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Abstract— When users issue a query to a database, they
have expectations about the results. If what they search for is
unavailable in the database, the system will return an empty
result or, worse, erroneous mismatch results. We call this problem
the MisMatch Problem. In this paper, we solve the MisMatch
problem in the context of XML keyword search. Our solution is
based on two novel concepts that we introduce: Target Node Type
and Distinguishability. Using these concepts, we develop a low-cost
post-processing algorithm on the results of query evaluation to
detect the MisMatch problem and generate helpful suggestions
to users. Our approach has three noteworthy features: (1) for
queries with the MisMatch problem, it generates the explanation,
suggested queries and their sample results as the output to users,
helping users judge whether the MisMatch problem is solved
without reading all query results; (2) it is portable as it can work
with any LCA-based matching semantics and is orthogonal to the
choice of result retrieval method adopted; (3) it is lightweight
in the way that it occupies a very small proportion of the
whole query evaluation time. Extensive experiments on three real
datasets verify the effectiveness, efficiency and scalability of our
approach. A search engine called XClear has been built and is
available at http://xclear.comp.nus.edu.sg.

I. INTRODUCTION

When users issue a query to a database, they have expecta-

tions about the results. If what they search for is unavailable

in the database, due to reasons like product removed from

shelves, clothes size unavailable, etc., the result they seek may

not be found in the database. In such a case, the system may

return an empty result or, worse, return erroneous results. We

call this the MisMatch Problem.
For example, a user wants to search for a laptop. She

wants the model Vaio W with color being red. If red color is

unavailable for laptop Vaio W in the database, then obviously

the user will not get what she wants no matter how the data

is organized or what kind of query it is.
The MisMatch problem is a natural and common problem.

It can happen in any form of information retrieval over data of

any structure, i.e. can be either structured query or keyword

query on structured, unstructured and semi-structured data.

Such a problem has attracted a lot of research effort in the

context of structured queries on structured data [8], [19], [17],

[18], with descriptions such as failing queries and non-answer

queries. However, no such work has been done in the context

of keyword search on semi-structured data. This is an impor-

tant area to address. According to our experiments conducted

on XClear, an XML keyword search engine available at [25],

users suffered from such a problem for 27% of their queries.

This is our central concern in this paper.
What can we offer to help the user? Ideally, we can get the

following help if we are interacting with a human:

1) Notification: “Sorry, we do not have such a product.”

2) Explanation: “Because red color is unavailable for Vaio

W.”

3) Suggestion: “You can choose some other available col-

ors: black, blue and white.”

When structured queries are issued over structured data

(relational tables), the MisMatch problem (i.e. what users

search for is unavailable in the database) leads to empty

result. Detecting the problem is trivial because empty result

is obvious. A message (notification part) will be given to

users. Some existing works [8], [3] try to explain the non-

answer queries by pinpointing the constraint causing the empty

result (explanation part). Some works [19], [17], [18] focus

on generating some alternative constraint to come up with a

suggested query (suggestion part).
When keyword queries are issued over unstructured data

(in web search), the MisMatch problem will lead to a list of

mismatch results. It is even difficult to detect the problem in

the first place. Because most likely the results being returned

are not empty. It could be the case that the query keywords ap-

pearing in one document are far away from each other and not

semantically related. E.g., for a keyword query ‘Vaio W red’,

if color red is not available for laptop Vaio W, there still can

be many webpages being returned, where ‘Vaio W’ appears in

one part of the webpage while ‘red’ appears in another part of

the webpage. It leads to mismatch results. Therefore, we need

to analyze whether the keywords are ‘semantically’ related

in the results. Such analysis is challenging because the data is

unstructured. A limited solution to a part of the problem (only

the suggestion generation part) is to mine some similar and

popular queries from query log [10], [26] and show them to

users (suggestion part). But the downside is that such popular

queries do not guarantee to have reasonable results.
In this work, we focus on identifying and solving the

MisMatch problem in the context of keyword search over

semi-structured data. Now, let us take a look at how the

MisMatch problem behaves in such context.
Example 1: An XML data tree in Figure 1 describes the

item information of an online shopping mall. Suppose a user

wants to buy a laptop. She prefers Sony’s Vaio W with red

color, and wants to know how much it is. Then she may

issue a query Q = {‘Vaio’,‘W’,‘red’,‘price’} to search for a

laptop. Unfortunately, no laptop can meet all her requirements.

Vaio W only has three colors: white, blue and pink. Existing

keyword search methods, such as LCA [21], SLCA [24],

ELCA [5] or even the most recent variant [11] of LCA, still

can find some results containing all query keywords. One of
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Fig. 1. Sample XML Document about an Online Shopping Mall

the query results is the subtree rooted at shop:0.0.0, where

keyword ‘red’ matches one laptop while the rest keywords

match another laptop. Obviously, the subtree rooted at shop
is not expected by the user, as it contains too much irrelevant

information, i.e. all laptops. What is worse, there could be

hundreds of shops selling Viao W and therefore hundreds of

mismatch results are returned. �
As we can see, the MisMatch problem in XML keyword

search also leads to a list of mismatch results. It poses three

challenges for a search engine to help users: (1) how to design

a detection method to distinguish queries with the MisMatch

problem from those without; (2) how to explain why the query

leads to mismatch results; (3) how to find good suggestions,

and what should be a good way to present them to users.

Our solution to the MisMatch problem is to run a small post-

processing job at the end of the query evaluation, consisting of

two components, namely detector and suggester. The former

addresses the first challenge above, and the latter addresses

the remaining two.

The central idea of our technique for mismatch detection is

based on the notion of Target Node Type (see Sec. III for the

formal definition). Intuitively, Target Node Type denotes the

type of node a query result r intends to match. We calculate

it at schema level. Meanwhile, the actual root of result r is

calculated at data level by existing techniques. If r’s root does

not match its Target Node Type, we claim that r misses the

target. We can perform a similar check on all results of a query

Q. If all results of a query Q miss their targets, then we say

that Q has the MisMatch problem.

Once a mismatch is detected, we propose a concept called

Distinguishability to find ‘important’ keywords in the original

query, and use these to explain the reason for the mismatch and

to suggest possible relaxations. Distinguishability is inspired

by the tf*idf scoring measure proposed in IR [20] while taking

the structural property of XML data into account. Then based

on each query result r we try to find some ‘approximate’

query results, which contain these ‘important’ query keywords

and are structurally consistent with r, while having reasonable

replacement for the rest ‘less-important’ query keywords.

Finally, the explanation and suggested queries can be inferred

from the approximate results. To further improve the user

experience, our suggester also generates a sample result for

each suggested query Q′ even without evaluating the query

Q′, which helps users to judge whether Q′ is helpful.

Putting these together, we have our complete algorithm. The

input of our algorithm is a (ranked) list of all results returned

by search engine. For a user query that has the MisMatch

problem, the output of our algorithm consists of three parts:

1) An explicit notification to user: “what you search for is

not available”.

2) An explanation on which keyword(s) in the query leads

to mismatch results.

3) Some data-driven suggested queries, which guarantee to

have reasonable results.

