
Mapping and Cleaning

Floris Geerts 1, Giansalvatore Mecca 2, Paolo Papotti 3, Donatello Santoro 2,4

1 University of Antwerp – Antwerp, Belgium 2 Università della Basilicata – Potenza, Italy
floris.geerts@ua.ac.be giansalvatore.mecca@gmail.com

3 Qatar Computing Research Institute (QCRI) – Doha, Qatar 4 Università Roma Tre – Roma, Italy
ppapotti@qf.org.qa donatello.santoro@gmail.com

Abstract—We address the challenging and open problem of
bringing together two crucial activities in data integration and
data quality, i.e., transforming data using schema mappings,
and fixing conflicts and inconsistencies using data repairing.
This problem is made complex by several factors. First, schema
mappings and data repairing have traditionally been considered
as separate activities, and research has progressed in a largely
independent way in the two fields. Second, the elegant formal-
izations and the algorithms that have been proposed for both
tasks have had mixed fortune in scaling to large databases. In
the paper, we introduce a very general notion of a mapping and
cleaning scenario that incorporates a wide variety of features,
like, for example, user interventions. We develop a new semantics
for these scenarios that represents a conservative extension of
previous semantics for schema mappings and data repairing.
Based on the semantics, we introduce a chase-based algorithm
to compute solutions. Appropriate care is devoted to developing
a scalable implementation of the chase algorithm. To the best of
our knowledge, this is the first general and scalable proposal in
this direction.

I. INTRODUCTION

Schema mappings have been proposed in the database
literature as an enabling technology for modern data-driven
applications. Mappings are executable transformations that
specify how an instance of a source repository should be
translated into an instance of a target repository. A rich body
of research has investigated mappings, both with the goal
of developing practical algorithms [1], and nice and elegant
theoretical foundations [2].

However, it is also well known that data often contain
inconsistencies, and that dirty data incurs economic loss and
erroneous decisions [3]. The data-cleaning (or data-repairing)
process consists in removing inconsistencies with respect to
some set of constraints over the target database.

We may say that both schema-mappings and data cleaning
are long-standing research issues in the database community.
However, so far they have been essentially studied in isolation.
On the contrary, we notice that whenever several possibly
dirty databases are put together by schema mappings, there is
a very high probability that inconsistencies arise, and therefore
there is even more need for cleaning. Solving this problem is
a challenging task, as discussed in the following example.

Example 1: Consider the mapping scenario shown in Figure
1 in which several different hospital-related data sources must
be correlated to one another. The first repository has infor-
mation about Treatments and Physicians. The second one about
MedPrescriptions. In turn, the target database organizes data in
terms of Prescriptions and Doctors. Notice how we are leaving
ample freedom in the choice of sources. In fact:

(i) we assume that the source databases may contain inconsis-
tencies, and – while this is not mandatory in our approach –
possibly come with an associated confidence. In our example,
we assume that a confidence of 0.5 has been estimated for the
first data source, and 0.7 for the second;

(ii) besides possibly unreliable sources, we allow for the pres-
ence of authoritative sources; in our example, as it is common
in large organizations, a master-data [4] table, Hospital MD , is
available, containing a small set of curated tuples that represent
a source of highly reliable and synchronized information for
the target. Differently from sources 1 and 2, which will be
primarily used to move data into the target and can generate
conflicts, in our approach authoritative sources are used to
repair the target and remove inconsistencies;

(iii) the target can be modified and we do not assume the
target to be empty, as it is typical in data translation.

The target also comes with a number of constraints. More
specifically: (a) there is an inclusion constraint of the form
Prescriptions.npi ⊆ Doctors.npi; (b) attribute id is a key for
table Prescriptions; (c) table Doctors has two keys, namely
attributes npi (the National Provider Identifier for doctors) and
name. Notice that the source and target tables may contain
inconsistencies. For example, Dr. R. Chase is assigned different
npis by the source database (1112 and 1222).

A data architect facing this scenario must therefore deal
with two different tasks. On the one side, s/he has to develop
the mappings to exchange data from the source databases to
the target. On the other side, s/he has to devise appropriate
techniques to repair inconsistencies that may arise during the
process. We next discuss this in more detail.

Step 1: Data Translation The desired transformation can be
expressed as a set of tuple generating dependencies (tgds) [2]:
i.e., two source-to-target tgds and one target tgd to express
the given inclusion constraint, as follows (as usual, universal
quantifiers in front of the tgds are omitted):

mst1. Treat(id, pat, hos, npi), Phys(npi, doc, sp)
→ Presc(id, pat, npi, 0.5),Doc(npi, doc, sp, hos, 0.5)

mst2.MedPresc(id, pat, npi, doc, sp)
→ ∃Y : Presc(id, pat, npi, 0.7),Doc(npi, doc, sp, Y, 0.7)

mt1. Presc(id, pat, npi, cf)→∃Y1,Y2,Y3 :Doc(npi,Y1,Y2,Y3, cf)

Each tgd states a constraint over the target database. For
example, tgd mst2 says that for each tuple in the MedPre-

scriptions source table, there must be corresponding tuples in
the Prescriptions and Doctors target tables; Y is an existential
variable representing values that are not present in the source
database but must be present in the target.

ID� Patient� NPI� Conf

t10 P1 W. Smith 1112 0.5

t11 P1 I. Smith 1222 0.7

NPI� Name� Spec� Hospital� Conf

t5 5556 G. House surg PPTH 0.5

t6 5555 G. House urol null 0.1

t13 1112 R. Chase urol PPTH 0.5

t14 1222 R. Chase diag null 0.7

DOCTORS

Source #2 – Confidence 0.7 Source #3 – Master Data

ID� Patient� Hospital� NPI�

t1 P1 W. Smith PPTH 1112

S
O

U
R

C
E

NPI� Name� Spec�

t2 1112 R. Chase urol

ID� Patient� NPI� Doctor� Spec�

t3 P1 I. Smith 1222 R. Chase diag

MEDPRESCRIPTIONS

Doctor� Spec� Hospital�

tm G.House diag PPTH

HOSPITALS MD

Source #1 – Confidence 0.5

ID� Patient� NPI� Conf

(empty)

PRESCRIPTIONS

NPI� Name� Spec� Hospital� Conf

t5 5556 G. House surg PPTH 0.5

t6 5555 G. House urol null 0.1

DOCTORS

T
A

R
G

E
T

PRESCRIPTIONS

(a) Initial instances (b) PreSolution for the tgds

PHYSICIANS TREATMENTS

ID� Patient� NPI�

t11 P1 I. Smith 1222

NPI� Name� Spec� Hospital�

t5 5556 G. House diag PPTH

t14 1222 R. Chase diag PPTH

DOCTORS PRESCRIPTIONS

ID� Patient� NPI�

t10 La W. Smith 1222

t11 P1 I. Smith 1222

NPI� Name� Spec� Hospital�

t5 5556 G. House diag PPTH

t14 1222 R. Chase diag PPTH

DOCTORS PRESCRIPTIONS

(c) Minimal, clean solutions

Minimal Solution a

Minimal Solution b

Fig. 1: A Hospital Mapping Scenario.

Step 2: Conflict Resolution Once the mappings have been
executed – for example by translating them into an SQL script
– a pre-solution like that in Figure 1.(b) is generated. This
instance satisfies the s-t tgds and the target inclusion constraint.
However, it contains inconsistencies wrt the key constraints
(highlighted in bold) due to conflicts in the sources.

As it was recently noted [5], this data repairing problem
can be seen as a cleaning scenario composed of cleaning
equality generating dependencies (egds). These generalize
many common data quality constraint formalisms, as follows
(confidence attributes are omitted):

e1. Presc(id, p, npi), Presc(id, p′, npi′)→ p = p′, npi = npi′

e2.Doc(npi, n, sp, h),Doc(npi, n′, sp′, h′)→n=n′,sp= sp′,h=h′

e3.Doc(npi, n, sp, h),Doc(npi′, n, sp′, h′)→npi = npi′,sp= sp′,h=h′

e4.HospMD(n, sp, h),Doc(npi, n, sp’, h)→ sp = sp′

Egd e4 is a cleaning egd [5], an extended form of egd in which
both source (the master data table) and target symbols may
appear in the premise; it corresponds to an editing rule [6], and
states how values in the Doctors table can be corrected based
on the master-data table Hospital MD . Notice that repairing the
pre-solution may cause a violation of the tgds and hence the
mappings in Step 1 need to be applied again. �

In fact, we will show that simply pipelining existing data
exchange and data repairing algorithms often does not provide
solutions. This is due to the fact that mappings and quality
constraints may interact in a complex way, and therefore
require the development of new methods in order to be handled
together. Such development is far from trivial, for a number
of reasons. On the one side, the standard semantics of schema
mappings [2] has been conceived with no conflicts in mind. On
the other side, most of the recent data repairing [3] and conflict
resolution [7] algorithms concentrate on a single inconsistent
table that is dirty and needs to be repaired, and can hardly be
extended to handle a complex data transformation task

