
between the instances and the non-instances of A.

3.2 The Training Algorithm
Training the classifier for an attribute A amounts to esti-

mating the probabilities in Formula 1. The training process
can be divided into three steps: training set preparation,
threshold estimation, and probability estimation. We now
describe each step in detail. Figure 5 illustrates the process
of training the classifier for the Airline attribute (A5) on the
interface Qa shown in Figure 1.

1. Create Training Set T : First, we obtain a set of in-
stances and non-instances for A. The non-instances of A are
obtained from other attributes on the same interface as A.
For example, Figure 5.a shows instances and non-instances
of Airline used for the training. Next, for each instance of
A, we obtain its validation scores as described in Section
2.2, using the Surface Web, and then turn it into a posi-
tive example. Similarly, we create negative examples using
non-instances of A. For example, Figure 5.b shows two val-
idation phrases associated with the attribute A5, and Figure
5.c shows the obtained training set T , where the m1 and m2

columns show the first and second validation scores, respec-
tively.

Finally, T is divided into two parts: T1 and T2, where
T1 is used to estimate the thresholds and T2 to estimate the
probabilities. For example, Figure 5.d and 5.e shows T1 and
T2, respectively. Note that T1 contains the first two positive
examples and the first two negative examples in T .
2. Estimate the Thresholds: In this step, we use T1 to
estimate thresholds ti’s. Consider threshold ti for the fea-
ture fi. Intuitively, a good threshold should be the one
that best separates positive and negative training examples
in T1. For this, we use information gain [19] to measure
the quality of ti. Specifically, suppose that ti divides T1

into T11 (where fi < ti) and T12 (where fi ≥ ti). The
information gain with respect to ti is then computed as
E(T1)−(|T11|/|T1|∗E(T11)+ |T12|/|T1|∗E(T12)), where
E(x) denotes the entropy of x. In other words, we choose

ti such that it leads to the largest reduction in the entropy of
the training examples in T1. For example, Figure 5.f shows
the derivation of t1 and t2.
3. Estimate the Probabilities: In this step, we first apply
the learned thresholds ti’s on T2 to transform each valida-
tion vector into a feature vector. This results in T ′

2
as shown

in Figure 5.g. T ′

2 is then used to estimate the probabilities.
Specifically, P (fi = 1|+) is estimated to be the percentage
of positive examples in T ′

2
with fi = 1. To avoid extreme

0/1 probability estimates, Laplacean smoothing [19] is ap-
plied. Other conditional probabilities are estimated simi-
larly. Figure 5.h shows the estimated probabilities with the
smoothing (e.g., P (f1 = 1|+) = (2 + 1)/(2 + 2) = 3/4).

4 Validate Instances via the Deep Web
Besides validating instances via the Surface Web, as de-

scribed in the previous section, WebIQ can also validate
instances via the Deep Web. It implements this validation
scheme in a third component called Attr-Deep. Given an
attribute A and a borrowed instance x (of attribute B), Attr-
Deep proceeds as follows.

Formulate and Submit a Query: First, a probing query is
formulated by setting the value of A to x and the values of
other attributes to their default values. Note that the query
interface may contain some attributes that do not have in-
stances. The default values for these attributes are typically
empty strings. (Our experiments indicate that many inter-
faces permit partial queries where the values of some at-
tributes can be left unspecified.) Next, the probing query is
posed to the source.

Analyze the Response: This step applies several heuris-
tics to analyze the response page from the source and deter-
mine if the submission was successful. We employ a variant
of the heuristics used for a similar purpose in [22].

To reduce the number of queries to the source, if the sub-
mission is successful for at least one third of the instances
of B, then we assume that all instances of B are instances
of A.

5 Leverage WebIQ in a Matching System
We now describe how to incorporate the above three

components of WebIQ into an interface matching system.
The incorporation proceeds in two steps:

Instance Acquisition: Let {X1, X2, . . . , Xn} be the set of
all attributes over all query interfaces. This step employs
WebIQ to gather instances for these attributes. Consider
attribute X1. WebIQ gathers instances for X1 as follows:

1. If X1 has no instances, then gather instances for X1 via
the Surface Web, using the Surface component (Sec-
tion 2).

(a) If this gathering is successful, that is, at least k
instances have been gathered, for a pre-defined
k, then stop.

(b) Otherwise, borrow instances for X1 from
X2, . . . , Xn and validate them via the Deep Web,
using the Attr-Deep component (Section 4). The
reason that WebIQ does not validate them via the
Surface Web is because it is unlikely to be suc-
cessful, given that the instance gathering via the
Surface Web in Step 1.a has been unsuccessful.