Note that there are many possible relaxations of a given query,

and many of these may themselves also be empty (result in

mismatch). It is important to ensure that the suggestions given

have at least some results and are not mismatch themselves.

As discussed in the related work section below, there is a

great body of work on query relaxation and on generating

partial match answers. These systems, while valuable, do not

address all three of the challenges we described above, and

hence are not suited for our problem context. In particular,

many of them generate large lists of possible partial match

answers that the user has to wade through even to realize that

there is a mismatch at all.

In summary, our major contributions in this paper include:

1) We identify the MisMatch problem in XML keyword

search. We detect the MisMatch problem by investi-

gating into the query results and inferring the Target

Node Type for each query result. It is portable as it can

work with any LCA-based matching semantics and is

orthogonal to the choice of result retrieval method.

2) We design a data-driven approach to generate expla-

nation and suggested queries by finding approximate

query results, which contain important keywords in the

original query Q while having consistent structure with

the results of Q. We propose Distinguishability, which

is a structure-aware tf*idf scoring measure, to quantify

the importance of keywords.



3) We propose a novel bitmap-based labeling scheme to

accelerate finding approximate results. As a result, the

MisMatch detector and suggester is lightweight: it takes

only 4% of the whole query processing time.

4) We build a search engine called XClear [25] which

embeds the MisMatch problem detector and suggester.

Extensive experiments have verified the effectiveness,

efficiency and scalability of our method.

We present preliminaries in Sec. II. Detecting the MisMatch

problem is in Sec. III. Sec. IV discusses how to find the ex-

planations and suggested queries. Sec. V presents our labeling

scheme for efficient approximate results detection. Sec. VI

presents indices and algorithms. Experiments are in Sec. VII,

related works are in Sec. VIII and we conclude in Sec. IX.

II. PRELIMINARIES

A. Data Model

We model data-centric XML as a rooted, labeled and

ordered tree. Each node of the tree corresponds to an element

of the XML data, and it has a tag name and (optionally) some

value. Without loss of generality, we simply use the word

“node” to mean the node in an XML tree. To accelerate the

keyword query processing, all existing works adopt the dewey

labeling scheme [23]. As shown in Figure 1, for a node n,

its dewey label consists of a sequence of components that

implicitly contain all ancestor nodes on the path from the

document root to n. E.g., from laptop:0.0.0.3, it is easy to

find that the label of its parent is 0.0.0.

Definition 1: Node Type. The type of a node n in an XML

tree, denoted as n.type, is the tag name path from root to n.�
In the rest of the paper, the tag name of n is used to represent

the node type of n if no ambiguity is caused.

Definition 2: Keyword Match Node. A node n is called

a keyword match node for a keyword k if the tag name or the

value part of n contains k. �
Definition 3: Subtree-contain. A node n is said to subtree-

contain a keyword k if there exists a keyword match node w.r.t.

k within the subtree rooted at n. �
E.g., in Figure 1, the node type of laptop:0.0.0.3 is

online mall/electronics/shop/laptop; color:0.0.0.3.2 is a

keyword match node w.r.t. keyword ‘red’; laptop:0.0.0.3 is

said to subtree-contain keyword ‘red’, as its descendant

color:0.0.0.3.2 contains ‘red’.

B. General Query Result Format

To define a general format to represent the query results, let

us look at the existing matching semantics first. All existing

matching semantics so far, such as SLCA [24], [7], ELCA [5],

entity-based SLCA [15] are all based on the concept of lowest

common ancestor (LCA). Let lca(m1, ...,mn) be the lowest

common ancestor of nodes m1,...,mn. For a given query Q =

{k1,...,kn} and an XML document D, Li denotes the inverted

list of ki. Then the LCAs of Q on D are defined as LCA(Q) =

{v | v = lca(m1, ...,mn),mi ∈ Li(1 ≤ i ≤ n)}. Both SLCA

and ELCA define a subset of LCA(Q), and we refer readers

to Sec. VIII for detailed definitions of SLCA and ELCA, and

their relationships with LCA.

Definition 4: Query Result Format. For a keyword query

Q={k1, ...,kn}, we define the format of a query result r as:

r = (vlca,
{
m1,m2, ...,mn

}
)

where mi is a keyword match node w.r.t. keyword ki (i ∈
[1, n]), and vlca is the lowest common ancestor of nodes m1,...,

mn, i.e. vlca = lca(m1, ...,mn). �
Defn. 4 is highly general in two aspects: (1) it is compatible

with any existing LCA-based matching semantics adopted by

search engines, because one necessary condition for a node v
to be an SLCA (or ELCA) node of a query Q is: v must be

a lowest common ancestor of a set of keyword match nodes
mi w.r.t. Q. (2) Our query result format forms the skeleton

for both Path Return (returning the paths in the XML tree

from each LCA node to its keyword match nodes) [7], [13]

and subtree Return (returning the subtree rooted at each LCA

node) [5], [24]. This observation is important in explaining

the portability feature of our solution to detect and resolve

the MisMatch problem later in Sec. IV-D.

III. DETECTING THE MISMATCH PROBLEM

In this section, we would like to present how to detect the

MisMatch problem.

First, the detector should infer user’s possible search tar-

get(s) based on the query results. Since a keyword can match

different types of nodes, user’s search target may be various for

a certain query. E.g., keyword “price” can match an owner’s

name or the price of a product in Figure 1. But a certain query

result r corresponds to a unique search target. Because each

query keyword has a unique corresponding keyword match
node in a given query result r. Therefore, we define a concept

called Target Node Type (TNT) to denote the node type which

a query result r intends to match.

To infer the TNT of a result r, we propose to use node

types to simulate the semantics of each keyword match node.

E.g. in Example 1, Q = {‘V aio’,‘W ’,‘red’,‘price’}, and

one possible result r = (0.0.0, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.3.2,
0.0.0.4.5}). The node types can simulate the semantics of each

keyword match node:

‘Vaio’: {online mall/electronics/shop/laptop/model}
‘W’: {online mall/electronics/shop/laptop/model}
‘red’: {online mall/electronics/shop/laptop/color}
‘price’: {online mall/electronics/shop/laptop/price}.

Recall Example 1, user’s search intention is a laptop,

which corresponds to the node type “online mall/electronics

/shop/laptop” being closely related to these four node types.

Following a similar philosophy of LCA, which finds the

lowest/smallest nodes connecting all query keywords as the

most relevant and meaningful results, TNT is defined as the

lowest node type which connects to all those node types at

schema level:

Definition 5: Target Node Type (TNT) for a single query
result. Given a query Q = {k1, k2, ..., kn} and a query result

r = (vlca, {m1,m2, ...,mn}) on an XML document D, the



Target Node Type for this particular result r, namely TNT (r),
is defined as:

TNT (r) = LCP (m1.type,m2.type, ...,mn.type)

where mi.type is the node type of mi, and LCP represents

the longest common path of a set of node types. Nodes of a

specific TNT are called TNT nodes. �
In the laptop example above, according to Defn. 5,

TNT (r) = {online mall/electronics/shop/laptop},

even though no laptop can meet all the requirements at data

level. The TNT, which is laptop, is the lowest node type

connecting to laptop model, laptop color and laptop price.

