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ABSTRACT

The work reported here lays the foundations of data exchange
the presence of probabilistic data. This requires rethipkine very
basic concepts of traditional data exchange, such as cojuthi-
versal solution, and the certain answers of target quekiéss de-
velop a framework for data exchange over probabilistic lokgas,
and make a case for its coherence and robustness. This foaknew
applies to arbitrary schema mappings, and finite or couptibl
finite probability spaces on the source and target instankéier
establishing this framework and formulating the key comsepe
study the application of the framework to a concrete andtprac
cal setting where probabilistic databases are compactigdad by
means of annotations formulated over random Boolean Jagab
In this setting, we study the problems of testing for thetexise of
solutions and universal solutions, materializing suchitsahs, and
evaluating target queries (for unions of conjunctive qg@rin both
the exact sense and the approximate sense. For each of the pro
lems, we carry out a complexity analysis based on propesfitee
annotation, in various classes of dependencies. Finabyskow
that the framework and results easily and completely géimere
allow not only the data, but also the schema mapping itsebfeto
probabilistic.
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1. INTRODUCTION

Data exchange is the problem of transforming data that confo
to one schema, ttedurce schemanto data that conform to another
schema, théarget schemain a way that is consistent with various
dependencie.e., constraints expressed in some logical formalism
over the two schemas). The source and target schemas, aittng w
the dependencies, definesehema mappingnd the results of the
consistent transformation of a source instance are catiedions
Traditional data exchange is based on the assumption thateso
data arecertain However, the need to account foncertaintyin
data has long been recognized [4, 19]. In view of the advent of
the Web and related modern applications, models of unoedta
(typically probabilistic databas@shave recently gained significant
renewed focus [9-11, 24,31, 33,43, 44]. Itis, thereforeersal to
rethink the conceptual framework of data exchange in théesbn
of uncertainty in the source data.

Our goal in this paper is to lay the foundations of data exgban
in the presence of probabilistic data. This is accomplishetvo
main parts. First, in Sections 2—4, we establish a framewfak
extends and generalizes traditional data exchange to Ipitishia
(source and target) databases. This framework is gener#hei
sense that it imposes essentialtyrestriction at allon the types of
dependencies or on the probabilistic databases (whichrare dir
countably infinite spaces of ordinary finite databases, &/each
database is assigned a probability). Then, in Section 5, we a
ply our framework to a concrete and practical setting, whbkee
dependencies are from widely-studied classes, and whe rz th-
abilistic databases are compactly encoded in various octiovel
manners (e.g., as in [2,6,10, 31, 43]).

Furthermore, in Section 6, we extend the framework and the re
sults to allow the schema mapping (and the data) to be priadiabi
In principle, we could use this extended setting right frdra be-
ginning. The reason for not doing so is that it would signiity
increase the complexity of the presentation, while the Kesgi-c
lenges and ideas arise already when only the data are plisbabi

Formally, aschema mapping a triple (S, T, X), whereS and
T are thesourceandtarget schemas, respectively, addis a set
of dependencies formulated as logical assertions Svend T. A
source instancés an instancd overS, and atarget instances an
instance/ overT; moreover,J is allowed to includdabeled nulls
which are essentially variables that are not bound to spaagifues.
Atarget instancéd is asolutionif the pair (7, .J) satisfiest. In this
paper, source and target instances are replacedprathabilistic
instanceqabbrev.p-instancel a source p-instancé a probabil-
ity spaceZ over the source instances, antbgget p-instances a
probability spaceg7 over the target instances.

The first task is, naturally, to definepsobabilistic solution(ab-
brev. p-solutior) for a source p-instance w.r.t. a schema mapping



(S, T,X). Essentially, we define a target p-instangeo be ap-
solutionfor a p-instancel if there exists a probability space over
source-solution pair¢l, J) (i.e., J is a solution forl w.r.t. ),
such that the marginals coincide with the p-instaficen the one
hand, and with the p-instangg on the other. Our definition of a
p-solution is based on the classical concept diariate (joint)

consider the following problems: testing for the existen€eo-
lutions and universal solutions, materializing such sohd, and
evaluating target unions of conjunctive queries. It fokdinom our
results that these problems are not harder than their cgants
in the traditional (deterministic) setting. That holdsotlgh, un-
der the assumption that the source p-instance is represgngs

probability space with given marginals (research of thiscept explicit manner (i.e., by specifying each possible waflalong
goes back to the 1950s [18,36]), but with the additional ireguent with its probability). This is at odds with conventional ptae,
that thesupport(i.e., the set of samples with a nonzero probabil- Which is to associate a measure of confidence (or a prolabilis
ity) is contained in a fixed relation (in this case, the sotsalition event) with each fact. Such a representation (along withesstar
relation). To explore the coherence of this definition, werfolate tistical assumptions) is typically logarithmic-scale quaat. So,
two intuitive properties that every reasonable conceptsiflation following existing representations (e.gll.DBs[2, 43], probabilis-
should satisfy. Each of these properties says that a pisojitop- tic c-tables[24] andprobabilistic treeq44]), we explore a setting
erly reflectsthe uncertainty of the source data. Rather surprisingly, Where the source p-instance is represented compactynbgtat-
we show that each of the two properties is actually a chariaate ing facts withconditions which are formulas over a set of (Boolean
tion of a p-solution. and probabilistically independentandom event variables We

We then proceed to the adaptation of the notion ahéversal consider two types of annotations. InDdNF instancethe anno-
solution Our definition of auniversal p-solutioris similar to that ~ tation is in disjunctive normal form; in &uple-independent in-
of a p-solution(given above), except that we require the existence Stancedifferent facts are probabilistically independent, anelah-
of a probability space over paitd,.J), such that/ is auniversal notation effectively specifies the probability of each faxt done
solution for 7 (and, again, the marginals coincide withand 7). in[6,10,11]). o )
On the surface, this definition does not imply any desiredesgim Our analysis is based afata complexitywhich is common in
property. In traditional data exchange, a universal sofuff is a studying the complexity aspects of data exchange, (e.§=11,
“good” solution in the sense that it generalizes all the otwu- 20]). Thus, we hold fixed a schema mapping and a query (when
tions, since every solution contains a homomorphic image tffe relevant), and the input consists of an annotated (i.e., BNEple-
want a similar property to characterize a universal p-smiutFor independent) source instance. In our analysis, we consfer
that, we need to figure out the meaninggeheralizatiorbetween types of dependencies that were studied in [15]. Thus, vesvall
p-instances. st-tgds(source-to-ta_rget tgdsiitgds(target tgds), andt-egds(tar-

There are various ways of formally modeling the generdtipat 98t €9ds). We consider also the effect on the complexity vihen
relationship between p-instances; we consider three alatef- st-tgds and/or t-tgds are restricted to befly We divide the com-
initions, where each of the three extends the traditionatept putational problems intoategoriesthat correspond to all possible
(existence of a homomorphism) to p-instances. One definiio ~ cOMbinations of dependency and annotation types. We stdrt w
(again) in terms of a bivariate distribution, and the otiveo fre the problems of testing whether a (universal) solutiontexasd of
based on the notion ofsiochastic orde(see, e.g., [45]). We show materializing one tha}t is encoded as a DNF |nstance.. Forasteh
that the three are different from one another (and moreavéhe gory, we show that either the corresponding problem isataetfor
finite case, testing whether they hold belong to differemplex- all schema mappings (in the category) or that there existeensa
ity classes). So, we do not have one robust formalizatiorhef t ~Mapping for which the problem is intractable. \We then coesid
generalization relationship between p-solutioAspriori, each of target-query evaluation and, in particular, show thatyewentriv-
the three relationships could imply a different alternatiefinition ial UCQ is #P-hard in some schema mapping of the most reseict
of a universal p-solution, namely, one that “generalizdsthe p- category (namely, independent facts and full st-tgds). Dudis
solutions. Quite remarkably, the three definitions egeivalent hardness, we study the complexityagiproximateguery evaluation
to the above definition of a universal p-solution. Furthemnas (which, in practice, is often good enough), and give theofeihg
we show next when we consider the concept of answering target Omplete classification. For each category, we prove onéef t
queries, a universal p-solution is also characterized $yseful- following:

ness in answering target conjunctive queries (as in therdetes- e For every schema mapping and for every target UCQ there

tic case [15]). These results indicate that the conceptuniizersal
p-solutionis very robust.

Since a solution in our framework (namely, a p-solution)nis i
herently probabilistic, evaluating target queries amsuaguery-

ing probabilistic databasesIn particular, for a source p-instance

7 and a query;, every p-solution/ gives a (potentially different)
confidence value for each possible answe€onsistently with the

exists an efficient algorithm (randomized or determin)stic
for approximate query evaluation.

e For every nontrivial target UCQ there exists a schema map-
ping in which query evaluation is hard to approximate.