Contributions We build on our recent work [5] and make
two important and nontrivial contributions. The first one is the
formalization of a new framework for mapping and cleaning
that tackles the problems discussed in Example 1. The second
consists in the development of a general-purpose chase engine
that scales nicely to large databases. More specifically:

(i) we develop a general framework for mapping and cleaning
that can be used to generate solutions to complex data trans-
formation scenarios, and to repair conflicts and inconsistencies

among the sources with respect to a very wide class of target
constraints;

(ii) the framework is a conservative extension of the well-
known framework of data exchange, and of most of the existing
algorithms for data repairing; at the same time, it considerably
extends its reach in both activities; in fact, on the one side it
brings a powerful addition to schema mappings, by allowing
for sophisticated conflict resolution strategies, authoritative
sources, and non-empty target databases; on the other side,
it extends data repairing to a larger classes of constraints,
especially inclusion dependencies and conditional inclusion
dependencies [3], that are very important in the management
of referential integrity constraints, and for which very little
work exists;

(iii) we implement the new semantics for mapping and
cleaning scenarios under the form of a chase algorithm. This
has the advantage of building on a popular and principled
algorithmic approach, but it has a number of subtleties. In
fact, our chase procedure is more sophisticated than the
standard one, in various respects. To give an example, we
realize that in the presence of inconsistencies user inputs may
be crucial. To this aim, we introduce a nice abstraction of
user inputs and show how it can be seamlessly integrated into
the chase. This may pave the way to the development of new
tools for data repairing, in the spirit of [8];

(iv) in addition, scalability is a primary concern of this work.
Given the complexity of our chase procedure, addressing this
concern is quite challenging. Therefore, we introduce a number
of new optimizations to alleviate computing times, making the
chase a viable option to exchange and repair large databases.
In fact, as a major result, we show in our experiments that
the chase engine is orders of magnitude faster than existing
engines for data exchanges, and show superior scalability wrt
previous algorithms for data repairing [9], [10] that were
designed to run in main memory.

To the best of our knowledge, this is the first proposal
that achieves the level of generality needed to handle three
different kinds of problems: traditional mapping problems,
traditional data repairing problems, and the new and more
articulated category of data translation problems with conflict
resolution, as exemplified in Example 1. In fact, we believe
that this proposal may bring new maturity to both schema
mappings and data repairing.

II. OVERVIEW

A Quick Data Repairing Tutorial We start by providing a
quick summary of the LLUNATIC data repairing framework
[5]. Let us first ignore tgds and concentrate on tuples that are
already present in the target. Assume that we are given the
constraints expressed by egds e1–e4, and need to repair the
target. Consider for example egd e3 that states that name is
a key for Doctors. Tuples t5 : (5556, G. House, surg, PPTH)
and t6 : (5555, G. House, urol, null) contain various violations.
In data repairing terminology, these correspond to cells – i.e.,
tuple attributes – with conflicting values.

Conflicts and Partial Orders Our approach is to chase the
database using the dependencies to remove the conflicts. There
are various ways to chase tuples t5 and t6 with egd e3. One
obvious way is to equate the values of conflicting cells. This
corresponds to chasing the egd in a forward way, and requires
selecting a preferred value among the conflicting values.

Discarding the null value is an obvious choice for the
hospital attribute. In other cases, the value to prefer is less
obvious, and may differ from case to case. In fact, a flexible
data repairing algorithm should allow users to easily specify
their preference strategies. Consider for example attribute Spec.
Since tuples come with a confidence value, it is reasonable in
this example to choose the value for specialty with the higher
confidence, surg in this case. An elegant way to model such
preferences is to specify a partial order �p, i.e., an order of
preference among values of cells in the database. Assume the
partial order specified by the user gives preference to values
with higher confidence, i.e., urol (conf. 0.1) �p surg (conf.
0.5). Then, we may forward chase tuples t5, t6 for attribute
spec by changing cell t6.spec to surg.

Cell Groups and Upgrades We model this partial repair by
a cell group. Its primary function is to express a relationship
among cells that need to be repaired together. In essence, since
t5.spec and t6.spec have been equated to satisfy egd e3, we
want to keep track of this during the chase, so that we do not
disrupt this equality in the following. We write this new cell
group g that has been generated by the chase by the syntax:

g = 〈surg → {t5.spec, t6.spec}〉

and call {t5.spec, t6.spec} the occurrences of g.

Cell groups are at the core of the chase algorithm. In fact,
we see databases as collections of cell groups, with the starting
database corresponding to the trivial set of cell groups in which
each cell is assigned its own value. Each chase step removes
one or more conflicting cell groups, and generates a new cell
group to remove the violation. Therefore, after our first chase
step, a repair Rep = {g} of J has been generated.

A crucial feature of our approach is that Rep(J) is an
improvement over J , since it was obtained by changing the
value of a conflicting cell to a “better” value, according to
the partial order specified by the user. We therefore say that
Rep(J) is an upgrade of the original dirty database J .

Cell groups are even more powerful than this, since they
can also carry lineage information for changes to the database,
in terms of values from authoritative sources. Consider for
example egd e4, that specifies how to correct the target
database based on master data tuples. Recall that our current

repair contains cell group g, that has been generated at previous
chase steps. Forward chasing tuples t5, t6 with master data
tuple tm and egd e4 further corrects the spec cells to value
diag. Since the value comes from an authoritative source,
we repair the violation by a new cell group g′, in which
cell tm.spec is explicitly stored as a justification, in symbols:
g′ = 〈diag → {t5.spec, t6.spec} by {tm.spec}〉. Conditional
functional dependencies [3] are handled in a similar way.
Again, the new repair Rep

′ = {g′} is an upgrade of Rep. In
fact, its cell groups carry more justifications, and are therefore
better supported by authoritative sources.

Lluns So far we have used various rules to solve conflicts,
in part standard (constants are better than nulls, authoritative
values are better than target values), in part scenario-dependent
and specified through �p. There are, however, cases in which
these rules do not suggest any clear strategy to remove a vio-
lation. Consider the npi attribute. Suppose that no specification
has been provided as to which of the values of npi should be
preferred. In this case, to forward chase dependency e3, we
need to change cells t11.npi and t12.npi into some unknown
value that may be either 5555 or 5556, or some other preferred
value that we currently do not know.

To mark this fact, we introduce a new class of symbols,
called lluns. In essence, lluns are placeholders used to mark
conflicts for which a solution will need to be provided later
on, for example by asking for user inputs. In this respect, lluns
can thus be regarded as the opposite of nulls since lluns carry
“more information” than constants.

We may summarize by saying that forward chasing t5 and
t6 with egds e3, e4 generates the following repair to upgrade
the original target database (we omit cell group justifications
when they are empty; L0 is a llun):

Rep = { g1 = 〈PPTH → {t5.hospital, t6.hospital}〉
g2 = 〈diag → {t5.spec, t6.spec} by {tm.spec}〉
g3 = 〈L0 → {t5.npi, t6.npi}〉 . . .}

Backward Chasing and Chase Trees There are, however,
different ways to enforce an egd. Besides equating values to
satisfy the conclusion, one may think of falsifying the premise.
For example, consider egd e3 that states that name is a key, i.e.,
two tuples that agree on name cannot have different values. As
an alternative to forward chasing tuples t5, t6, we may also
chase them backward. To do this, it suffices to change the
name attribute of either tuple to a new llun, Li. This means
that there are three different ways to chase t5, t6 with e3: (i)
the forward repair discussed above; (ii) two backward repairs,
the first one made of cell group gb1 = 〈Lb1 → {t5.name}〉, the
second of gb2 = 〈Lb2 → {t6.name}〉.

To be more precise, in both cases we shall change into a
llun the entire cell group of t5.name and t6.name. This is in fact
a key feature of the chase algorithm: it preserves cell groups
in order to guarantee that each chase step actually upgrades
the target wrt the previous one.

It should be clear that the chase is in fact a parallel chase,
and generates a tree of repairs. This is due not only to the
presence of forward and backward repairs, but also to the fact
that dependencies may be repaired in different orders, and this
may yield different results.

Cleaning Scenarios The ideas discussed above have been
formalized under the notion of a cleaning scenario [5]. In-
tuitively, in a cleaning scenario, clean source instances of a
source schema S (e.g., master data) are linked to dirty target
instances of a target schema T by means of cleaning egds Σe;
solutions to cleaning scenarios can be regarded as repairs of
the target instances, and are generated by means of the chase
procedure discussed above, that, in contrast to its counterpart
in data exchange, never fails.

Mapping and Cleaning A significant limitation of cleaning
scenarios is that they do not support tgds. We next provide
the main intuitions behind our extension of cleaning scenarios
with tgds, referred to as mapping and cleaning scenarios.

The first crucial intuition is that, while the chase of tgds
has traditionally been seen as the insertion of tuples into the
target, with some effort it is possible to model it in terms
of cell groups and repairs. Consider tgd mt1 in our example,
stating the inclusion dependency Prescr.npi ⊆ Doc.npi (similar
arguments hold for the s-t tgds).

