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ABSTRACT
The work reported here lays the foundations of data exchangein
the presence of probabilistic data. This requires rethinking the very
basic concepts of traditional data exchange, such as solution, uni-
versal solution, and the certain answers of target queries.We de-
velop a framework for data exchange over probabilistic databases,
and make a case for its coherence and robustness. This framework
applies to arbitrary schema mappings, and finite or countably in-
finite probability spaces on the source and target instances. After
establishing this framework and formulating the key concepts, we
study the application of the framework to a concrete and practi-
cal setting where probabilistic databases are compactly encoded by
means of annotations formulated over random Boolean variables.
In this setting, we study the problems of testing for the existence of
solutions and universal solutions, materializing such solutions, and
evaluating target queries (for unions of conjunctive queries) in both
the exact sense and the approximate sense. For each of the prob-
lems, we carry out a complexity analysis based on propertiesof the
annotation, in various classes of dependencies. Finally, we show
that the framework and results easily and completely generalize to
allow not only the data, but also the schema mapping itself tobe
probabilistic.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational databases;
H.2.4 [Database Management]: Systems—Query processing; H.2.5
[Database Management]: Heterogeneous Databases—Data trans-
lation

General Terms
Theory

Keywords
Data exchange, data integration, probabilistic database,probabilis-
tic schema mapping, probabilistic solution, universal probabilistic
solution, conjunctive query, certain answer, computational com-
plexity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

1. INTRODUCTION
Data exchange is the problem of transforming data that conform

to one schema, thesource schema, into data that conform to another
schema, thetarget schema, in a way that is consistent with various
dependencies(i.e., constraints expressed in some logical formalism
over the two schemas). The source and target schemas, along with
the dependencies, define aschema mapping, and the results of the
consistent transformation of a source instance are calledsolutions.
Traditional data exchange is based on the assumption that source
data arecertain. However, the need to account foruncertaintyin
data has long been recognized [4, 19]. In view of the advent of
the Web and related modern applications, models of uncertain data
(typically probabilistic databases) have recently gained significant
renewed focus [9–11,24,31,33,43,44]. It is, therefore, essential to
rethink the conceptual framework of data exchange in the context
of uncertainty in the source data.

Our goal in this paper is to lay the foundations of data exchange
in the presence of probabilistic data. This is accomplishedin two
main parts. First, in Sections 2–4, we establish a frameworkthat
extends and generalizes traditional data exchange to probabilistic
(source and target) databases. This framework is general, in the
sense that it imposes essentiallyno restriction at allon the types of
dependencies or on the probabilistic databases (which are finite or
countably infinite spaces of ordinary finite databases, where each
database is assigned a probability). Then, in Section 5, we ap-
ply our framework to a concrete and practical setting, wherethe
dependencies are from widely-studied classes, and where the prob-
abilistic databases are compactly encoded in various conventional
manners (e.g., as in [2,6,10,31,43]).

Furthermore, in Section 6, we extend the framework and the re-
sults to allow the schema mapping (and the data) to be probabilistic.
In principle, we could use this extended setting right from the be-
ginning. The reason for not doing so is that it would significantly
increase the complexity of the presentation, while the key chal-
lenges and ideas arise already when only the data are probabilistic.

Formally, aschema mappingis a triple(S,T,Σ), whereS and
T are thesourceand target schemas, respectively, andΣ is a set
of dependencies formulated as logical assertions overS andT. A
source instanceis an instanceI overS, and atarget instanceis an
instanceJ overT; moreover,J is allowed to includelabeled nulls,
which are essentially variables that are not bound to specific values.
A target instanceJ is asolutionif the pair〈I, J〉 satisfiesΣ. In this
paper, source and target instances are replaced withprobabilistic
instances(abbrev.p-instances): a source p-instanceis a probabil-
ity spaceĨ over the source instances, and atarget p-instanceis a
probability spaceJ̃ over the target instances.

The first task is, naturally, to define aprobabilistic solution(ab-
brev. p-solution) for a source p-instance w.r.t. a schema mapping



(S,T,Σ). Essentially, we define a target p-instanceJ̃ to be ap-
solution for a p-instancẽI if there exists a probability space over
source-solution pairs(I, J) (i.e., J is a solution forI w.r.t. Σ),
such that the marginals coincide with the p-instanceĨ on the one
hand, and with the p-instancẽJ on the other. Our definition of a
p-solution is based on the classical concept of abivariate (joint)
probability space with given marginals (research of this concept
goes back to the 1950s [18,36]), but with the additional requirement
that thesupport(i.e., the set of samples with a nonzero probabil-
ity) is contained in a fixed relation (in this case, the source-solution
relation). To explore the coherence of this definition, we formulate
two intuitive properties that every reasonable concept of asolution
should satisfy. Each of these properties says that a p-solution prop-
erly reflectsthe uncertainty of the source data. Rather surprisingly,
we show that each of the two properties is actually a characteriza-
tion of a p-solution.

We then proceed to the adaptation of the notion of auniversal
solution. Our definition of auniversal p-solutionis similar to that
of a p-solution(given above), except that we require the existence
of a probability space over pairs(I, J), such thatJ is auniversal
solution forI (and, again, the marginals coincide withĨ andJ̃ ).
On the surface, this definition does not imply any desired semantic
property. In traditional data exchange, a universal solution J is a
“good” solution in the sense that it generalizes all the other solu-
tions, since every solution contains a homomorphic image ofJ . We
want a similar property to characterize a universal p-solution. For
that, we need to figure out the meaning ofgeneralizationbetween
p-instances.

There are various ways of formally modeling the generalization
relationship between p-instances; we consider three natural def-
initions, where each of the three extends the traditional concept
(existence of a homomorphism) to p-instances. One definition is
(again) in terms of a bivariate distribution, and the other two are
based on the notion of astochastic order(see, e.g., [45]). We show
that the three are different from one another (and moreover,in the
finite case, testing whether they hold belong to different complex-
ity classes). So, we do not have one robust formalization of the
generalization relationship between p-solutions.A priori, each of
the three relationships could imply a different alternative definition
of a universal p-solution, namely, one that “generalizes” all the p-
solutions. Quite remarkably, the three definitions areequivalent
to the above definition of a universal p-solution. Furthermore, as
we show next when we consider the concept of answering target
queries, a universal p-solution is also characterized by its useful-
ness in answering target conjunctive queries (as in the determinis-
tic case [15]). These results indicate that the concept of auniversal
p-solutionis very robust.

Since a solution in our framework (namely, a p-solution) is in-
herently probabilistic, evaluating target queries amounts toquery-
ing probabilistic databases. In particular, for a source p-instance
Ĩ and a queryq, every p-solutionJ̃ gives a (potentially different)
confidence value for each possible answera. Consistently with the
approach ofcertain answersin traditional data exchange, theconfi-
denceof a is defined to be the infimum of the confidence values for
a over all p-solutions. We show that (when a p-solution exists) this
is the same as the probability thata is a certain answer for a random
source instance of̃I. We show that a universal p-solution can be
used for answering unions of conjunctive queries (UCQs), namely,
evaluation thereon gives the correct confidence values. Moreover,
if a p-solution can be used this way in the evaluation of conjunctive
queries, then this p-solution is necessarily universal.

We then proceed to study algorithmic and computational aspects
of data exchange for finite probabilistic databases. Specifically, we

consider the following problems: testing for the existenceof so-
lutions and universal solutions, materializing such solutions, and
evaluating target unions of conjunctive queries. It follows from our
results that these problems are not harder than their counterparts
in the traditional (deterministic) setting. That holds, though, un-
der the assumption that the source p-instance is represented in an
explicit manner (i.e., by specifying each possible worldI along
with its probability). This is at odds with conventional practice,
which is to associate a measure of confidence (or a probabilistic
event) with each fact. Such a representation (along with some sta-
tistical assumptions) is typically logarithmic-scale compact. So,
following existing representations (e.g.,ULDBs[2,43],probabilis-
tic c-tables[24] andprobabilistic trees[44]), we explore a setting
where the source p-instance is represented compactly byannotat-
ing facts withconditions, which are formulas over a set of (Boolean
and probabilistically independent)random event variables. We
consider two types of annotations. In aDNF instancethe anno-
tation is in disjunctive normal form; in atuple-independent in-
stancedifferent facts are probabilistically independent, and the an-
notation effectively specifies the probability of each fact, as done
in [6,10,11]).