Finally, we show how to generalize the framework and all ef th

approach otertain answerén traditional data exchange, thenfi-
denceof a is defined to be the infimum of the confidence values for
a over all p-solutions. We show that (when a p-solution eXigtis
is the same as the probability theis a certain answer for a random
source instance af. We show that a universal p-solution can be
used for answering unions of conjunctive queries (UCQshaig,
evaluation thereon gives the correct confidence values eMer,
if a p-solution can be used this way in the evaluation of cocijwre
queries, then this p-solution is necessarily universal.

We then proceed to study algorithmic and computationalaspe
of data exchange for finite probabilistic databases. Spadifj we

aforementioned results to accommodate probabilisticreelmaap-
pings (in addition to probabilistic data). The combinatida prob-
abilistic schema mapping with a source p-instance reqhiaesg

a joint probability distribution over sets of dependenaiad source
instances; that is, a probability space on péls/), whereX is a
set of dependencies aiids a source instance. We call such a prob-
ability distribution aprobabilistic problem(p-problem in short).

In general, a p-problem allows for every correlation betwéee
probabilistic mapping and the source p-instance; a spea&# is

"We make the now standard assumptionvefik acyclicity[15].



the product spacevhere the probabilistic schema mapping and the
source p-instance are assumed to be independent.

We show that the framework and all aforementioned resolts-
pletelygeneralize to p-problems, under the proper adaptatioreof th
definitions. In particular, we use the notions gf-golution a uni-
versal p-solutiorand ananswer confidencgor a target queryjor
a p-problenP rather tharfor a source p-instancé&. Moreover, the
results of Section 5 are generalized by annotating the digpeies
specifying the mapping similarly to source facts (i.e.ngsiormu-
las over event variables); event variables can be sharedebet
facts and dependencies, thereby allowing correlationsdsat the
probabilistic source data and mappings to be represented.

To the best of our knowledge, this work is the first to studyadat
exchange over probabilistic databases. In [13, 14, 411Hd&]prob-
lem of data exchange (and specifically data integrationjié&ter-
ministic databases and probabilistic mappings is studigt re-
lationship between that work and this paper is discussecem S
tion 6.2.

The proofs of the results presented in this paper will appear
full version.

2. PRELIMINARIES

2.1 Schemasand | nstances

We assume fixed countably infinite séisnst of constantsand
Var of nulls, such thatConst N Var = . A schemais a finite
sequencR = (R,..., Ri) of distinct relation symbols, where
eachR; has a fixed arity-; > 0. An instancel (overR) is a se-
quence(R!, ..., RE), such that eact®! is a finite relation of arity
r; overConst U Var (i.e., R! is a finite subset ofConst U Var)™).
We call R! the R;-relation of 1. We may abuse this notation and
useR; to denote both the relation symbol and the relatftnthat
interprets it. We usdom(I) to denote the set of all constants and
nulls that appear id. We say thaf is aground instancéf dom([7)
does not contain nulls. We denote byst(R) andInst®(R) the
classes of all instances and ground instances, respgctivelr R.
We useR(t1,...,t,) to denote thaft,,...,t¢.) is a tuple in are-
lation R and call it afact We identify an instance with the set of
its facts.

Let K; andK; be instances over the same schemaofomor-
phismh : K1 — K> is a mapping fromdom (K1) to dom(K3),
such that(1) h(c) = ¢ for all constants: € dom(K1), and (2)for
all factsR(t) of K1, the factR(h(t)) isin K2 (fort = (¢1,...,tr),
the tupleh(t) is (h(t1), ..., h(tr))). By K1 — K2 we denote the
existence of a homomorphism: K; — Ko.

2.2 Schema Mappings

We now describe our formalism of schema mappingwhich
follows that of [15]. Suppose th& = (Si,...,S,) andT =
(T1,...,Tm) are two schemas with no relation symbols in com-
mon. We denote byS, T') the schema that is obtained by concate-
natingS andT. Similarly, if I and J are instances d6 and T,
respectively, therl, J) is the instancd< € Inst((S, T)) that sat-
isfies S = S/ andT;* =T/ for 1 <i < mnandl < j <m;in
other words, since we |dent|fy an instance with the set ofitss,

(I, J) is essentially the union df and.J.

We assume some formalism for expressing constraints over a
given schemaR. If I € Inst(R) andX is a set of formulas in
this formalism, ther? = X denotes thaf satisfies every formula
of 3.

A schema mappings a triple (S, T, X), whereS (the source
schemaandT (thetarget schempare schemas without common
relation symbols, ankl is a set of formulas over the scheri® T).

Each formula oft is called adependencyA source instancés a
ground instancd over S, and atarget instancds an instance/
overT (thatis,I € Inst(S) andJ € Inst(T)). We say that the
target instance is asolution forI (w.rt.X) if (I,J) = X. A so-
lution J for I w.r.t. ¥ is universalif J — J’ for all solutions.J” for

I w.r.t. 3 (in other words, every solution contains a homomorphic
image of.J).

2.3 Probability Spaces

All the probability spaces we consider are countable (finite
countably infinite). We call such spacpsspacesand use the fol-
lowing notation. A p-space is a pait = (2(U),py;), such that
Q(U) is a countable set ang, : Q(U) — [0, 1] is a function that
satisfies) o) P (u) = 1. Each member of QU) is asam-
ple, andQ(2/) is thesample spaceWe say that the p-spaéé is
over Q). The supportof i, denoted,. (), is the set of all
samplesu € Qi) such thatp;;(u) > 0. We say that/ is finite
if its supportQ. (i) is finite. A subsetX C Qi) is called an
event Theprobability of the eventX, denotedr;; (X), is the sum
> wex Pi(w). We may omit the subscript from Pr,;(X) when
it is clear from the context. We ugé (i.e., without the tilde sign)
to denote theandom variablethat represents a samplef An
event is often represented by a logical formula dvefe.g.,o(U)
is the same agu € Q(U) | »(u)}). We often abuse the above
notation and identify/ with its sample spac®(i{) (e.g.,u € U
means that: is a member of2(1)).

3. EXCHANGING PROBABILISTIC DATA

Our goal is to study data exchange in the presence of uncirtai
in the source instance. We use the convention of modeling un-
certain data as arobabilistic databasg10, 11, 24, 33, 43]. The
challenges of this generalization of data exchange agée im the
beginning: What is the meaning ofsmlution for a probabilistic
source instance? The first observation is that such a solsiiould
by itself be probabilistic (because if the source databssmcer-
tain, then so is the target database). Next, we formalizedkien
of a probabilistic database.

Let R be a schema. Arobabilistic databaseor aprobabilistic
mstance(overR) abbrevp-instanceis a p-spac& overlnst(R).

If 7 is a p-space ovenst® (R), thenZ is aground p-instanceNote
that the sample spadest(R) (or Inst“(R))) is countable due to our
assumption tha€onst and Var are countable (and that ordinary
instances are finite).

Let M = (S, T, X) be a schema mapping. ource p-instance
is a ground p-instanc& over S, and atarget p-instances a p-
instance” overT. In other words, a source p-instance and a target
p-instance are p-spaces over the source and target instaespec-
tively.

ExampPLE 3.1. LetM be the schema mappiri§, T, 3), where
S and T are defined as follows. Note that, for convenience, the
columns are named.

S :Researcher(name, university, RArea(researcher, topjc
T : UArea(university, department, topjic

andX contains the single dependency

Vr,u, t(Researcher(r,u) A RArea(r,t)
— 3d UArea(u,d,t)) .