Assume that a new tuple tx with npi 123 has been added to
the prescriptions by chasing the s-t tgds, and this violates the
constraint. Then, we chase tuple tx with mt1 as follows: (i)
we add a new tuple ty : (123, N1, N2, N3) to table Doctors;
(ii) in addition, we update the current repair by adding a new
cell group, to keep track that the foreign key tx.npi and the
primary key ty .npi are related to each other: gx = 〈123 →
{tx.npi, ty.npi}〉. This is crucial in our semantics: in this way,
we guarantee that any following step upgrades the database by
maintaining this cell group, and no unnecessary regressions are
introduced in the repair.

Notice also that we do not backward-chase tgds, since the
only way to backward-chase a tgd like mt1 consists in deleting
tuple tx, and there is general consensus that deleting tuples
causes unnecessary loss of information.

Chasing with User Inputs User inputs are modeled in map-
ping & cleaning scenarios by means of an oracle function,
User, that works on repairs, or, better, on the cell groups they
are made of. Function User is a partial function, to model the
fact that users are usually only requested to provide fragments
of inputs. It may be invoked on any node of the chase tree,
and may either (i) change the value of a cell group, (ii) refuse
a cell group – and therefore the entire repair of a chase node
– because it is considered as a wrong way to clean the target.
In the chase, we therefore have a third kind of step, aside
from those that chase egds and tgds, and these correspond to
invoking function User over a node of the tree.

These extensions come with a cost. In Section V, we show
that a complete revision of the notions of satisfaction of a
dependency, upgrade, and ultimately of the notion of a solution
is required.

III. SCHEMA-MAPPINGS BACKGROUND

A schema R is a finite set {R1, . . . , Rk} of relation
symbols, with each Ri having a fixed arity ni ≥ 0. Let
CONSTS be a countably infinite domain of constant values and
NULLS be a countably infinite set of labeled nulls, distinct from
CONSTS. An instance I = (I1, . . . , Ik) of R consists of finite
relations Ii ⊂ (CONSTS ∪ NULLS)ni , for i ∈ [1, k]. We denote

by dom(I) the set of constants and nulls in I . We assume the
presence of unique tuple identifiers in an instance; by ttid we
denote the tuple with id “tid ” in I . A cell is a location in I
specified by a tuple id/attribute pair ttid.Ai.

Dependencies A relational atom over R is a formula of the
form R(x) with R ∈ R and x is a tuple of (not necessarily dis-
tinct) variables. A tuple-generating dependency (tgd) over R
is a formula of the form ∀x

(

φ(x)→ ∃ yψ(x, y)
)

, where φ(x)
and ψ(x, y) are conjunctions of relational atoms overR. Given
two disjoint schemas, S and T , a tgd over 〈S, T 〉 is called a
source-to-target tgd (s-t tgd) if φ(x) only contains atoms over
S , and ψ(x, y) over T . Furthermore, a target tdg is a tgd in
which both φ(x) and ψ(x, y) only contain atoms over T . An
equality generating dependency (egd) over T is a formula of
the form ∀x(φ(x) → xi = xj) where φ(x) is a conjunction
of relational atoms over T and xi and xj occur in x.

Notice that, besides these standard definitions, in this paper
we will make use of extended tgds and cleaning egds over
schemas S, T , where φ(x) is a conjunction of relational atoms
over S∪T , i.e., we mix source and target atoms in the premise.

We assume the standard definition [2] of a mapping sce-
nario, solution, universal solution, and core solution as the
smallest of the universal solutions for a mapping scenario M
over instances 〈I , J 〉 of 〈S, T 〉. We also assume the standard
definition of the chase of a mapping scenario M over 〈I , J 〉.

IV. MAPPING & CLEANING SCENARIOS

Building on the LLUNATIC framework, we next provide an
extension that supports both tgds and egds.

Definition 1 [MAPPING&CLEANING SCENARIO] Given a do-
main D = CONSTS ∪ NULLS ∪ LLUNS, a mapping & cleaning
scenario over D is a tuple MC = {S,Sa, T ,Σt,Σe,�p

,User}, where: (i) S ∪ Sa is the source schema and T is
the target schema; Sa denotes the set of authoritative source
tables; (ii) Σt is a set of extended tgds, as defined in Section
III; (iii) Σe is a set of cleaning egds, as defined in Section
III; (iv) �p is a specification of a partial-order for the values
of cells in the target database; (v) User is a partial function
over repairs used to model user inputs.

LLUNS, �p and User are described in more detail next.

LLUNS and partial orders Let 〈I , J 〉 be an instance of
〈S,Sa, T 〉. Apart from taking values from CONSTS and
NULLS, target instances J may take values from a third count-
ably infinite set of values, LLUNS = {L1, L2, . . .}, distinct
from CONSTS and NULLS.

A preference relation ⊳ among values formalizes the
relationship between NULLS, CONSTS and LLUNS. Given two
values v1, v2 ∈ NULLS ∪ CONSTS ∪ LLUNS, we say that v2 is
more informative than v1, in symbols v1⊳v2, if v1 and v2 are
of different types, and either (i) v1 ∈ NULLS, i.e., v1 is a null
value; or (ii) v2 ∈ LLUNS, i.e., v2 is a llun.

We also assume that values of cells from authoritative
tables in I are always preferred over those coming from J .

In addition, users can declaratively specify preferred values
in CONSTS by means of a partial order � among the values
of cells in 〈I , J 〉. One easy and effective way to do this was

introduced in [5]. In essence, users may specify a preference
rule for each attribute of the target schema under the form of
a partially-ordered set. Consider Example 1; as we discussed,
it would be natural to state that, whenever two different
specialties are present for the same doctor, the one with
higher confidence should be preferred. To specify this, users
may associate with attribute spec the poset (DCONF,≤), where
DCONF is the domain of attribute conf, and ≤ is the standard
order relation over real values. In essence, we are saying that,
whenever specialties v1 and v2 of spec-cells need to be ordered:
(i) we look up the corresponding conf-cells, i.e., the values
of the conf attribute of the respective tuples; (ii) we order
them according to ≤; (iii) we induce an order for the original
specialty values from that.

Associated with a mapping & cleaning scenario we there-
fore have a partial order �p, that subsumes both ⊳, and �,
i.e., ⊳∪ �⊆�p. We use lluns to ensure the completeness of
�p. In fact, given a set of cells from a database, C, we define
the upper bound vallub(C), as the least upper bound of their
values according to �p, if this exists, or a new llun value.

User Inputs We abstract user inputs by seeing the user as an
oracle. More formally, we call a user-input function a partial
function User that takes as input a pair of instances, 〈I , J 〉, and
a set of cells C over 〈I , J 〉 and returns one of the following val-
ues, denoted by User(C): (i) v, to denote that the target cells in
C should be repaired to value v; (ii) ⊥, to denote that repairing
the cells in C would represent an incorrect modification to the
database, and therefore the repair should not be be performed.

It is readily verified that Example 1 can be regarded as an
instance of a mapping & cleaning scenario.

V. SEMANTICS

One may wonder why a new semantics is needed after all.
Indeed, why can’t we simply rely on the standard semantics
for tgds [2], and on known data repairing algorithms, like those
in [5], [9] or [10]? As an example, let Σt be a set of tgds and
Σe be a set of egds, and I and J instances of S ∪ Sa and
T , respectively. Assume that we simply pipeline the chase of

tgds, chasede
Σt

, [2], and a repair algorithm for egds, repair
Σe

,
as reported in Figure 2.

pipeline
Σt∪Σe

(〈I , J 〉)
〈I, Jtmp〉 := 〈I , J 〉;
while (true)

〈I, Jtmp〉 := chasede

Σt
(〈I, Jtmp〉);

〈I, Jtmp〉 := repair
Σe

(〈I, Jtmp〉);
if (〈I, Jtmp〉 |= Σt ∪ Σe) return Sol := Jtmp;

end while

Fig. 2: The pipeline algorithm .

Unfortunately, interactions between tgds and egds often
prevent that pipelining the two semantics returns a solution,
as illustrated by the following proposition.

Proposition 1: There exist sets Σt of non-recursive tgds, Σe

of cleaning egds, and instances 〈I , J 〉 such that procedure
pipeline

Σt∪Σe
(〈I , J 〉) does not return solutions.

In addition, as we will show in our experiments, even
in those cases in which pipeline

Σt∪Σe
(〈I , J 〉) does return a

solution, its quality is usually rather poor.

In this section, we formalize the semantics of solutions
of a mapping & cleaning scenario. Intuitively, a solution of a
mapping and cleaning scenario is a set of repair instructions of
the target (represented by cell groups) that upgrades the initial
dirty target instance and that satisfies the dependencies in Σt

and Σe with a revised notion of satisfaction. We first give the
formal definition of a solution. Then, we introduce the main
ingredients of the definition.

Definition 2 [SOLUTION] Given a mapping&cleaning scenario
M = {S,Sa, T ,Σt,Σe,�p,User}, and an input instance
〈I , J 〉, a solution for M over 〈I , J 〉 is a repair Rep s.t.:

(i) Rep upgrades the initial target instance J , in symbols
J �p,User Rep;

(ii) 〈I,Rep(J)〉 satisfies after repairs Σt ∪ Σe under �p,User.

