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ABSTRACT
Schema mappings are declarative specifications that describe the relation-
ship between two database schemas. In recent years, there has been an ex-
tensive study of schema mappings and of their applications to several differ-
ent data inter-operability tasks, including applications to data exchange and
data integration. Schema mappings are expressed in some logical formalism
that is typically a fragment of first-order logic or a fragment of second-order
logic. These fragments are chosen because they possess certain desirable
structural properties, such as existence of universal solutions or closure un-
der target homomorphisms. In this paper, we turn the tables and focus on the
following question: can we characterize the various schema-mapping lan-
guages in terms of structural properties possessed by the schema mappings
specified in these languages? We obtain a number of characterizations of
schema mappings specified by source-to-target (s-t) dependencies, includ-
ing characterizations of schema mappings specified by LAV (local-as-view)
s-t tgds, schema mappings specified by full s-t tgds, and schema mappings
specified by arbitrary s-t tgds. These results shed light on schema-mapping
languages from a new perspective and, more importantly, demarcate the
properties of schema mappings that can be used to reason about them in
data inter-operability applications.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation
H.2.4 [Systems]: Relational databases
General Terms
Languages, Theory
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1. INTRODUCTION
Schema mappings are declarative specifications that describe the

relationship between two database schemas. In recent years, they
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have been used extensively in specifying and studying several dif-
ferent inter-operability tasks. In particular, schema mappings are
regarded as the essential building blocks in data exchange and data
integration (see, e.g., the surveys [10, 11]). The main task in data
exchange is to transform data structured under one schema, called
the source schema, into data structured under a different schema,
called the target schema, in such a way that the constraints given
by a schema mapping between the two schemas are satisfied. The
main task in data integration is to answer queries against a global
schema that is related to several heterogeneous local schemas via
schema mappings.

Schema mappings are expressed in some logical language that
is typically a restricted fragment of first-order logic or of second-
order logic. The use of restricted fragments is dictated by the fact
that the main algorithmic tasks in data exchange and data integra-
tion become undecidable if unrestricted use of even just first-order
logic is allowed. Furthermore, the logical languages used to ex-
press schema mappings are chosen with two criteria in mind: on
the one hand, they must be powerful enough to capture interesting
specifications and, on the other, they must possess certain desir-
able structural properties. In data exchange, the prime example
of such a desirable structural property is the existence of univer-
sal solutions, which, intuitively, are the preferred target instances
to materialize [5]. This property is shared by both source-to-target
tuple-generating dependencies (s-t tgds) [5] and by second-order
tuple-generating dependencies (SO tgds) [7]. In data integration, an
important example of such a desirable property is that the certain
answers to a union of conjunctive queries over the target schema
can be obtained by rewriting the query to a union of conjunctive
queries over the source schema. One of the consequences of this
rewriting property (which, like the existence of universal solutions,
is possessed by both s-t tgds and SO tgds) is that the certain an-
swers of unions of conjunctive queries over the target schema can
be obtained in polynomial time. Two other examples of structural
properties frequently used in the study of schema mappings are clo-
sure under target homomorphisms and closure under union. The
former is a property shared by all s-t tgds, but not by all SO tgds.
The latter is a property shared by all LAV (local-as-view) s-t tgds,
but not by arbitrary s-t tgds; one of its many implications is that
every schema mapping specified by LAV tgds has a quasi-inverse
[8].

In this paper, we turn the tables and focus on the following ques-
tion: can we characterize the various schema-mapping languages
in terms of structural properties possessed by the schema mappings
specified in these languages? We investigate this question and ob-
tain a number of characterizations of schema mappings specified
by s-t tgds, schema mappings specified by LAV (local-as-view) s-t
tgds, and also schema mappings specified by full s-t tgds. Our char-



acterizations are in terms of structural properties of schema map-
pings, including the ones mentioned above: existence of universal
solutions, rewriting of unions of conjunctive queries over the target,
closure under target homomorphisms, and closure under union. In
particular, we establish that a schema mappingM is definable by
a finite set of LAV tgds if and only if universal solutions w.r.t.M
always exist,M allows for the rewriting of unions of conjunctive
queries over the target, andM is closed under both target homo-
morphisms and union. In some cases, however, additional struc-
tural properties have to be singled out and used. Specifically, our
characterization of schema mappings definable by s-t tgds involves
a new property, which we call n-modularity: a schema mapping
M is n-modular (where n is a positive integer) if whenever a tar-
get instance J is not a solution for some source instance I w.r.t.
to M, there is a sub-instance I ′ of I of size at most n such that
J is a not solution for I ′ w.r.t. M. With this property at hand,
we establish that a schema mappingM is definable by a finite set
of s-t tgds if and only if universal solutions w.r.t.M always exist,
M allows for the rewriting of unions of conjunctive queries over
the target,M is closed under target homomorphisms, andM is n-
modular for some n ≥ 1. Note that the aforementioned two results
are characterizations of schema mappings without assuming that
they are definable in some (richer) logic. We also obtain results
of a different type in which we assume that the schema mappings
are already definable in first-order logic and then characterize when
they are definable by a finite set of s-t tgds or by a finite set of full
s-t tgds. It should be pointed out that the proofs of the characteri-
zations under the first-order definability assumption make essential
use of Rossman’s proof of the preservation-under-homomorphisms
theorem [14].

The foremost motivation for carrying out this investigation is
methodological. Specifically, our structural characterization the-
orems shed light on the exact set of tools available in the study of
schema mappings specified in particular languages. To this effect,
they demarcate the properties of schema mappings that can be used
to reason about them in data inter-operability applications; further-
more, they pinpoint the properties of schema mappings that one
loses or gains by switching from one schema-mapping language
specification to another. As an application, we employ our struc-
tural characterization to derive complexity-theoretic results for test-
ing definability of schema mappings in the schema-mapping lan-
guages considered here.

The remainder of this paper is organized as follows. In Section
2, we present the definitions of all the basic notions and give some
simple results about the structural properties possessed by the var-
ious schema-mapping languages. In Section 3, we state and out-
line the proofs of our main structural characterization theorems for
schema-mapping languages. In Section 4, we study the computa-
tional complexity of testing whether a schema mapping expressible
in some schema-mapping language is also expressible in a differ-
ent schema-mapping language. In Section 5, we briefly consider
a different kind of expressive power, in the spirit of Bancilhon-
Paredaens-completeness [3, 13], and address the question which
target instances can be obtained from a source instance as universal
solutions for schema mappings definable by a finite set of s-t tgds.
Finally, in Section 6, we list some open problems and directions for
future research.