Figure 1 depicts a set of possible facts (e1g,,aeir and ui.) for
each of the three relations. Note thag, 15 and L3 are nulls



Researchefacts

RAreafacts

Source p-instancé

re | ResearchgEmma, ucsD) aeir | RAregEmma, IR) Iy = {re,7j, Geir, ajab} | 0.3
r; | Researchdpohn, UCSD) Gedb | RAregEmma, DB) Iy = {re,7j, Geir, ajai} | 0.3
Qjdb RAI‘edJohn, DB) Is = {Te, Tj, Qedb, ajai} 0.2

Qjai RAI‘edJohn, AI) ne {Te, Tj, Qedb, ajdb} 0.1

Is = {re, deav } 0.1

Target p-instance/, Target p-instance/s

UAreafacts Target p-instance/;

uir | UAreg(ucsp, L1, IR) J1 = {uir,ua} | 0.3
uai | UAregucsb, Lo, Al) Jo = {uir,uai} | 0.3
uqgp | UAregucsp, L3, DB) Js = {udp, uai} | 0.2
J4 = {udb} 0.2

J5 = {uihudb} 0.35 Jg = {uiryudb} 0.3
o= Carvamion) 045 o= () | 03
Jr = {Uiry Uai} 0.2 Jio = {Uir, Uai} 0.4

Figure 1. Sourceand target p-instancesfor the schema mapping M of Example 3.1

(and the rest of the data values are constants). Using tie fhe
figure depicts four finite p-instancés 71, J» and Js, whereZ is

a source p-instance and eaghis a target p-instance. Each sample
of a p-instance is represented by a two-entry row, wheredfie |
entry shows the instance and the right one shows its pratyabil
For example, the probability; (1) of I1 = {re, 7}, deir, Gjab } iS
0.3. Observe that in each &, 71, J> and .7, the probabilities in
the rows sumup taé. [

The challenge is to identify when a target p-instance ctriss
a solution for a source p-instance. In principle, we havenaryi
relationship between deterministic instandeand .J (namely, .J
is a solution forl), and we want to generalize it to p-instandes
and.7. Theprobabilistic matchis a systematic way of extending
a binary relationship between objects into a binary retetidp be-
tween p-spaces thereof. Next, we give the formal definitiba o
probabilistic match. In Section 3.2, we apply it to define ootion
of a solution in the probabilistic setting, which we caf-solution
Then, we show that this definition is semantically coherepton-
sidering two natural and desirable requirements for a natiba
solution and showing that each of these requirements &ctiredr-
acterizes a p-solution.

3.1 Probabilistic Match

Our notion of a probabilistic match between p-spaces isthase
the classical concept of joint (divariate) probability spaces with
specified marginals [18, 36]. Our new twist on this old notisn
that we require the joint distribution to have a support aor@d in
a given binary relation.

DEFINITION 3.2. (Probabilistic Match) Let 2/ and WV be two

p-spaces and leR C Q(U/) x Q(WV) be a binary relation. Arob-
abilistic match of{ in W w.r.t. R (or, for short, anR-match of{ in

W) is a p-spacé® overQ(U) x Q(W) that satisfies the following
two conditions.

1. The support of? is contained inR (i.e.,Pr(P € R) = 1).
2. The marginals oP arel/ andV. This means that:
() X weaom Pa(u,w) = py(u) forallu € U, and
(i) X cam) Pp(ww) = py(w) forallw e W. O

Note that anR-match ofZ/ in W can be viewed as a probability
space overR, whose marginals coincide witl aanV. A special
case of a probabilistic match is tipgoduct spacé/ x W, where
Ris the se2(U/) x (W) and the two coordinates are probabilis-
tically independent (that igy,;, 3, (v, w) = pgz(u) - Py, (w) for
all u € i/ andw € W). Two other special cases, for a relation

R C QU) x (W), are the following.

e An R-matchP is left-trivial if for every u € Q1 (U) there

is exactly onew € Q(W) such thatps (u, w) > 0; equiva-
lently, Prs (u, w) = Pry;(u) whenevePr 5 (u, w) > 0.

e Similarly, P is right-trivial if for every w € Q4 (W) there is

exactly oneu € Q(U/) such thap s (u, w) > 0; equivalently,
Prjs(u, w) = Pry; (w) whenevePr s (u, w) > 0.

EXAMPLE 3.3. Consider the p-instanc&s .7, and.7, of Fig-
ure 1. The two bipartite graphs of Figure 2 depict (finite)qaro
bilistic matches off in 7, (in the graph on the left side of Fig-
ure 2) and in7 (in the graph on the right side of Figure 2). The
relationsR are the ones given by the (solid and dashed) edges that
connect each of the two pairs of p-spaces. The probabiligach
pair (I, J) is written inside a rectangular box on the corresponding
edge, unless this probability is zero and then the edgeissepted

Figure2: SOLn-matchesof Z in 7, and of Z in J» for the source p-instance Z and thetarget p-instances 7; and 7> of Example 3.1



as a dashed line. (Recall that the probability bf.J) is necessarily
zero if no edge connectsandJ.)

Observe that the probabilistic matchDfin 7; on the left side
of Figure 2 is left-trivial, since every node on the left sidenci-
dent to exactly one nonzero edge. Thus, it is immediate tifyver
that Item (i) in Definition 3.2 holds. Note that this match istn
right-trivial (since.Jy is incident to two nonzero edges). Actually,
there cannot be any right-trivial match i;fin J1, simply because
Q4 (J1) contains fewer samples thén (7).

A more complex example of a probabilistic match is the match
of 7 in J» on the right side of Figure 2. Note that this match is
neither left-trivial nor right-trivial. Consider the iretcel, in the
right side of Figure 2. In Item (i) in Definition 3.2, when thele
of u is played byl,, the sum on the left side of Iltem (i), which
is the sum of probabilities of the edges adjacenf.tpis 0.05 +
0.05 = 0.1, which is exactly the probability ofs, which is the
value on the right side of Item (i). Consider now the instarge
in the right side of Figure 2. In Item (ii) in Definition 3.2, wh
the role ofw is played by.Js, the sum on the left side of Item (ii),
which is the sum of probabilities of the edges adjacenidpis
0+40.1+0.2+0.05+0.1 = 0.45, which is exactly the probability
of Js, which is the value on the right side of Item (ii) (]

3.2 p-Solution

We are now ready to define the concept of a p-solution. For
a schema mapping, we denote bySOL ¢ the binary relation
that comprises pair§l, J) € Inst°(S) x Inst(T), such that/ is a
solution forI.

DEFINITION 3.4. (p-Solution) Let M be a schema mapping and
let Z be a source p-instance. gAsolution(for Z w.rt. ¥) is a target
p- instance7, such that there is ®OL »s-match ofZ in 7. [

Note that by &SOL »«-match we mean, of course, d&rmatch
where the role of is played bySOL 4.

ExampPLE 3.5. Consider again the schema mapphigof Ex-
ample 3.1 and the source and target p-instances that aretetbpi
in Figure 1 and described in Example 3.1. Figure 2 shows two
SOL r-matches off: the one on the left side is i1, and the one
on the right side is in7.. For example, there are edges frdm
to Ji, Js3, andJy, sinceJy, Js, and.J, are each solutions faf,
w.r.t. X (the edges fronl, to J; andJ; each have probability 0,
which is allowed). There is no edge from to J», since.Jz is not
a solution forZ, w.r.t. . Thus, both7; and 7, are p-solutions.
Later, we will show that7s is not a p-solution (i.e., there is no
SOLy-match ofZ in J5). O

Defining a p-solution by means ofS0L (-match is a straight-
forward application of the probabilistic-match mechanishext,
we give a semantic justification to this definition. We staittvan
example. Consider the schema mappig= (S, T, X) and the
source and target p-instances of Example 3.1. As shown imExa
ples 3.3 and 3.57; and. 7> are p-solutions. One may claim tha&
should be deemed a p-solution as well (even though we latev sh
that it is not) due to the following statement (that can belgasr-
ified). For each samplé of Z (which has the probability’r (1)
of being the selected instance), there is a probabilitygf(1), or
even higher, that a sample gf is a solution for/. Next, we show
that this property is not enough, and moreover, tiiashouldnot
be a p-solution. _ ~

For an arbitrary target p-instanc® letpqn(7) be the probability

that, in.7, database (DB) research is done in UCSD. The source p-

instanceZ says that there is a probability 6f7 that at least one

researcher of UCSD is in the DB area (as obtained by summing up
the probabilities of all the instances that contai,, aja Or both).
By the schema mapping! we would like a p-solution7 to say
that DB research is done in UCSD with a probability0of, that
is, pan(J) = 0.7. Moreover, sincé& allows DB research at UCSD
even if the source does not contain a DB researcher at UCSD, we
should allowpan(J) to be larger thar.7, in addition to allowing
it to equal0.7. Now, pan(J1 ) is exactly0.7 andpdb(jQ) is0.8, as
desired. However, this is not the case §6y, sincepan(J3) = 0.6.

To generalize the above example, consider a schema mapping
M, a source p-instanceand an evenE of Z (e.g., the event “one
or more researchers are in the DB area in UCSD,” which meats th
aedb OF ajap OF both are in the source instance), We say that a target
instance.J is consistentwith E if .J is a solution for at least one
instancel of £. Then, as illustrated above, the following property
is desired from a p-solutiogr. For all eventsE of Z, the probabil-
ity that 7 is consistent withE is at least the probability of;. An
analogous desired property is the following. For all evenisf 7
(e.g., the event “the DB area in UCSD is honempty”, which nsean
thatugs is in the target instance), the probability that a random in-
stance ofZ has a solution irf” is at least the probability af'. It can
rather easily be shown that existence 8f@L ,.-match guarantees
these two properties. Rather surprisingly, each of the twoper-
ties implies the existence of$0L r(-match; thus, as shown in the
next theorem, each of the two is a characterization of a ptisol.