With the Target Node Type of a query result r being

inferred, the detector should figure out whether there is a

mismatch between the TNT (see Defn. 5) of r and the actual

root of r, namely vlca.

Definition 6: Given a query Q = {k1, k2, ..., kn} and a

query result r = (vlca, {m1,m2, ...,mn}) on the XML data

D, if vlca is not of the same node type as TNT (r), the query

result r misses the target. �
For result r in Example 1, vlca.type = shop�=laptop =

TNT (r), so we say r misses the target. Now, we can formally

define the MisMatch problem.

Definition 7: MisMatch Problem. Given a query Q and

its results R retrieved from the keyword search engine, Q has

the MisMatch problem if all r ∈ R misses the target. �
Here we choose to take a conservative approach: we only

judge a query to have the MisMatch problem when there is a

mismatch for all possible search intentions. Such a conclusion

holds for all users with different intentions.

Our solution assumes there is no outer semantics provided.

Because usually XML data exists without such information,

so that we use node types to simulate semantics, where two

nodes of the same type will be with the same semantics. If

we do have outer semantics, like thesaurus, ontology, etc.,

we can further improve our approach such that we can even

tell that node types “/laptop/color” and “/notebook/color” are

with the same semantics while node types “/owner/name” and

“/product/name” are with different semantics. This will be one

of our future work.

Moreover, users usually investigate the retrieved results

starting from the top-ranked ones. Therefore, without loss of

generality, we can also easily extend Defn. 7 by considering

the top-K retrieved results of Q.

Time Complexity of the detector is O(|R|), which is very

efficient. As discussed in Sec. VI-A later, we store the type

information of each node when building the keyword inverted

list. Thereby for each r∈R, TNT (r) can be computed in O(1)

time assuming the number of keywords in a query and the

depth of the XML tree are constants.

IV. FINDING EXPLANATIONS AND SUGGESTED QUERIES

As discussed in Sec. III, the main feature of the MisMatch

problem is: there does not exist a single TNT node that subtree-
contains all query keywords. So the query keywords have to

scatter in more than one TNT node and then lead to a mismatch

result. As a result, the root of the returned subtree is always

an ancestor of the TNT nodes which are expected by the user.

Given a user query Q={k1, k2, ..., kn} and a mismatch query

result r=(vlca,{ m1,m2, ...,mn}), the basic idea to find the

explanations and some promising suggested queries can be

illustrated in three steps.

Step 1: Since each keyword match node mi in r may contain

several keywords K in Q, we first propose a tf*idf -inspired

heuristic called distinguishability to score the importance of

such K.

Step 2: We then try to find the approximate query results,

i.e. r′ = (v′lca,{m′
1,m

′
2, ...,m

′
n}), which are some subtrees

containing the ‘important’ keywords (derived by Step 1).

An ideal approximate result r′ should satisfy the following

properties: (a) the node type of r′ should be the same as

TNT (r); (b) for each keyword match node mi in original

result r, there always exists a node m′
j that has the same node

type as mi (i, j ∈ [1, n]). By such properties, it can ensure at

least the structure of r′ and r are consistent with each other.

Step 3: Then, we can pinpoint which keyword(s) in the user’s

query lead to the mismatch results, i.e. the query keywords not

contained by the approximate results. This is the explanation

part. We can further infer the suggested queries by replacing

those keywords with the keywords associated with the afore-

mentioned m′
j (in approximate result) in step 2.

Step 1 is illustrated in Sec. IV-A, and the last two steps are

described in Sec. IV-B. Lastly, we complement our suggester

by discussing how to rank the suggested queries in Sec. IV-C.

A. Distinguishability

In this section, we will present a concept to measure the im-

portance of the query keywords, namely distinguishability. We

find that the importance of query keywords is closely related

to what type of nodes they match. E.g., in Figure 1, keyword

‘blue’ can match both model:0.0.0.3.1 and color:0.0.0.4.3.

When it matches a model name, most likely it is important

since few model names contain the keyword ‘blue’; when it

matches a color, it may be less important since many color

nodes contain the keyword ‘blue’. Therefore, we propose the

concept of distinguishability.

Distinguishability D(K, t) represents the importance of the

query keywords K when K matches a node of type t, which

also means this node of type t subtree-contains each keyword

in K. Large D(K, t) means K is important with respect to t.

Recall Step 1 in Sec. IV, K actually represents the query

keywords derived from the keyword match node(s). To quantify

D(K, t), we propose a scoring measure inspired by Term

Frequency * Inverse Document Frequency (tf*idf ) [20], which

is widely used in information retrieval.

For tf, we can simply count the keyword frequency in

an XML node. In this work we focus on data-centric XML

documents, where each XML node does not contain long text

and in most cases keyword frequency is 1. The same problem

is also pointed out by [6], so we follow [6] and do not consider

tf in the formula.



For idf, it tells that the keywords contained by fewer docu-

ments are more important. Similar to idf, we have Intuition 1

in the context of XML. Let ft be the number of nodes of type

t, and fK

t be the number of nodes which are of node type t
and subtree-contain each keyword in K.

Intuition 1: idf(K, t). If few nodes of type t contain

keywords K, K should be important with respect to the node

type t. Formally, the smaller the fK

t is as compared to ft, the

larger the idf(K, t) should be.

As there are many variants of idf to follow Intuition 1, we

define idf(K, t) = 1− fK

t

ft
. In this way, idf(K, t) is normalized

in [0,1).

The tf*idf works by assuming there is only one type of

(flat) document, but in the context of XML data there is more

than one type of node. The type of the node alone may also

contribute to the importance of the keywords that match the

node. Let us look at a motivating example first.

Example 2: Consider a keyword ‘price’ in Figure 1. It can

match both an owner node and all price nodes. When ‘price’

matches a price node, it may not be important as there are

many price nodes and all of them contain ‘price’. Accordingly,

idf ({‘price’},price)=0 because fK

t =ft. When it matches the

owner node, it should be important as there is one and only

one owner across the whole XML data. But since fK

t =ft=1,

idf ({‘price’},owner)=0 as well. As we can see, simply by

tf*idf, we cannot distinguish these two cases (idf is 0 for both

cases). Because the idea of tf*idf assumes there is only one

type of node while we have nodes of different types and we

need to consider the weight of different node types. �
So we have Intuition 2 to cater for the node type weight

(ntw).
Intuition 2: ntw(t). The weight of a node type t is in-

versely proportional to ft within the XML data.

Therefore, We define ntw(t) = 1
ft

. Finally, we can define

D(K, t) to capture the concept of distinguishability as:

D(K, t) = idf(K, t)+ntw(t) = 1− fK

t

ft
+

1

ft
(1 ≤ fK

t ≤ ft)

(1)

It is easy to verify that the range of distinguishability is (0,1].

B. Finding Explanation and Suggested Queries

In order to find the explanation and suggested queries, we

first need to find some ‘important’ query keywords (in terms

of distinguishability) from the result r of the original query.

So first of all, we need to set a threshold τ 1, say τ=90%.