Our analysis is based ondata complexity, which is common in
studying the complexity aspects of data exchange, (e.g., [15–17,
20]). Thus, we hold fixed a schema mapping and a query (when
relevant), and the input consists of an annotated (i.e., DNFor tuple-
independent) source instance. In our analysis, we considerthe
types of dependencies that were studied in [15]. Thus, we allow
st-tgds(source-to-target tgds),t-tgds(target tgds)1, andt-egds(tar-
get egds). We consider also the effect on the complexity whenthe
st-tgds and/or t-tgds are restricted to beingfull. We divide the com-
putational problems intocategoriesthat correspond to all possible
combinations of dependency and annotation types. We start with
the problems of testing whether a (universal) solution exists and of
materializing one that is encoded as a DNF instance. For eachcate-
gory, we show that either the corresponding problem is tractable for
all schema mappings (in the category) or that there exists a schema
mapping for which the problem is intractable. We then consider
target-query evaluation and, in particular, show that every nontriv-
ial UCQ is #P-hard in some schema mapping of the most restrictive
category (namely, independent facts and full st-tgds). Dueto this
hardness, we study the complexity ofapproximatequery evaluation
(which, in practice, is often good enough), and give the following
complete classification. For each category, we prove one of the
following:

• For every schema mapping and for every target UCQ there
exists an efficient algorithm (randomized or deterministic)
for approximate query evaluation.

• For every nontrivial target UCQ there exists a schema map-
ping in which query evaluation is hard to approximate.

Finally, we show how to generalize the framework and all of the
aforementioned results to accommodate probabilistic schema map-
pings (in addition to probabilistic data). The combinationof a prob-
abilistic schema mapping with a source p-instance requireshaving
a joint probability distribution over sets of dependenciesand source
instances; that is, a probability space on pairs(Σ, I), whereΣ is a
set of dependencies andI is a source instance. We call such a prob-
ability distribution aprobabilistic problem(p-problem, in short).
In general, a p-problem allows for every correlation between the
probabilistic mapping and the source p-instance; a specialcase is

1We make the now standard assumption ofweak acyclicity[15].



theproduct spacewhere the probabilistic schema mapping and the
source p-instance are assumed to be independent.

We show that the framework and all aforementioned resultscom-
pletelygeneralize to p-problems, under the proper adaptation of the
definitions. In particular, we use the notions of ap-solution, auni-
versal p-solutionand ananswer confidence(for a target query)for
a p-problemP̃ rather thanfor a source p-instancẽI. Moreover, the
results of Section 5 are generalized by annotating the dependencies
specifying the mapping similarly to source facts (i.e., using formu-
las over event variables); event variables can be shared between
facts and dependencies, thereby allowing correlations between the
probabilistic source data and mappings to be represented.

To the best of our knowledge, this work is the first to study data
exchange over probabilistic databases. In [13,14,41,42],the prob-
lem of data exchange (and specifically data integration) fordeter-
ministic databases and probabilistic mappings is studied.The re-
lationship between that work and this paper is discussed in Sec-
tion 6.2.

The proofs of the results presented in this paper will appearin a
full version.

2. PRELIMINARIES

2.1 Schemas and Instances
We assume fixed countably infinite setsConst of constantsand

Var of nulls, such thatConst ∩ Var = ∅. A schemais a finite
sequenceR = 〈R1, . . . , Rk〉 of distinct relation symbols, where
eachRi has a fixed arityri > 0. An instanceI (overR) is a se-
quence〈RI

1, . . . , R
I
k〉, such that eachRI

i is a finite relation of arity
ri overConst∪Var (i.e.,RI

i is a finite subset of(Const∪Var)ri ).
We callRI

i theRi-relation of I . We may abuse this notation and
useRi to denote both the relation symbol and the relationRI

i that
interprets it. We usedom(I) to denote the set of all constants and
nulls that appear inI . We say thatI is aground instanceif dom(I)
does not contain nulls. We denote byInst(R) and Instc(R) the
classes of all instances and ground instances, respectively, overR.
We useR(t1, . . . , tr) to denote that(t1, . . . , tr) is a tuple in a re-
lationR and call it afact. We identify an instance with the set of
its facts.

LetK1 andK2 be instances over the same schema. Ahomomor-
phismh : K1 → K2 is a mapping fromdom(K1) to dom(K2),
such that(1) h(c) = c for all constantsc ∈ dom(K1), and (2)for
all factsR(t) ofK1, the factR(h(t)) is inK2 (for t = (t1, . . . , tr),
the tupleh(t) is (h(t1), . . . , h(tr))). ByK1 → K2 we denote the
existence of a homomorphismh : K1 → K2.

2.2 Schema Mappings
We now describe our formalism of aschema mapping, which

follows that of [15]. Suppose thatS = 〈S1, . . . , Sn〉 andT =
〈T1, . . . , Tm〉 are two schemas with no relation symbols in com-
mon. We denote by〈S,T〉 the schema that is obtained by concate-
natingS andT. Similarly, if I andJ are instances ofS andT,
respectively, then〈I, J〉 is the instanceK ∈ Inst(〈S,T〉) that sat-
isfiesSK

i = SI
i andTK

j = T J
j for 1 ≤ i ≤ n and1 ≤ j ≤ m; in

other words, since we identify an instance with the set of itsfacts,
〈I, J〉 is essentially the union ofI andJ .

We assume some formalism for expressing constraints over a
given schemaR. If I ∈ Inst(R) andΣ is a set of formulas in
this formalism, thenI |= Σ denotes thatI satisfies every formula
of Σ.

A schema mappingis a triple (S,T,Σ), whereS (the source
schema) andT (the target schema) are schemas without common
relation symbols, andΣ is a set of formulas over the schema〈S,T〉.

Each formula ofΣ is called adependency. A source instanceis a
ground instanceI over S, and atarget instanceis an instanceJ
overT (that is,I ∈ Instc(S) andJ ∈ Inst(T)). We say that the
target instanceJ is asolution forI (w.r.t. Σ) if 〈I, J〉 |= Σ. A so-
lutionJ for I w.r.t.Σ is universalif J → J ′ for all solutionsJ ′ for
I w.r.t. Σ (in other words, every solution contains a homomorphic
image ofJ).

2.3 Probability Spaces
All the probability spaces we consider are countable (finiteor

countably infinite). We call such spacesp-spacesand use the fol-
lowing notation. A p-space is a pair̃U = (Ω(Ũ), p

Ũ
), such that

Ω(Ũ) is a countable set andp
Ũ

: Ω(Ũ) → [0, 1] is a function that
satisfies

∑

u∈Ω(Ũ) pŨ (u) = 1. Each memberu of Ω(Ũ) is asam-

ple, andΩ(Ũ) is thesample space. We say that the p-spacẽU is
over Ω(Ũ). The supportof Ũ , denotedΩ+(Ũ), is the set of all
samplesu ∈ Ω(Ũ) such thatp

Ũ
(u) > 0. We say thatŨ is finite

if its supportΩ+(Ũ) is finite. A subsetX ⊆ Ω(Ũ) is called an
event. Theprobabilityof the eventX, denotedPr

Ũ
(X), is the sum

∑

u∈X p
Ũ
(u). We may omit the subscript̃U from Pr

Ũ
(X) when

it is clear from the context. We useU (i.e., without the tilde sign)
to denote therandom variablethat represents a sample ofŨ . An
event is often represented by a logical formula overU (e.g.,ϕ(U)

is the same as{u ∈ Ω(Ũ) | ϕ(u)}). We often abuse the above
notation and identifyŨ with its sample spaceΩ(Ũ) (e.g.,u ∈ Ũ

means thatu is a member ofΩ(Ũ)).

3. EXCHANGING PROBABILISTIC DATA
Our goal is to study data exchange in the presence of uncertainty

in the source instance. We use the convention of modeling un-
certain data as aprobabilistic database[10, 11, 24, 33, 43]. The
challenges of this generalization of data exchange arise right in the
beginning: What is the meaning of asolution for a probabilistic
source instance? The first observation is that such a solution should
by itself be probabilistic (because if the source database is uncer-
tain, then so is the target database). Next, we formalize thenotion
of a probabilistic database.

Let R be a schema. Aprobabilistic database, or aprobabilistic
instance(overR), abbrev.p-instance, is a p-spacẽI over Inst(R).
If Ĩ is a p-space overInstc(R), thenĨ is aground p-instance. Note
that the sample spaceInst(R) (or Instc(R)) is countable due to our
assumption thatConst and Var are countable (and that ordinary
instances are finite).

Let M = (S,T,Σ) be a schema mapping. Asource p-instance
is a ground p-instancẽI over S, and atarget p-instanceis a p-
instanceJ̃ overT. In other words, a source p-instance and a target
p-instance are p-spaces over the source and target instances, respec-
tively.

EXAMPLE 3.1. LetM be the schema mapping(S,T,Σ), where
S andT are defined as follows. Note that, for convenience, the
columns are named.

S :Researcher (name, university), RArea(researcher, topic)

T :UArea(university, department, topic)

andΣ contains the single dependency

∀r, u, t(Researcher (r, u) ∧ RArea(r, t)

→ ∃dUArea(u, d, t)) .