THEOREM 3.6. Let M = (S, T, X) be a schema mapping. Let
7 be a source p-instance and Igt be a target p-instance. The
following are equivalent.

1. J is a p-solution (that is, 0L ,-match ofZ in 7 exists).

2. Forall E C Inst(S),
Pr; ( \V (L, E 2) > Pr;(E).

3. Forall F C Inst(T),

Prf (

Note that, following the above discussion abgft the fact that
Part 2 of Theorem 3.6 is necessary for being a p-solution show
that 75 is not a p-solution fofZ (by using the event’ saying that
there is a DB researcher in UCSD). Theorem 3.6 is proved @a th
following characterization of the existence of a probatiiti match
in the spirit of Hall's Marriage Theorem [25].

\V (@0 E 2) > Pr;(F).

JeF

LEMMA 3.7. Letid andWV be two p-spaces and I& C Q(U/) x
Q(W) be a binary relation. There exists aR-match ofi{ in
W if and only if for all eventsU of ¢/ it holds thatPr; (U)
Pry, (\/ueU R(u,W)).

The proof for finite p-spaces is by an application of thex-
flow min-cuttheorem. For countably infinite graphs, the max-flow
min-cut property does not necessarily hold. Neverthelesxsnt
results [3] show that, under some restrictions, this prigpleolds
for countably infinite graphs, and these restrictions arebyehe
graphs that are relevant to us. Hence, our proof for finitpgess
extends to (countably) infinite p-spaces. We also have atgireof
that is based only on the finite variant of max-flow min-cut.

<



4. UNIVERSAL P-SOLUTIONSAND QUERY The HOM-match extends the notion of homomorphism to p-
ANSWERING instances in the systematic way of applying the probalilisatch.
There are, though, other natural ways of generalizing thtgon.
Next, we consider two such ways, which are based on the ctdssi
notion of astochastic orderWe then explore their relationships to

In this section, we generalize the concepts afnéversal solu-
tion, and that of answering target queries, to the probabilisite

ting. the existence of HOM~r-match. First, we need some definitions.
; _ ; A stochastic order is traditionally an order over numeriwi@m
4.1 Universal p SOIUtlonS_ o ) variables (cf. [45]). Here, we extend this notion from numst
Recall that the notion of a probabilistic match providesstey- general preordered elements, in a straightforward manfer-
atic way of extending any binary relationship between (ufaieis- mally, let O be a countable set and let be a preorder ove®
tic) objects to a relationship between probability spabeseof. In (i.e.,< is a reflexive and transitive binary relatienover O). The

the case of universal solutions, this is applied as folldBansidera — stochastic extensioof < is the preorder’ over the set of all the p-
schema mapping1. Denote byUSOL 1 the relationship between — gpaces oved, where for all p-spaced and ), the interpretation
pairs and.J of source and target instances, respectively, such that o ;7 </ 1} jg

USOL (I, J) holds if and only if.J is a universal solution fof.
Then auniversal p-solutionis defined as follows. Yoe O (Pr(d 20) >Pr(W =0)) .

Let T be a schema. It is well known that the existence-of-
a-homomorphism relationship can be viewed as a preorder ove
Inst(T) (see, e.g., [26]), and there are basically two ways to define
this preorder. In the first, we use the preordes, whereJ =, J’
is interpreted ag — J’, namely, ‘J is at most aspecificasJ’.”

The second preorde,., has the complement interpretations *
is at most ageneralas J',” that is, J =<, J' meansJ’ — J.
Having the two preorders., and=,. over instances, we automat-
ically obtain two preorders over p-instances, namely, thetgstic
extensions, which we denote By and Z&, respectivel)?. Thus,
Ji 22 L if Pr(Jh — J) > Pr(J2 — J) for all instances/
overT, and 7> 2= 7, if Pr(J — J) > Pr(J — J) for
all instances/ over T. For uniformity of presentation, we write
Ji 2= T, instead of 7, 2& 7.

We now have three ways of extending the relationship— J
(existence of a homomorphism) from instancasand J> to p-
instances/; and J». The firstis7; mt 7o, namely, there exists
a HOMr-match of 71 in J>. The second ish == 2= j2, namely,
j1 is at most as specific a@ The third isJ1 Z&% J2, namely,

. - J1 is at least as general @. Observe that the three are indeed
PROPOSITION 4.3. Let M be a schema mapping and Bbe a extensions of—, in the following sense. If7; and 7. are deter-

source p-instance. A p-solution exists if and only if a Sotuéxists ministic instances/; and.J; (i.e., the probability otJ; in Fiis1
forall I € Q4(Z). Similarly, a universal p-solution exists if and fori = 1,2), then each of/; ™t Jo, J1 2% Jo andJy 2% Ja is’

DEFINITION 4.1. (Universal p-Solution) Let M be a schema
mapping. LetZ andj be source and target p-instances, respec-
tively. We say that7 is a universal p-solution(for Z w.rt. X) if
there is dJSOL \-match ofZ in 7. [

EXAMPLE 4.2. TheSOL-match ofZ in 7y (where M, T
and 7 are described in Example 3.1) on the left side of Figure 2
is actually aUSOL r(-match, since an edge frofy, to J, has a
nonzero probability only if/,, is a universal solution fof,,,. Thus,

J1 is a universal p-solution faf. The SOL-match ofZ in Js
on the right side of Figure 2 is not @SOL »(-match since, for
example, there is an edge (with probability) betweenl> andJs,
yet Je is not a universal solution fof.. Later, we will show that
J> is, indeedpot a universal p-solution faf. [

We now give a proposition about the existence of a p-solution
and a universal p-solution. This proposition is straigivfard, and
we record it for later use.

only if a universal solution exists for all € Q. (7). equivalent ta/; — Jo.
5 The following theorem shows thats is a strictly stronger rela-
We note that when a p-solution for a source p-instahesists, tionship than=* and =&; that is, J1 = 7, implies both7; ==
there is a straightforward construction of a p-solutiort ibdeft- Jo and 71 =& J», and there are cases where neither of the op-
trivial. A similar comment holds for universal p-solutions posite implications holds. Moreover, it shows that and == are

In the deterministic case, a universal solution is deemedoalg  incomparable. Finally, the theorem shows that for finitegtances
choice of a solution, since it ismost generabne, where the no- Ji and J, testing7y =% J and testmgjl & J, are not
tion of generality is defined by means of a homomorphism; that even in the same complexity class as testifigmt 7> (assuming

is, J1 generalizes/z if J1 — J>. We would like to have a sim- NP =£ coNP) since the first two tests are DP-Hafyet decidable)
ilar characterization of a universal p-solution. For thae need while the third is NP-complete.

a notion for a relationship between p-instances that cporeds
to that of homomorphism in ordinary data. One such definition  THeorem 4.5. The following hold.
can be obtained by applying the probabilistic match. Tebe a

schema. We denote byOMT the binary relation that includes all 1. For all p-instances/; and Ja, if 71 mt 7> thenJy 22 7
the pairs(Ji, J2) € (Inst(T)) such that/; — J». Consider two andJ1 =% 7.

p-instances/; and.7: overT. We useJ; ™t 7, to denote that

there is sHOM--match of. 7, in 7. 2. There are p-instanceg; and 72, such that7; == 7 and

T 7= NEY similarly, there are p- instanced; and 7., such
that7; =& J» andJ, 7 J». Hence, due to Part 1, neither

REMARK 4.4. The definition of7; m 7, restricted to finite = nor Z% implies m:

p-instances, is similar yet different from that bdmomorphism

giVen in [13] Where, in our terminology, Only right-triViHOMT- 2The choice of the notatlom and =& =ge (rather than e. g_x_sp and
matches are allowed (in particular, there is no homomonpfiiem <L) is for clarity of presentation.
J1to J2 inthe sense of [13] if the cardinality 61 (J1) is strictly 3Recall that DP is the class of problems that can be formed as a

larger than that of2, (72)). O difference of two problems in NP [37].



mat
—

3. Testing: J», given two finite p-instance$; and 7,

is in NP*

4. Testing each of7; =% 7, and J> =% Ji, given finite p-
instances: and 7, is in EXPTIME and NEXPTIME, re-
spectively, and there is a schefleover which both tests are
DP-hard.