Those keywords whose distinguishability is higher than τ are

considered as ‘important’ and must be kept. Besides, we find

that those ‘important’ keywords K are indeed derived from

the keyword match node(s) of r. Then the remaining task is

to find the approximate results, each containing the important

keywords K, from which suggested queries are inferred.

We derive important keywords from the keyword match
nodes and find the approximate results as follows:

Given a user query Q and a mismatch query result

1The choice of an appropriate τ will be discussed in the experimental study.

r=(vlca,{m1,m2, ...,mn}), each keyword match node mi con-

tains some keyword(s) Ki in Q. For each distinct mi, we

calculate the distinguishability D(Ki,mi.type). If it is larger

than the threshold, then we try to find a TNT node containing

mi as an approximate result. Let the path from vlca to mi

be (vlca/p1/p2/.../pj/mi), where p1,p2,....,pj are the nodes

between vlca and mi. Then we proceed to traverse each node

v′lca from p1 down to mi (i.e. v′lca∈ {p1, p2, ..., pj ,mi}),

and verify whether the subtree rooted at v′lca can form an

approximate query result r′=(v′lca,{ m′
1,m

′
2, ...,m

′
n}) w.r.t. r.

We find that an ideal approximate result r′ should at least

have the following two properties:

• P1: v′lca.type = TNT (r)
• P2: ∀mi in the original result r, ∃m′

j in r′, such that

m′
j .type = mi.type, for i, j ∈ [1, n].

If we find a result r′ that satisfies the above two properties,

then we say

r′ = (v′lca,
{
m′

1,m
′
2, ...,m

′
n

}
)

is an approximate query result of Q.

Recall Sec. III, the reason that leads to the MisMatch

problem is: there does not exist a single TNT node that can

subtree-contain all query keywords. Therefore, P1 is specified

to ensure the approximate result should be consistent with one

of the TNTs that user intends to search for. In other words,

P1 is to ensure v′lca of r′ should have the same node type

as the TNT that result r intends to match (but fail to do

so). P2 is to ensure a consistency of the internal structure

of r and r′ in the way that, each node type appearing in the

keyword match node of r must also appear in those of r′.
Intuitively speaking, the node type of each keyword match
node implicitly reflects the constraint that user intends to

specify for the desired query result. Therefore we need to keep

all of them in the approximate result. As an analogy, it is an

implicit representation of predicates specified in a structured

query, whereas the difference is that in a keyword query you

have no way to specify constraint on the structural relationship

among keywords. Note that, if possible, m′
i and mi should be

the same node, since we prefer changing as small number of

keywords as possible, i.e. only the mi that is not in the subtree

rooted at v′lca will be replaced by a distinct node m′
i.

The construction of the approximate result starts from the

subtree rooted at v′lca, followed by checking whether this

subtree satisfies the aforementioned properties.

After the approximate query results are found, the expla-

nation and suggested query can be inferred easily by the

following way: 1) for each different keyword match node mi

which is not the same node as m′
i, the query keyword(s) in mi

is the reason for the mismatch results; 2) the suggested query

can be generated by replacing the keywords in mi with the

associated value of m′
i, highlighted by an underline. Besides,

the approximate query result will be used as a sample query

result for the corresponding suggested query.

Example 3: For query Q ={‘Vaio’,‘W’,‘red’,‘price’} issued

on Figure 1’s XML data tree, one query result is r=(0.0.0,



{0.0.0.4.1, 0.0.0.4.1, 0.0.0.3.2, 0.0.0.4.5}), where there are

only three distinct keyword match nodes. So we calculate three

distinguishability values w.r.t. the query keywords in the three

keyword match nodes: D({‘V aio’, ‘W ’},model) = 100%,

D({‘red’}, color) = 68.2%, D({‘price’}, price) = 0.5%.

Since D({‘Vaio’, ‘W’},model)>τ=90%, it is important and

must be kept. Then we check the path from shop:0.0.0 (vlca)

to model:0.0.0.4.1 (mi), which is (shop:0.0.0/laptop:0.0.0.4/

model:0.0.0.4.1). By Defn. 5 TNT (r) = laptop, so we check

the subtree rooted at laptop:0.0.0.4. For each keyword match
node mi in the original result r, within the subtree rooted at

0.0.0.4, we can always find a node m′
i with the same type.

E.g. for the keyword match node 0.0.0.3.2 in r, we can find

node 0.0.0.4.2 with the same node type: (0.0.0.4.2).type =
color = (0.0.0.3.2).type. As a result, the set of m′ nodes

is: {0.0.0.4.1, 0.0.0.4.1, 0.0.0.4.2, 0.0.0.4.5}. Therefore, an

approximate query result r′ is constructed:

r′ = (0.0.0.4, {0.0.0.4.1, 0.0.0.4.1, 0.0.0.4.2, 0.0.0.4.5})
Compared to r, keyword match node color:0.0.0.3.2 is changed

to color:0.0.0.4.2. Node color:0.0.0.3.2 contains keyword

‘red’ and the content of color:0.0.0.4.2 is ‘white’. So the

keyword ‘red’ in user’s query leads to the mismach results. The

suggested query can also be inferred as {‘Vaio’,‘W’,‘white’,

‘price’} by changing ‘red’ to ‘white’, and r′ is its correspond-

ing sample result. �
Note that, if we set the threshold τ to a very low value,

say zero, which means all keywords are with acceptably high

distinguishability, then we will examine all the TNT nodes

containing at least one of the keyword match nodes. This

can cover all possibilities but of course more time will be

consumed. We will show in the experiment (Sec. VII) that

most likely it is not necessary.

C. Ranking the Suggested Queries

After all suggested queries are generated, we build a prelim-

inary ranking model to judge the quality score of a suggested

query with the following factors:

1) Number of keywords (in original query) that need to

be changed, denoted as cn. The larger cn is, the lower

score should be.

2) Distance between the approximate query result root v′lca
and original query result root vlca, denoted as dt (dt is

equal to the length difference of their Dewey labels).

The larger dt is, the higher score should be. Because a

more compact subtree is preferred.

3) Sum of distinguishability of the keywords that need to

be changed, denoted as
∑

D. The larger
∑

D is, the

lower score should be. Because we prefer not to replace

keywords those are with high distinguishability.

To sum up the above ranking factors, we calculate the

ranking score by taking a product of them:

score =
1

ecn
× (1− 1

edt
)× 1

e
∑

D
(2)

D. Summary of Features of Our Approach

To summarize, our MisMatch detector and suggester have

the following features. First, it is portable: by capturing

the LCA commonality among existing search semantics in

defining the format of query result (Defn. 4), our approach

can work with any LCA-based matching semantics (recall

Sec. II-B); since our approach is a post-processing of the

query evaluation, it is orthogonal to the result retrieval method

adopted. Second, it is result-driven: our approach accepts the

results of the original query as input, and recall Sec. IV-B

the suggester finds the important keywords (to be kept in

suggested queries) from each result, to guarantee the empirical

quality of suggestions. Third, it is lightweight: it occupies

a small proportion of the whole query evaluation time, as

discussed in Sec. V later.