Figure 1 depicts a set of possible facts (e.g.,re, aeir anduir) for
each of the three relations. Note that⊥1, ⊥2 and⊥3 are nulls



Researcherfacts

re Researcher(Emma, UCSD)

rj Researcher(John, UCSD)

RAreafacts

aeir RArea(Emma, IR)

aedb RArea(Emma, DB)

ajdb RArea(John, DB)
ajai RArea(John, AI)

Source p-instancẽI

I1 = {re, rj, aeir, ajdb} 0.3

I2 = {re, rj, aeir, ajai} 0.3

I3 = {re, rj, aedb, ajai} 0.2

I4 = {re, rj, aedb, ajdb} 0.1

I5 = {re, aedb} 0.1

UAreafacts

uir UArea(UCSD, ⊥1, IR)

uai UArea(UCSD, ⊥2, AI)
udb UArea(UCSD, ⊥3, DB)

Target p-instancẽJ1

J1 = {uir, udb} 0.3

J2 = {uir, uai} 0.3

J3 = {udb, uai} 0.2

J4 = {udb} 0.2

Target p-instancẽJ2

J5 = {uir, udb} 0.35

J6 = {uir, uai, udb} 0.45

J7 = {uir, uai} 0.2

Target p-instancẽJ3

J8 = {uir, udb} 0.3

J9 = {uai, udb} 0.3

J10 = {uir, uai} 0.4

Figure 1: Source and target p-instances for the schema mapping M of Example 3.1

(and the rest of the data values are constants). Using the facts, the
figure depicts four finite p-instances̃I, J̃1, J̃2 andJ̃3, whereĨ is
a source p-instance and each̃Ji is a target p-instance. Each sample
of a p-instance is represented by a two-entry row, where the left
entry shows the instance and the right one shows its probability.
For example, the probabilityp

Ĩ
(I1) of I1 = {re, rj, aeir, ajdb} is

0.3. Observe that in each of̃I, J̃1, J̃2 andJ̃3, the probabilities in
the rows sum up to1.

The challenge is to identify when a target p-instance constitutes
a solution for a source p-instance. In principle, we have a binary
relationship between deterministic instancesI andJ (namely,J
is a solution forI), and we want to generalize it to p-instancesĨ
andJ̃ . Theprobabilistic matchis a systematic way of extending
a binary relationship between objects into a binary relationship be-
tween p-spaces thereof. Next, we give the formal definition of a
probabilistic match. In Section 3.2, we apply it to define ournotion
of a solution in the probabilistic setting, which we call ap-solution.
Then, we show that this definition is semantically coherent,by con-
sidering two natural and desirable requirements for a notion of a
solution and showing that each of these requirements actually char-
acterizes a p-solution.

3.1 Probabilistic Match
Our notion of a probabilistic match between p-spaces is based on

the classical concept of joint (orbivariate) probability spaces with
specified marginals [18, 36]. Our new twist on this old notionis
that we require the joint distribution to have a support contained in
a given binary relation.

DEFINITION 3.2. (Probabilistic Match) Let Ũ andW̃ be two
p-spaces and letR ⊆ Ω(Ũ) × Ω(W̃) be a binary relation. Aprob-
abilistic match ofŨ in W̃ w.r.t.R (or, for short, anR-match ofŨ in

W̃) is a p-spacẽP overΩ(Ũ) × Ω(W̃) that satisfies the following
two conditions.

1. The support of̃P is contained inR (i.e.,Pr(P ∈ R) = 1).

2. The marginals of̃P areŨ andW̃. This means that:

(i)
∑

w∈Ω(W̃) pP̃(u,w) = p
Ũ
(u) for all u ∈ Ũ , and

(ii)
∑

u∈Ω(Ũ) pP̃(u,w) = p
W̃

(w) for all w ∈ W̃.

Note that anR-match ofŨ in W̃ can be viewed as a probability
space overR, whose marginals coincide with̃U andW̃. A special
case of a probabilistic match is theproduct spacẽU × W̃, where
R is the setΩ(Ũ)×Ω(W̃) and the two coordinates are probabilis-
tically independent (that is,p

Ũ×W̃
(u,w) = p

Ũ
(u) · p

W̃
(w) for

all u ∈ Ũ andw ∈ W̃). Two other special cases, for a relation
R ⊆ Ω(Ũ) × Ω(W̃), are the following.

• An R-matchP̃ is left-trivial if for every u ∈ Ω+(Ũ) there
is exactly onew ∈ Ω(W̃) such thatp

P̃
(u,w) > 0; equiva-

lently, Pr
P̃

(u,w) = Pr
Ũ
(u) wheneverPr

P̃
(u,w) > 0.

• Similarly, P̃ is right-trivial if for everyw ∈ Ω+(W̃) there is
exactly oneu ∈ Ω(Ũ) such thatp

P̃
(u, w) > 0; equivalently,

Pr
P̃

(u, w) = Pr
W̃

(w) wheneverPr
P̃

(u, w) > 0.

EXAMPLE 3.3. Consider the p-instancesĨ, J̃1 andJ̃2 of Fig-
ure 1. The two bipartite graphs of Figure 2 depict (finite) proba-
bilistic matches of̃I in J̃1 (in the graph on the left side of Fig-
ure 2) and inJ̃2 (in the graph on the right side of Figure 2). The
relationsR are the ones given by the (solid and dashed) edges that
connect each of the two pairs of p-spaces. The probability ofeach
pair (I, J) is written inside a rectangular box on the corresponding
edge, unless this probability is zero and then the edge is represented
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Figure 2: SOLM-matches of Ĩ in J̃1 and of Ĩ in J̃2 for the source p-instance Ĩ and the target p-instances J̃1 and J̃2 of Example 3.1



as a dashed line. (Recall that the probability of(I, J) is necessarily
zero if no edge connectsI andJ .)

Observe that the probabilistic match ofĨ in J̃1 on the left side
of Figure 2 is left-trivial, since every node on the left sideis inci-
dent to exactly one nonzero edge. Thus, it is immediate to verify
that Item (i) in Definition 3.2 holds. Note that this match is not
right-trivial (sinceJ4 is incident to two nonzero edges). Actually,
there cannot be any right-trivial match ofĨ in J̃1, simply because
Ω+(J̃1) contains fewer samples thanΩ+(Ĩ).

A more complex example of a probabilistic match is the match
of Ĩ in J̃2 on the right side of Figure 2. Note that this match is
neither left-trivial nor right-trivial. Consider the instanceI4 in the
right side of Figure 2. In Item (i) in Definition 3.2, when the role
of u is played byI4, the sum on the left side of Item (i), which
is the sum of probabilities of the edges adjacent toI4, is 0.05 +
0.05 = 0.1, which is exactly the probability ofI4, which is the
value on the right side of Item (i). Consider now the instanceJ6

in the right side of Figure 2. In Item (ii) in Definition 3.2, when
the role ofw is played byJ6, the sum on the left side of Item (ii),
which is the sum of probabilities of the edges adjacent toJ6, is
0+0.1+0.2+0.05+0.1 = 0.45, which is exactly the probability
of J6, which is the value on the right side of Item (ii).

3.2 p-Solution
We are now ready to define the concept of a p-solution. For

a schema mappingM, we denote bySOLM the binary relation
that comprises pairs(I, J) ∈ Instc(S) × Inst(T), such thatJ is a
solution forI .

DEFINITION 3.4. (p-Solution) LetM be a schema mapping and
let Ĩ be a source p-instance. Ap-solution(for Ĩ w.r.t. Σ) is a target
p-instanceJ̃ , such that there is aSOLM-match ofĨ in J̃ .

Note that by aSOLM-match we mean, of course, anR-match
where the role ofR is played bySOLM.

EXAMPLE 3.5. Consider again the schema mappingM of Ex-
ample 3.1 and the source and target p-instances that are depicted
in Figure 1 and described in Example 3.1. Figure 2 shows two
SOLM-matches of̃I: the one on the left side is iñJ1, and the one
on the right side is inJ̃2. For example, there are edges fromI4
to J1, J3, andJ4, sinceJ1, J3, andJ4 are each solutions forI4
w.r.t. Σ (the edges fromI4 to J1 andJ3 each have probability 0,
which is allowed). There is no edge fromI4 to J2, sinceJ2 is not
a solution forI4 w.r.t. Σ. Thus, bothJ̃1 and J̃2 are p-solutions.
Later, we will show thatJ̃3 is not a p-solution (i.e., there is no
SOLM-match ofĨ in J̃3).

Defining a p-solution by means of aSOLM-match is a straight-
forward application of the probabilistic-match mechanism. Next,
we give a semantic justification to this definition. We start with an
example. Consider the schema mappingM = (S,T,Σ) and the
source and target p-instances of Example 3.1. As shown in Exam-
ples 3.3 and 3.5,̃J1 andJ̃2 are p-solutions. One may claim that̃J3

should be deemed a p-solution as well (even though we later show
that it is not) due to the following statement (that can be easily ver-
ified). For each sampleI of Ĩ (which has the probabilityPr

Ĩ
(I)

of being the selected instance), there is a probability ofPr
Ĩ
(I), or

even higher, that a sample of̃J is a solution forI . Next, we show
that this property is not enough, and moreover, thatJ̃3 shouldnot
be a p-solution.