2. If X1 has several pre-defined instances, then borrow
instances for X1 from X2, . . . , Xn and validate them
via the Surface Web, using the Attr-Surface component
(Section 3). The instances cannot be validated via the
Deep Web because X1 accepts only pre-defined val-
ues. Thus, we cannot set the value of X1 on the query
interface to a borrowed value, if that value is not in the
set of pre-defined values for X .

Note that we can also obtain instances for X1 via in-
stance discovery on the Surface Web. However, we do
not consider that possibility in the current scheme, to
minimize the overhead caused by querying the search
engine.

In Steps 1.b and 2, to minimize overhead, WebIQ does not
borrow instances from all attributes. Instead, it borrows
only from those attributes whose domains are deemed po-
tentially similar to that of X1. Specifically, consider an at-
tribute Xi (i 6= 1) from a different interface as X1. There
are two cases: (1) X1 does not have any pre-defined values
(as in Step 1.b). In this case, the domain of Xi is likely to be
similar to that of X1 if the labels of X1 and Xi are similar
(so they are likely to match) and the domain of Xi is very
different from the domain of any other attribute Y on the
same interface as X1 (intuitively, if Y and X1 have simi-
lar domains, it is very unlikely that Y has some pre-defined
values while X1 does not). (2) X1 has a set of pre-defined
values (as in Step 2). In this case, the domain of Xi is likely
to be similar to that of X1 if there are at least two values,
one from each domain, which are very similar.

The above steps are then repeated to gather instances for
X2, X3, and so on.

Interface Matching: Once WebIQ has gathered instances
for all attributes X1, X2, . . . , Xn, an interface matching al-
gorithm is employed as usual to match these attributes. In
the current implementation, we use IceQ, a recently devel-
oped interface matching algorithm [28]. Briefly, IceQ em-
ploys interactive clustering to group attributes into clusters,
each containing all attributes that match. To cluster, given
any two attributes A and B, IceQ computes a similarity
score based on the similarity of their labels and instances.

The similarity of their labels, denoted as
LabelSim(A, B), is given by Cos(~A, ~B), where Cos
is the Cosine function commonly employed in Infor-
mation Retrieval and ~X denotes a vector of words

transformed from the label of attribute X . The sim-
ilarity of their domains, denoted as DomSim(A, B),
is evaluated based on the (inferred) types of the do-
mains (such as integer, real, monetary values and date)
and the values in the domains. Finally, the similarity
of A and B, denoted by Sim(A, B), is computed as:
Sim(A, B) = α ∗ LabelSim(A, B) + β ∗DomSim(A, B),
where α and β are two constants (respectively set to .6
and .4 in our experiments, using numbers in [28]). During
the clustering process IceQ can also interact with the user
to automatically learn a thresholding value. However, in
the current implementation we employ only the automatic
version of IceQ, and set the threshold manually. See [28]
for a detailed description of IceQ.

The above description of the similarity measure shows
that its computation can benefit significantly from addi-
tional instances gathered by WebIQ. This benefit is also
confirmed in our experiments in Section 6.

6 Empirical Evaluation
We have evaluated WebIQ using the ICQ data set in [28],

which contains five real-world domains – airfare, automo-
bile, book, job, and real estate, with 20 query interfaces in
each domain. The first five columns of Table 1 show the
characteristics of the data set. For each domain, it shows
the average number of attributes per interface (Column 2),
the percentage of interfaces containing attributes without in-
stances (Column 3), and among these interfaces, the per-
centage of attributes without instances (Column 4).

Columns 3-4 clearly show that an overwhelming num-
ber of interfaces contain attributes with no instances (92%
on average across the domains, as shown in the last row of
Column 3). They further show that on average 40.7% of at-
tributes in these interfaces have no instances. Thus, the lack
of instances is pervasive.

We then manually examined that, for the attributes with
no instances, whether it is reasonable to expect their in-
stances to be found on the Surface Web, taking into con-
sideration the fact that it is difficult to obtain instances for
generic attributes (e.g., keyword and description) and at-
tributes related to personal information (e.g., buyer id and
reference number). Column 5 shows that on average, we
can obtain instances for 89.6% of attributes, suggesting the
potentials of an WebIQ-like approach.