We first revise the definition of a cell group to allow for
tgds. Let 〈I , J 〉 be an instance of 〈S, Sa, T 〉. We denote by
auth-cells(I) and target-cells(J) the set of cells in the authori-
tative tables in I and in the target instance J , respectively. Let
new-cells(J) denote the (infinite) set of cells corresponding
to tuples over T that are not in J . Intuitively, new-cells(J)
represent possible insertions in J .

Definition 3 [CELL GROUP] A cell group g over 〈I , J 〉 is a
triple g = 〈v, occ(g), just(g)〉, where:

(i) v = val(g) is a value in CONSTS ∪ NULLS ∪ LLUNS;

(ii) occ(g) is a finite set of cells in target-cells(J) ∪
new-cells(J), called the occurrences of g;

(iii) just(g) is a finite set of cells in auth-cells(I), called the
justifications of g. We denote by cells(g) the set occ(g) ∪
just(g).

A cell group g can be read as “change (or insert) the cells
in occ(g) to value val(g), justified by the values in just(g)”.
We therefore shall often write a cell group as g = 〈v →
occ(g), by just(g)〉 for the sake of readability.

In a mapping & cleaning scenario, we are only interested
in cell-groups that are consistent with the partial order �p

and user oracle User. We say that a cell group g = 〈v →
occ(g), by just(g)〉 has a valid value if one of the following
conditions holds.

(a) val(g) = User(cells(g)), for some constant v ∈ CONSTS,
i.e., the value of g comes from some user input;

(b) User(cells(g)) is undefined, and val(g) = vallub(cells(g)),
i.e., the cell group takes the value of the least upper bound as
defined in Section IV; in this case we say that g is strict.

(c) User(cells(g)) is undefined, and val(g) ∈ LLUNS, i.e., the
value of g is a llun value.

In the following, we assume that all cell groups are valid.

Example 2: Consider relation R(A,B), with three dependen-
cies: (i) an FD A → B, and two CFDs [3]: (ii) A[a] →
B[v1], A[a] → B[v2]; the first one states that whenever R.A
is equal to “a”, R.B should be equal to “v1” (similarly
for the second); in our approach, these are encoded by egds

e1 : R(x, y), c1(x, z) → y = z, and e2 : R(x, y), c2(x, z) →
y = z; in fact, we see constants as values coming from the
source database; to this end, we introduce two source tables,
c1, c2, with a single tuple tc1, tc2 each, encoding the patterns
in the CFDs: tc1 : (A :a,B : v1), tc2 : (A :a,B : v2) [5]. Notice
that the two CFDs clearly contradict each other. Nevertheless,
differently from previous approaches, later on we will provide
a semantics for this well known example [3] by leveraging
lluns first, and then user inputs. Assume R contains two tuples:
t1 :R(a, 1), t2 :R(a, 2), and that �p states that greater values
of the A attribute are to be preferred over smaller ones (i.e.,
the poset associated with B is its own domain with the standard
≤ on integers). Following is a set of cell groups:

g1=〈1→{t1.B}, by ∅〉 valid, strict

g′1=〈L1→{t1.B}, by ∅〉 valid, non strict
g2=〈2→{t1.B, t2.B}, by ∅〉 valid, strict

g′2=〈3→{t1.B, t2.B}, by ∅〉 non valid
g3=〈v1→{t1.B, t2.B}, by {tc1.B}〉 valid, strict

g4=〈L→{t1.B, t2.B}, by {tc1.B, tc2.B}〉 valid, strict
g5=〈k→{t1.B, t2.B}, by {tc1.B, tc2.B}〉 valid, strict if

User(cells(g4))=k

Cell groups are used to specify repairs, i.e., modifications
to the target database. In our approach, this can be done in two
ways: (i) by changing cell values, as specified in cell groups;
(ii) by adding new tuples as an effect of tgds.

Definition 4 [REPAIR] A repair Rep of J is a set of cell groups
over 〈I , J 〉 such that there exists a set of tuples ∆J , distinct
from J , for which:

(i) each cell occurring in Rep corresponds to a cell in J∪∆J ;

(ii) each cell in J ∪∆J occurs at most once in Rep;

(iii) each cell in ∆J takes the value specified by Rep.

We denote by Rep(J) the target instance obtained by changing
the values in J as specified by Rep and by inserting ∆J .

Example 3: Consider an authoritative source table R(A,B),
and a target table S(A,B), with a tgd R(x, y)→ ∃z : S(x, z).
Suppose I = {t : R(1, 2)}, following is a set of repairs:

∆J1 = {t1 : S(1, N1)} Rep
1
= {g11 = 〈1 → {t1.B}, by {t.A}〉

g12 = 〈N1 → {t1.B}, by ∅〉}
∆J2 = {t2 : S(1, 3)} Rep

2
= {g21 = 〈1 → {t2.B}, by {t.A}〉

g22 = 〈3 → {t2.B}, by ∅〉}

A repair is simply one possible way of changing the target
database. Different ∆J yield completely different repairs. On
the contrary, in a mapping & cleaning scenario, we are only
interested in repairs that are solutions for the given scenario,
i.e., that represent actual upgrades of the target and satisfy
the dependencies. For example, {g1} and {g2} are repairs for
Example 2, but are not solutions. Among these, of particular
interest are minimal solutions. In Example 3 Rep1 is minimal,
while Rep2 is not. We introduce these notions next.

Partial Order over Cell Groups In order to define when a
repair Rep can be regarded as an upgrade to the initial target
instance, we lift the partial order �p from values to repairs. To
achieve this, we revise the partial order on cell groups (as used
in cleaning scenarios) such that it properly takes into account

user input. Furthermore, since the presence of tgds possibly
results in the creation of tuples that are not in the initial target
instance, we then show how to compare cell groups and repairs
with different tuple ids.

We denote by �p,User the partial order over cell groups.
Intuitively, when comparing cell groups with �p,User, we
should give priority to values specified by user-inputs, then
to values from authoritative sources, and then again to values
taken according to the preference strategy specified by �p.
More formally, given cell groups g and g′ with valid values,
we say that g �p,User g

′ iff:

(i) occ(g) ⊆ occ(g′) and just(g) ⊆ just(g′), i.e., we say that
a cell group g′ can only be preferred over a cell group g
according to �p if a containment property is satisfied; if the
containment property is not satisfied then these cell groups
represent incomparable ways to modify a target instance. In
addition, we require that one of the following holds:

(ii.a) val(g′) ∈ CONSTS and val(g′) = User(cells(g′)), i.e.,
the value of g′ comes from a user input, or:

(ii.b) User(cells(g)) and User(cells(g′)) are undefined, and
either g and g′ are strict, or val(g) ⊳ val(g′). In fact, if g
and g′ are strict, the containment property above guarantees
that g′ carries more occurrences and/or more justifications, and
therefore it is to be preferred. As an alternative, it might be
that g′ is not strict, i.e., it is “overgeneralizing” the value of
its occurrences.

Consider Example 2. Cell groups are ordered as follows:

g1 �p,User g2 �p,User g3 �p,User g4 �p,User g5

It is also true that g1 �p,User g
′
1
, since g′

1
is not strict, and

L1 is more informative than 1 (item ii.b).

Id Mappings and Upgrades We next lift �p,User from cell
groups to repairs. To accommodate for the introduction of new
tuples, as possibly required by the tgds, we need to be able
to compare cell groups and repairs with different tuple ids.
Consider Example 3: to discover that Rep1 is minimal, we
need to map tuple t1 ∈ ∆J1 into tuple t2 ∈ ∆J2. We do this
using id mappings.

Let Rep and Rep
′ be two repairs over 〈I, J〉. An id mapping

hid from Rep to Rep
′ maps tuple ids appearing in Rep, denoted

by tids(Rep), into those appearing in Rep
′, tids(Rep′). We

denote by hid(ti) the image of ti. An id mapping hid can be
extended to cells and then to cell groups. Given cell ti.Aj , its
image according to hid is the cell hid(ti).Aj . Given g and hid,
the image of g according to hid is the cell group: hid(g) =
〈v′ → hid(occ(g)) by hid(just(g))〉 with v′ defined as follows:

(i) if g is strict, then v′ = vallub(hid(cells(g))), and we say
that hid(g) is strict;

(ii) if val(g) = L ∈ LLUNS, then v′ = L;

(iii) if val(g) = User(cells(g)), then v′ = User(hid(cells(g))),
if it is defined; otherwise, we say that hid(g) is undefined.

We rely on id mappings to revise our notion of an upgrade.

Definition 5 [UPGRADE] Given two repairs Rep and Rep
′ over

〈I, J〉, a partial order specification �p and an oracle User

of cell groups over 〈I, J〉, we say that Rep
′

upgrades Rep,

denoted by Rep �p,User Rep
′, if there exist an id mapping

hid : tids(Rep) → tids(Rep′) such that for each cell group
g ∈ Rep there exists a cell group g′ ∈ Rep

′ such that hid(g)
is defined, and hid(g) �p,User g

′.