For an arbitrary target p-instancẽJ , letpdb(J̃ ) be the probability
that, inJ̃ , database (DB) research is done in UCSD. The source p-
instanceĨ says that there is a probability of0.7 that at least one

researcher of UCSD is in the DB area (as obtained by summing up
the probabilities of all the instances that containaedb, ajdb or both).
By the schema mappingM we would like a p-solutionJ̃ to say
that DB research is done in UCSD with a probability of0.7, that
is, pdb(J̃ ) = 0.7. Moreover, sinceΣ allows DB research at UCSD
even if the source does not contain a DB researcher at UCSD, we
should allowpdb(J̃ ) to be larger than0.7, in addition to allowing
it to equal0.7. Now, pdb(J̃1) is exactly0.7 andpdb(J̃2) is 0.8, as
desired. However, this is not the case forJ̃3, sincepdb(J̃3) = 0.6.

To generalize the above example, consider a schema mapping
M, a source p-instancẽI and an eventE of Ĩ (e.g., the event “one
or more researchers are in the DB area in UCSD,” which means that
aedb or ajdb or both are in the source instance), We say that a target
instanceJ is consistentwith E if J is a solution for at least one
instanceI of E. Then, as illustrated above, the following property
is desired from a p-solutioñJ . For all eventsE of Ĩ, the probabil-
ity that J̃ is consistent withE is at least the probability ofE. An
analogous desired property is the following. For all eventsF of J̃
(e.g., the event “the DB area in UCSD is nonempty”, which means
thatudb is in the target instance), the probability that a random in-
stance of̃I has a solution inF is at least the probability ofF . It can
rather easily be shown that existence of aSOLM-match guarantees
these two properties. Rather surprisingly, each of the two proper-
ties implies the existence of aSOLM-match; thus, as shown in the
next theorem, each of the two is a characterization of a p-solution.

THEOREM 3.6. LetM = (S,T,Σ) be a schema mapping. Let
Ĩ be a source p-instance and let̃J be a target p-instance. The
following are equivalent.

1. J̃ is a p-solution (that is, aSOLM-match ofĨ in J̃ exists).

2. For allE ⊆ Instc(S),

Pr
J̃

(

∨

I∈E

〈I,J 〉 |= Σ

)

≥ Pr
Ĩ
(E) .

3. For all F ⊆ Inst(T),

Pr
Ĩ

(

∨

J∈F

〈I, J〉 |= Σ

)

≥ Pr
J̃

(F ) .

Note that, following the above discussion aboutJ̃3, the fact that
Part 2 of Theorem 3.6 is necessary for being a p-solution shows
that J̃3 is not a p-solution for̃I (by using the eventE saying that
there is a DB researcher in UCSD). Theorem 3.6 is proved via the
following characterization of the existence of a probabilistic match
in the spirit of Hall’s Marriage Theorem [25].

LEMMA 3.7. LetŨ andW̃ be two p-spaces and letR ⊆ Ω(Ũ)×

Ω(W̃) be a binary relation. There exists anR-match ofŨ in
W̃ if and only if for all eventsU of Ũ it holds thatPr

Ũ
(U) ≤

Pr
W̃

(
∨

u∈U R(u,W)
)

.

The proof for finite p-spaces is by an application of themax-
flow min-cuttheorem. For countably infinite graphs, the max-flow
min-cut property does not necessarily hold. Nevertheless,recent
results [3] show that, under some restrictions, this property holds
for countably infinite graphs, and these restrictions are met by the
graphs that are relevant to us. Hence, our proof for finite p-spaces
extends to (countably) infinite p-spaces. We also have a direct proof
that is based only on the finite variant of max-flow min-cut.



4. UNIVERSAL P-SOLUTIONS AND QUERY
ANSWERING

In this section, we generalize the concepts of auniversal solu-
tion, and that of answering target queries, to the probabilisticset-
ting.

4.1 Universal p-Solutions
Recall that the notion of a probabilistic match provides a system-

atic way of extending any binary relationship between (determinis-
tic) objects to a relationship between probability spaces thereof. In
the case of universal solutions, this is applied as follows.Consider a
schema mappingM. Denote byUSOLM the relationship between
pairsI andJ of source and target instances, respectively, such that
USOLM(I, J) holds if and only ifJ is a universal solution forI .
Then auniversal p-solutionis defined as follows.

DEFINITION 4.1. (Universal p-Solution) Let M be a schema
mapping. LetĨ and J̃ be source and target p-instances, respec-
tively. We say thatJ̃ is a universal p-solution(for Ĩ w.r.t. Σ) if
there is aUSOLM-match ofĨ in J̃ .

EXAMPLE 4.2. TheSOLM-match of Ĩ in J̃1 (whereM, Ĩ
andJ̃1 are described in Example 3.1) on the left side of Figure 2
is actually aUSOLM-match, since an edge fromIm to Jn has a
nonzero probability only ifJn is a universal solution forIm. Thus,
J̃1 is a universal p-solution for̃I. TheSOLM-match ofĨ in J̃2

on the right side of Figure 2 is not aUSOLM-match since, for
example, there is an edge (with probability0.1) betweenI2 andJ6,
yet J6 is not a universal solution forI2. Later, we will show that
J̃2 is, indeed,not a universal p-solution for̃I.

We now give a proposition about the existence of a p-solution
and a universal p-solution. This proposition is straightforward, and
we record it for later use.

PROPOSITION 4.3. LetM be a schema mapping and letĨ be a
source p-instance. A p-solution exists if and only if a solution exists
for all I ∈ Ω+(Ĩ). Similarly, a universal p-solution exists if and
only if a universal solution exists for allI ∈ Ω+(Ĩ).

We note that when a p-solution for a source p-instanceĨ exists,
there is a straightforward construction of a p-solution that is left-
trivial. A similar comment holds for universal p-solutions.

In the deterministic case, a universal solution is deemed a good
choice of a solution, since it is amost generalone, where the no-
tion of generality is defined by means of a homomorphism; that
is, J1 generalizesJ2 if J1 → J2. We would like to have a sim-
ilar characterization of a universal p-solution. For that,we need
a notion for a relationship between p-instances that corresponds
to that of homomorphism in ordinary data. One such definition
can be obtained by applying the probabilistic match. LetT be a
schema. We denote byHOMT the binary relation that includes all
the pairs(J1, J2) ∈ (Inst(T))2, such thatJ1 → J2. Consider two
p-instancesJ̃1 andJ̃2 overT. We useJ̃1

mat
−→ J̃2 to denote that

there is aHOMT-match ofJ̃1 in J̃2.

REMARK 4.4. The definition ofJ̃1
mat
−→ J̃2, restricted to finite

p-instances, is similar yet different from that ofhomomorphism
given in [13] where, in our terminology, only right-trivialHOMT-
matches are allowed (in particular, there is no homomorphism from
J̃1 to J̃2 in the sense of [13] if the cardinality ofΩ+(J̃1) is strictly
larger than that ofΩ+(J̃2)).

The HOMT-match extends the notion of homomorphism to p-
instances in the systematic way of applying the probabilistic match.
There are, though, other natural ways of generalizing this notion.
Next, we consider two such ways, which are based on the classical
notion of astochastic order. We then explore their relationships to
the existence of aHOMT-match. First, we need some definitions.

A stochastic order is traditionally an order over numeric random
variables (cf. [45]). Here, we extend this notion from numbers to
general preordered elements, in a straightforward manner.For-
mally, let O be a countable set and let� be a preorder overO
(i.e.,� is a reflexive and transitive binary relation� overO). The
stochastic extensionof � is the preorder�′ over the set of all the p-
spaces overO, where for all p-spaces̃U andW̃, the interpretation
of Ũ �′ W̃ is

∀ o ∈ O (Pr(U � o) ≥ Pr(W � o)) .

Let T be a schema. It is well known that the existence-of-
a-homomorphism relationship can be viewed as a preorder over
Inst(T) (see, e.g., [26]), and there are basically two ways to define
this preorder. In the first, we use the preorder�sp, whereJ �sp J

′

is interpreted asJ → J ′, namely, “J is at most asspecificasJ ′.”
The second preorder,�ge, has the complement interpretation: “J
is at most asgeneralasJ ′,” that is, J �ge J

′ meansJ ′ → J .
Having the two preorders�sp and�ge over instances, we automat-
ically obtain two preorders over p-instances, namely, the stochastic
extensions, which we denote by�sp

−→ and �ge
←−, respectively.2 Thus,

J̃1
�sp
−→ J̃2 if Pr(J1 → J) ≥ Pr(J2 → J) for all instancesJ

over T, and J̃2
�ge
←− J̃1 if Pr(J → J2) ≥ Pr(J → J1) for

all instancesJ over T. For uniformity of presentation, we write
J̃1

�ge
−→ J̃2 instead ofJ̃2

�ge
←− J̃1.