Instance Acquisition: Next, for each domain we evaluated
the effectiveness of WebIQ for instance acquisition, focus-
ing in particular on attributes with no instance, since they
are much harder to match than those with some pre-defined
instances. For each such attribute, if WebIQ obtains at least
10 instances, then the acquisition process is deemed suc-
cessful.

The last two columns (6-7) of Table 1 show the results.
Column 6 shows the success rates when WebIQ employs

Instance Extraction

Domain #Attr
IntNoInst

(%)

AttrNoInst

(%)

ExpInst

(%) Surface

(%)

Surface+

Deep (%)

Airfare 10.7 85 32.2 100 19.0 81.1

Auto 5.1 95 28.1 100 58.7 82.2

Book 5.4 85 38.6 98 84.4 84.4

Job 4.6 100 74.6 83.1 72.2 72.2

Real Est 6.5 95 30.0 66.7 49.1 56.3

Average 6.7 92 40.7 89.6 56.7 75.2

TABLE 1: Characteristics of our data sets and results on
gathering instances

only the component that discovers instances from the Sur-
face Web (see Step 1.a in Section 5). Column 7 shows the
success rates when WebIQ also employs instance borrow-
ing and validation via the Deep Web (see Step 1.b in Sec-
tion 5).
Acquisition via the Surface Web: Column 6 shows the suc-
cess rates between 19% in the airfare domain and 84.4%
in the book domain, with an average of 56.7%. The air-
fare domain has a relatively low success rate because the
labels of many attributes without instances are prepositions
and verb phrases (e.g., from and depart from). As dis-
cussed earlier, it is very challenging to form reliable extrac-
tion queries for these attributes. Several attributes in the
auto domain have very ambiguous labels (e.g., zip for “zip
code”), reducing the success rate in that domain. Finally,
the real estate domain has several attributes for measure-
ment units (e.g., square feet and acreage), for which the
extraction patterns are not as effective.

Both the book and job domains have very high suc-
cess rates. This is not surprising, since the labels of most
attributes with no instances in these domains are either
nouns or noun phrases such as publisher, author, com-
pany name, and city. The extraction patterns tend to be
very effective for these attributes.
Instance Validation via the Deep Web: Column 7 shows that
this step significantly improves the success rates in both the
airfare and auto domains. Interestingly, these are the dif-
ficult domains for getting instances from the Web. On the
average, the success rate increases by 18.5%, demonstrating
the effectiveness of validation via the Deep Web.

Interface Matching with WebIQ: In the next step we eval-
uated the extent to which WebIQ helps improve matching
accuracy of IceQ (see Section 5). Following [28], we mea-
sure the matching accuracy via three metrics: precision, re-
call, and F-1 measure [25]. Precision P is the percentage of
correct matches over all matches identified by the system,
while recall R is the percentage of correct matches iden-
tified by the system over all matches given by domain ex-
perts. F-1 measure incorporates both precision and recall,
and is computed as 2PR/(R + P).

For each domain, we performed three experiments. First,
we collected the results of both IceQ and IceQ + WebIQ
with no thresholding. That is, the clustering threshold of

80
82
84
86
88
90
92
94
96
98

100

Airfare Auto Book Job RE

Baseline
Baseline + WebIQ
Baseline + WebIQ + Threshold

FIGURE 6: Matching accuracy

80
82
84
86
88
90
92
94
96
98

100

Airline Auto Book Job RE

Baseline
Baseline + Surface
Baseline + Surface + Attr-Deep
Baseline + Surface + Attr-Deep + Attr-Surface

FIGURE 7: Component contributions

0

1

2

3

4

5

6

7

Airfare Auto Book Job RE

M
in

(s
)

Baseline Surface
Attr-Surface Attr-Deep

FIGURE 8: Overhead analysis

IceQ is set to zero so that as long as two attributes have a
positive similarity, they may potentially be matched. This
would allow us to directly compare our results with those in
[28]. Then, the results of IceQ + WebIQ were recollected
with the threshold τ uniformly set to .1 (which is about the
average of the thresholds learned for the five domains in
[28]).

Figure 6 shows the results. For each domain, it shows
three bars which represent (from left to right) the F-1 accu-
racy of IceQ, IceQ + WebIQ, and IceQ + WebIQ with
thresholding (in the figure, IceQ is referred to as “base-
line”).