2. PRELIMINARIES AND BASIC FACTS

2.1 Schema mappings, solutions, and certain
answers

A schema is a tuple R = (R1, . . . , Rn) of relation symbols

of fixed arities. An R-instance is a tuple I = (RI1, . . . , R
I
n) of

relations whose arities match those of the relation symbols of R.
A fact of I is an expression Ria with i ≤ n and a a tuple of
values belonging to the relation RIi . The active domain of I , de-
noted by adom(I), is the set of all values occurring in the rela-
tions RIi , for 1 ≤ i ≤ n. Unless explicitly stated otherwise, we
will always restrict ourselves to finite instances I , i.e., adom(I)
is a finite set. We will be working with two disjoint schemas,
called the source schema S = (S1, . . . , Sn) and the target schema
T = (T1, . . . , Tm). An S-instance is called a source instance and
an T-instance is called a target instance. Whenever we consider a
pair of instances (I, J), it will be implicitly understood that I is a
source instance and J is a target instance.

A schema mapping is a triple M = (S,T,W), where S is a
source schema, T is a target schema disjoint from S, and W is a
class of pairs (I, J) of S-instances and T-instances that is closed
under isomorphisms, i.e., if (I, J) ∈ W and h : (I∪J) ∼= (I ′∪J ′)
is an isomorphism, then (I ′, J ′) ∈ W . If a pair (I, J) ∈ W , then
we say that J is a solution for I w.r.t.M (or, simply, a solution for
I whenever M is understood from the context). For each source
instance I , we write SolM(I) to denote the set of all solutions of I
w.r.t.M.

LetL be a logical language and let Σ be a set ofL-sentences. We
say that a schema mappingM = (S,T,W) is L-definable by Σ if
(I, J) ∈ W if and only if (I, J) |= Σ. In this case, we will often
identify the schema mappingM with the tripleM = (S,T,Σ).
Note that, since we are restricting ourselves to finite instances, L-
definability means L-definability within the class of (pairs of) finite
instances. Here, we are mainly interested in definability in first-
order logic (FO-definability), as well as in definability in fragments
of first-order logic that are used as specification languages in data
exchange and data integration. Note that if the source schema S
and the target schema T are understood from the context, we will
often identify a schema mappingM = (S,T,W) with the class
W of pairs of instances or with a set Σ of L-sentences that defines
it. We will also often write (I, J) ∈M, instead of (I, J) ∈ W .

If q is a k-ary query over the target and I is a source in-
stance, then the certain answers of q on I w.r.t. M is the set
certainM(q)(I) =

T
{q(J) | J ∈ SolM(I)}. It is easy to see that

every tuple in certainM(q)(I) is a tuple of values from I . Thus, ev-
ery schema mappingM induces a transformation certainM from
queries over the target schema to queries over the source schema,
so that if q is a k-ary query over the target schema, then this trans-
formation produces the query certainM(q) over the source schema
defined by certainM(q)(I) =

T
{q(J) | J ∈ SolM(I)}.

2.2 Homomorphisms, conjunctive queries,
and universal solutions

A central notion in the study of schema mappings is that of a ho-
momorphism. IfK andK′ are two instances over the same schema
R = (R1, . . . , Rn), then a homomorphism from K to K′ is a
function from the active domain of K to the active domain of K′

such that if (a1, . . . , am) ∈ RKi , then (h(a1, . . . , am)) ∈ RK
′

i ,
for i = 1, . . . , n. If there is a homomorphism from K to K′, then
we say that K′ is a homomorphic extension of K, and that K is
homomorphically embedded in K′. If there are homomorphisms
h : K → K′ and h′ : K′ → K, then we say that K and K′

are homomorphically equivalent. A homomorphism h is said to be
constant on a set X if h restricted to X ∩ dom(h) is the identity
function on this set. Often, when we will consider homomorphisms
between target instances, we will need to require that they are con-
stant on the domain of some source instance.

A k-ary query q is said to be preserved under homomorphisms if



for all homomorphisms h : K → K′ and all tuples (d1, . . . , dk) ∈
q(K), we have that (h(d1), . . . , h(dk)) ∈ q(K′). A positive query
is a query defined by a positive existential FO-formula or, equiva-
lently, a query that is a union of conjunctive queries. All positive
queries are preserved under homomorphisms.

We now recall the definition of universal solutions from [5]. Let
M = (S,T,W) be a schema mapping and let I be a source in-
stance. A target instance J is a universal solution for I if J is
a solution for I and for each target instance J ′ that is a solution
for I , there is a homomorphism h : J → J ′ that is constant on
adom(I).

2.3 Schema mapping languages

DEFINITION 2.1. Let S be a source schema and T a target
schema.

1. A source-to-target tuple-generating dependency (s-t tgd) is a
FO-formula of the form

∀x(φ(x)→ ∃yψ(x,y)),

where φ(x) is a conjunction of atomic formulas over S with
variables in x, each variable in x occurs in at least one atomic
formula in φ(x), and ψ(x,y) is a conjunction of atomic for-
mulas over T with variables in x and y.

2. A full s-t tgd is a s-t tgd with no existential quantifiers in the
right-hand side, i.e., it is of the form ∀x(φ(x)→ ψ(x)), where
φ(x) and ψ(x) are conjunctions of atomic formulas over S and
T respectively, and each variable in x occurs in at least one
atomic formula in φ(x).

3. A LAV (local-as-view) s-t tgd is a s-t tgd in which the left-hand
side is a single atomic formula (we do not assume that each
variable from x occurs only once in the atomic formula).

We will focus on schema mappings that are definable by finite
sets of s-t tgds, by finite sets of full s-t tgds, and by finite sets of
LAV s-t tgds. These classes of schema mappings have been inves-
tigated extensively in data exchange and data integration. We note
that s-t tgds are also known in the literature as GLAV (global-and-
local-as-view) constraints under sound view semantics (see [11]).
Moreover, every full s-t tgd is equivalent to a finite set of GAV
constraints, which are the special case of full s-t tgds in which the
right-hand side has a single atomic formula.

2.4 Structural properties of schema mappings
In this section, we present several structural properties of schema

mappings that will play a key role in our characterizations. We
begin with three such properties that have been used in both data
exchange and data integration.

DEFINITION 2.2. LetM be a schema mapping.

• Closure under target homomorphisms: We say that M is
closed under target homomorphisms if for all (I, J) ∈ M
and for all homomorphisms h : J → J ′ that are constant on
adom(I), we have that (I, J ′) ∈M.

• Admitting universal solutions: We say thatM admits univer-
sal solutions if for each source instance I there is a universal
solution J for I .

• Allowing for conjunctive query rewriting: We say that M
allows for conjunctive query rewriting if for each union q of
conjunctive queries over the target schema, the certain an-
swers query certainM(q) is definable by a union of conjunc-
tive queries over the source schema. (Here, as it is usually the

case, “union of conjunctive queries" means a finite union of
conjunctive queries, and equalities are allowed in the conjunc-
tive queries)

The first two conditions of closure under target homomorphisms
and admitting universal solutions go very well together. As was
observed in [5], if a schema mapping is closed under target homo-
morphisms and admits universal solutions, then, for every source
instance I , the (typically infinite) space SolM(I) of all solutions
of I can be completely described by a single target instance J ,
namely, by any universal solution J for I . This is so because if
J is universal for I andM is closed under target homomorphisms,
then for every target instance J ′, we have that J ′ is a solution for
I if and only if there is a homomorphism h : J → J ′ that is con-
stant on adom(I). Thus, these two conditions lie at the foundation
of data exchange. The third condition of allowing for conjunctive
query rewriting is important in the context of data integration, since
it implies that the certain answers of unions of conjunctive queries
over the target are computable in polynomial time (in the sense of
data complexity).