Satisfaction after Repairs It is crucial that our semantics
properly handle the interaction of tgds and egds. We have
had several hints that enforcing egds may disrupt the logical
satisfaction of tgds, or even of other egds. To see this, consider
first Example 2. Notice that, after we upgrade the database with
cell group g5 we write a user input, k into cells t1.B, t2.B, to
obtain two identical tuples t1 :R(a, k), t2 :R(a, k) . However,
the two (contradicting) conditional functional dependencies
in this example state that, whenever R.A equals a, R.B
must be equal to v1, v2, respectively. Therefore, after g5, the
corresponding egds are not satisfied in the standard sense.

To give another example with tgds, consider our motivating
Example 1. The s-t tgd mst1 uses source tuples t1, t2 from
source #1 to generate tuple t13 : (1112, R. Chase, urol, PPTH)
into the target; we call t13 the canonical repair for mst1 and
t1, t2. After egds have been enforced, along the lines discussed
in Section II, however, the tuple is upgraded in several ways,
and becomes (1222, R. Chase, diag, PPTH). Again, after the
changes the target instance does not satisfy tgd mst1 in the
standard sense.

In both these cases, however, we still want to consider
these repairs as solutions, since they are the result of an “im-
provement” of values that originally satisfied the dependencies,
but were dirty. Let Rep be a repair over 〈I , J 〉. Clearly, if
〈I,Rep(J)〉 satisfies an edg or tgd in the standard semantics,
nothing needs to be done. Otherwise, we revise the semantics
for edgs and tgds. In order to do this, given a dependency
(egd or tgd), variables x, x′, and an homomorphism h of the
premise into 〈I,Rep(J)〉, we want to be able to compare the
cell groups associated by h with x, x′, to check whether one
value, say h(x), is an upgrade for h(x′), or vice versa.

Notice that a variable x may have several occurrences in a
formula. Homomorphism h maps each occurrence into a cell
of the database. We denote by cellsh(x) the set of cells in
〈I,Rep(J)〉 associated by h with occurrences of x. Then, we
define the notion of a cell group associated by h with x, gh(x),
as the result of merging all cell groups of cells in cellsh(x).

More formally: gh(x) = 〈v → occ, by just〉, where: (i) v =
h(x); (ii) occ (resp. just) is the union of all occurrences (resp.
justifications) of the cell groups in Rep for cells in cellsh(x);
(iii) in addition, just contains all cells in cellsh(x) that belong
to the authoritative tables in I .

We can now define the notion of satisfaction after repairs.

Definition 6 [SATISFACTION AFTER REPAIRS (EGDS)] We
say that 〈I,Rep(J)〉 satisfies after repairs e wrt the partial
order �p,User if, whenever there is an homomorphism h of
φ(x) into 〈I,Rep(J)〉, then (i) either the value of h(xi) and
h(xj) are equal (standard semantics), or (ii) it is the case that
gh(xi) �p,User gh(xj) or gh(xj) �p,User gh(xi).

Consider Example 2. Our solution is Rep = {g5} (or g4,
if no user inputs are provided); egd e1 : R(x, y), c1(x, z) →
y = z is indeed satisfied after repairs by Rep; consider, in fact,
homomorphism h mapping z to v1; the cell group associated

by h with z is g = 〈v1, {}, {tc1.B}〉 (it has no occurrences
since z is mapped to a single source cell), and the cell group
of y in Rep, g5 upgrades g.

Next, consider a tgd m : ∀x, z(φ(x, z) → ∃y (ψ(x, y)))
that is not satisfied by 〈I,Rep(J)〉. Let h be a homomorphism
of φ(x, z) into 〈I,Rep(J)〉 that cannot be extended to a
homomorphism h′ of ψ(x, y) into 〈I,Rep(J)〉. We now want
to regard m is being satisfied after repairs whenever Rep(J)
is an upgrade of the canonical repair for m and h.

Intuitively, the canonical repair Rep
can
h represents the

“standard way” to repair the tgds, defined as follows. Let hcan
be the canonical homomorphism that extends h by injectively
assigning a fresh labeled null with each existential variable.
Consider the new instance Jcan = J∪hcan(ψ(x, y)), obtained
by adding to J the set of tuples in hcan(ψ(x, y)), each with a
fresh tuple id. Then, Repcanh is such that:

(i) Jcan = Rep
can
h (J);

(ii) Repcanh coincides with Rep when restricted to cells(J);

(iii) it contains a cell group gh(z) over 〈I, Jcan〉 for each
variable z ∈ x̄ ∪ ȳ.

Definition 7 [SATISFACTION AFTER REPAIRS (TGDS)] We
say that 〈I,Rep(J)〉 satisfies after repairs m under partial
order �p,User if, whenever there is an homomorphism h of
φ(x, z) into 〈I,Rep(J)〉, then (i) either m is satisfied by
〈I,Rep(J)〉 in the standard sense, or (ii) Repcanh �p,User Rep.

Consider Example 1 and solution (a) in Figure 1. While tgd
mst1 is not satisfied in the standard sense – solution (a) does
not contain its canonical repair – it is satisfied after repairs
following the previous definition.

This concludes the formalization of the notion of a solution
as given in Definition 2. We are interested in solutions that
are minimal, i.e., they do not contain unneeded tuples into the
target and upgrade the initial target instance as little as pos-
sible. To quantify minimality we leverage �p to decide when
one repair Rep′ strictly upgrades another repair Rep, denoted
by Rep ≺p,User Rep

′. More specifically, Rep ≺p,User Rep
′ if:

(i) Rep �p,User Rep
′, but not the other way around; or

(ii) Rep �p,User Rep
′, according to id mapping hid,

Rep
′ �p,User Rep, according to id mapping h′id, and h′id is

surjective while hid is not surjective.

Definition 8 [MINIMAL SOLUTIONS] A minimal solution for a
mapping and cleaning scenario is any solution that is minimal
wrt the partial order ≺p,User.

Two minimal solutions for our motivating example are
shown in Figure 1. These can be made non-minimal by
adding unneeded tuples, or unnecessary changes (like, for
example, changing the name of Dr. House to a llun Lb).

Our semantics is a conservative extension of both the one
of mapping scenarios and of cleaning scenarios. In fact, a
cleaning scenario C corresponds to a mapping & cleaning
scenario in which S , Σt and User are absent. A mapping
scenario M is a mapping & cleaning scenario in which Σt

and Σe are standard dependencies, LLUNS, Sa and User are

absent and �p simply states that nulls are less informative than
constants. In addition:

Theorem 2: Every (core) solution of a mapping scenario
corresponds to a (minimal) solution of its associated mapping
& cleaning scenario, and vice versa. Similarly for (minimal)
solutions of cleaning scenarios.

VI. THE CHASE

We compute solutions for mapping & cleaning scenarios
by means of a generalized chase procedure. In essence, our
chase generates a tree of repairs by three main kind of steps:
(i) chasing egds (forward and backward) with cell groups; (ii)
chasing tgds (forward only) with cell groups; (iii) correcting
cell groups or refuting repairs by means of User.

We fix a mapping & cleaning scenario M =
{S,Sa, T ,Σt,Σe,�p,User} and instances I of S ∪ Sa and J

of T . Given a (possibly empty) repair Rep of J , a dependency
d (tgd or egd) is said to be applicable to 〈I,Rep(J)〉 with
homomorphism h if h is an homomorphism of the premise of
d into 〈I,Rep(J)〉 that violates the conditions for 〈I,Rep(J)〉
to satisfy after repairs d. Recall that, given an homomorphism
h of a formula φ(x̄) into 〈I,Rep(J)〉, we denote by gh(x) the
cell group associated by h with variable x.

Chase Step for Tgds Given an extended tgd m : ∀x, z
(φ(x̄, z̄) → ∃ȳ : (ψ(x̄, ȳ))) in Σt applicable to 〈I,Rep(J)〉
with homomorphism h, by chasing m on 〈I,Rep(J)〉 with h
we generate a new repair Rep′ obtained from Rep, in symbols
Rep→m,h Rep

′, by:

(i) removing all cell groups gh(x), for all x ∈ x̄;

(ii) adding the new cell groups in the canonical repair Repcanh ,
i.e.: Rep′ = Rep− {gh(x)|x ∈ x̄} ∪ Rep

can
h .

Chase Step for Egds We first introduce the notions of witness
and witness variable for an egd. Let e : ∀x (φ(x)→ x = x′)
be a cleaning egd. A witness variable for e is a variable x ∈ x̄
that has multiple occurrences in φ(x̄). For an homomorphism
h of φ(x̄) into 〈I,Rep(J)〉, we call a witness, wh for e and
h, the vector of values h(x̄w) for the witness variables x̄w of
e. Given the tuples in Example 2, {R(1, a), R(1, b)}, and egd
R(x, y), R(x, y′) → y = y′, x is the witness variable, and
h(x) = 1 is the witness.