The results show that IceQ + WebIQ significantly im-
proved accuracy over IceQ, across all five domains. The
improvement ranges from 4.2% in the book domain to
11.7% in the job domain. On the average, accuracy in-
creases from 89.5% to 95.8%. The thresholding further in-
creases accuracy to 97.5%. Detailed results indicate that
most of the improvements with the thresholding were in the
precision. This is not surprising given that the purpose of
WebIQ is to increase the overall similarity of matching at-
tributes by making their domains more similar.

Component Contributions: We further examined the con-
tributions of the individual WebIQ components to the over-
all accuracy. Figure 7 shows the results, where the four bars
for each domain represent the F-1 accuracy of baseline (i.e.,
IceQ), then baseline with the WebIQ components consec-
utively incorporated. Here, Surface refers to the WebIQ
component that discovers instances on the Surface Web,
Attr-Deep refers to borrowing and validating attributes via
the Deep Web, and Attr-Surface refers to borrowing and
validating attributes via the Surface Web.

The results show that Surface significantly improved
matching accuracies (e.g., 4.6% increase in the airfare do-
main and 4.4% in the real estate domain). Attr-Deep had
the most significant impact in the job domain (with a 9.5%
improvement). Finally, Attr-Surface was very effective in
four out of the five domains. On the average, it improved
accuracy by 1.8%.

Overhead Analysis: Finally, we examined the overhead
incurred by WebIQ. For each domain Figure 8 shows the
times (in minutes) that IceQ + WebIQ spent matching at-
tributes (the first bar), gathering instances from the Web (the
second bar), validating instances via the Surface Web (the

third bar), and validating instances via the Deep Web (the
last bar). In other words, the last three bars show the over-
head incurred by each individual component of WebIQ.

The results show that matching time ranges from 1.9
minutes in the auto domain to 4.7 minutes in the airfare do-
main. Time spent with Surface ranges from 1.2 minutes
in the job domain to 5.3 minutes in the auto domain. This
time varies in different domains due to different numbers of
queries sent to Google. For example, the total number of
extraction and validation queries for the job domain is 432
(over 20 source schemas). Note that the typical retrieval
time from Google for one query is 0.1–0.5 second.

Time spent with Attr-Surface was at most 3.5 minutes
(in the job domain), time spent with Attr-Deep was at most
5.9 minutes (in the airfare domain). The total overhead
ranges from 5.7 minutes in the real estate domain to 11 min-
utes in the airfare domain. These results demonstrate that it
is possible to employ WebIQ without incurring a significant
overhead.

7 Related Work
Schema and data integration are important problems and

have been extensively researched [23]. The problem of
matching and integrating source query interfaces on the
Deep Web has received much recent attention [12, 11, 28].
In [11], matches are identified by learning a generative
model over a set of interfaces, but the model exploits only
the statistics on the labels of the attributes. The importance
of instances in matching interface attributes has been ob-
served in both Wise-Integrator [12] and IceQ [28]. In par-
ticular, IceQ conducts a comparative study which shows
that instances greatly improve matching accuracy.

Naive Bayes classifiers have been employed in many
schema matching tasks [9, 23]. Compared to these conven-
tional classifiers, a distinct aspect of validation-based naive
Bayes classifier is that its features are based on the valida-
tion scores of the instances rather than the frequencies of
words in the instances.

Question answering has been an active research area in
both AI and IR communities (e.g., [15, 21, 24]). Our ap-
proach of gathering instances from the Surface Web is mo-
tivated in part by works on Web-based question answering
such as AskMSR [2] and Mulder [15]. In particular, sim-
ilar to Mulder and AskMSR, we also exploit the idea of

“redundancy-based extraction”, where the scale and the re-
dundancy of the information on the Surface Web are lever-
aged to extract answers to the questions from simple sen-
tences, whose syntax is relatively easy to analyze.

There have been many works on information extraction
[7, 10]. Many of them rely on the use of supervised learn-
ing techniques to train the system, while our approach of
training instance classifiers for interface attributes is fully
automatic.

Our approach of gathering instances from the Web is also
inspired by the works on populating ontologies by exploit-
ing the Web, such as KnowItAll [10]. But the task of gather-
ing instances for interface attributes is more challenging as
we have discussed. Furthermore, we believe that the tech-
niques we developed for gathering instances of interface at-
tributes such as label syntax analysis and outlier detection,
can also be incorporated into other Web-based information
extraction systems such as [7, 10].

8 Conclusion & Future Directions
We have described a set of novel techniques, as embod-

ied by the WebIQ system, that automatically acquire in-
stances for attributes of query interfaces from the Surface
Web and the Deep Web. We showed how the techniques
can be incorporated into an interface matching system. Ex-
tensive experiments over five real-world domains show the
utility of our approach. In particular, the results show that
acquired instances help improve matching accuracy from
89.5% F-1 to 97.5%, at only a modest runtime overhead.