It is well known that all three conditions of closure under target
homomorphisms, admitting universal solutions, and allowing for
conjunctive query rewriting are possessed by every schema map-
pingM definable by a finite set of s-t tgds. Closure under homo-
morphisms follows easily from the definitions; admitting universal
solutions was shown in [5] using the chase procedure. In the case
of full s-t tgds, a union of conjunctive queries over the target is eas-
ily transformed to a union of conjunctive queries over the source by
simply replacing each target relation symbol P by a union of con-
junctive queries over the source that defines P . In the case of arbi-
trary s-t tgds, allowing for conjunctive query rewriting is proved by
first “decomposing” the given s-t tgds to full s-t tgds and to LAV s-t
tgds, and then applying results from [1] and [4]. We collect these
facts into one proposition.

PROPOSITION 2.3. Every schema mapping definable by a finite
set of s-t tgds is closed under target homomorphisms, admits uni-
versal solutions, and allows for conjunctive query rewriting.

In the full version of this paper, we show that even schema map-
pings speficied by a second-order tgd (SO tgd) (see [7] for the def-
inition) allows for conjunctive query rewriting; since a finite set of
SO tgds is known to be equivalent to a single SO tgd, this rewriting
result holds also for finite sets of SO tgds. Moreover, we show that
the query rewriting can be performed in polynomial time (measured
in the combined size of the schema mapping specification and the
conjunctive query) if the output query is allowed to be presented in
the form of a positive existential first-order formula and the domain
of the source instance contains at least two distinguished constants.
It follows that the combined complexity of query answering (where
the input is the SO tgd, the source instance, and the target conjunc-
tive query) is NP-complete. Since s-t tgds can be translated into SO
tgds in linear time, the same holds for schema mappings specified
by finite sets of s-t tgds. These two results, stated below, are used
in Section 3.4 and in Lemma 4.1.

PROPOSITION 2.4. Every schema mapping definable by a SO
tgd allows for conjunctive query rewriting.

PROPOSITION 2.5. The following problem is NP-complete:
Given a schema mapping M specified by a SO tgd, a source

instance I , a k-ary positive target query q (k ≥ 0) and a k-tuple a
of elements from adom(I), does a belong to certainM(q)(I)?

Next, we define three additional properties of schema mappings.



DEFINITION 2.6. LetM be a schema mapping.

• Closure under target intersection: We say that M is closed
under target intersection if for all source instances I and all
target instances J1, J2, if (I, J1) ∈M and (I, J2) ∈M, then
also (I, J1 ∩ J2) ∈M.

• Closure under union: We say thatM is closed under union if
(∅, ∅) ∈ M, and for all (I, J) ∈ M and (I ′, J ′) ∈ M (not
necessarily disjoint), we have that also (I ∪ I ′, J ∪ J ′) ∈M.

Intuitively, a schema mapping is closed under union if solutions
can be constructed in a “modular” fashion, i.e., on a tuple-by-
tuple basis.

• n-Modularity: Let n be a positive integer. We say thatM is n-
modular if whenever a pair (I, J) does not belong toM, there
is a sub-instance I ′ ⊆ I such that |adom(I ′)| ≤ n and (I ′, J)
does not belong toM.

Intuitively, n-modularity asserts that if (I, J) 6∈ M, then there
is a concise explanation for this fact; this property can also be
viewed as a relaxation of closure under union.

• Reflecting source homomorphisms: We say that M reflects
source homomorphisms if for all source instances I , I ′ and for
all target instances J , J ′ such that J is a universal solution for
I and J ′ is a solution for I ′, we have that every homomorphism
h : I → I ′ extends to a homomorphism from J to J ′.

Note that, in this definition, we do not require the homomor-
phisms to be constant on adom(I).

We now give several useful propositions about the properties we
just introduced.

PROPOSITION 2.7. LetM be a schema mapping.

• IfM is definable by a finite set of full s-t tgds, thenM is closed
under target intersection.

• If M is definable by a finite set of LAV s-t tgds, then M is
closed under union.

• IfM is definable by a finite set of s-t tgds, thenM is n-modular
for some n ≥ 1.

PROOF. The first two parts follow easily from the definitions.
For the third part, assume thatM is a schema mapping definable
by a finite set Σ of s-t tgds. Let n be the maximum number of
variables occurring in the left-hand side of the s-t tgds in Σ. We
claim thatM is n-modular. Assume that (I, J) 6∈ M. Then there
is an s-t tgd

∀x(φ(x)→ ∃yψ(x,y))

from Σ and a tuple a of values from adom(I) such that (I, J) |=
φ(a)∧¬∃yψ(a,y). Now, let I ′ be the sub-instance of I containing
only the values a. Then it is still the case that (I ′, J) |= φ(a) ∧
¬∃yψ(a,y), and hence (I ′, J) 6∈ M.

PROPOSITION 2.8. If a schema mapping M is closed under
target homomorphisms and target intersections, then for every
source instance I and every target instance J , we have that J is a
solution for I if and only if J � adom(I) is a solution for I , where
J � adom(I) is the sub-instance of J consisting of all tuples with
values from adom(I) only.

PROOF. One direction follows immediately from the fact that
the inclusion map from J � adom(I) into J is a homomorphism.
For the other direction, suppose that J is a solution for I . Let J ′ be
an isomorphic copy of J agreeing with J on elements in adom(I),
but disjoint for the rest of the active domain. Then, by closure under

isomorphisms, J ′ is a solution for I , hence J ′ ∩ J is a solution for
I by closure under intersection. By construction, J ∩ J ′ = J �
adom(I).

PROPOSITION 2.9. If M is a schema mapping that is closed
under target homomorphisms, admits universal solutions, and al-
lows for conjunctive query rewriting, then M reflects source ho-
momorphisms.

PROOF. Let J be a universal solution for I , let J ′ be a solution
for I ′, and let h : I → I ′ be a homomorphism. For each element
of I , choose a first-order variable and form the canonical conjunc-
tive query q of J in these free variables (thus only the elements of
adom(J) \ adom(I) are existentially quantified in q). Clearly, q
is true in J under the natural assignment that sends each variable
to the corresponding element of I . Since J is a universal solution
for I , we have that q is true in every other solution of I as well,
under the same assignment. Hence, certainM(q) is true in I under
this assignment. SinceM allows for conjunctive query rewriting,
certainM(q) is definable by a union of conjunctive queries over
the source schema, hence it is preserved by the homomorphism h.
This means that certainM(q) is true in I ′ under the assignment that
sends every variable to the h-image of the corresponding element
of I , and hence q(J ′) is true under this assignment as well. In other
words, there is a a homomorphism from J to J ′ that extends q.

Note that the proof of the above Proposition 2.9 relies heavily on
the assumption that we consider finite instances only.