Given a cleaning egd e : ∀x (φ(x) → x = x′) in Σe

applicable to 〈I,Rep(J)〉 with homomorphism h, by forward
chasing e on 〈I,Rep(J)〉 with h we generate a new repair
Repf obtained from Rep by:

(i) removing gh(x) and gh(x
′);

(ii) adding the new cell group lub�p,User
(gh(x), gh(x

′)), i.e.:
Repf = Rep− {gh(x), gh(x

′)} ∪ lub�p,User
(gh(x), gh(x

′)).

By backward chasing e on 〈I,Rep(J)〉 with h we try to
falsify the premise in all possible ways. To do this, we generate
a number of new repairs as follows: for each witness variable
xi ∈ x̄w of e, and each cell cj ∈ cellsh(xi), consider the
corresponding cell group according to Rep, gij = gRep(cj).
If val(gij) ∈ CONSTS and just(gij) = ∅, generate a new
repair Repbij obtained from Rep by changing all cells in gij

to another cell group g′ij that is an immediate successor of gij
in the partial order: Repbij = Rep− {gij} ∪ {g

′
ij}

Chase Step for User Inputs We say that User applies to
a group g ∈ Rep if User(cells(g)) is defined, and returns a
value that is different from val(g). We say that User refuses
Rep if User(cells(g)) = ⊥. If User refuses Rep, we mark
Rep as invalid. Otherwise, we denote by User(Rep) the repair
obtained from Rep by changing any cell group g ∈ Rep such
that User applies to g, to a new cell group gUser obtained from
g by changing val(g) to User(cells(g)).

Chase steps generate a chase tree whose root is 〈I , J 〉, and
for each valid node Rep, the children of Rep are the repairs
Rep0,Rep1, . . . ,Repn generated by steps above. Any valid leaf
in the tree is called a result.

If the chase procedure terminates, it generates solutions,
although not necessarily minimal ones.

Theorem 3: Given a mapping & cleaning M =
{S,Sa, T ,Σt,Σe,�p,User}, instances I of S ∪ Sa and J of
T , and oracle User, the chase of 〈I , J 〉 with Σt,Σe,User may
not terminate after a finite number of steps. If it terminates,
it generates a finite set of results, each of which is a solution
for M over 〈I , J 〉.

We can prove that, as soon as the tgds are non recursive,
than the chase terminates. This result is far from trivial, since,
as we discussed, egds interact quite heavily with tgds by
updating values in the database. We conjecture that this result
can be extended to more sophisticated termination conditions
for tgds [11].

Theorem 4: Given a mapping & cleaning M =
{S,Sa, T ,Σt,Σe,�p,User}, instances I of S ∪ Sa and J of
T , and oracle User, if Σt is a set of weakly-acyclic tgds [2]
then the chase of 〈I , J 〉 with Σt,Σe,User terminates.

Cost Managers and User Managers In terms of complexity,
it is well-known [3] that a database can have an exponential
number of repairs, even for a cleaning scenario with a single
FD and when no backward chase steps are allowed. Given
such a high level of complexity, as it is common in data
repairing, we need to devise ways to prune the chase tree
and discard some of the solutions in favor of others. In [5],
we incorporate these pruning methods into the chase process
in a principled and user-customizable way by introducing a
component, called the cost manager. Intuitively, given a chase
tree t, a cost manager is a predicate CM over the nodes for t.
For each node n in the chase tree, i.e., for each repair, it may
either select it (CM(n) = true), or discard it (CM(n) = false).

During the chase, we shall systematically make use of the
cost manager. Whenever a chase step is discarded by the cost
manager, the corresponding branch is no longer pursued. The
trivial cost manager is the one that keeps all solutions, and may
be used for very small scenarios. Our implementation offers a
rich library of cost managers. Among these, we mention the
following (further details are available in [5]): (i) a forward-
only cost manager (FO): it accepts only forward repairs and
discards all nodes that contain backward ones; (ii) a maximum
size cost manager (SN): it accepts new branches in the chase
tree as long as the number of leaves is less than N ; (iii) a

frequency cost manager (FR) that intuitively uses the frequency
of values for an attribute to decide whether to forward or
backward chase: values that are similar to the most frequent
one are forward chased, the others are bacwkard chased. Notice
that combinations of these strategies are possible, to obtain,
e.g., a FR-S5 cost manager.

In a mapping & cleaning setting, we also plug into the
chase a second component, called the user manager. This is
a second predicate over nodes in the tree, that it is used to
decide when the chase should be stopped to request for user
inputs. There are several simple strategies to do this: (i) a
step-by-step user manager stops the chase and asks for inputs
after each new node is added to the tree; (ii) an after-llun
user manager only stops for nodes that contain lluns; (iii) a
level n cost manager stops the chase after n new levels have
been added to the tree, and so on.

VII. SCALABILITY AND OPTIMIZATIONS

A key goal of this paper is to develop a scalable imple-
mentation of the chase algorithm. To do this, we build on
optimizations for egds introduced in [5], and in particular the
notion of delta databases, a representation system conceived
to efficiently store and process chase trees. Our goal in
this paper is to introduce new optimizations that guarantee
good performance when chasing tgds, and at the same time
considerably improve performance on egds.

When Does the Chase Scale? Of the many variants of
the chase, the ones that scale nicely are those that can be
implemented as queries in a first-order language, and therefore
as SQL scripts. To give an example, consider the s-t tgd
R1(x, z), R2(x, v) → ∃y : R3(x, y). Assume R3 is empty.
Then, as it was detailed in [12], chasing this tgd amounts to
run the following SQL statement, where sk(x) is a Skolem
term used to generate the needed labeled null:

insert into R3 select x, sk(x) from R1,R2 where R1.x=R2.x

We call this a batch chase execution. In fact, chasing s-t
tgds, or even the more general FO-rules [13] is extremely fast.
On the contrary, the chase becomes slow whenever it needs to
be executed in a violation-by-violation fashion. Unfortunately,
our chase procedure does not allow for easy batch-mode
executions, because of a crucial factor: during the chase, we
need to keep track of cell groups, and properly maintain them.
Repairing a violation for either a tgd or an egd changes the set
of cell groups, and therefore may influence other violations.

In our approach, cell-groups are stored during the chase
using two additional database tables, one for occurrences, one
for justifications. More specifically, we assign a unique id
to each node in the chase tree, i.e., to each chase step. We
represent each cell in the database as a triple: (table, tupleId,
attributeName). In addition, each cell group has a unique id.
Then table occurrences has schema (stepId, cellGroupId, cell-
GroupValue, table, tupleId, attributeName); table justifications

has schema (stepId, cellGroupId, table, tupleId, attributeName,
sourceValue).

Consider now the tgd above, and assume also R1, R2 are
target tables. Suppose our chase is at step s. In our approach,
to chase the tgd by literally following the definition of a chase
step, we need to do the following: (i) query the target to join

R1, R2 to find a tuple t that satisfies the premise; (ii) query
R3 to check that t contains a value of x that should actually
be copied to R3; (iii) add the new tuple to R3; in addition,
we also have to properly update cell groups; to do this: (iv)
for each cell associated in t with variable x, we need to query
tables occurrences and justifications to extract the cell group of
the cell, and build the a new cell group as the union of these;
(v) store the new cell group for x in tables occurrences and
justifications; (vi) do the same for the existentially quantified
variable, y. Then, move to the next violation and iterate.

It is easy to see that this amounts to perform several
thousands of queries, even for a very small database. More
importantly, we are forced to mix queries, operations in main
memory, and updates to the database, and send many single
statements to the dbms using different connections, with a
perverse effect on performance. In the next paragraphs, we
develop a number of optimizations that alleviate this problem.

Caching Cell Groups A key optimization in order to speed
up the chase consists in caching cell groups in main memory.
This, however, has a number of subtleties. We tested several
caching strategies for cell groups. The first, straightforward
one, is a typical cache-aside, lazy loading strategy, in which a
cell group is first searched in the cache; in case it is missing,
it is loaded from the database and stored in the cache. As it
will be shown in our tests, this strategy is too slow.

Greedy strategies perform better. We tried a cache-as-sor,
greedy strategy in which the first time a cell group for a step s
is requested, we load into the cache all cell groups for s, with
two queries (one for occurrences, one for justifications). This
strategy works very well for the first few steps. Then, as soon
as the chase goes on, for large databases it tends to become
slower since the main memory limit is easily reached (no cell
group is ever evicted from the cache), and some of the cell
groups need to be swapped out to the disk. Since accessing
the file system on disk is slower than querying the database,
performances degrade.

To find the best compromise between storage-efficiency
and performance, we noticed that our chase algorithm has a
high degree of locality. In fact, when chasing node s in the
tree to generate its children, only cell groups valid at step s
are needed. Then, after we move from s to its first child, s′,
cell groups of s will not be needed for a while. We therefore
designed a single-step, greedy caching strategy, that caches cell
groups for a single step at a time. In essence, we keep track
of the step s currently in the cache; whenever a cell group for
a different step s′ is requested, we clean the cache and load
all cell groups for s′. Our experiments show that this brings
excellent improvements in terms of running times.