We now have three ways of extending the relationshipJ1 → J2

(existence of a homomorphism) from instancesJ1 and J2 to p-
instancesJ̃1 andJ̃2. The first isJ̃1

mat
−→ J̃2, namely, there exists

a HOMT-match ofJ̃1 in J̃2. The second isJ̃1
�sp
−→ J̃2, namely,

J̃1 is at most as specific as̃J2. The third isJ̃1
�ge
−→ J̃2, namely,

J̃1 is at least as general as̃J2. Observe that the three are indeed
extensions of→, in the following sense. IfJ̃1 and J̃2 are deter-
ministic instancesJ1 andJ2 (i.e., the probability ofJi in J̃i is 1,
for i = 1, 2), then each ofJ̃1

mat
−→ J̃2, J̃1

�sp
−→ J̃2 andJ̃1

�ge
−→ J̃2 is

equivalent toJ1 → J2.
The following theorem shows thatmat

−→ is a strictly stronger rela-
tionship than�sp

−→ and �ge
−→; that is,J̃1

mat
−→ J̃2 implies bothJ̃1

�sp
−→

J̃2 and J̃1
�ge
−→ J̃2, and there are cases where neither of the op-

posite implications holds. Moreover, it shows that�sp
−→ and�ge

−→ are
incomparable. Finally, the theorem shows that for finite p-instances
J̃1 and J̃2, testingJ̃1

�sp
−→ J̃2 and testingJ̃1

�ge
−→ J̃2 are not

even in the same complexity class as testingJ̃1
mat
−→ J̃2 (assuming

NP 6= coNP) since the first two tests are DP-hard3 (yet decidable)
while the third is NP-complete.

THEOREM 4.5. The following hold.

1. For all p-instancesJ̃1 andJ̃2, if J̃1
mat
−→ J̃2 thenJ̃1

�sp
−→ J̃2

andJ̃1
�ge
−→ J̃2.

2. There are p-instances̃J1 and J̃2, such thatJ̃1
�sp
−→ J̃2 and

J̃1 6�ge
−→ J̃2; similarly, there are p-instances̃J1 andJ̃2, such

that J̃1
�ge
−→ J̃2 andJ̃1 6�sp

−→ J̃2. Hence, due to Part 1, neither
�sp
−→ nor �ge

−→ implies mat
−→.

2The choice of the notation�sp
−→ and�ge

←− (rather than, e.g.,�′sp and
�′ge) is for clarity of presentation.
3Recall that DP is the class of problems that can be formed as a
difference of two problems in NP [37].



3. TestingJ̃1
mat
−→ J̃2, given two finite p-instances̃J1 and J̃2,

is in NP.4

4. Testing each of̃J1
�sp
−→ J̃2 and J̃2

�ge
−→ J̃1, given finite p-

instancesJ̃1 and J̃2, is in EXPTIME and NEXPTIME, re-
spectively, and there is a schemaT over which both tests are
DP-hard.

We can now give three additional definitions of a universal p-
solution as a most general p-solution, where generality is according
to each of the three relationshipsmat

−→, �sp
−→ and �ge

−→. Theorem 4.5
shows that the three relationships between p-instances areinher-
ently different; hence, we might expect to getdifferentdefinitions
of a universal p-solution. Surprisingly, it turns out that all three
definitions are equivalent to existence of aUSOLM-match! This is
shown in the following theorem. This theorem also shows that, for
a solutionJ̃ , eitherall SOLM-matches areUSOLM-matches (and
thenJ̃ is universal) ornoneof them is aUSOLM-match.

THEOREM 4.6. LetM be a schema mapping. LetĨ be a source
p-instance and let̃J be a p-solution. The following are equivalent.

1. J̃ is a universal p-solution (i.e., there is aUSOLM-match of
Ĩ in J̃ ).

2. J̃ mat
−→ J̃ ′ for all p-solutionsJ̃ ′.

3. J̃ �sp
−→ J̃ ′ for all p-solutionsJ̃ ′.

4. J̃ �ge
−→ J̃ ′ for all p-solutionsJ̃ ′.

5. EverySOLM-match ofĨ in J̃ is aUSOLM-match.

In Section 4.2.1, we give a query-based characterization ofa
universal p-solution (Proposition 4.9). Taken together with Theo-
rem 4.6, these results show that the notion of a universal p-solution
is remarkably robust.

4.2 Query Answering
We now generalize the concept of answering target queries in

data exchange. Ak-ary queryover a schemaR is functionQ that
maps every instanceJ ∈ Inst(R) to a setQ(J) ⊆ dom(J)k, such
thatQ is invariant under isomorphism of instances. Note that for
k = 0, the resultQ(J) is either{()} (denotedtrue) or ∅ (de-
notedfalse). Such a query is calledBoolean.A conjunctive query
(abbrev.CQ) and aunion of conjunctive queries(abbrev.UCQ) are
special cases of queries. For completeness, we next formally define
a CQ and a UCQ.

A CQ has the form∃yϕ(x,y, c), wherex andy are tuples of
variables,c is a tuple of constants (fromConst) andϕ(x,y, c) is
a conjunction of atomic formulas over the schemaR. We make
the safety requirement that all the variables ofx must participate in
ϕ(x,y, c). A UCQ has the form∃y(ϕ1(x,y, c)∨· · ·∨ϕk(x,y, c)),
where∃y(ϕi(x,y, c)) is a CQ for all1 ≤ i ≤ k. Given an in-
stanceK overR, the setQ(K) of answers comprises all the pos-
sible assignments forx that result in a clause that is true overK.

We follow the conventional notion [9–11] of querying proba-
bilistic databases. Thus, for a queryQ and a p-instancẽK (where
bothQ and K̃ are over a schemaR), every tuplea ∈ (Const ∪
Var)k has aconfidencevalue, which is the probabilityPr(a ∈
Q(K)). In practice, the tuplesa often come from some finite5 set
of possible answers, which can be given to the user (along with the

4Recall that there are fixed schemas over which testingJ̃1
mat
−→ J̃2

is NP-hard even ifJ̃1 andJ̃2 are deterministic [8].
5This is the case wheñK is a finite p-space.

confidence values); alternatively, the user may requestk answers
with the top probabilities [38].

Let (S,T,Σ) be a schema mapping and letQ be ak-ary query
overT. In the deterministic case,answeringQmeans that, given a
(deterministic) source instanceI , we produce thecertain answers,
namely, the tuplesa ∈ Constk that belong toQ(J) for all solutions
J for I . We denote this set bycertain(Q, I,Σ). Next, we general-
ize the concept of certain answers to the case of probabilistic source
instances. Let̃I be a source p-instance. Givena, each p-solutioñJ
gives a (possibly different) probabilityPr(a ∈ Q(J )). Consistent
with the deterministic case, we would like to characterizea with a
property that is guaranteed in every p-solution. Therefore, we de-
fine theconfidenceof a, denotedconf Q(a), as follows. If there are
no solutions, thenconf Q(a) = 1. Otherwise, it is the infimum of
the confidences (probabilities) ofa over all the p-solutions, namely,

conf Q(a)
def
= inf

p-solutionsJ̃
Pr (a ∈ Q(J )) .

If Q is Boolean, we writeconf Q instead ofconf Q(()).
The following proposition shows that the confidence of an an-

swera is the same as the probability thata is certain in a random
source instance (given that a p-solution exists). This equality is
interesting, because the two numbers describe apparently different
quantities: one is the infimum, over all p-solutions, of the probabil-
ity of an event defined over the p-solutions (specifically, the prob-
ability of havinga as an answer), whereas the other is the proba-
bility of an event defined over the source p-instance (specifically,
the probability of havinga in the certain answers). In particular,
this proposition shows the robustness of our generalization of the
notion of target-query answering.

PROPOSITION 4.7. Let (S,T,Σ) be a schema mapping, letQ
be a query overT, and letĨ be a source p-instance, such that a
p-solution exists. For all tuplesa of constants,

conf Q(a) = Pr
Ĩ
(a ∈ certain(Q,I,Σ)) .

As a part of the proof of Proposition 4.7, we construct a p-
solution J̃ , such thatPr(a ∈ Q(J )) is equal to the probability
on the right-hand side of the equality. Thus, the infimum in the def-
inition of confidence is always realized by some p-solution (hence,
it can be replaced withminimum).

EXAMPLE 4.8. Consider again the schema mappingM, and
the p-instances̃I, J̃1 andJ̃2 of Example 3.1. Recall from Exam-
ple 3.5 that bothJ̃1 andJ̃2 are p-solutions. LetQ be the following
target CQ, which extracts all the universities where both IRand AI
research is conducted.