3. CHARACTERIZATIONS OF SCHEMA-
MAPPING LANGUAGES

3.1 LAV s-t tgds
The following provides a characterization of LAV s-t tgds.

THEOREM 3.1. For all schema mappingsM, the following are
equivalent:

1. M is definable by a finite set of LAV s-t tgds

2. M is closed under target homomorphisms, admits universal
solutions, allows for conjunctive query rewriting, and is closed
under union.

3. M is closed under target homomorphisms, admits universal
solutions, reflects source homomorphisms, and is closed under
union.

PROOF. The implications (1)⇒ (2) and (2)⇒ (3) are proved
in Section 2. We prove (3) ⇒ (1). The idea behind the proof is
as follows: sinceM is closed under union, universal solutions for
source instances I can be constructed out of universal solutions for
parts of I . This implies that, in defining our schema mapping, we
only need to take into account a finite number of source instances
up to isomorphism, namely, those that contain precisely one tuple.
In what follows we will make this idea precise.

Suppose M satisfies the listed conditions. Let R1, . . . , Rn be
the relations of the source schema, and let D be a set consisting
of k distinct values, with k = maxi≤n arity(Ri). Let facts be the
set of all possible facts, of the form Ri(d1, . . . , d`) with i ≤ n,
` = arity(Ri), and d1, . . . , d` ∈ D. For each α ∈ facts, let Iα
be the source instance containing precisely one fact, namely α, and
let Jα be a universal solution for Iα. Let PosDiagIα(x) be the
positive diagram of Iα, i.e., the set of all facts true in I (which
consists of precisely one fact) and let PosDiagJα(x,y) be the
positive diagram of Jα, where x are as many variables as there



are elements of adom(Iα) and y as many variables as there are
elements of adom(Jα)\adom(Iα). Define φα to be the following
LAV s-t tgd:

∀x(PosDiagIα(x)→ ∃y(PosDiagJα(x,y)))

Finally, let Σ = {φα | α ∈ facts}. We claim that Σ definesM.
First, we prove soundness: every (I, J) ∈ M satisfies Σ. Sup-

pose (I, J) ∈ M, and take any φα ∈ Σ. Furthermore, suppose
that the antecedent of φα is satisfied in (I, J) under some variable
assignment h. In other words, h is a homomorphism from Iα to
I . SinceM reflects source homomorphisms, there is a homomor-
phism h′ : Jα → J extending h. This means precisely that the
consequent of φα is satisfied in J under the assignment h′. Hence,
(I, J) satisfies φα.

Next, we prove completeness: every pair (I, J) satisfying Σ be-
longs toM. Suppose (I, J) satisfies Σ. If I = ∅ then (I, ∅) ∈ M
by definition of closure under union, and hence, by closure under
target homomorphisms, (I, J) ∈ M. If not, let I = I1 ∪ . . . ∪ In
where each Ii contains only a single fact. Then each (Ii, J) still
satisfies Σ. Since Ii contains a single fact, it must be isomorphic to
Iα for some α ∈ facts. Using the fact that (Ii, J) satisfies φα, we
can show that there is a homomorphism from a universal solution
of Ii to J , constant on adom(Ii), hence, by closure under target
homomorphisms, (Ii, J) ∈ M. It follows by closure under union
that (I, J) ∈M.

Theorem 3.1 implies in particular that every schema mapping
satisfying the conditions listed in (2) or (3) is definable by a first-
order sentence (or, equivalently, by a finite set of first-order sen-
tences).

3.2 Full s-t tgds
The following provides a characterization of schema mappings

definable by a finite set of full s-t tgds:

THEOREM 3.2. For all schema mappingsM, the following are
equivalent:

1. M is definable by a finite set of full s-t tgds

2. M is closed under target homomorphisms, admits universal
solutions, allows for conjunctive query rewriting, and is closed
under target intersection.

3. M is closed under target homomorphisms, admits universal so-
lutions, reflects source homomorphisms, is closed under target
intersection, and is n-modular for some n ≥ 1.

PROOF. (Sketch) The implication (1) ⇒ (2) is proved in Sec-
tion 2.

For the implication (2) ⇒ (3), suppose M satisfies the con-
ditions listed under (2). We need to show thatM reflects source
homomorphisms and is n-modular for some n > 0. That M re-
flects source homomorphisms follows from Proposition 2.9. Next,
for each target relation R, let qR = certainM(Ry), where y is
a sequence of distinct fresh variables, of appropriate length. Note
that, since M allows for conjunctive query rewriting, qR can be
written as a union of conjunctive queries. Now, let n be the max-
imum of the number of variables occurring in each qR. We claim
thatM is n-modular. To see this, let I, J be any source and tar-
get instance such that (I, J) 6∈ M. By Proposition 2.8, we may
assume without loss of generality that adom(J) ⊆ adom(I). Let
J ′ be a universal solution for I with respect toM. Since J is not a
solution for I , it is not a homomorphic extension of J ′, and hence
there is a tuple d that belongs to some relation R in J ′ but not in
J . It follows that d ∈ qR(I). Now, let I ′ be a sub-instance of I

containing just enough elements to witness the existential quanti-
fiers of qR, so that d ∈ qR(I ′). Then, |adom(I)| ≤ n and J is not
a solution for I . This shows thatM is n-modular.

The implication (3) ⇒ (1) is established along the same lines
as the proof of Theorem 3.1. Instead of considering all source in-
stances consisting of one tuple, we consider all source instances I
with |adom(I)| ≤ n. There are only finitely many such source
instances, up to isomorphism. Moreover, by Proposition 2.8, each
has a null-free universal solution, and hence only full s-t tgds are
needed to describe them.

In the third clause of Theorem 3.2, the requirement of n-
modularity is necessary, as shown next:

EXAMPLE 3.3. The following schema mapping, defined by an
infinite set of full s-t tgds, satisfies all closure conditions listed in
the third clause of Theorem 3.2 except n-modularity for any n > 0,
and is not definable by any finite set of s-t tgds:

{∀x1, . . . , xn(Rx1x2 ∧ · · · ∧Rxn−1xn → Sx1xn) | n > 0}

It defines the class of all pairs (I, J) where SJ contains the tran-
sitive closure of RI . Note that this schema mapping does not allow
for conjunctive query rewriting: certainM(Sxy) is not definable
by a union of conjunctive queries.

We note that an easy adaptation of the proof of Theorem 3.2
shows that schema mappings satisfying all conditions except n-
modularity are still definable by an infinite set of full s-t tgds.

For schema mappings definable by a FO-sentence (unlike the
above example), the requirement of n-modularity can be dropped.

THEOREM 3.4. For all schema mappings M definable by a
FO-sentence, the following are equivalent:

1. M is definable by a finite set of full s-t tgds

2. M is closed under target homomorphisms, admits universal
solutions, reflects source homomorphisms, and is closed under
target intersection.

The proof of Theorem 3.4 is considerably more involved than
that of Theorem 3.2. In particular, it uses the following lemma,
due to Rossman [14], which lies at the heart of his homomorphism
preservation theorem in the finite.