Besides improving the effectiveness of the current solu-
tions, our future work will study how to transfer our tech-
niques to other contexts, such as mining the extensive bioin-
formatics literature to help match schemas of data sources
in that domain, and mining text documents that accompany
real-world database schemas for further metadata informa-
tion. Overall, we believe the incorporation of shallow natu-
ral language processing techniques over corpora of domain
data can greatly help semantic integration tasks, including
matching Deep Web query interfaces, schema matching,
and record linkage. Our current work is a first step in this
direction.

Acknowledgment: We thank Google for facilitating our experi-
ments. This work was supported by NSF grants CAREER IIS-
0347903 and ITR 0428168.

References

[1] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In Proceedings of the ACM SIGMOD Con-
ference on Management of Data, 2003.

[2] M. Banko, E. Brill, S. Dumais, and J. Lin. AskMSR: Ques-
tion answering using the worldwide Web. In Proc. of 2002
AAAI Spring Symposium on Mining Answers from Texts and
Knowledge Bases, 2002.

[3] L. Barbosa and J. Freire. Searching for hidden-web
databases. In WebDB, 2005.

[4] V. Barnett and T. Lewis. Outliers in Statistical Data. John
Wiley & Sons, 1994.

[5] E. Brill. Some advances in rule-based part of speech tagging.
In AAAI, 1994.

[6] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Struc-
tured databases on the web: Observations and implications.
SIGMOD Record, 33(3), 2004.

[7] P. Cimiano, S. Handschuh, and S. Staab. Towards the self
annotating web. In Proc. of WWW, 2004.

[8] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: To-
wards automatic data extraction from large web sites. In
VLDB, 2001.

[9] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas
of disparate data sources: A machine-learning approach. In
Proc. of SIGMOD, 2001.

[10] O. Etzioni, M. Cafarella, et al. Web-scale information ex-
traction in KnowItAll. In WWW, 2004.

[11] B. He and K. Chang. Statistical schema matching across
Web query interfaces. In Proc. of SIGMOD, 2003.

[12] H. He, W. Meng, C. Yu, and Z. Wu. Wise-integrator: an au-
tomatic integrator of web search interfaces for e-commerce.
In VLDB, 2003.

[13] M. Hearst. Automatic acquisition of hyponyms from large
text corpora. In Proc. of ICL, 1992.

[14] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper In-
duction for Information Extraction. 1997.

[15] C. Kwok, O. Etzioni, and D. Weld. Scaling question answer-
ing to the Web. In World Wide Web, 2001.

[16] K. Lerman, S. Minton, and C. Knoblock. Wrapper mainte-
nance: A machine learning approach. In Journal of Artificial
Intelligence Research, 2003.

[17] C. Manning and H. Schütze. Foundations of Statistical Nat-
ural Language Processing. The MIT Press, 1999.

[18] R. McCann, B. AlShebi, Q. Le, H. Nguyen, L. Vu, and
A. Doan. Mapping maintenance for data integration sys-
tems. In Proc. of VLDB, 2005.

[19] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[20] M. Perkowitz, R. Doorenbos, O. Etzioni, and D. Weld.

Learning to understand information on the Internet: An
example-based approach. J. Intelligent Information Systems,
8(2):133–153, 1997.

[21] D. Radev, H. Qi, et al. Mining the Web for answers to natural
language questions. In CIKM, 2001.

[22] S. Raghavan and H. Garcia-Molina. Crawling the hidden
Web. In Proc. of VLDB, 2001.

[23] E. Rahm and P. Bernstein. A survey of approaches to auto-
matic schema matching. VLDB Journal, 10(4), 2001.

[24] G. Ramakrishnan, S. Chakrabarti, et al. Is question answer-
ing an acquired skill? In Proc. of WWW, 2004.

[25] C. van Rijsbergen. Information Retrieval. Butterworths,
London, 1979.

[26] J. Wang, J. Wen, F. Lochovsky, and W. Ma. Instance-based
schema matching for web databases by domain-specific
query probing. In Proc. of VLDB, 2004.

[27] W. Wu, A. Doan, and C. Yu. Merging interface schemas on
the deep web via clustering aggregation. In ICDM, 2005.

[28] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query inter-
faces on the Deep Web. In Proc. of SIGMOD, 2004.