Q(u):– ∃d1, d2 (UArea(u, d1, IR) ∧ UArea(u, d2, AI))

For J̃1, there is only one possible answer, which isa = (UCSD).
SincePr(a ∈ Q(J1)) = 0.3, we get thatconf Q(a) ≤ 0.3. Hence,
the value of the left-hand side of the equality in Proposition 4.7 is at
most0.3. What about the right-hand side, which is the probability
thata is a certain answer? Sincea is a certain answer only forI2,
andI2 has the probability0.3, the right-hand side of the equality
in Proposition 4.7 is0.3. Hence, by Proposition 4.7,conf Q(a) is

0.3, and so is realized bỹJ1; that is,J̃1 is a p-solutionJ̃ such that
Pr(a ∈ Q(J )) is minimal. In contrast, forJ̃2 we havePr(a ∈
Q(J2)) = 0.65, which is strictly larger thanconf Q(a).

Earlier, in Example 4.2, we noted that theSOLM-match ofĨ in
J̃2 on the right side of Figure 2 is not aUSOLM-match. Thus,
by Part 5 of Theorem 4.6,̃J2 is not a universal p-solution for̃I.



Moreover, recall from Example 4.8 thatPr(a ∈ Q(J2)) is strictly
larger thanconf Q(a). The following section shows how this latter

fact gives another proof that̃J2 is not universal.

4.2.1 UCQs over Universal p-Solutions
In the deterministic case, a universal solution can be used for

answering target UCQs in the sense that the result of applying the
query to the universal solution (and then restricting to thetuples
of constants) is the set of all certain answers [15]. Moreover, a
solution that has this property for every CQ is necessarily univer-
sal [15]. The following proposition shows that, although the con-
cepts of deterministic and probabilistic query answering are inher-
ently different, this property of universal solutions generalizes to
universal p-solutions. That is, the confidence of an answer for a
UCQ is obtained by querying a universal p-solution (when oneex-
ists), and a p-solution that has this property for every (Boolean)
CQ is necessarily universal. The second part is proved by using the
third characterization of Theorem 4.6.

PROPOSITION 4.9. Let(S,T,Σ) be a schema mapping and let
Ĩ be a source p-instance. The following hold.

1. If J̃ is a universal p-solution andQ is a UCQ overT, then
conf Q(a) = Pr(a ∈ Q(J )) for all tuplesa of constants.

2. If J̃ is a p-solution such thatconf Q = Pr(Q(J )) holds for

all Boolean CQsQ, thenJ̃ is a universal p-solution.

In the next section, we study computational aspects of proba-
bilistic data exchange. In particular, we consider the tasks of test-
ing whether a (universal) p-solution exists, materializing one (when
it exists), and evaluating target UCQs. By Proposition 4.3,a p-
solution exists if and only if there is a solution forI w.r.t. Σ for all
I ∈ Ω+(Ĩ). By the discussion that follows Proposition 4.3, if a
p-solution exists, then we can materialize one, using solutions for
the instances ofΩ+(Ĩ), by a straightforward construction. A sim-
ilar comment applies to universal (p-) solutions. Proposition 4.7
implies that we can computeconf Q(a) by determining whether

a ∈ certain(Q, I,Σ) for eachI ∈ Ω+(Ĩ), and taking the sum of
the probabilities of the instancesI for which the answer is “yes.”

Consequently, in the case of finite p-instances, these tasksin the
probabilistic setting are not harder than their traditional counter-
parts. Nevertheless, this analysis is based on the assumption that
source p-instances are represented in an explicit manner (i.e., by
specifying each possible instance along with its probability). This
is not a practical assumption, as evidenced by existing models of
probabilistic databases (e.g., [2, 6, 10, 11, 43]) that usually employ
a (typically logarithmic-scale) compact encoding of the possible
worlds. So, the next section studies the above computational prob-
lems under some typical compact representations of probabilistic
databases.

5. COMPACT REPRESENTATION
In this section, we explore complexity aspects of data exchange

in a concrete setting where dependencies are in the form oftgds
andegds[5, 15] (the formal definitions are in Section 5.2), and p-
instances are represented compactly by annotating facts with prob-
abilisticconditions[19,23,24] rather than explicitly specifying the
whole probability space.

5.1 Annotated Instances
We consider p-instances that are represented by means ofBoolean

pc-tables[24] (which are the probabilistic version ofc-tables[27])

Iα
p

Factf Conditionα(f)

re Researcher(Emma, UCSD) true

rj Researcher(John, UCSD) e1 ∨ e2 ∨ e3 ∨ e4

aeir RArea(Emma, IR) e1 ∨ e2

aedb RArea(Emma, DB) ¬e1 ∧ ¬e2

ajdb RArea(John, DB) e1 ∨ (¬e2 ∧ ¬e3 ∧ e4)

ajai RArea(John, AI) (¬e1 ∧ e2) ∨ (¬e1 ∧ e3)

EVar(α) = {e1, e2, e3, e4}

p : EVar(α) → [0, 1]

p(e1) = 3/10, p(e2) = 3/7, p(e3) = p(e4) = 1/2

Figure 3: A DNF instance Iα
p

where the condition assigned to each fact is a logical formula over
event variables—probabilistically independent Boolean (Bernoulli)
random variables. In pc-tables conditions can be phrased asarbi-
trary propositional-logic formulas, which renders the most basic
operations as intractable, since, for one, it is NP-complete even
to decide whether a given fact occurs with a nonzero probability.
Thus, our focus is on two restricted representations that correspond
to (or subsume) various representations in the literature.In the first,
conditions are in disjunctive normal form (DNF), and in the second,
the facts are probabilistically independent. Next, we givethe for-
mal definitions.

We assume an infinite setEVar of event variables. Let R be a
schema. ADNF instance(over R) comprises an instanceI over
R, a functionα that maps every factf of I to a DNF formulaα(f)
overEVar, and a functionp : EVar(α) → [0, 1] whereEVar(α)
is the set of all the event variables that appear in the image of α.
The DNF instance given byI , α andp is denoted byIα

p . A DNF
instanceIα

p naturally encodes a p-instance, which we denote by
p-space(Iα

p ), where a sampleI ′ is obtained as follows. First, a
random truth assignmentτ : EVar(α) → {true, false} is chosen
for the event variables ofI ; this assignment is obtained by indepen-
dently picking a random Boolean valueτ (e), with probabilityp(e)
for true, for each membere of EVar(α). Second, all the factsf
such thatτ satisfies the formulaα(f) are selected as members ofI ′

(alternatively,I ′ is obtained fromI by removing all the factsf such
thatα(f) is violated). Thus,p-space(Iα

p ) is the finite p-instancẽI
such thatΩ+(Ĩ) comprises instances with facts fromI , and for all
I ′ ⊆ I the probabilityp

Ĩ
(I ′) is that of obtainingI ′ in the above

process (namely, the sum of the probabilities of all the assignments

Iα
p

Factf α(f) p(α(f))

re Researcher(Emma, UCSD) e′0 1.0

rj Researcher(John, UCSD) e′1 0.9

aeir RArea(Emma, IR) e′2 0.6

aedb RArea(Emma, DB) e′3 0.4

ajdb RArea(John, DB) e′4 0.4

ajai RArea(John, AI) e′5 0.5

Figure 4: A tuple-independent instance Iα
p



that satisfy every formula ofI ′ and none ofI \ I ′).

EXAMPLE 5.1. Figure 3 depicts a DNF instanceIα
p . The table

on the top of the figure has a row for each fact, and the right column
contains the condition of the corresponding fact. As shown in the
middle part of the figure,EVar(α) contains the four event variables
e1, . . . , e4. Finally, the functionp is specified in the bottom.

Note that the facts ofI are those that are depicted in the up-
per row of Figure 1, that is, the facts of the p-instanceĨ. The
reader can verify thatIα

p encodes6 exactlythe p-instancẽI; that is,
Ĩ = p-space(Iα

p ) (which means that̃I andp-space(Iα
p ) have the

same support, and the same probability for each instance in their
support). As an example, let us compute the probability of the in-
stanceI5 = {re, aedb} (from Figure 1). In general, an instance
can be produced by multiple truth assignments, butI5 is produced
by only the assignment that maps all four variables tofalse, be-
causerj /∈ I5. Let τ be that assignment. Observe thatτ indeed
producesI5 since it violates the condition of every fact other than
re andaedb. Therefore, the probability ofI5 is the probability of
τ , namely, 7

10
× 4

7
× 1

2
× 1

2
= 28

280
= 0.1. As another example,

the reader can verify that the assignmentsτ that mape1 to true

are exactly those that result in the instanceI1 = {re, rj, aeir, ajdb};
therefore, the probability ofI1 is p(e1) = 0.3.