LEMMA 3.5 ([14]). For each k > 0 there is an ` > 0 such
that the following holds for all instances K1 and K2 of the same
schema. If all Boolean positive queries of quantifier rank at most
` true in K1 are true in K2, then there are instances cK1, cK2 such
that

• K1 and cK1 are homomorphically equivalent,

• cK1 and cK2 satisfy the same FO sentences up to quantifier rank
k, and

• There is a homomorphism from cK2 to K2.

PROOF OF THEOREM 3.4. We prove the implication (2) ⇒
(1): let M be a schema mapping definable by a FO-sentence,
satisfying the listed conditions. First, we will show that these
together imply another closure property. Let the target-inverted
joint schema be the schema containing all relations from the source
schema, plus a relation R̄ for each relation R of the target schema
(of equal arity). The idea is that R̄ represents the complement of
R. Each pair (I, J) gives rise to a single instance over the target-
inverted joint schema, denoted by I ⊕ J̄ :



RI⊕J̄ = RI for a source relation R

S̄I⊕J̄ = (adom(I) ∪ adom(J))k \ SJ
for a target relation S of arity k

The extra closure property we can infer now reads as follows:

Claim 1: For all pairs (I, J) and (I ′, J ′), if there is a homo-
morphism from I ⊕ J̄ to I ′ ⊕ J̄ ′ and (I ′, J ′) ∈ M then
(I, J) ∈M.

Proof of claim: By Proposition 2.8, we may assume without loss
of generality that adom(J) ⊆ adom(I) and adom(J ′) ⊆
adom(I ′). Every homomorphism h : I ⊕ J̄ → I ′ ⊕ J̄ ′ is
in particular a homomorphism from I to I ′. Since (I ′, J ′) ∈
M andM reflects source homomorphisms, we have that h
extends to a homomorphism bh : J ′′ → J ′ for some univer-
sal solution J ′′ of I . We may again assume without loss of
generality that adom(J ′′) ⊆ adom(I), and hence bh = h.
Now, the identity function is a homomorphism from J ′′ to
J , and hence (I, J) ∈M by closure under target homomor-
phisms. To see that the identity function is a homomorphism
from J ′′ to J , note that if d ∈ RJ

′′
, then, since h : J ′′ → J ,

h(d) ∈ RJ
′
, and hence, since h : I⊕ J̄ → I⊕ J̄ ′ preserves

inverted target relations, we have that d ∈ RJ .

Next, we will apply Lemma 3.5. Let k be the quantifier rank
of any FO-sentence φ defining M, and let ` be as described in
Lemma 3.5. Furthermore, let m be ` multiplied by the number of
distinct positive existential FO-sentences with quantifier depth at
most ` over the target-inverted joint schema, containing only (in-
verted) relation symbols occurring in φ. Let Thm(M) be the (fi-
nite) set of all full s-t tgds of quantifier rank at most m that hold in
all pairs (I, J) ∈ M. We will show that all pairs (I, J) satisfying
Thm(M) belong toM, and hence Thm(M) definesM.

Let (I, J) |= Thm(M). By Proposition 2.8 and the closure
under target homomorphisms, we may assume without loss of gen-
erality that adom(J) ⊆ adom(I).

Claim 2: For each X ⊆ adom(I) with |X| ≤ m, ((I � X), (J �
X)) ∈M.

Proof of claim: Introduce variables x for the elements of X . Let
PosDiag(I,X) be the set of all atomic formulas in these
variables true in I , and let NegDiag(J,X) be the set of all
atomic formulas in these variables false in J .
There are two cases: if NegDiag(J,X) = ∅, then, using
the fact thatM admits solutions, it can be shown that (I �
X, J � X) ∈ M. In what follows, we therefore assume that
NegDiag(J,X) 6= ∅.
Consider any χ ∈ NegDiag(J,X). First, we show that
there is a pair (I ′, J ′) ∈ M satisfying PosDiag(I,X) ∪
{¬χ}. For, if not, then ∀x(

V
PosDiag(I,X) → χ) ∈

Thm(M), where x is an enumeration of the elements of X .
This would contradict the fact that (I, J) |= Thm(M). We
can therefore conclude that there is a pair (I ′, J ′) ∈ M sat-
isfying PosDiag(I,X) ∪ {¬χ}. Moreover, by construc-
tion, there is a homomorphism h : (I � X) → I ′. Now,
let J ′′ be any universal solution for I � X with respect to
M. We may again assume without loss of generality that
adom(J ′′) ⊆ X . SinceM reflects source homomorphisms,
h is a homomorphism from J ′′ to J ′. In particular, J ′′ 6|= χ.
Since this holds for each χ ∈ NegDiag(J,X), we have
that J ′′ is contained in J � X , and hence, sinceM is closed
under target homomorphisms, ((I � X), (J � X)) ∈M.

Claim 3: There is a pair (I ′, J ′) ∈M such that for every positive
existential FO-sentence φ of quantifier rank at most ` over the
target-inverted joint schema, if I⊕ J̄ |= φ then I ′⊕ J̄ ′ |= φ.

Proof of claim: For each distinct positive existential FO-sentence
φ of quantifier rank at most ` over the target-inverted joint
schema true in IJ̄ , pick a witnessing subset X ⊆ adom(I),
with |X| ≤ `. Take the union of all these sets X for the
different sentences φ. The result is a subset of adom(I) size
at most m. Finally, apply Claim 2 on this set. End of proof
of claim

It follows by Lemma 3.5 that there are pairs Î ⊕ J̄ and Î ′ ⊕ J̄ ′

such that I ⊕ J̄ and Î ⊕ J̄ are homomorphically equivalent, Î ⊕ J̄
and Î ′ ⊕ J̄ ′ satisfy the same FO-sentences up to quantifier rank k,

and there is a homomorphism from Î ′ ⊕ J̄ ′ to I ′ ⊕ J̄ ′. We can
now chase the diagram: (I ′, J ′) ∈ M, and hence, by Claim 1,
(bI ′, bJ ′) ∈ M; sinceM is defined by an FO-sentence of quantifier
depth k, it follows that (bI, bJ) ∈ M, hence, again by Claim 1,
(I, J) ∈M.

3.3 Arbitrary s-t tgds
As we saw in Section 2, every schema mapping defined by a

finite set of s-t tgds is closed under target homomorphisms, ad-
mits universal solutions, and allows for conjunctive query rewrit-
ing. Conversely, any schema mapping satisfying these conditions
is definable by an infinite set of s-t tgds:

PROPOSITION 3.6. If a schema mapping M is closed under
target homomorphisms, admits universal solutions, and allows for
conjunctive query rewriting, thenM is definable by an infinite set
of s-t tgds.