Chasing Tgds in Batch Mode A second, major optimization,
consists in chasing tgds in batch mode. In essence, we want
to clearly separate updates to the dbms (that are much more
efficient when are run in batch mode), from the analysis
and update of cell groups. To do this, we use a multi-step
strategy that we shall explain using our sample tgd above. As
a first step, we update the dbms in batch mode. To avoid the
introduction of unnecessary tuples, we insert into table R3 only
those tuples that contain values that are not already in R3, by
the following statement:

insert into R3 select x, sk(x) from R1,R2 where
R1.x=R2.x and x not in (select x from R3).

Once all of the needed tuples have been inserted into the
database, we maintain cell groups. To do this, we store all
values of x that have been copied to R3 into a violations

temporary table. Then, we run the following query, that gives
us the cells for which we need to update cell groups:

select R1.x, R2.x, R3.x, R3.y from R1, R2, R3

where R1.x = R2.x and R2.x = R3.x
and x in (select x from violations).

We scan the result, and properly merge the cell groups. Notice
that this step is usually very fast, since we use the cache.
Finally, we update the occurrence and justifications table.

Chasing Egds in Batch Mode We also use an aggressive
strategy to chase egds. Generally speaking, violations for egds
should be solved one at a time, since they interact with each
other. Consider for example this common egd, encoding a
conditional functional dependency: R(x), S(x, y) → x = y,
where S is source table. Assume the following tuples are
present R(1), S(1, a), S(1, b). We first query the database to
find out violations using the following query:

select x, y from R,S where R.x = S.x and x <> y.

This will return two violations, the first arising from
R(1), S(1, a), the second from R(1), S(1, b). However, as
soon as we repair the first one and change R.x to a, the second
violation disappears. To see this, it is necessary to repeat the
query and realize that the result is empty.

Despite this, we do not want to process violations one at a
time, but rather in batch mode. During the chase, we keep track
in main memory of the cell groups that need to be maintained
to solve violations. Before writing updates to the database,
we check if the resulting set of cell groups is consistent with
each other, i.e., each cell of the database is changed only once.
As soon as we realize that a cell group is not consistent, we
discard the update and iterate the query.

VIII. EXPERIMENTS

Experiments have been executed running the Java prototype
of the LLUNATIC system on a Intel i7 machine with 2.6Ghz
processor and 8GB of RAM under MacOS. The DBMS was
PostgreSQL 9.2.

Datasets. We selected three datasets. The first two are based on
real data from the US Department of Health & Human Services
(http://www.medicare.gov/hospitalcompare/), and the third one is
synthetic.

(a) Hospital-Norm is the normalized version of the hospital
data, of which we considered 3 tables with 2 foreign keys, a
total of 20 attributes, and approximately 150K tuples.

(b) Hospital-Den is a highly denormalized version of the same
data, with 100K tuples and 19 attributes, traditionally used in
data quality experiments.

(c) Doctors, corresponds to our running example in Figure 1.

Errors. In order to test our algorithms with different levels
of noise, we introduced errors in the datasets using a random
noise generator. For each datasets, we generated copies with a
number of noisy cells ranging from 5% to 10% of the total.

Scenarios. Based on these datasets, we generated 4 different
scenarios. For each scenario we also fixed an expected solution,
called DBexp, as follows:

(i) a mapping & cleaning scenario Hospital-Norm-MC based
on the Hospital-Norm dataset, with 3 tables, 2 tgds and 12
egds, and the standard partial order specification; the expected
instance, in this case, corresponds to the original tables;

(ii) a mapping & cleaning scenario Doctors-MC based on the
Doctors dataset, with the dependencies in Section I (a total of
4 source tables, 2 target tables, 3 tgds and 11 egds), and the
partial order specification discussed in the paper;

(iii) a cleaning scenario Hospital-Den-CL based on the
Hospital-Den dataset, with 1 table, 9 functional dependencies,
and the standard partial order specification; the expected in-
stance, in this case, is the original table;

(iv) a data exchange scenario Doctors-DE based on the Doctors

dataset, with the same dependencies as the mapping and
cleaning one, but no conflicts among the sources; we generated
a clean and consistent version of the source tables, and based
on those the expected instance as the core universal solution
for the given set of tgds and egds.

It remains to discuss how we fixed the expected instance for the
Doctors-MC scenario. We considered the clean and consistent
versions of the source tables used for scenario Doctors-DE,
and the core universal solution, C, of the mapping scenario.
Then, we introduced random noise and inconsistencies in the
sources, and fed them to the mapping and cleaning scenario.
We adopt as an expected solution the core universal solution
C discussed above.

Algorithms. We run LLUNATIC with several cost managers
and several caching strategies, as discussed in Sections VI,
VII. In addition, we compared our system to several other
algorithms in the literature, as follows:

(a) an implementation of the Mimimum Cost algorithm pro-
posed in [9] (MIN.COST) to repair FDs and IDs, in which IDs
are repaired only by tuple insertions, and not by deletions or
modifications;

(b) an implementation of the PIPELINE algorithm in Section
V, obtained by coupling a standard chase engine for tgds, and
the repair algorithm for FDs in [10]; for the latter, for each
experiment, we took 100 samples.

(c) the DEMO system [14] chase engine for mappings.

Quality Metrics. A general and efficient algorithm to measure
the similarity of two complex databases by taking into account
foreign keys, different cell ids, and placeholders, like labeled
nulls or lluns has been recently developed in [15]. Based on
this algorithm, we report two different quality measures. The
first one is the actual similarity, sim(Rep,DBexp), measured by
the algorithm in [15]. In the comparison, lluns are considered
as partial matches, and counted as 0.5 each.

In the Hospital-Norm-MC this measure can be misleading.
There we start with a clean target database, DBclean, and
introduce random noise to generate a dirty database, DBdirty .
On average, the dirty copy is approximately 90% similar
to the clean one, and therefore all repairs will also have

a.1: Scalability, Hospital-CL Single-Step C. a.2: Scalability, Hospital-CL Greedy Cache a.3: Scalability, Hospital-CL, Lazy Cache b.1: Scalability. Doctors-DE Scenario

c.1: Scalability Doctors-MC c.2: Max Quality, Doctors-MC c.3: Min&Avg. Quality, Doctors-MC c.4: Chase Tree Size, Doctors-MC

d.1: Scalability, Hospital-Norm-MC d.2: Quality, Hospital-Norm-MC d.3: Chase Tree Size, Hospital-Norm-MC d.4: User Inputs. Hospital-Norm-MC

0,90

0,95

1,00

LLUNATIC-FR-S1 LLUNATIC-FR-S5 LLUNATIC-FR-S50 PIPELINE MIN.COST DEMO LLUNATIC-FR-S10

0

5000

10000

15000

10 K 40 K 70 K 100 K

5k, 6%-10% 10k, 6%-10% 25k, 6%-10%

max. sim(Rep, DBexp)

0,90

0,95

1,00

5k, 6%-10% 10k, 6%-10% 25k, 6%-10%

0

2500

5000

100 K 400 K 700 K 1000 K

0

2500

5000

100 K 400 K 700 K 1000 K

0

2500

5000

100 K 400 K 700 K 1000 K

-30%

0%

30%

60%

0
,0

1

0
,0

2

0
,0

3

0
,0

4

0
,0

5

0
,0

1

0
,0

2

0
,0

3

0
,0

4

0
,0

5

0
,0

1

0
,0

2

0
,0

3

0
,0

4

0
,0

5

5k, 6%-10% 10k, 6%-10% 25k, 6%-10%

 max. rep-rate(Rep, DBexp)

sec.

0

2500

5000

100 K 400 K 700 K 1000 K

sec.

avg. sim(Rep, DBexp)

min. sim(Rep, DBexp)

sec. sec.

sec.

0

2500

5000

 K 250 K 500 K 750 K 1000 K

sec.

0

50

100

150

0,001 0,006 0,0115k, 6%-10% 10k, 6%-10% 25k, 6%-10%

of nodes

0

200

400

0,001 0,006 0,0115k, 6%-10% 10k, 6%-10% 25k, 6%-10%

of nodes

0

50

100

150

 UI 2 UI 4 UI 6 UI 8 UI 10 UI

of nodes

Fig. 3: Experimental results.

high similarity to the clean instance. In this case we report
a repair rate defined as: rep-rate(Rep,DBexp) = 1 − (1 −
sim(Rep,DBexp))/(1−sim(DBdirty, DBexp)). In essence, we
measure how much of the original noise a repairing algorithm
actually removed. Whenever an algorithm returned more than
one repair for a database, we calculated the maximum, mini-
mum, and average quality.

Experiment a: Hospital-Den-CL We report in Figures 3.a1–
a3 scalability results for some of our cost managers and the
different caching strategies discussed in Section VII (lazy,
greedy, and single step). The charts confirm that, due to the
locality of the chase algorithm, the single-step cache represents
the best choice in terms of performance. Further experiments
were performed with a single-step cache manager.

The optimizations introduced in this paper bring a dramatic
improvement in terms of performance: the chase engine is up
to four times faster than the original version reported in [5].
This is a significant achievement, since Hospital-Den is a sort
of a worst-case scenario, with a large denormalized table with
many FDs on it, and this aggravates query and update times.