We can now give three additional definitions of a universal p-

solution as a most general p-solution, where generalitgderaling

to each of the three relationships:, = and z&. Theorem 4.5
shows that the three relationships between p-instancemliaee-
ently different; hence, we might expect to gkfferentdefinitions

of a universal p-solution. Surprisingly, it turns out thdlttaree
definitions are equivalent to existence di&OL r(-match! This is
shown in the following theorem. This theorem also shows fieat

a solution7, eitherall SOL »(-matches ar&/SOL r(-matches (and
thenJ is universal) omoneof them is aUSOL r4-match.

THEOREM 4.6. Let M be a schema mapping. LEbe a source
p-instance and lef” be a p-solution. The following are equivalent.

1. j is a universal p-solution (i.e., there iS5 OL 1-match of
ZinJ).

2. J == J’ for all p-solutions.7".

3. J 2= J' for all p-solutions7".

4. 7 z= 7’ for all p-solutions.7”.

5. EverySOL ¢-match ofZ in 7 is a USOL -match.

In Section 4.2.1, we give a query-based characterizatioa of
universal p-solution (Proposition 4.9). Taken togethethwiheo-
rem 4.6, these results show that the notion of a universalygisn
is remarkably robust.

4.2 Query Answering

We now generalize the concept of answering target queries in
data exchange. A-ary queryover a schem®& is function( that
maps every instancé € Inst(R) to a setQ(J) C dom(J)*, such
that @ is invariant under isomorphism of instances. Note that for
k = 0, the resultQ(J) is either{()} (denotedtrue) or { (de-
notedfalse). Such a query is calleBoolean.A conjunctive query
(abbrev.CQ) and aunion of conjunctive queriggbbrevUCQ) are
special cases of queries. For completeness, we next foraefihe
a CQ and a UCQ.

A CQ has the formdy(x, y, c), wherex andy are tuples of
variables,c is a tuple of constants (frofionst) andp(x,y, c) is
a conjunction of atomic formulas over the scheRa We make
the safety requirement that all the variablesahust participate in
QD(X, Y, C). A UCQ has the fornﬂy(@l (X, Yy, C)\/ Vg (X, Y, C)),
whereJdy (pi(x,y,c)) isa CQ for alll < ¢ < k. Given an in-
stanceK overR, the set)(K) of answers comprises all the pos-
sible assignments fot that result in a clause that is true ov&t

We follow the conventional notion [9-11] of querying proba-
bilistic databases. Thus, for a quegyand a p-instanck (where
both @ and K are over a schemR), every tuplea € (Const U
Var)® has aconfidencevalue, which is the probabilitfr(a €
Q(K)). In practice, the tuplea often come from some finiteset
of possible answers, which can be given to the user (alorytiht

“Recall that there are fixed schemas over which tesfing=: .7
is NP-hard even iff; and 7> are deterministic [8].
5This is the case whek is a finite p-space.

confidence values); alternatively, the user may requestswers
with the top probabilities [38].

Let (S, T, X) be a schema mapping and @tbe ak-ary query
overT. In the deterministic casenswering@ means that, given a
(deterministic) source instande we produce theertain answers
namely, the tuplea € Const” that belong ta(J) for all solutions
J for I. We denote this set byertain(Q, I, ). Next, we general-
ize the concept of certain answers to the case of probabiistirce
instances. LeT be a source p-instance. Givapeach p-solutio/
gives a (possibly different) probabiliyr(a € Q(7)). Consistent
with the deterministic case, we would like to charactetizgith a
property that is guaranteed in every p-solution. Therefaesde-
fine theconfidencef a, denotedconf , (a), as follows. If there are
no solutions, themonf 5(a) = 1. Otherwise, it is the infimum of
the confidences (probabilities) afover all the p-solutions, namely,

Pr(aeQ(J)) .

inf

conf ¢ (a) oo f
p-solutions7

If Q is Boolean, we writezonf , instead ofconf ; (())-

The following proposition shows that the confidence of an an-
swera is the same as the probability thais certain in a random
source instance (given that a p-solution exists). This lggua
interesting, because the two numbers describe apparefidyedt
quantities: one is the infimum, over all p-solutions, of thebabil-
ity of an event defined over the p-solutions (specificallg, pinob-
ability of havinga as an answer), whereas the other is the proba-
bility of an event defined over the source p-instance (spediyi
the probability of havinga in the certain answers). In particular,
this proposition shows the robustness of our generalizaifche
notion of target-query answering.

PROPOSITION 4.7. Let (S, T, X)) be a schema mapping, 1§t
be a query ovefT', and letZ be a source p-instance, such that a
p-solution exists. For all tuplea of constants,

conf o(a) = Prz(a € certain(Q,Z, %)) .

As a part of the proof of Proposition 4.7, we construct a p-
solution 7, such thatPr(a € Q(J)) is equal to the probability
on the right-hand side of the equality. Thus, the infimum andkf-
inition of confidence is always realized by some p-solutioence,
it can be replaced witminimun).

EXAMPLE 4.8. Consider again the schema mappihg and
the p-instanceg, 71 and 7> of Example 3.1. Recall from Exam-
ple 3.5 that both7, and.7- are p-solutions. Lef) be the following
target CQ, which extracts all the universities where botlaié Al
research is conducted.

Q(u):=3dy, d2 (UArea(u, d1,1R) A UArea(u, d2, Al))

For 71, there is only one possible answer, whictais= (ucsp).
SincePr(a € Q(J1)) = 0.3, we get thatonf 5 (a) < 0.3. Hence,
the value of the left-hand side of the equality in Propogidor is at
most0.3. What about the right-hand side, which is the probability
thata is a certain answer? Sineeis a certain answer only fak,
and I> has the probability.3, the right-hand side of the equality
in Proposition 4.7 i$).3. Hence, by Proposition 4.Zpnf 5(a) is
0.3, and so is realized by ; that is, 7, is a p-solution such that
Pr(a € Q(J)) is minimal. In contrast, fot/> we havePr(a €
Q(J2)) = 0.65, which is strictly larger thamonf 5 (a). O

_Eavrlier, in Example 4.2, we noted that tOL ».-match ofZ in
J= on the right side of Figure 2 is not@SOL »-match. Thus,
by Part 5 of Theorem 4.7 is not a universal p-solution foZ.



Moreover, recall from Example 4.8 thRi(a € Q(J2)) is strictly
larger thanconf ;5 (a). The following section shows how this latter

fact gives another proof thaf, is not universal.

4.2.1 UCQs over Universal p-Solutions

In the deterministic case, a universal solution can be used f
answering target UCQs in the sense that the result of agptyia
query to the universal solution (and then restricting to tifges
of constants) is the set of all certain answers [15]. Moreoae
solution that has this property for every CQ is necessarilyear-
sal [15]. The following proposition shows that, althougke tton-
cepts of deterministic and probabilistic query answerirgiaher-
ently different, this property of universal solutions gealizes to
universal p-solutions. That is, the confidence of an answerf
UCQ is obtained by querying a universal p-solution (when &xe
ists), and a p-solution that has this property for every (Baw)
CQ is necessarily universal. The second part is proved Imgubke
third characterization of Theorem 4.6.

PROPOSITION 4.9. Let(S, T, X) be a schema mapping and let
7 be a source p-instance. The following hold.

1. If 7 is a universal p-solution and is a UCQ overT, then
conf o(a) = Pr(a € Q(J)) for all tuplesa of constants.

2. If 7 is a p-solution such thatonf 5 = Pr(Q(J)) holds for
all Boolean CQgY, then.J is a universal p-solution.

In the next section, we study computational aspects of proba

bilistic data exchange. In particular, we consider the gasfiktest-

ing whether a (universal) p-solution exists, materiatizime (when

it exists), and evaluating target UCQs. By Proposition 4 3%-
solution exists if and only if there is a solution fom.r.t. 3 for all

I € Q4 (7). By the discussion that follows Proposition 4.3, if a
p-solution exists, then we can materialize one, using Ewistfor

the instances o2 (Z), by a straightforward construction. A sim-
ilar comment applies to universal (p-) solutions. Proposi#.7
implies that we can computeonf,(a) by determining whether

a € certain(Q, I, X) for eachl € Q4(Z), and taking the sum of
the probabilities of the instancdégor which the answer is “yes.”

Consequently, in the case of finite p-instances, these taske
probabilistic setting are not harder than their traditioc@unter-
parts. Nevertheless, this analysis is based on the asamtptt
source p-instances are represented in an explicit maneer iy
specifying each possible instance along with its probighiliThis
is not a practical assumption, as evidenced by existing faarfe
probabilistic databases (e.g., [2, 6, 10, 11, 43]) that liseanploy
a (typically logarithmic-scale) compact encoding of thesgible
worlds. So, the next section studies the above computafpoob-
lems under some typical compact representations of pridtabi
databases.