PROOF. (Sketch) LetM satisfy the listed properties. Consider
any source instance I and target instance J such that J is a uni-
versal solution for I with respect to M. For each element of
adom(I), introduce a distinct variable xi, and for each element
of adom(J) \ adom(I), introduce a distinct variable yj . Define
PosDiagI(x) to be the set of all atomic formulas in x true in I
(under the chosen assignment) and define PosDiagJ(x,y) like-
wise. Finally, let Σ be the set of all s-t tgds of the form

φI,J := ∀x(
^
PosDiagI(x)→ ∃y(

^
PosDiagJ(x,y)))

where I is any source instance and J a universal solution for I with
respect toM. To ensure Σ is a set, not a proper class, we consider
each source instance only once up to isomorphism. It can be shown
that Σ definesM, using an argument analogous to the one used in
the proof of Theorem 3.1.

The following two examples show that Proposition 3.6 cannot
be turned into a characterization of definability by finite sets of s-
t tgds, nor a characterization of definability by infinite sets of s-t
tgds.

EXAMPLE 3.7. The schema mapping defined by the FO-
sentence ∀x∃y∀z(Rxz → Syz) is closed under target homo-
morphisms, admits universal solutions, and allows for conjunctive
query rewriting, but is not definable by a finite set of s-t tgds [7,
Proposition 3.4].

EXAMPLE 3.8. The schema mapping defined by the infinite set
of s-t tgds

{∀x(Px→ ∃y1 . . . yn(Rxy1∧Ry1y2∧· · ·∧Ryn−1yn)) | n ≥ 0}



does not admit (finite) universal solutions: it is quite easy to see
that no finite solution for I = {Pa} can be universal.

Thus, additional properties must be considered in order to char-
acterize the schema mappings that are definable by a finite set of s-t
tgds. It turns out that adding n-modularity as a requirement yields
such a characterization.

THEOREM 3.9. For all schema mappingsM, the following are
equivalent:

1. M is definable by a finite set of s-t tgds

2. M is closed under target homomorphisms, admits universal
solutions, allows for conjunctive query rewriting, and is n-
modular for some n > 0.

3. M is closed under target homomorphisms, admits universal
solutions, reflects source homomorphisms, and is n-modular
for some n > 0.

PROOF. (Hint) Along the same lines as the proof of Theo-
rem 3.1 and Theorem 3.2.

An alternative characterization can be obtained by using a prop-
erty known as bounded fact-block size [6].

DEFINITION 3.10. Let J is a solution for a source instance I
with respect to some schema mappingM.

The fact graph of J is the graph whose vertices are atomic facts
of J and where two facts are connected by an edge is they share a
null (i.e., a value not from the domain of I).

A fact block of J is a connected component of the fact graph.
By the size of a fact block we will mean the number of facts it

contains.
We say that a schema mappingM has bounded fact-block size

if for some n > 0, each source instance has a universal solution
whose fact blocks have size at most n.1

It was shown in [6] that schema mappings definable by a finite
set of s-t tgds have bounded fact block size.

THEOREM 3.11. For all schema mappings M, the following
are equivalent:

1. M is definable by a finite set of s-t tgds

2. M is closed under target homomorphisms, admits univer-
sal solutions, allows for conjunctive query rewriting, and has
bounded fact-block size.

PROOF. (Sketch.) We prove the implication (2)⇒ (1). LetM
satisfy the listed conditions. In particular, let n > 0 be such that
every source instance has a universal solution with respect to M
whose fact blocks are of size at most n. Since there are only finitely
many isomorphism types of fact blocks of size at most n, there
is a finite set of isomorphism types of fact blocks (or, “fact-block
types”), such that every source instance has a universal solution in
which every fact block is of one of these types. Since M allows
for conjunctive query rewriting, for each fact block type, there is a
union of conjunctive queries that defines the certain answers query
of the canonical query corresponding to the fact block type. Let k
be the maximum number of variables occurring in these unions of
1The definition of bounded fact block size given in [6] was phrased
in terms of core universal solutions. However, it is easy to see that
the two are equivalent: if a source instance has any universal solu-
tion whose fact blocks have size at most n, then the core universal
solution, being a sub-instance, will be such.

conjunctive queries. We show thatM is k-modular, and hence, by
Theorem 3.9,M is definable by a finite set of s-t tgds.

Let (I, J) 6∈ M. Let J∗ be a universal solution of I whose
fact blocks are of size at most n. Since J is a universal solution
for I and M is closed under target homomorphisms, there is no
homomorphism h : J∗ → J constant on adom(I). But then, it
is not hard to see that there is a fact-block of J∗ that cannot be
homomorphically mapped into J by a homomorphism constant on
I . Now, take the certain answer query corresponding to the fact-
block type of this fact block. By assumption, it is definable by a
union of conjunctive queries using at most k variables. But then,
by the argument as in the proof of Theorem 3.2, there is a sub-
instance I ′ ⊆ I with |adom(I ′)| ≤ k such that J is already not a
solution for I ′. This shows thatM is k-modular.

3.4 Nested s-t tgds
We briefly consider an extension of s-t tgds, called nested s-t

tgds. They generalize s-t tgds by allowing unlimited quantifier al-
ternation. Nested s-t tgds are in fact the schema-mapping language
that is used in the data exchange tool Clio, which has been devel-
oped at IBM Almaden [9].

DEFINITION 3.12. Fix a partition of the set of first-order vari-
ables into two disjoint infinite sets, X and Y . A nested s-t tgd is
a FO sentence that can be generated by the following recursive
definition:

φ ::= α | ∀x1 . . . xn(β1∧· · ·∧βk → ∃y1 . . . ym.(φ1∧· · ·∧φ`))

where each xi ∈ X , each yi ∈ Y , α is any atomic formula over
the target schema, and each βi is an atomic formula over the source
schema containing only variables fromX , such that each xi occurs
in some βj . Note that it is important that the above recursive defi-
nition may generate intermediate formulas with free variables, but
the final result should be a sentence in order to qualify as a nested
s-t tgd.

Nested s-t tgds extend the language of s-t tgds. In particular,
the schema mapping from Example 3.7 can be defined by means
of a nested s-t tgd, as follows: ∀x1x2(Rx1x2 → ∃y(Syx2 ∧
∀x3(Rx1x3 → Syx3))).

PROPOSITION 3.13. Every schema mapping defined by a finite
set of nested s-t tgds is closed under target homomorphisms, admits
universal solutions, and allows for conjunctive query rewriting.

PROOF. (Sketch) Closure under target homomorphisms can be
shown by a straightforward formula induction. That nested s-t tgd
mappings admit universal solutions and allow for conjunctive query
rewriting follows from the fact that they can be translated into SO
tgds [9], and the latter admit universal solutions [5] and allow for
conjunctive query rewriting (Proposition 2.4).

QUESTION 3.14. Is it the case that a schema mapping is defin-
able by a finite set of nested s-t tgds if and only if it is closed under
target homomorphisms, admits universal solutions, and allows for
conjunctive query rewriting?

4. THE COMPLEXITY OF TESTING EX-
PRESSIBILITY

Our characterizations provide tools for testing whether a schema
mapping specified in one language can also be defined in another
language. In particular, it follows from our results that a schema
mapping defined by a finite set of s-t tgds is definable by a finite



set of full s-t tgds if and only if it is closed under target intersec-
tion; and is definable by a finite set of LAV s-t tgds if and only if it
is closed under union. In this section, we determine the computa-
tional complexity of testing definability in the different languages.