In [24] it is shown that every finite p-instance can be repre-
sented by means of Boolean pc-tables (i.e., Boolean pc-tables are
“complete”). In particular, every finite p-instancẽI is equal to
p-space(Iα

p ) for some DNF instanceIα
p , since every formula in

propositional logic can be transformed into DNF. Note that this
translation may entail an exponential blowup. But, one can effi-
ciently translate into DNF instances other representations likeblock-
independent disjointdatabases [38–40] andprobabilistic rdb’s[31].

A special case of a DNF instance is one where tuples are proba-
bilistically independent. Formally, atuple-independentinstance is
a DNF instanceIα

p , such that for all factsf ∈ I , the conditionα(f)
is adistinctatomic event variableef (i.e.,ef 6= eg for f 6= g); in
particular, the facts ofIα

p are probabilistically independent. We re-
quire a tuple-independent instanceIα

p to be such that the functionp
is strictly positive (i.e.,p(e) > 0 for all e ∈ EVar(α)). This is not
a restriction, since a fact with zero-probability event cansimply be
removed.

EXAMPLE 5.2. Figure 4 depicts a tuple-independent instance
Iα

p . Each row shows a factf , the unique variablee′i = α(f) and
the probabilityp(e′i). The facts of Figure 4 are the same as those of
Figure 1 (and those of Figure 3, which is discussed in Example5.1).
Let Ĩ be as in Figure 1. The probability of each factf in Iα

p is
the marginal probability off in Ĩ (i.e., p(α(f)) is the sum of the
probabilities of the instancesI ∈ Ω+(Ĩ) with f ∈ I). However,
unlike Figure 3, the instanceIα

p of Figure 4 doesnot encodẽI (that
is, p-space(Iα

p ) 6= Ĩ). Moreover, no tuple-independent instance
encodes̃I, simply because the facts ofĨ are not independent. As an
example, the factsaeir andaedb are mutually exclusive iñI (hence,
they are not independent).

In terms of representations of probabilistic data in the literature,
tuple-independent instances are sets ofp-?-tables[24], and they are
the same as thetuple-independent probabilistic structuresof [11]
(calledprobabilistic databasesin [12]). We could avoid using event
variables in tuple-independent instances, and just write anumber
next to each fact (as done in [11, 12]). However, it is convenient
6The translation of̃I into Iα

p follows standard techniques of en-
coding finite p-spaces by annotations (see, e.g., [24,44]).

for us to syntactically view these instances as special cases of DNF
instances.

Consider a schema mappingM = (S,T,Σ). A source DNF
instanceis a DNF instanceIα

p overS, such thatI is a ground in-
stance, and atarget DNF instanceis a DNF instanceJβ

q over T
(J is not necessarily ground). Special cases are source and tar-
get tuple-independent instances. Clearly, ifIα

p andJβ
q are source

and target DNF instances, thenp-space(Iα
p ) andp-space(Jβ

q ) are
source and target p-instances, respectively.

5.2 Tuple/Equality-Generating Dependencies
We consider two specific types of dependencies that were studied

in past research on data exchange (e.g., [15,16]); each dependency
is a tuple-generating dependency(tgd) or an equality-generating
dependency(egd) [5]. More particularly, let(S,T,Σ) be a schema
mapping. Asource-to-target tgd(st-tgd) is a formula of the form

∀x (ϕS(x) → ∃yψT(x,y)) ,

a target tgd(t-tgd) is one of the form

∀x (ϕT(x) → ∃yψT(x,y)) ,

and atarget egd(t-egd) has the form

∀x (ϕT(x) → (x1 = x2)) .

In the above formulas,ϕS(x) is a conjunction of atomic formulas
overS, and each ofϕT(x) andψT(x,y) is a conjunction of atomic
formulas overT. Moreover, all the variables ofx appear in both
ϕS(x) andϕT(x), andx contains the variablesx1 andx2. As a
special case,full st-tgds andfull t-tgds are ones that do not contain
existentially quantified variables (i.e.,y is empty).

5.3 Complexity Results
We usedata complexityfor analyzing the computational prob-

lems that we address. In particular, we assume that the schema
mappingM = (S,T,Σ) is fixed, and the input consists of the
source DNF instanceIα

p . If a queryQ is involved, then it is fixed
as well. For all variablese ∈ EVar(α), the numberp(e) is a ratio-
nal number represented by a pair of integers (the numerator and the
denominator). Finally, we consider only schema mappings where
the setΣ of dependencies is the union of finite setsΣ1 andΣ2, such
thatΣ1 contains only st-tgds and t-egds, andΣ2 is aweakly acyclic
set of t-tgds (see [15] for the formal definition of weak acyclicity).

The complexity results are shown in Table 1. We study five
computational problems, and give their complexity for eachof the
two types of source p-instances: the top five rows of Table 1 con-
sider source DNF instances, and the bottom five rows are for source
tuple-independent instances. Each row is associated with aspecific
problem. Each column corresponds to a class of schema mappings.
For example, the column entitled “full st-tgds, t-egds” considers
schema mappings(S,T,Σ) such thatΣ contains only full st-tgds
and t-egds. An upper bound (e.g., “PTIME” or “FP”) refers to all
schema mappings in the corresponding column, whereas a lower
bound (e.g., “no FPRAS if P6= RP” or “/∈FP if NP 6= RP”) means
that thereexistsa schema mapping, in the corresponding column,
for which the result holds. By “coNP-complete” we mean that the
problem is in coNP for all schema mappings in the correspond-
ing column, and there is a schema mapping, in the corresponding
column, where the problem is coNP-hard. The meaning of “FP#P-
complete” is similar (we later give the definition ofFP#P). Next,
we explain the problems we study and the complexity results.

Existence of p-solutions. The first problem is that of deciding
whether a p-solution exists. This problem is the same as deciding
whether auniversalp-solution exists, as it follows from [15] and



Iα
p Problem st-tgds, t-egds,

w.a. t-tgds
st-tgds, t-egds

st-tgds,
w.a. t-tgds

full st-tgds,
t-egds, full t-tgds

full st-tgds,
full t-tgds

full st-tgds,
t-egds

st-tgds full st-tgds

D
N

F

Existence of a
(U.) p-Solution

coNP-
complete

coNP-
complete

trivial coNP-complete trivial PTIME trivial trivial

Materializing a
p-Solution

/∈ FP if
P 6= NP

/∈ FP if
P 6= NP

FP /∈ FP if P 6= NP FP FP FP FP

Materializing a
U. p-Solution

/∈ FP if
P 6= NP

/∈ FP if
P 6= NP

/∈ FP if
P 6= NP

/∈ FP if P 6= NP
/∈ FP if

P 6= NP
FP FP FP

Target UCQ:
Exact

FP
#P-complete

Target UCQ:
Approx.

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

FPRAS FPRAS FPRAS

T
uple-Independent

Existence of a
(U.) p-Solution PTIME PTIME trivial PTIME trivial PTIME trivial trivial

Materializing a
p-Solution

FP

Materializing a
U. p-Solution

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

/∈ FP if
RP 6= NP

FP FP FP

Target UCQ:
Exact

FP
#P-complete

Target UCQ:
Approx.

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

no FPRAS if
RP 6= NP

FPAS FPAS FPAS

Table 1: Complexity of testing for the existence of a (universal) p-solution, materializing a candidate (universal) p-solution as a DNF
instance, and (exact and approximate) evaluation of target UCQs

Proposition 4.3 that (for the class of schema mappings we study)
a p-solution exists if and only if a universal one exists. This prob-
lem corresponds to the rows of Table 1 entitled “Existence of a
(U.) p-Solution.” By “trivial” we mean that a p-solution always ex-
ists. These are the cases whereΣ is the union of a set of st-tgds
and a weakly acyclic set of t-tgds (andΣ has no t-egds). Observe
that for tuple-independent instances, existence of p-solutions is al-
ways tractable or trivial. For DNF instances, however, the nontriv-
ial cases are coNP-complete, except for the tractable case whereΣ
contains full st-tgds and t-egds.