V. EFFICIENT APPROXIMATE RESULTS DETECTION

Recall Sec. IV-B, to check whether a TNT node is an

approximate query result, the core operation is to verify

whether the two properties P1 and P2 hold. Checking P1

is trivial, so we aim to achieve an efficient check of P2 by

designing a novel node labeling scheme and the corresponding

logical operations.

Fig. 2. An XML Tree with Nodes Labeled by exLabels

Fig. 3. Schema Tree Flattening and Virtual Bitmap Construction

A. Node Labeling

Since our suggester needs to frequently access the type of

a node along the way to finding suggested queries, we first

collect all node types in XML data. By simply scanning the

XML file, we can get a schema tree which contains all node

types using DataGuide [4]. E.g., for the XML data in Figure

2, we can construct a schema tree as shown in Figure 3(a),

where each node in the schema tree represents a unique node

type. Note that each node in Figure 3 should be a node type

represented as a path (according to Defn. 1), but for simplicity

we use a tag name instead because there is no ambiguity.

Then, we use a bitmap to denote all node types in the

schema tree, where each bit in the bitmap corresponds to a

specific type. We purposefully decide which bit corresponds

to which type as follows:



• Flatten the schema tree level by level in a top-down

manner. Suppose a node n has k children, then n will be

inserted into a place between its �k
2 �th and (�k

2 � + 1)th
children. As a result, n will maintain its position between

its neighbors and neighbors’ children. Figure 3(a), (b) and

(c) show such a process of flattening.

• Construct a virtual bitmap as shown in Figure 3(d). Each

distinct node type has a unique position number in

bitmap. E.g., F’s position number is 3.

Such a bit-to-type mapping has a nice property: the bits of
all node types that appear in a specific subtree in XML will
stay together. As we can see later, this property helps ensure

the label size as compact as possible.

For a node n in the XML tree, the subtree rooted at n
may contain different types of nodes. To indicate which node

types appear in its subtree STn, we assign n a label (a, b, bm),
called exLabel. Here, a is the smallest position number (in the

bitmap) of the node type appearing within STn; similarly, b is

the largest position number of the node type appearing within

STn. bm is a sub-sequence of the bitmap (of the schema tree)

from position a to b, indicating which type of nodes can be

found in the subtree rooted at n. In particular,

• bm[i]=1, if the node type at position a+ i− 1 in bitmap
appears in the subtree rooted at n;

• bm[i]=0, otherwise. (i∈[1,b-a+1])

Example 4: In Figure 2, for the subtree rooted at node B
circled by the dotted line, it contains nodes of types E, B
and G. According to the bitmap in Figure 3(d), the position

number is 1 for E, 2 for B and 4 for G. Among the four node

types ranging from position 1 to 4, bm of node B indicates

which of those four node types appear in B’s subtree STB . As

a result, bm=1101 as the 3rd node type F does not appear in

STB , and B’s exLabel = (1,4,‘1101’). Note that the exLabel

of B is compact because the bits representing E, B and G are

staying together, which is the benefit from the aforementioned

bit-to-type mapping. �

B. Logical Operation

Similar to node labeling, for a query result r = (vlca, {m1,
m2, ...,mn}), we can intentionally construct an exLabel to

represent its node type information even though it is not a

node at all. Let a′ (b′) be the smallest (largest) position number

of the node type for mi, and the label for the query result is

denoted as (a′, b′, bm′).
Having a query result label (a′, b′, bm′) and a subtree root

label (a, b, bm), we can verify property P2 by examining the

following containment relation: (a′, b′, bm′) ⊆ (a, b, bm).
This relationship holds only if a ≤ a′ ≤ b′ ≤ b and all bits

that appear in bm′ also appear in bm. This can be efficiently

done by a logical AND operation on bm′ and bm.

Example 5: In Figure 2, suppose a query result r =
(vlca, {m1, m2}), where m1.type = B, m2.type = G. Then

the exLabel for r is (2,4,‘101’). If we want to check whether

an approximate query result exists in the subtree rooted at the

left node B in Figure 2, whose exLabel is (1,4,‘1101’), then we

know the approximate query result exists because (2,4,‘101’)

⊆ (1,4,‘1101’). �

VI. INDEX CONSTRUCTION AND ALGORITHMS

A. Data Processing and Index Construction

In the phase of XML document parsing, we collect all

distinct node types and generate a bitmap code for each node

type as discussed in Sec. V-A. For each node n visited, we

assign a Dewey label deweyID [23] to n; get the node type

tn of n; construct an exLabel for n. To speed up the query

processing and refinement, three indexes are built.

The first index is called replacement table, which is a B+

tree storing each node with (t,deweyID) as its key. Such

an index has the following property: by scanning rightwards

of the position (t,deweyID), we can find all the nodes of

type t under the subtree rooted at deweyID. Recall in Sec.

IV-B, after we find an approximate query result r′, we need

to materialize the replacement nodes within r′ in order to

infer the suggested query. Since we know the type t of each

replacement node and the deweyID of the root node of r′,
with replacement table, we can easily materialize all such

nodes by calling getReplacement (t,deweyID). The second
index is to maintain the exLabel and type info for each node.

To speed up the computation of distinguishability, particu-

larly for parameter fK

t in Formula 1, the third index called

inverted index is built: For each combination of a distinct

node type t and a distinct keyword k (in XML data), we

build an inverted list containing all nodes of type t where

each node subtree-contains keyword k. Those inverted lists

are grouped by node type t. As a result, fK

t can be computed

by simply computing the intersection of the inverted lists

for each keyword in K under node type t [12]. Operation

getDist(deweyID,K) returns the distinguishability of a set of

keywords K w.r.t. the type of the node with deweyID.

Algorithm 1: MisMatchResolver(Q, R)

suggestedQueries ←∅;1
{Detector}2
foreach r ∈ R do3

if r.vlca.type = getTNT (r) then4
return null;5

{Suggester}6
foreach r ∈ R do7

rExlabel = constructExlabel(r);8
foreach nd ∈ r.matchnodes do9

if getDist(nd.dewey, nd.keywords)>τ then10
foreach n ∈ nodes on the path from r.vlca to nd11
AND n.type = getTNT (r) do

if contain(getExLabel(n.dewey), rExlabel) then12
QuerySuggester(n, r, suggestedQueries);13

return suggestedQueries.sort();14

B. Solving the MisMatch problem

The main procedure is presented in Algorithm 1, where the

input is the query Q and its retrieved results R. For Detector, it

checks each result of Q (line 3) and calculates its TNT (line 4).

Once one of the results does not miss the target, which means



TABLE I

10 OF THE SAMPLE QUERIES ON IMDB

IMDB:90MB
# Query suggested queries best-3 suggested queries (Format: explanation → suggested options)

Q1 Gladiator Spanish 5 (language): Spanish → English / Japanese / French
Q2 Spielberg DiCaprio Action movie 6 (genres): Action → Biography / Crime / Drama
Q3 Neo hacker phonebooth 3061 (keyword): phonebooth → computer / software / programmer
Q4 Warner Bros. movie 0 None
Q5 Italy Betty Fisher 12 (country): Italy → France / Canada / USA
Q6 Spielberg Schwarzenegger 58 (name): Schwarzenegger→ Meredith Brooks / Jim Conroy / Dean Spunt
Q7 Terminator 3 cast Sarah 19 (name): Sarah → Nick Stahl / Claire Danes / Kristanna Loken
Q8 Panic Room 2001 11 (year): 2001 → 2002

(title): Panic Room → Promised Land / Nowhere Road
Q9 Ettore The Man movie 1189 (director): Ettore → Ethan Coen / Salvatore Maira / Massimo Sani
Q10 boy death ghost love 992 (keyword): love → orphanage / bully / bomb

what the user wants is in the retrieved results, it will terminate

the process (line 5). Otherwise, it constructs an exLabel for

the query result (line 8) as discussed in Sec. V-B.