Testing whether a schema mapping specified by an FO sentence
is expressible in the various schema-mapping languages we con-
sider is undecidable. This follows from the undecidability of sat-
isfiability for first-order sentences in the finite [15]: for any FO
sentence φ over the source schema, consider the schema mapping
defined by φ → ¬∃x.Rx where R is a relation from the target
schema. If φ is unsatisfiable, then the schema mapping is triv-
ially definable in all schema-mapping languages we consider. If,
on the other hand, φ is satisfiable, then the schema mapping is not
definable in any of the languages, as it is not closed under target
homomorphisms.

Hence, we will always assume that the input to the problem is a
finite set of s-t tgds. The results are summarized in this table:

Input schema Desired schema Complexity of
mapping mapping definability
s-t tgds full s-t tgds NP-complete
s-t tgds LAV s-t tgds NP-complete
full s-t tgds LAV s-t tgds PTIME
LAV s-t tgds full s-t tgds NP-complete

Our arguments are based on reductions from definability prob-
lems to the entailment problem for s-t tgds: given two schema map-
pingsM1,M2, specified by a finite set of s-t tgds, is it the case that
whenever (I, J) ∈M1, also (I, J) ∈M2? The complexity of the
latter problem is established by the following lemma.

LEMMA 4.1. The entailment problem for s-t tgds is NP-
complete. It is in PTIME if the first schema mapping is specified
by a finite set of LAV s-t tgds and the second is specified by a finite
set of full s-t tgds.

PROOF. The NP-hardness is by reduction from the containment
problem for conjunctive queries: the conjunctive query ∃y′.ψ′ is
contained in the conjunctive query ∃y.ψ if and only if the s-t tgd
Px → ∃y.ψ entails the s-t tgd Px → ∃y′.ψ′. To see that the
problem is in NP, letM1,M2 be schema mappings specified by a
finite set of s-t tgds. In order to test whetherM1 entailsM2, we
proceed as follows: for each s-t tgd

∀x(φ(x)→ ∃y.ψ(x,y))

of M2, we use Proposition 2.5 to test in NP whether the certain
answer query for ∃y.ψ(x,y) with respect toM1 is satisfied in the
canonical instance of φ(x), under the natural assignment for the
variables x.

For the second half of the result, let M1,M2 be two schema
mappings, with M1 specified by a finite set of LAV s-t tgds and
M2 specified by a finite set of full s-t tgds. In order to test whether
M1 entailsM2, we proceed as follows: for each s-t tgd ∀x(φ →
∃y.ψ) ofM2 and for each conjunct φi of φ, we take the canonical
instance of φi and chase it with M1. In general, the chase may
require exponential time, but in this case, since the source instance
consists only of a single fact, it is not hard to see that it can be done
in polynomial time. Finally, we test whether ψ holds in the union
of the resulting instances (under the natural assignment) – again in
PTIME.

We start by proving the upper bounds.

THEOREM 4.2. Testing whether a schema mapping specified by
a finite set of s-t tgds is definable by a finite set of full s-t tgds is in
NP.

PROOF. LetM by any schema mapping specified by a finite set
of s-t tgds Σ. We first compute, in polynomial time, the “full part”
Σ′ of Σ by dropping all existential quantifiers and all conjuncts
containing existentially quantified variables from the right-hand-
sides of the dependencies. We will show that if M is defined by
any finite set of full s-t tgds, then it is equivalent to the schema
mappingM′ defined by Σ′. It then follows by Lemma 4.1 that the
problem is in NP.

SupposeM is definable by a finite set of s-t tgds, and in partic-
ular, is closed under target intersection. It is clear thatM entails
M′, so it suffices to show thatM′ entailsM. Let I be any source
instance and J any solution for I with respect to M′. It follows
from the construction ofM′ that there is a solution J ′ for I with
respect toM such that J ⊆ J ′ and J contains exactly those facts
from J ′ that involve only elements from the domain of I (indeed,
one may choose for J ′ the canonical universal solution of I with
respect to M). It follows by Proposition 2.8 that J is also a so-
lution for I with respect to M. This shows that M and M′ are
equivalent.

THEOREM 4.3. Testing whether a schema mapping specified by
a finite set of s-t tgds is definable by a finite set of LAV s-t tgds is in
NP. It is in PTIME if the input consists of full s-t tgds.

PROOF. LetM be any schema mapping specified by a finite set
of s-t tgds Σ. We can define in a natural way the “LAV part” Σ′

of Σ. The definition is in terms of most general unifiers. A unifier
of a finite set of atomic formulas Φ is a variable substitution such
that, after applying the substitution, all φ ∈ Φ become identical.
A most general unifier of Φ is a unifier σ of Φ such that for all
other unifiers σ′ of Φ, there is a variable substitution τ such that
σ′(x) = τ(σ(x)) for all variables x. It is well known that if a
finite set of atomic formulas Φ has a unifier, then it has a most
general unifier. Moreover, the existence of unifiers can be checked
in polynomial time, and a most general unifier can be computed in
polynomial time if it exists. We refer the reader to [2] for more
information. Now, the “LAV part” Σ′ of Σ is defined as follows:
for each dependency, we test whether there is a unifier of the atomic
formulas in the left-hand-side. If there is, then we compute a most
general unifier, apply it to both sides of the dependency, and add
the result to Σ′. If there is no such unifier (for instance because the
left-hand-side contains atomic formulas using different relations),
we simply ignore the dependency. It is clear from the construction
that Σ′ consists of LAV s-t tgds and that its size is polynomial in
that of Σ. LetM′ be the schema mapping defined by Σ. We will
show that ifM is definable by any finite set of LAV dependencies,
then it is equivalent to M′. It then follows by Lemma 4.1 that
the problem is in NP, and in PTIME if the input is a full s-t tgd
mapping.

SupposeM is definable by a finite set of LAV s-t tgds, and hence
closed under union. It is clear thatM entailsM′, so it suffices to
show thatM′ entailsM. Let I, J be any pair of source and target
instances such that J is a solution for I with respect to M′. Let
I =

S
i Ii, where each Ii contains a single fact. SinceM is closed

under union, it suffices to show that J is a solution for each Ii with
respect toM. Suppose the antecedent of a dependency ∀x(φ →
∃y.ψ) of M is satisfied in some Ii for some tuple d, i.e., Ii |=
φ(d). Since Ii contains only a single fact, this implies that there is
a unifier for all conjuncts of φ, namely the one corresponding to the
kernel of the map sending x to d. Hence, the conjuncts of φ also
have a most general unifier, and the LAV s-t tgd of M′ that was
obtained from the above s-t tgd by this most general unifier ensures
that the right hand side ∃y.ψ is satisfied (for the tuple d). Thus,
J is a solution for each Ii, and hence, by closure under union, for



I .

We now proceed with the lower bounds.