5. COMPACT REPRESENTATION

In this section, we explore complexity aspects of data exgba
in a concrete setting where dependencies are in the fortgdsf
andegds[5, 15] (the formal definitions are in Section 5.2), and p-
instances are represented compactly by annotating fatigvab-
abilistic conditions[19, 23, 24] rather than explicitly specifying the
whole probability space.

5.1 Annotated | nstances

We consider p-instances that are represented by me&uwotdan
pc-tableg24] (which are the probabilistic version oftables[27])

Ia

p

Fact f
re | ResearchgEmma, UCSD)
r; | Researchguohn, ucsD)

Conditiona( f)
true

e1 VeaVesVey

Qeir RAredEmma, IR) e1V ey

Uedb RAredEmma, DB) —e; A e

Qjdb RAI‘edJohn, DB) e1V (ﬁEz N —e3 A 64)
Qjai RAredJohn, Al) (—e1 Ae2) V (—e1 Aes)

EVar(a) = {e1,e2,e3,e4}

p: EVar(a) — [0, 1]
ple1) =3/10, ple2) =3/7, ples) = plea) =1/2

Figure3: A DNF instance I

where the condition assigned to each fact is a logical foanoukr
event variables-probabilistically independent Boolean (Bernoulli)
random variables. In pc-tables conditions can be phrasedbés
trary propositional-logic formulas, which renders the miasic
operations as intractable, since, for one, it is NP-corepéten
to decide whether a given fact occurs with a nonzero proitabil
Thus, our focus is on two restricted representations thagspond
to (or subsume) various representations in the literatarghe first,
conditions are in disjunctive normal form (DNF), and in tkesnd,
the facts are probabilistically independent. Next, we ghe for-
mal definitions.

We assume an infinite s€Var of event variablesLet R be a
schema. ADNF instance(over R) comprises an instanceover
R, a functiona that maps every fact of I to a DNF formulaa( f)
over EVar, and a functiorp : EVar(a) — [0, 1] whereEVar(«)
is the set of all the event variables that appear in the imége o
The DNF instance given by, o andp is denoted byl/;’. A DNF
instancel/,’ naturally encodes a p-instance, which we denote by
p-space(I,), where a samplé’ is obtained as follows. First, a
random truth assignmemt: EVar(a) — {true, false} is chosen
for the event variables df; this assignment is obtained by indepen-
dently picking a random Boolean valuée), with probabilityp(e)
for true, for each membee of EVar(«). Second, all the factg
such that- satisfies the formula( f) are selected as membersiof
(alternatively,I” is obtained froml by removing all the factg such
thata(f) is violated). Thusp-space(I},) is the finite p-instancg
such that2, (Z) comprises instances with facts fralnand for all
I' C I the probabilityp;(I") is that of obtainingl’ in the above
process (namely, the sum of the probabilities of all thegamsents

Ig

Factf a(f)  pla(f))
re | ResearchgEmma, UCSD) | ej 1.0
rj | Researchepohn, ucsDb) el 0.9
eir RAredEmma, IR) €5 0.6
edb RAredeEmma, DB) €4 0.4
Qb RAredJohn, DB) eh 0.4
Qjai RAredJohn, Al) es 0.5

Figure4: A tuple-independent instance I



that satisfy every formula of’ and none of \ I’). for us to syntactically view these instances as speciabaafseNF

instances.
EXAMPLE 5.1. Figure 3 depiCtS a DNF instant‘,lé. The table Consider a schema mappm[gl — (S7 T, 2) A source DNF
on the top of the figure has a row for each fact, and the rightool  instanceis a DNF instancd s’ over S, such that/ is a ground in-
contains the condition of the corresponding fact. As shawthe stance, and #arget DNF instancds a DNF instance// over T
middle part of the figuret-Var(«) contains the four event variables (7 is not necessarily ground). Special cases are source and tar
e1,...,es. Finally, the functiorp is specified in the bottom. get tuple-independent instances. Clearlyiffand.J? are source

Note that the facts of are those that are depicted in the up-
per row of Figure 1, that is, the facts of the p-instarice The
reader can verify thaty encode$exactlythe p-instancd’; that is,

7 = p-space(I2) (which means thal andp-space(I2) havethe 5.2 Tuple/Equality-Generating Dependencies
same support, and the same probability for each instandeein t We consider two specific types of dependencies that weréestud
support). As an example, let us compute the probability efiti in past research on data exchange (e.g., [15, 16]); eacindepey
stancels = {re, aesn} (from Figure 1). In general, an instance s a tuple-generating dependengigd) or an equality-generating

and target DNF instances, themspace(I5') andp-space(J5 ) are
source and target p-instances, respectively.

by only the assignment that maps all four variableslse, be- mapping. Asource-to-target tgdst-tgd) is a formula of the form
causer; ¢ Is. Letr be that assignment. Observe thaindeed
producesls since it violates the condition of every fact other than Vx (ps(x) — Jyyr(x,y))

re and aedb.7The£efor1e, thle prot;;ability of; is the probability of atarget tgd(t-tgd) is one of the form

T, namely,75 X = X 5 X 3 = 555 = 0.1. As another example,

the reader can verify that the assignmentthat mape; to true Vx (o1 (x) — Iyvr(x,y)) ,

are exactly those that result in the instatdce= {re, r, aeir, ajas }; )

therefore, the probability of; is p(e1) = 0.3. [ and atarget egd(t-egd has the form

Vx (pr(x) — (21 = 22)) -
In [24] it is shown that every finite p-instance can be repre- ) ) ) )

sented by means of Boolean pc-tables (i.e., Boolean pegabk In the above formulasps(x) is a conju_nctlon c_>f ato_mlc formulgs

“complete”). In particular, every finite p-instancis equal to overS, and each opr(x) andy-r (x, y) is a conjunction of atomic

p-space(I2) for some DNF instancd?, since every formula in formulas overT. Moreover, aII. the vanaples of appear in both

propositional logic can be transformed into DNF. Note thast  #s(x) andgr(x), andx contains the variables, andzz. Asa

translation may entail an exponential blowup. But, one diin e  SPecial caséull st-tgds andull t-tgds are ones that do not contain

ciently translate into DNF instances other representatii&a block- existentially quantified variables (i.,is empty).

independent disjoirdatabases [38—40] apdobabilistic rdb’s[31]. 5.3 Complexity Results

A special case of a DNF instance is one where tuples are proba- . ) )

bilistically independent. Formally, mple-independerinstance is We usedata complexityfor analyzing the computational prob-

a DNF instancé, such that for all factg € I, the condition( f) lems that we address. In particular, we assume that the schem

is adistinctatomic event variabley (i.e.,e; # e, for f # g);in mapping M = (S7T;12) is fixed, and the input consists of the

particular, the facts of¢ are probabilistically independent. We re- ~ Source DNF instancé'. If a query@ is involved, then it is fixed

quire a tuple-independent instankto be such that the functign as well. For all variables < EVar(«), the numbep(e) is a ratio-

is strictly positive (i.e.p(e) > 0 for all e € EVar(a)). This is not nal number represented by a pair of integers (the numeratbife

a restriction, since a fact with zero-probability event samply be denominator). Finally, we consider only schema mappingeresh

removed. the se of dependencies is the union of finite sBtsandX», such
thatX:; contains only st-tgds and t-egds, anglis aweakly acyclic

EXAMPLE 5.2. Figure 4 depicts a tuple-independent instance Set of t-tgds (see [15] for the formal definition of weak aayjity).