Experiment b: Doctors-DE The scalability of our chase en-
gine is confirmed in Figure 3.b1. We compare the performance
of LLUNATIC to the data exchange chase engine DEMO on
scenario Doctors-DE. It can be seen that our implementation
is orders of magnitude faster than DEMO.

Experiment c: Doctors-MC The overall scalability of the
chase is confirmed on scenario Doctors-MC in Figure 3.c1. In
fact, the normalized nature of the data guarantees performance

results that are significantly better than those reported for the
denormalized scenario in Experiment a, even though in this
case we are chasing tgds and egds together.

The execution times achieved by the algorithm can be con-
sidered as a remarkable result for problems of this complexity.
They are even more surprising if we consider the size of the
chase trees that our algorithm computes, which may reach
several hundreds of nodes as reported in Figure 3.c4. Consider
also that each node in the tree is a copy of the entire database.

Figures 3.c2–c3 report the quality achieved by the various
cost managers, in terms of the similarity to the core instance,
sim(Rep,DBexp). LLUNATIC is the only system capable of
handling scenarios of this complexity, and therefore no base-
line is available. Notice that achieving 100% quality is in some
cases impossible, since the sources have been made dirty in a
random way, and some conflicts are not even detected by the
dependencies. However, quality of the solutions is very high.
This is a consequence of the rich preference rules that come
with this scenario.

Experiment d: Hospital-Norm-MC Figure 3.d1 confirms the
excellent scalability of chasing tgds and egds on normalized
databases, even with cost managers that produce multiple solu-
tions and generate chase trees with hundreds of nodes (Figure
3.d3). We do not report computation times for the PIPELINE

and MIN.COST algorithms since they were designed to run in
main memory and do not scale to large databases. Notice that
experiment Hospital-Norm-MC is faster than Doctors-MC, even
though the overall number of dependencies is similar. This is
not surprising, since scenario Doctors-MC comprises the full

range of dependencies that can be handled in our framework,
including s-t tgds, while Hospital-Norm-MC relies on tgds only
to express target referential integrity constraints.

In terms of quality, we notice that finding the right repairs
for Hospital-Norm-MC is quite hard, since here we have no
preference relations, and there is very little redundancy in the
tables. In Figure 3.d2 we report metric rep-rate(Rep,DBexp)
for the three algorithms that we ran on this scenario. Two
things are apparent: LLUNATIC was able to partially repair
the dirty database, but the overall quality was lower than the
maximum one achieved in scenario Doctors-MC.

On the contrary, both the MIN.COST, and the PIPELINE

somehow lowered the quality. In fact, on the one side,
the MIN.COST algorithm cannot backward repair cells. The
PIPELINE algorithm samples repairs in a random fashion and
cannot properly handle interactions among tgds and egds. As a
consequence, both algorithms manage to generate a consistent
repair, but at the cost of adding many unnecessary tuples to
the target to repair foreign keys, and this lowers their score.

We finish by mentioning Figure 3.d4, in which we study
the impact of user inputs on the chase process. We run the
experiment for 25K tuples interactively, and provided random
user inputs by alternating the change of a llun value with the
rejection of a leaf. It can be seen that small quantities of inputs
from the user may significantly prune the size of the chase tree,
and therefore speed-up the computation of solutions.

IX. RELATED WORK

There has been a host of work on both data exchange and
data quality management (see [16] and [3] for recent surveys,
respectively). Although unifying approaches have been
proposed, e.g., [9], [3], [17], these deal with specific classes of
constraints only: [9] considers inclusion and functional depen-
dencies; [3] extends this to their conditional counterparts; and
[17] treats entity resolution together with data integration. Our
mapping & cleaning approach is applicable to general classes
of constraints and provides an elegant notion of solution.

This work is an extension of our earlier work on cleaning
scenarios [5] by accommodating for mappings, and work on
data exchange [2]. As discussed in [5], cleaning scenarios
incorporate many data cleaning approaches including [9],
[18], [6], [19], [10] and [20]. The same holds for mapping
& cleaning scenarios. Furthermore, some of the ingredients
of our scenarios are inspired by, but different from, features
of other repairing approaches (e.g., repairing based on both
premise and conclusion of constraints [18], [10], cells [10],
[9], groups of cells [9], partial orders and its incorporation
in the chase [21]). As previously observed, these approaches
support limited classes of constraints. A flexible data quality
system was recently proposed [22] which allows user-defined
constraints but does not allow tgds.

Uncertainty in schema mappings has been investigated
in [23], with reference to a different, data-integration setting.

We are not aware of any prior studies on optimizations for
the chase. The only available chase engine for data exchange
is DEMO [14], which hardly scales to large databases.

Algorithms for data repairing with preference relations
were introduced in [24]. They only consider denial constraints,

and are based on tuple deletions, not on cell changes; pref-
erences are among tuples, not cell values. Also, they do not
consider tgds, the main challenge dealt with in our framework.

Recently, a chase procedure to infer accuracy information
represented by partial orders was devised in [25]. An integra-
tion of these ideas into our framework is left as future work.

REFERENCES

[1] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin,
“Translating Web Data,” in VLDB, 2002, pp. 598–609.

[2] R. Fagin, P. Kolaitis, R. Miller, and L. Popa, “Data Exchange: Semantics
and Query Answering,” TCS, vol. 336, no. 1, pp. 89–124, 2005.

[3] W. Fan and F. Geerts, Foundations of Data Quality Management.
Morgan & Claypool, 2012.

[4] D. Loshin, Master Data Management. Knowl. Integrity, Inc., 2009.

[5] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, “The LLUNATIC Data-
Cleaning Framework,” PVLDB, vol. 6, no. 9, pp. 625–636, 2013.

[6] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain fixes with
editing rules and master data,” PVLDB, vol. 3, no. 1, pp. 173–184,
2010.

[7] J. Bleiholder and F. Naumann, “Data fusion,” ACM Comp. Surv., vol. 41,
no. 1, pp. 1–41, 2008.

[8] L. Chiticariu and W. C. Tan, “Debugging Schema Mappings with
Routes,” in VLDB, 2006, pp. 79–90.

[9] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi, “A cost-based model
and effective heuristic for repairing constraints by value modification,”
in SIGMOD, 2005, pp. 143–154.

[10] G. Beskales, I. F. Ilyas, and L. Golab, “Sampling the repairs of func-
tional dependency violations under hard constraints,” PVLDB, vol. 3,
pp. 197–207, 2010.

[11] S. Greco, F. Spezzano, and I. Trubitsyna, “Stratification criteria and
rewriting techniques for checking chase termination,” PVLDB, vol. 4,
no. 11, pp. 1158–1168, 2011.

[12] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan, “Laconic Schema
Mappings: Computing Core Universal Solutions by Means of SQL
Queries,” PVLDB, vol. 2, no. 1, pp. 1006–1017, 2009.

[13] G. Mecca, P. Papotti, and S. Raunich, “Core Schema Mappings:
Scalable Core Computations in Data Exchange,” Inf. Systems, vol. 37,
no. 7, pp. 677–711, 2012.

[14] R. Pichler and V. Savenkov, “DEMo: Data Exchange Modeling Tool,”
PVLDB, vol. 2, no. 2, pp. 1606–1609, 2009.

[15] G. Mecca, P. Papotti, S. Raunich, and D. Santoro, “What is the IQ of
your Data Transformation System?” in CIKM, 2012, pp. 872–881.

[16] M. Arenas, P. Barceló, L. Libkin, and F. Murlak, Relational and XML

Data Exchange. Morgan & Claypool, 2010.

[17] M. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa, and R. Wis-
nesky, “Hil: a high-level scripting language for entity integration,” in
EDBT, 2013, pp. 549–560.

[18] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
Consistency and accuracy,” in VLDB, 2007, pp. 315–326.

[19] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Interaction Between Record
Matching and Data Repairing,” in SIGMOD, 2011, pp. 469–480.

[20] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas,
“Guided data repair,” PVLDB, vol. 4, no. 5, pp. 279–289, 2011.

[21] L. Bertossi, S. Kolahi, and L. Lakshmanan, “Data Cleaning and Query
Answering with Matching Dependencies and Matching Functions,” in
ICDT, 2011, pp. 268–279.

[22] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. Ilyas,
M. Ouzzani, and N. Tang, “Nadeef: a commodity data cleaning system,”
in SIGMOD, 2013, pp. 541–552.

[23] X. L. Dong, A. Y. Halevy, and C. Yu, “Data integration with uncer-
tainty,” VLDB J., vol. 18, no. 2, pp. 469–500, 2007.

[24] S. Staworko, J. Chomicki, and J. Marcinkowski, “Prioritized repairing
and consistent query answering in relational databases,” Ann. Math.

Artif. Intell., vol. 64, no. 2-3, pp. 209–246, 2012.

[25] Y. Cao, W. Fan, and W. Yu, “Determining the relative accuracy of
attributes,” in SIGMOD, 2013, pp. 565–576.