THEOREM 4.4. Deciding whether a schema mapping specified
by a finite set of s-t tgds is definable by a finite set of LAV s-t tgds is
NP-hard.

PROOF. We give a reduction from the Boolean conjunctive
query containment problem. Let two conjunctive queries ∃x.φ and
∃y.ψ be given, and let P,Q be unary relation symbols occurring
in neither of the two queries. Then the schema mapping consisting
of the s-t tgds Pz → ∃x.ψ and Pz ∧ Qz → ∃y.ψ′ is closed un-
der union if and only if ∃y.ψ′ is contained in ∃x.φ. Indeed, if the
containment holds, then the second s-t tgd above is redundant, and
hence the schema mapping can be defined using only LAV s-t tgds.
If, on the other hand, the containment does not hold, then it is easily
seen that the given schema mapping fails to be closed under union
on the source instance containing only the two facts Pa,Qa (for
some value a). In particular, the schema mapping is not definable
by LAV s-t tgds.

THEOREM 4.5. Testing whether a schema mapping specified by
a finite set of LAV s-t tgds is definable by a finite set of full s-t tgds
is NP-hard.

PROOF. We again give a reduction from the Boolean conjunc-
tive query containment problem. Let conjunctive queries ∃x.φ and
∃y.ψ be given. Let R be a fresh relation symbol whose arity is
equal to the number of variables in the sequence x, and consider
the schema mapping M defined by the s-t tgds Rx → φ and
Rx → ∃y.ψ. Observe that both s-t tgds are LAV and only the
second one is not full.

Now, M is definable by a finite set of full s-t tgds if and only
if ∃y.ψ is contained in ∃x.φ. Indeed, if the containment holds,
the second s-t tgd ofM is redundant, and henceM definable by
a finite set of full s-t tgds. If, on the other hand, the containment
does not hold, then let J1 be a witnessing instance. Then there
is a tuple a such that J1 |= φ(a) but J1 6|= ∃y.ψ. Let J2 and
J3 be two isomorphic copies of the canonical instance of ∃y.ψ.
We may assume that J1, J2, J3 have disjoint domains. Finally, let
I = {Ra}. By construction, both J1∪J2 and J1∪J3 are solutions
for I with respect to M, but their intersection, being J1, is not.
Hence, M is not closed under target intersections, and therefore
not definable by full s-t tgds.

5. INSTANCE-LEVEL DEFINABILITY
In this section we briefly consider a different kind of expressive

power: we ask which target instances can be obtained from source
instances by means of schema mappings, in the spirit of the concept
of BP-completeness from [3, 13]. For schema mappings definable
by a finite set of s-t tgds, the answer is given by the following the-
orem:

THEOREM 5.1. For every source instance I and every target
instance J , the following are equivalent:

1. J is a universal solution for I with respect to some schema
mappingM definable by a finite set of s-t tgds

2. Every homomorphism h : I → I extends to a homomorphismbh : J → J

PROOF. The direction (1) ⇒ (2) follows from the fact that
schema mappings definable by finite sets of s-t tgds reflect source
homomorphisms (cf. Proposition 2.9). For the other direction, as-
sume that every homomorphism h : I → I extends to a homomor-
phism bh : J → J . Fix variables x1, x2, . . . for the elements of I

and variables y1, y2, . . . for the elements of J that are not elements
of I . Let Σ(x) be set of all facts true in I and Θ(x,y) the set of all
facts true in J . LetM be the schema mapping with the single s-t
tgd ∀x(

V
Σ(x)→ ∃y(

V
Θ(x,y)). We claim that J is a universal

solution for I with respect toM.
To see that J is a solution, let g be any assignment under whichV
Σ(x) is satisfied in I . Then g is in effect a homomorphism

from I to I . Hence, it extends to a homomorphism bg : J → J .
Hence,

V
Θ(x,y) is true in J under the assignment bg, and there-

fore, ∃y.(
V

Θ(x,y) is true in J under the assignment g. This
shows that J is a solution of I with respect toM. To see that J is
a universal solution, let J ′ be any other solution of I with respect
toM. Then J ′ must satisfy ∃y

V
Θ under the natural assignment.

This just shows that there is a homomorphism from J to J ′ constant
on adom(I).

Incidentally, it follows that J is a core universal solution for I
with respect to some schema mapping definable by finitely many s-
t tgds if and only if J is a core and every homomorphism h : I → I

extends to a homomorphism bh : J → J .
It may also be worth mentioning that another characterization

along the same lines can be obtained for dependencies with in-
equalities. Define source-to-target dependency with inequalities
like s-t tgds except that the left-hand-side of the implication may
contain inequalities. Then a target instance J is a universal solu-
tion for a source instance I with respect to some schema mapping
definable a finite set of such dependencies if and only if every au-
tomorphism h : I → I extends to a homomorphism bh : J → J .
The proof is similar to that of Theorem 5.1, the only difference be-
ing that the set of atomic formulas Σ now also contains inequalities
xi 6= xj for i 6= j. Any assignment making Σ true in I is then
in fact an automorphism (it is a bijective homomorphism, and the
total number of true facts cannot increase). Given that universal so-
lutions are only unique up to homomorphic equivalence, this shows
that source-to-target dependencies with inequalities are, in a natural
sense, “BP-complete” for data exchange purposes. The inspiration
for this observation comes from a remark by L. Libkin (personal
communication), who pointed out to us that source-to-target depen-
dencies with arbitrary first-order left-hand-sides are BP-complete
in the same sense.

6. CONCLUDING REMARKS
In this paper, we have focused on structural characterizations

of schema mappings specified by s-t tgds. There are, however,
other important schema-mapping languages of source-to-target de-
pendencies for which this type of investigation remains to be car-
ried out. The next step would be to pursue structural characteri-
zations of schema mappings specified by finite sets of nested s-t
tgds and by SO tgds. Furthermore, one may also consider schema-
mapping languages that include target constraints, such as target
tuple-generating dependencies and target equality-generating de-
pendencies. In this context, it is worth mentioning the work of
Makowsky and Vardi [12], which provides characterizations for
various classes of data dependencies; however, these characteriza-
tions either concern arbitrary (finite and infinite) structures or they
are about definability by infinite sets of dependencies. An inter-
esting question is whether there is a natural way to characterize
weakly acyclic sets of target tgds [5], a class of target dependen-
cies that is of central importance in data exchange, as they guaran-
tee termination of the chase procedure within a polynomial number
of steps.

In a different direction, we note that recent work on schema-
mapping optimization [6] has considered data-exchange equiva-



lence and conjunctive-query equivalence, two notions of equiva-
lence between schema mappings that are strictly weaker than log-
ical equivalence, but sufficient for data-exchange purposes or for
query-answering purposes. The work in [6] has addressed mainly
the question of when a schema mapping specified in a richer lan-
guage (say, SO-tgds) is conjunctive-query equivalent to a schema
mapping specified in a simpler language (say, s-t tgds). We leave it
as an open problem to obtain structural characterizations of schema
mappings in the context of conjunctive-query equivalence or in
data-exchange equivalence.
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