IS, Each row shows a fagt, the unique variable; = «(f) and The complexity results are shown in Table 1. We study five
the probabilityp(e}). The facts of Figure 4 are the same as those of computational problems, and give their complexity for eafthe
Figure 1 (and those of Figure 3, which is discussed in Exaile two types of source p-instances: the top five rows of Tablernt co
Let Z be as in Figure 1. The probability of each fatin I¢' is sider source DNF instances, and the bottom five rows are toceo

the marginal probability off in Z (i.e., p(a(f)) is the sum of the tuple-independent instances. Each row is associated stk ific _
probabilities of the instancel € Q+(l~') with f € I). However, problem. Each column corresponds to a class of schema nzgppin

unlike Figure 3, the instandg of Figure 4 doemot encodel (that For example, _the column entitedul st-tgd;, t-egdsconsiders
. ~ ) . schema mapping&S, T, X) such that: contains only full st-tgds
is, p-space(l,) # I). Moreover, no tuple-independent instance

- - and t-egds. An upper bound (e.g., “PTIME” or “FP") refers tb a
encoded, simply because the facts bfare notindependent. Asan  schema mappings in the corresponding column, whereas a lowe
example, the facts.i: anda.qp are mutually exclusive i (hence, bound (e.g., “no FPRAS if B¢ RP” or “¢ FP if NP RP”) means
they are not independent) [] that thereexistsa schema mapping, in the corresponding column,
for which the result holds. By “coNP-complete” we mean thmet t
problem is in coNP for all schema mappings in the correspond-
ing column, and there is a schema mapping, in the correspgndi
column, where the problem is coNP-hard. The meaning®*" -
complete” is similar (we later give the definition BP#T). Next,
we explain the problems we study and the complexity results.
Existence of p-solutions. The first problem is that of deciding

®The translation off into 72 follows standard techniques of en-  whether a p-solution exists. This problem is the same asliegi
coding finite p-spaces by annotations (see, e.g., [24, 44]). whether auniversalp-solution exists, as it follows from [15] and

In terms of representations of probabilistic data in therditure,
tuple-independent instances are sefs-8ftableq24], and they are
the same as theiple-independent probabilistic structures [11]
(calledprobabilistic databasem [12]). We could avoid using event
variables in tuple-independent instances, and just writeraber
next to each fact (as done in [11, 12]). However, it is coneeni




I st-tgds, t-egds, g 3 st-tgds, full st-tgds, full st-tgds, full st-tgds, . .
p Problem w.a. t-tgds st-tgds, t-egds w.a. t-tgds t-egds, full t-tgds full t-tgds t-egds stgds full st-tgds
Existence of a coNP- coNP- - . L -
(U.) p-Solution complete complete trivial coNP-complete trivial PTIME trivial trivial
Materializing a ¢ FPif ¢ FPif N
. p-Solution P4 NP P4 NP FP ¢ FPifP# NP FP FP FP FP
Z | Materializing a ¢ FPif ¢ FPif ¢ FPif - ¢ FP if
™ | U. p-Solution P # NP P # NP pANp | EFPIPZNP 5 \p FP FP FP
Target UCQ: FP#P—complete
Exact
Target UCQ: no FPRAS if no FPRAS if no FPRAS if no FPRAS if no FPRAS if
Approx. RP #£ NP RP #£ NP RP £ NP RP # NP RP # NP FPRAS FPRAS FPRAS
Existence of a - . . .
. (U.) p-Solution PTIME PTIME trivial PTIME trivial PTIME trivial trivial
€ | Materializing a EP
P p-Solution
2 Materializing a ¢ FPif ¢ FPif ¢ FP if ¢ FPif ¢ FPif Ep Ep Ep
'g U. p-Solution RP # NP RP # NP RP £ NP RP # NP RP # NP
3 Target UCQ: #P_
3 Exact FP#" -complete
Target UCQ: no FPRAS if no FPRAS if no FPRAS if no FPRAS if no FPRAS if
Approx. RP # NP RP # NP RP # NP RP#£ NP RP # NP FPAS FPAS FPAS

Table 1: Complexity of testing for the existence of a (universal) p-solution, materializing a candidate (univer sal) p-solution as a DNF

instance, and (exact and approximate) evaluation of target UCQs

Proposition 4.3 that (for the class of schema mappings waystu
a p-solution exists if and only if a universal one exists. sTjmiob-
lem corresponds to the rows of Table 1 entitldgkistence of a
(U.) p-Solution’ By “trivial” we mean that a p-solution always ex-
ists. These are the cases whérés the union of a set of st-tgds
and a weakly acyclic set of t-tgds (adtlhas no t-egds). Observe
that for tuple-independent instances, existence of ptisolsiis al-
ways tractable or trivial. For DNF instances, however, tbstriv-
ial cases are coNP-complete, except for the tractable chsgel
contains full st-tgds and t-egds.

24, 27] for showing closure of annotated databases uncatiaeal
algebra’ The lower bounds are proved using the inapproximability
of determining the number of assignments satisfying a nomneot
2-CNF formula (see, e.g., [49]), and the Monte-Carlo aldponi

of [29] as a reduction technique.

Answeringtarget UCQs. The fourth problem is that of evaluat-
ing unions of conjunctive queries, and it corresponds tadhes of
Table 1 entitled Target UCQ: Exact Formally, for a schema map-
ping (S, T, ) and a UCQQ overT, the problem is the following.
Given a source DNF instandg’ and a tuplea of constants, com-

Materialization. The second problem corresponds to the rows puteconf ,(a). As shown in the table, in every studied case (even

entitled "Materializing a p-Solutiofi and is that of materializing
acandidate p-solutionnamely, a target p-instancg that forms a
p-solutionif one exists We restrict to generation of candidate p-
solutions.7 that are represented as DNF instandgs(i.e., 7 =

when there are only full st-tgds and source instances afe-tup
independent) there is a schema mapping such that this pnable

FP#F-complete. Recall thafP#T is the class of functions that

are efficiently computable using an oracle to some functic#H°

p-space(JZ)). The third problem is the universal version of the ~Note that a functiorF” is FP#"-hard if there is a polynomial-time

second, namely, generation of@ndidate universal p-solutigand
it corresponds to the rows entitleMaterializing a U. p-Solutiori
For these problems, the table contains three types of sedti#t’
not in FP unless P NP, and not in FP unless RP NP8

Turing reduction(or Cook reductiohfrom every function irffP#¥

to F. Actually, we can show even more: in the most restricted case
(source tuple-independent instances and only full st}{dds ev-

ery nontrivial target UCQQ there exists a schema mapping such

Table 1 shows that, for source DNF instances, we can some-that evaluating is FP#"-hard, where @rivial UCQ is a Boolean

times efficiently materialize a candidate universal p-gofu(e.g.,

UCQ that is equivalent tarue. To show this lower bound, we

when has only st-tgds) whereas in other cases we cannot effi- use hardness results of [11, 12]; membershipi*" is shown by

ciently materialize even a (not necessarily universaldadate p-
solution. If source instances are tuple-independent, thateri-
alizing a candidate p-solution is always tractable. Howef@r
materializing candidate universal p-solutions, the ictihle cases
for source DNF instances remain intractable for tuple-eaelent
instances. The positive results are obtained by combihieghase
algorithm [5, 15, 35] with the known concept of maintainirandi-
tions (or provenance) in relational operators, which idugg?23,

"FP is the class of polynomial-time computable functions.

8RP comprises the sets that are efficiently recognizable fana r
domized algorithm with a bounded one-sided error (i.e.ati®ver
may mistakenly be “no”). NP=RP is equivalent to NBPP [32]
(where BPP comprises the sets that are efficiently recolgleizey a
randomized algorithm with a bounded two-sided error) anglies
that BPP contains the whole polynomial hierarchy [48].

adapting some of the techniques given in [21].

Given this intractability, the best that one can hope for nvhe
looking for tractable classes of schema mappings (in tefrzsget-
query evaluation) is an evaluation in approximatemanner; in
practice, such an evaluation is often good enough. So, ttie fif
problem is that of approximately evaluating target UCQ€! iaiis
considered in the rows of Table 1 entitle@iafget UCQ: ApproX.
Formally, let(S, T, ) be a schema mapping, and {gtbe a UCQ
overT. A fully polynomial randomized approximation schefale-

9A similar construction is used in [22] for the task of proptigg
trust conditionghrough data exchange between peers in a network.
104p [47] is the class of functions that count the number of pitog
paths of the input of an NP machine.

HyUsing an oracle to a #P-hard (8P#"-hard) function, one can
efficiently solve every problem in the polynomial hierar¢4g].



brev.FPRAS for Q is a randomized algorithm that gets as input
a DNF instancel,; over S, a tuplea, and a numbet > 0, and
returns a (random) valug(Z;’, a) such that

)

Wil

p a
< < >
PrA(l . A(ly,a) < (1 +6)p>

wherep = conf ;(a)."* Moreover,A is required to run in polyno-
mial time in the size of ; and in1/e. An even stronger notion is
that of FPAS where the approximation algorithm is deterministic
(i.e., the reliability factoR/3 is replaced withl).