For Suggester, it checks each keyword match node nd of the

query result (line 9). If the distinguishability is larger than the

threshold τ (line 10), the TNT node on the path from the vlca
to this node will be checked in order to find an approximate

query result (line 11). Whether an approximate query result

exists can be easily checked by examining the containment

relationship between the exLabels (line 12), where function

contain() will be shown in Algorithm 3. If an approximate

query result exists, the explanations and suggested queries will

be inferred by calling QuerySuggester() (line 13).

Algorithm 2: QuerySuggester(v′lca, r, sugQueries)

input : the approximate result root v′lca, the query result being
changed r and the suggested queries sugQueries

output : new suggested queries + one sample result v′lca
i = 0;1
foreach nd ∈ r.matchnodes do2

if nd is not a descendant of v′lca then3
replace[i++] = getReplacement(nd.type, v′lca.dewey);4

foreach n1 ∈ replace[1],...,ni ∈ replace[i] do5
sugQueries = sugQueries

⋃
6

(r.matchnodes[1]→ n1,..., r.matchnodes[i]→ ni);

Given the approximate result root and the original query

result, Algorithm 2 presents how to infer the suggested queries.

Keyword match nodes which are not in the subtree rooted at

v′lca will be replaced by nodes in v′lca that have the same node

type according to property P2 in Sec. IV-B (line 2-4). For a

keyword match node that needs to be changed, there may be

more than one replacement node to replace it. Such nodes can

be retrieved from index by calling function getReplacement()
(line 4). Note that there might be more than one keyword
match node needed to be changed, so suggested queries will

be inferred by considering all possible cases (line 6).

Algorithm 3 presents the function contain() to examine

the containment relationship between two exLabels, i.e., the

first contains the second. As discussed in Section V-B, one

condition for the relationship to be held is that the range of

the second label should be contained by the first (line 1-2).

After that, we need to make sure every bit that appears in

the second label also appears in the first. Since the bitmap

length of the two may not be the same, we shrink the first

bitmap as the same length as the second (line 3). Then bit

checking can be done by only doing a logical AND operation

on two bitmaps (line 4). Then a boolean result indicating the

containment relationship will be returned accordingly (line 5

and line 6).

Algorithm 3: contain(elx, ely)

input : exLabel elx and exLabel ely
output : a boolean indicating whether elx contains ely
if (elx.a � ely.a and ely.b � elx.b)==false then1

return false;2
bmTemp = subset of elx.bm from position ely.a to ely.b;3
if (bmTemp & ely.bm)==ely.bm then4

return true;5
return false;6

VII. EXPERIMENTS

We have conducted extensive experiments to verify the

effectiveness, efficiency and scalability of our approach. For

expository convenience, we refer to our MisMatch Detector &

Suggester as MisMatch D&S.

A. Experimental Settings

All experiments are conducted on a 2.83GHz Core 2 Quad

machine with 3GB RAM running 32-bit windows 7. All codes

are implemented in Java. Berkeley DB Java Edition [1] is used

to store all indexes for our algorithms.

Data Set. Three real datasets are tested: (1)IMDB2 90MB,

where around 200,000 movies of recent years are selected in

our dataset. Each movie contains information like title, rating,

director, etc. (2) DBLP 520MB, which contains publications

since 1990. (3) IEEE Publication 90MB from INEX3.

Query Set. Our query set contains 18 queries for each of

the datasets, all of which are collected from the real-world

user log data of our system. 10 sample queries for IMDB and

their best-3 suggested queries (if any) are shown in Table I.

Besides, 1000 random queries are generated for each dataset

2http://www.imdb.com/interfaces
3https://inex.mmci.uni-saarland.de/
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Fig. 4. Average Quality Measure of Suggested Queries (for the Testing Queries with MisMatch Problem)

as well (see Sec. VII-F.2), where the max (average) number

of results is 2691 (169).

Ground Truth. For each dataset, we employ 15 assessors to

pick up the queries with the MisMatch problem, and their

judgements are based on both the queries given and their

respective results. We obtained the ground truth by judging

a query to have the MisMatch problem if at least 8 of the 15

assessors agree on that. Eventually, 9 (10, 10) out of the 18

queries for IMDB (DBLP, IEEE) have the MisMatch problem.

Keyword Search Method. Here we choose SLCA [24],

which is one of the most efficient ones so far. Since no

SLCA-based search method proposed so far has result ranking

component, for the experiment we adopt the result ranking

scheme of XRank [5].

B. Frequency of the MisMatch Problem

We have done a survey among 15 participants. Each partic-

ipant is required to issue 30 queries in XClear [25], an XML

keyword search engine, to find some movies they want to

watch in the IMDB dataset. Each participant is asked to judge

whether her queries have the MisMatch problem according to

the query results. The same experiments are also conducted

on DBLP and IEEE datasets. We find that, averagely users

suffered from such a problem for 27% of their queries.

TABLE II

SENSITIVITY OF THE MISMATCH DETECTOR

IMDB dataset DBLP dataset IEEE dataset
Precision 90% 91% 100%

Recall 100% 100% 100%

C. Sensitivity of the MisMatch Detector

With the ground truth obtained, we study the precision and

recall of our MisMatch detector. Let A be the set of queries

that do have MisMatch problem. Let B be the set of queries

that our detector claims to have MisMatch problem. Then the

precision=|A ∩ B|/|B|, while recall=|A ∩ B|/|A|. The result

for queries on each dataset is shown in Table II. We find:

(1) Our detector achieves a perfect recall, i.e. we do not miss

any query that does have MisMatch problem. This is because

the detector checks all the results of Q before deciding whether

Q has MisMatch problem (by Definition 7).

(2) A non-perfect precision tells that we may accidentally iden-

tify some queries without MisMatch problem as problematic.

E.g. for a query ‘Joel Ethan’ issued on IMDB, no person in

database has such a name. For such an ambiguous query, it

is not easy to know whether the user intends to find a movie

related to two persons, or to find a person with that name

which does not exist. In this case, our approach may infer

director as the TNT, but users intending to find a movie related

to two persons will not be affected, because they can simply

ignore our suggestion. Note that in fact no existing approach

can solve the ambiguous query thoroughly [2].

D. Quality of the Suggested Queries

We first have a glance at how explanations and suggestions

look like for real-world queries in Table I. For Q8, ‘Panic

Room’ (‘2001’) is associated with the node of type title (year),

but no single movie contains all keywords. Naturally, one

suggestion is to find a movie with the same title but different

year (e.g. ‘2001’→‘2002’), or to find a movie with the same

year but different title (e.g. ‘Panic Room’→‘Promised Land’).