Up until now, we considered schema mappings that are specifie
by triples(S, T, X) whereX € Depgr. Here, as a starting point,
we are interested in replacing the fix&dwith a p-space® over
Depsr. Thus, both the source instanfeand the schema map-
ping (S, T, X) are probabilistic. However, separating the prob-
abilistic schema mapping from the source p-instance nitatsss
the assumption of probabilistic independence (or somer cibe-
cific correlation) between the two. In practice, such an aggion
is often a limitation. Therefore, in this section We notuse these
two notions; instead, we use a generalized definition thbased

Table 1 shows that for source DNF instances, there is an FPRASON the notion of grobabilistic problem(abbrev.p-problen). The

for a UCQ whenX contains only st-tgds, or full st-tgds with t-

egds. For suclt, there is even an FPAS if source instances are

tuple-independent. To prove these results, we use teokmifpr
approximating the number of satisfying assignments for & BoY-
mula [29, 34] (as done in, e.g., [12, 30]). For the rest of thelisd
cases, there is always a schema mappiremd a UCQQ such that
no FPRAS exists unless RP NP. Actually, this holds even if we
fix the approximation ratie (that is, the running time of the algo-
rithm is no longer required to depend polynomially bfe). More-
over, this holds foall nontrivial UCQs(Q, except for the cell of the
column entitled $t-tgds, t-egdsin the bottom row of the table (in
the “tuple-independent” part), where this result holdsaibtJCQs
Q except fomear-trivial ones. A UCQQ over a schemd is near-
trivial if itis a statement about non-emptiness of the relationgsgemo
precisely, it is a Boolean UCQ such tl@{.J:) = Q(J2) whenever
Ji andJ, are instances such th&t’* = § if and only if R'2 = ()
for all relation symbolsk of T. Note that this notion is weaker than
UCQ triviality; this weakening is necessary, since it carshewn
that over tuple-independent source instances, there i$AS for
every near-trivial UCQ ifS contains only st-tgds and t-egds.
General comments. Table 1 shows that the studied problems
are often hard. On the positive side, observe that for tHemigst
three columns, all the problems (except for exact query arisg)
are tractable. Not all the possible combinations of (fultjggls,
(full) t-tgds and t-egds are mentioned in Table 1. Howeeis t
table actuallycoversall possible combinations, in the following
sense. Each missing combination lies between two combimati
that have the same complexity results in the table. For el@amp
the combination $t-tgds, full t-tgd% (which is not in the table) is
between full st-tgds, full t-tgd$and “st-tgds, w.a. t-tgdsand the
complexity results for these two combinations are exabiysame;
hence, these results also hold for the missistgtjds, full t-tgds

6. PROBABILISTIC MAPPINGS

In this section, we generalize the framework and resulthef t
previous sections to accommodate uncertainty in the scineapa
ping. More formally, in this generalization not only is theusce
data probabilistic, but the set of dependencies specifyiagchema
mapping is probabilistic as well. Moreover, we will alloweth
source p-instance and the probabilistic mapping to berarbit
correlated. Next, we give the basic definitions. Later, wseas
the generalization of the results of the previous sectioniBis new
setting.

Let S and T be two schemas with no relation symbols in com-
mon. We assume that there is a fixed countably infinit®set,
of formulas over(S, T), such that every set of dependencies
specifying a schema mapping is a finite subsebepg.. We de-
note byDepg - the (countable) set of all finite subseiof Depg..

2Note that the choice of the reliability factay'3 is arbitrary, since
one can improve it tgl — ) by taking the median 0D (log 9)
trials [28].

formal definition is the following.

DEFINITION 6.1. (p-Problem)Let S and T be schemas with-
out common relation symbols. A-problem(from S to T) is a
p-spaceP overDepgr X Inst*(S). O

Observe that the marginals of a p-problémdefine a unique
probabilistic schema mappin@, T, ) and a unique source p-
instapcef; however, P is not necessarily the product spaceZof
andX.

A p-solution. for a p-problent is defined similarly to the case
of a fixed, except that now the probabilistic match is framto
J (rather than from the source p-instariceo 7). Formally, given
a p-p[oblenﬂ5 from S to T, a target p-ipstangé is ap-solution
(for P) if there is adSOLsr-match of P in 7, wheredSOLst
is the binary relation between paifX, /) and instances/, such
that/ € Inst(S), J € Inst(T), ¥ € Depgr, and({I,J) = X.
(The letterd in dSOLsT denotes that dependencies are involved in
the relation.) Similarlyjjs auniversal p-solutior{for P) if there
is adUSOLsT-match of P in 7, wheredUSOLgr is the relation
between pairg3, I') and instances/ such thatJ is a universal
solution forI w.r.t. X.

6.1 Generalization of the Results

We now discuss the generalization of our results to the notio
of a p-problem. Basicallyall the results generalize to p-problems.
For Sections 3 and 4, this generalization is via a rather aréchl
replacement of the p-spa@ewith the p-spacé. Generalizing the
results of Section 5 is a little more involved.

We start with the results of Sections 3 and 4. In Theorem 3.6,
we need to replace every occurrenceZokith P and, in addition,
the eventE of Part 2 is a subset @epgt x Inst®(S) (rather than
Inst°(S)). In Theorem 4.6, we replace the source instahedth a
p-problemP; moreover, the seSOL », andUSOL o are replaced
with dSOLst anddUSOLsT, respectively. In Proposition 4.7 the
probability spac€ is replaced withP; that is,conf o (a) is equal to
the probability that a random p4iE, I') of P is such that is a cer-
tain answer (i.e.a € certain(Q, I,Y)). Finally, Proposition 4.9
generalizes, again, by simply replacifgvith P.

We now show how the results of Section 5 are generalized. For
that, we need to explain how a p-problem is encoded. Recleth
source p-instance is encoded as a DNF instdfjcéVe use a simi-
lar encoding for a probabilistic mapping. That is, everyatatency
o is assigned a DNF formula ov&Var (hamely, a condition) and
each variable is given a probability {0, 1]. Formally, aDNF
schema mappingS, T, X7) comprises source and target schemas
S andT (without common relation symbols), a séte Depgt. of
dependencies, a functionthat assigns to each € 3 a DNF for-
mula~y(o) overEVar, and a function- : EVar(y) — [0, 1] (where,
as usual EVar(v) is the set of all the event variables that appear
in the image ofy). Now, we allow the source DNF instandg
and the DNF schema mappiri§, T, X)) to share events, that is,



EVar(a) andEVar(~) are not necessarily disjoint. In this case, we particular, the mappings of [13, 14, 41] for the by-tuple setits
requirep andr to agree on the common variables (if€g) = r(e) are essentiallynclusion dependencidg].
for all e € EVar(a) N EVar(v)).
A DNF schema mappingS, T, X)) and a source DNF instance
I naturally encode a finite p-problem frdsrto T, where a sample 7. CONCLUSIONS

(X', I') is obtained as follows. First, a random truth assignment  In this paper, we developed a broad and flexible framework for
7 : EVar(y) U EVar(a) — {true, false} is chosen for all the data exchange over probabilistic data. For that, we hadrisider

event variableg of (S, T, ;) andIZ, by independently picking the funqlamental nqtions of traditional data exchgnge, aado}u-
a random Boolean valug(e), such that the probability farrue is tion, unlversal_ solution, and_ target query evaluation, geweralize
r(e) orp(e) (depending on whethere EVar(v) ore € EVar(a)). them {ipproprlately. In partlcular, to accomquatg souncktar-
Second, all the members BfandI having their condition satisfied g€t p-instances we defined the notion gf-golutionin terms of a
by 7 are selected as membersxffandI’, respectively. We denote ~ Probabilistic match (namely, tHeOL r(-match). We explored the
this probability space byp-space(7, ). Observe that, since coherence of our basic definitions by scrutinizing them arw p
and « are allowed to use the same variables, the marginal source Viding several different characterizations for each ofthéVe ex-
p-instance and probabilistic schema mapping are not nedgss plored the application of the framework to a concrete sgtithere

probabilistically independent. Moreover, it is easy towlge.g., by p-instances are compactly encoded by annotations. Finay
using the encoding of finite probabilistic databases givejt i24]) generalized the framework to allow for probabilistic sclaemap-
that every finite p-problem can be represented as a combimati pings, by introducing the-problemas a construct that represents a
a DNF schema mappin@, T, %27 ) and a source DNF instandg. joint probability distribution over the data and mappings.

When analyzing the complexity of the problems considered in ~ The notion of a probabilistic match allows us to systemélica
Section 5, we make the assumption that the DNF schema mappingextend other concepts of data exchange into the probabitiet-
(S, T,x7)isfixed (i.e., as in Section 5, data complexity is actually ting. An example is theore solution[16, 20]; in fact, it turns out
analyzed) and, moreover, that every sam(8eT, ¥') (obtained that this extension of the core has various desired pr@sesihich
by choosing a random truth assignment Efar(v)) is a union of ~ Will be presented in a full version of the paper.
two finite sets, such that the first contains only st-tgds aegis,
and the second is a weakly acyclic set of t-tgds. Thus, asdn Se Acknowledgments
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