Note that we do not replace the keyword(s) directly, instead we

first replace the keyword match node, then derive the keywords

as replacement. The term inside the parenthesis in Table I

indicates the type of the node in which the replacement is

involved. The left hand side of the arrow is the keyword(s)

which lead to the mismatch problem (explanation part). Q3 has

3061 suggestions, because Q3 has a large number of results,

and our suggester works by checking each result to generate

suggestions (if any).
1) Evaluation Method: We select the queries with the

MisMatch problem for each dataset to conduct a user study.

To conduct a fair evaluation, we are aware of two things.

First, we invite both experts and novices to participate the

task of scoring the suggested query. For DBLP and IEEE,

we ask three CS research students and three undergraduates

in other faculties; for IMDB, we ask three movie fans and

three non-fans. The participants are shown the matching results

of each query, the best-5 suggested queries together with the

corresponding sample query results. Second, the participants

are asked to score the quality of each suggested query by using

the Cumulated Gain-based evaluation (CG) metric [9] (from

0 to 5 points, 5 means best while 0 means worst). In contrast

to traditional metrics like precision and recall which adopt a
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Fig. 5. Processing Time for some Sample Queries (The result ranking time is too small to display.)

binary judgement (yes or no), CG is aware of the fact that all

results are not of equal relevance to user.

2) Evaluation of Overall Quality: The average scores for

best-3 and best-5 suggestions are shown in Figure 4 4. We can

find for queries with the MisMatch problem, our approach

is able to find reasonable suggested queries for them, and

subsequently it leads to more meaningful results; the scores

for best-3 suggestions are always higher than those of best-5,

which also shows the effect of our query ranking scheme.

Although our suggested queries can lead to better query

results, some are still given low scores by some participants

because new keywords and old keywords are not semantically

similar, such as the replacement for Q10 in Table I. But

considering lexical semantics is out of the scope of this paper.

Most likely, the best-3 suggested queries will be viewed

by the struggling users. So in the rest of the paper, when we

talk about the quality of the suggested queries, we mean the

average score of the best-3 suggested queries.

TABLE III

SUGGESTION QUALITY W.R.T. DIFFERENT τ AND RANKING FACTORS

τ all ranking factors no cn no dt no
∑

D

IMDB

0.9 4.63 4.30 4.37 4.13
0.6 4.63 4.30 4.37 4.13
0.3 4.63 4.30 4.37 4.13
0.0 4.63 4.30 4.37 4.13

DBLP

0.9 4.71 4.39 4.39 4.13
0.6 4.71 4.36 4.42 4.18
0.3 4.71 4.36 4.42 4.18
0.0 4.71 4.36 4.42 4.18

IEEE

0.9 4.68 4.34 4.41 4.18
0.6 4.68 4.34 4.42 4.19
0.3 4.68 4.34 4.42 4.19
0.0 4.68 4.34 4.42 4.19

3) Study of the query ranking scheme: We further study

how the proposed ranking factors for ranking suggested query

affect the overall quality of suggested queries. The ranking

factors include cn, dt and
∑

D, as discussed in Sec. IV-C.

The scores for the suggested queries of each case are shown

in Table III. Please ignore the choice of τ for the time being.

By comparing the scores in a columnwise way, we find:

4Here by default we adopt τ = 0.9. Experiment on effects of threshold
setting is discussed in Sec. VII-D.4.

(1) The model taking all ranking factors always outperforms

any models that miss one of the three ranking factors.

(2) Without considering the distinguishability of the keywords

to be replaced (i.e.,
∑

D), the suggested query quality de-

creases more than the case without any of the other two factors.

It shows that distinguishability plays an important role.

4) Study of distinguishability threshold: Besides the query

ranking scheme, recall Sec. IV-B, the choice of the dis-

tinguishability threshold τ will determine what ‘important’

keywords to keep in suggestions, thereby may lead to different

candidates for suggested queries Q′s, which in turn may affect

the overall quality of Q′s. Therefore, we adopt 4 choices of

τ , from strong (0.9) to weak (0), as shown in Table III.

By comparing the scores in a rowwise way, we can see that

the best suggested queries usually do not change even when

we set a smaller threshold τ . It is because we have already

found the best suggested queries when we set a high τ like

0.9, since preserving the keywords with high distinguishability

is more reasonable as discussed in Sec. IV. Later we will also

study the impact of τ on the efficiency of our approach in Sec.

VII-F.1.

E. Sample Query Processing Time

For each query in Table I, we run our algorithm 10 times

and collect the average processing time on hot cache, as shown

in Figure 5(a). The query result ranking time is too small to

display. Moreover, we record the time used by the MisMatch
D&S part. We have three observations from Figure 5(a):

(1) The MisMatch D&S only takes a small portion of the whole

query processing time. On average, it is around 4% for our

query set. For the queries on which MisMatch D&S spends

less than 1ms, it is too small to display in Figure 5(a). Besides,

on average the detector spends about 1/40 time of the suggester

because it only needs to check the node type of the results as

discussed in Sec. V.

(2) When more suggested queries are generated, the processing

time of MisMatch D&S is relatively longer. E.g., as we can

see in Table I, Q3 generates more suggested queries than the

other queries, so MisMatch D&S consumes more time.

(3) For the query that has no MisMatch problem, MisMatch

D&S introduces a negligibly small time as compared to the

query evaluation time. Because it will terminate once it finds a



query result without the MisMatch problem. E.g. for Q4 which

intends to find the movie by company Warner Bros, since there

exist such kind of movies, Q4 does not have the MisMatch

problem, and our MisMatch D&S takes only 0.05ms.

Figure 5(b) and 5(c) show the processing time for 10 (out

of the total 18) queries on DBLP and IEEE, where we can get

similar observations.

F. Scalability Test

Recall that our detector checks all results of a query before

concluding the existence of the MisMatch problem, and for

each query result, our suggester tries to derive suggested query.

Therefore, the processing time of the MisMatch D&S should

be dependent on the number of suggested queries found, which

in turn depends on

• the size of the XML data being queried, and

• the choice of the distinguishability threshold τ , and

• the number of results investigated by MisMatch D&S

1) Sample Queries:
Firstly, we conduct our scalability test by studying the

impact of increasing data size on the MisMatch D&S. We run

the queries on IMDB and DBLP with different sizes. Figure

6 shows the average processing time of one query on the

datasets, where we have two observations.

(1) The processing time of the MisMatch D&S increases

linearly w.r.t. the data size. Because larger data size leads

to possibly larger number of results, and our D&S needs to

check all results to decide the MisMatch existence and find

suggestions based on each result.

(2) As the query processing time increases w.r.t. the data size

as well, the MisMatch D&S only takes around 4% of the whole

query processing time regardless of the data size.
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Fig. 6. Impact of Data Size.

Secondly, we study the impact of the distinguishability

threshold τ on the processing time of our MisMatch D&S.

Figure 7 shows the average number of suggested queries gen-

erated for one query w.r.t. different distinguishability threshold

τ and the corresponding processing time, where the choice of

τ is same as that of the query quality study (in Sec. VII-D.4).

As we can see, more suggested queries will be generated when

τ is set to be smaller. Meanwhile, it will take longer to process.

Because when threshold τ is set lower, more keywords will

be considered as with acceptably high distinguishability, and

we will check more TNT nodes and therefore find out more

suggested queries. As discussed in Sec. VII-D, most likely,

setting τ to 0.9 can find the same best suggested queries as

setting τ to 0.6, 0.3 and even 0.0. So we set τ to 0.9 as a

balance between efficiency and effectiveness. To summarize,

MisMatch D&S takes a very small portion of the keyword

query processing time, while can come up with some helpful

suggested queries to users for possible MisMatch problem.
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2) Random Queries: Besides the real-world sample queries,

we further study the performance of our D&S over random

queries. Keywords in IMDB dataset are randomly picked to

form queries of length 2∼5 and those with MisMatch problem

will be kept. We record the first 1000 of such queries and count

the suggested queries output by our D&S. The distribution

of these queries with different ranges for the number of

suggestions is shown in Figure 8(a), from which we find most

queries will result in suggested queries no larger than 500.

Similar to our findings on sample queries, Figure 8(b) reports

the linear relationship between the D&S time and the number

of suggested queries on random queries.
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Fig. 8. Scalability Test of Random Queries

VIII. RELATED WORK

To the best of our knowledge, so far there is no work on

the MisMatch problem in XML keyword search. In the related

work, we will look at 1) how the MisMatch problem is handled

in other forms of information retrieval; 2) related work in XML

keyword search.

MisMatch Problem in Information Retrieval.
When structured queries are issued over structured data

(relational tables), the MisMatch problem (i.e. what users

search for is unavailable in the database) leads to empty result.

It has attracted a lot of research efforts such as [8], [19], [17],



[18], where the problem is also known as failing queries, non-

answer queries. [19] proposed a method to remove some con-

straints of the query with the help of approximate functional

dependencies, and then execute the new queries to finally

find some alternative queries. [17], [18] proposed another

method which adopts the machine learning way to learn some

rules from the database. For each failed query, it will find

the most similar rule for generating the alternative queries.

Recently, [19] also studied how to explain non-answer queries

by pinpointing the constraint causing the empty result.

When keyword queries are issued over unstructured data

(in web search), the MisMatch problem will lead to a list

of mismatch results. As discussed in Sec. I, detecting the

MisMatch problem may be challenging. One way to alleviate

the problem is to mine some similar and popular queries

from query log. [10] tried to modify the query by some

pre-computed queries and phrases based on user query log

and similarity, which is given by a machine learning model.

Later, [26] proposed methods to improve query substitution by

selecting a better training set for the machine learning model.

Since the results of XML keyword search are very different,

which are some subtrees with structure, none of the above

techniques consider tree structure and can be used to detect

MisMatch problem in XML keyword search. Our solution

makes use of the unique tree structure information in XML,

i.e. node types, to find some useful suggestion for users.

XML Keyword Search.
The first part of the research efforts is the definition of

matching semantics. LCA (lowest common ancestor) seman-

tics is first proposed in [5] to find XML nodes, each of which

contains all query keywords within its subtree. For a given

query Q = {k1,...,kn} and an XML document D, Li denotes

the inverted list of ki. Then the LCAs of Q on D are defined

as LCA(Q)={v | v = lca(m1, ...,mn), vi ∈ Li(1 ≤ i ≤ n)}.

Subsequently, SLCA (smallest LCA [24], [7]) is proposed,

which is indeed a subset of LCA(Q), of which no LCA in

the subset is the ancestor of any other LCA. ELCA [5], which

is also a widely adopted subset of LCA(Q), is defined as:

a node v is an ELCA node of Q if the subtree Tv rooted

at v contains at least one occurrence of all query keywords,

after excluding the occurrences of keywords in each subtree

Tv′ rooted at v’s descendant node v′ and already contains

all query keywords. Recently, structural consistency [11] is

proposed to further constrain LCA s.t. no query result has

an ancestor-descendant relationship at the schema level with

any other query results. The second part is the proposals of

efficient result retrieval methods based on a certain matching

semantics: [24], [15] for computing SLCA nodes and [5],

[22] for computing ELCA nodes. Moreover, improving user

experience is studied in various ways [16], [13], [14], [2], but

none of them is aware of the MisMatch problem.

IX. CONCLUSIONS

In this paper, we first identified and defined the MisMatch

problem, in which what user intends to search for does not

exist in the XML data. Then we proposed a practical way to

detect the MisMatch problem and generate helpful suggestions

to users. Our approach can be viewed as a post-processing

job of query evaluation, and has four main features: (1)

both detector and suggester are result-driven; (2) it adopts

explanations, suggested queries and their sample results as the

output to users, helping users judge whether the MisMatch

problem is solved without reading all query results; (3) it

is portable as it can work with any LCA-based matching

semantics and orthogonal to the choice of result retrieval

method; (4) it is lightweight as it occupies a very small

proportion of the whole query evaluation time.
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[9] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR
techniques. ACM Trans. Inf. Syst., 2002.

[10] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query
substitutions. In WWW, 2006.

[11] K.-H. Lee, K.-Y. Whang, W.-S. Han, and M.-S. Kim. Structural
consistency: enabling xml keyword search to eliminate spurious results
consistently. VLDB J., 19(4), 2010.

[12] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves word-aligned
bitmap indexes. CoRR, 2009.

[13] G. Li, J. Feng, J. Wang, and L. Zhou. Effective keyword search for
valuable lcas over xml documents. In CIKM, 2007.

[14] G. Li, C. Li, J. Feng, and L. Zhou. Sail: Structure-aware indexing for
effective and progressive top-k keyword search over xml documents. Inf.
Sci., 179(21), 2009.

[15] Z. Liu and Y. Chen. Identifying meaningful return information for xml
keyword search. In SIGMOD, 2007.

[16] Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation.
PVLDB, 2009.

[17] I. Muslea. Machine learning for online query relaxation. In KDD, 2004.
[18] I. Muslea and T. J. Lee. Online query relaxation via bayesian causal

structures discovery. In AAAI, 2005.
[19] U. Nambiar and S. Kambhampati. Answering imprecise queries over

autonomous web databases. In ICDE, 2006.
[20] G. Salton and M. J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.
[21] A. Schmidt, M. L. Kersten, and M. Windhouwer. Querying xml

documents made easy: Nearest concept queries. In ICDE, 2001.
[22] Y. Tao, S. Papadopoulos, C. Sheng, and K. Stefanidis. Nearest keyword

search in xml documents. In SIGMOD, 2011.
[23] V. Vesper. http://www.mtsu.edu/vvesper/dewey.html.
[24] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest

lcas in xml databases. In SIGMOD, 2005.
[25] Y. Zeng, Z. Bao, T. W. Ling, and G. Li. Removing the mismatch

headache in xml keyword search. In SIGIR, pages 1109–1110, 2013.
http://xclear.comp.nus.edu.sg.

[26] W. V. Zhang, X. He, B. Rey, and R. Jones. Query rewriting using active
learning for sponsored search. In SIGIR, 2007.