Materialization. The second problem corresponds to the rows
entitled “Materializing a p-Solution,” and is that of materializing
a candidate p-solution, namely, a target p-instancẽJ that forms a
p-solutionif one exists. We restrict to generation of candidate p-
solutionsJ̃ that are represented as DNF instancesJβ

q (i.e., J̃ =

p-space(Jβ
q )). The third problem is the universal version of the

second, namely, generation of acandidate universal p-solution, and
it corresponds to the rows entitled “Materializing a U. p-Solution.”
For these problems, the table contains three types of results: FP,7

not in FP unless P= NP, and not in FP unless RP= NP.8

Table 1 shows that, for source DNF instances, we can some-
times efficiently materialize a candidate universal p-solution (e.g.,
whenΣ has only st-tgds) whereas in other cases we cannot effi-
ciently materialize even a (not necessarily universal) candidate p-
solution. If source instances are tuple-independent, thenmateri-
alizing a candidate p-solution is always tractable. However, for
materializing candidate universal p-solutions, the intractable cases
for source DNF instances remain intractable for tuple-independent
instances. The positive results are obtained by combining the chase
algorithm [5,15,35] with the known concept of maintaining condi-
tions (or provenance) in relational operators, which is used in [23,

7FP is the class of polynomial-time computable functions.
8RP comprises the sets that are efficiently recognizable by a ran-
domized algorithm with a bounded one-sided error (i.e., theanswer
may mistakenly be “no”). NP=RP is equivalent to NP⊆BPP [32]
(where BPP comprises the sets that are efficiently recognizable by a
randomized algorithm with a bounded two-sided error) and implies
that BPP contains the whole polynomial hierarchy [48].

24,27] for showing closure of annotated databases under relational
algebra.9 The lower bounds are proved using the inapproximability
of determining the number of assignments satisfying a monotone
2-CNF formula (see, e.g., [49]), and the Monte-Carlo algorithm
of [29] as a reduction technique.

Answering target UCQs. The fourth problem is that of evaluat-
ing unions of conjunctive queries, and it corresponds to therows of
Table 1 entitled “Target UCQ: Exact.” Formally, for a schema map-
ping (S,T,Σ) and a UCQQ overT, the problem is the following.
Given a source DNF instanceIα

p and a tuplea of constants, com-
puteconf Q(a). As shown in the table, in every studied case (even
when there are only full st-tgds and source instances are tuple-
independent) there is a schema mapping such that this problem is
FP#P-complete. Recall thatFP#P is the class of functions that
are efficiently computable using an oracle to some function in #P.10

Note that a functionF isFP#P-hard11 if there is a polynomial-time
Turing reduction(or Cook reduction) from every function inFP#P

toF . Actually, we can show even more: in the most restricted case
(source tuple-independent instances and only full st-tgds), for ev-
ery nontrivial target UCQQ there exists a schema mapping such
that evaluatingQ is FP#P-hard, where atrivial UCQ is a Boolean
UCQ that is equivalent totrue. To show this lower bound, we
use hardness results of [11,12]; membership inFP#P is shown by
adapting some of the techniques given in [21].

Given this intractability, the best that one can hope for when
looking for tractable classes of schema mappings (in terms of target-
query evaluation) is an evaluation in anapproximatemanner; in
practice, such an evaluation is often good enough. So, the fifth
problem is that of approximately evaluating target UCQs, and it is
considered in the rows of Table 1 entitled “Target UCQ: Approx.”
Formally, let(S,T,Σ) be a schema mapping, and letQ be a UCQ
overT. A fully polynomial randomized approximation scheme(ab-

9A similar construction is used in [22] for the task of propagating
trust conditionsthrough data exchange between peers in a network.

10#P [47] is the class of functions that count the number of accepting
paths of the input of an NP machine.

11Using an oracle to a #P-hard (orFP#P-hard) function, one can
efficiently solve every problem in the polynomial hierarchy[46].



brev.FPRAS) for Q is a randomized algorithmA that gets as input
a DNF instanceIα

p over S, a tuplea, and a numberε > 0, and
returns a (random) valueA(Iα

p ,a) such that

PrA

(

p

1 + ε
≤ A(Iα

p ,a) ≤ (1 + ε)p

)

≥
2

3
,

wherep = conf Q(a).12 Moreover,A is required to run in polyno-
mial time in the size ofIα

p and in1/ε. An even stronger notion is
that of FPAS, where the approximation algorithm is deterministic
(i.e., the reliability factor2/3 is replaced with1).

Table 1 shows that for source DNF instances, there is an FPRAS
for a UCQ whenΣ contains only st-tgds, or full st-tgds with t-
egds. For suchΣ, there is even an FPAS if source instances are
tuple-independent. To prove these results, we use techniques for
approximating the number of satisfying assignments for a DNF for-
mula [29,34] (as done in, e.g., [12,30]). For the rest of the studied
cases, there is always a schema mappingΣ and a UCQQ such that
no FPRAS exists unless RP= NP. Actually, this holds even if we
fix the approximation ratioε (that is, the running time of the algo-
rithm is no longer required to depend polynomially on1/ε). More-
over, this holds forall nontrivial UCQsQ, except for the cell of the
column entitled “st-tgds, t-egds” in the bottom row of the table (in
the “tuple-independent” part), where this result holds forall UCQs
Q except fornear-trivial ones. A UCQQ over a schemaT is near-
trivial if it is a statement about non-emptiness of the relations; more
precisely, it is a Boolean UCQ such thatQ(J1) = Q(J2) whenever
J1 andJ2 are instances such thatRJ1 = ∅ if and only ifRJ2 = ∅
for all relation symbolsR of T. Note that this notion is weaker than
UCQ triviality; this weakening is necessary, since it can beshown
that over tuple-independent source instances, there is an FPAS for
every near-trivial UCQ ifΣ contains only st-tgds and t-egds.

General comments. Table 1 shows that the studied problems
are often hard. On the positive side, observe that for the rightmost
three columns, all the problems (except for exact query answering)
are tractable. Not all the possible combinations of (full) st-tgds,
(full) t-tgds and t-egds are mentioned in Table 1. However, this
table actuallycoversall possible combinations, in the following
sense. Each missing combination lies between two combinations
that have the same complexity results in the table. For example,
the combination “st-tgds, full t-tgds” (which is not in the table) is
between “full st-tgds, full t-tgds” and “st-tgds, w.a. t-tgds,” and the
complexity results for these two combinations are exactly the same;
hence, these results also hold for the missing “st-tgds, full t-tgds.”

6. PROBABILISTIC MAPPINGS
In this section, we generalize the framework and results of the

previous sections to accommodate uncertainty in the schemamap-
ping. More formally, in this generalization not only is the source
data probabilistic, but the set of dependencies specifyingthe schema
mapping is probabilistic as well. Moreover, we will allow the
source p-instance and the probabilistic mapping to be arbitrarily
correlated. Next, we give the basic definitions. Later, we discuss
the generalization of the results of the previous sections to this new
setting.

Let S andT be two schemas with no relation symbols in com-
mon. We assume that there is a fixed countably infinite setDep

ST

of formulas over〈S,T〉, such that every setΣ of dependencies
specifying a schema mapping is a finite subset ofDep

ST
. We de-

note byDep∗
ST

the (countable) set of all finite subsetsΣ of Dep
ST

.

12Note that the choice of the reliability factor2/3 is arbitrary, since
one can improve it to(1 − δ) by taking the median ofO(log δ)
trials [28].

Up until now, we considered schema mappings that are specified
by triples(S,T,Σ) whereΣ ∈ Dep∗

ST
. Here, as a starting point,

we are interested in replacing the fixedΣ with a p-spaceΣ̃ over
Dep∗

ST
. Thus, both the source instanceĨ and the schema map-

ping (S,T, Σ̃) are probabilistic. However, separating the prob-
abilistic schema mapping from the source p-instance necessitates
the assumption of probabilistic independence (or some other spe-
cific correlation) between the two. In practice, such an assumption
is often a limitation. Therefore, in this section wedo notuse these
two notions; instead, we use a generalized definition that isbased
on the notion of aprobabilistic problem(abbrev.p-problem). The
formal definition is the following.

DEFINITION 6.1. (p-Problem) Let S andT be schemas with-
out common relation symbols. Ap-problem(from S to T) is a
p-spaceP̃ overDep∗

ST
× Instc(S).

Observe that the marginals of a p-problem̃P define a unique
probabilistic schema mapping(S,T, Σ̃) and a unique source p-
instanceĨ; however,P̃ is not necessarily the product space ofĨ
andΣ̃.

A p-solutionJ̃ for a p-problemP̃ is defined similarly to the case
of a fixedΣ, except that now the probabilistic match is from̃P to
J̃ (rather than from the source p-instanceĨ to J̃ ). Formally, given
a p-problemP̃ from S to T, a target p-instancẽJ is ap-solution
(for P̃) if there is adSOLST-match ofP̃ in J̃ , wheredSOLST

is the binary relation between pairs(Σ, I) and instancesJ , such
that I ∈ Instc(S), J ∈ Inst(T), Σ ∈ Dep∗

ST
, and〈I, J〉 |= Σ.

(The letterd in dSOLST denotes that dependencies are involved in
the relation.) Similarly,J̃ is auniversal p-solution(for P̃) if there
is adUSOLST-match ofP̃ in J̃ , wheredUSOLST is the relation
between pairs(Σ, I) and instancesJ such thatJ is a universal
solution forI w.r.t. Σ.

6.1 Generalization of the Results
We now discuss the generalization of our results to the notion

of a p-problem. Basically,all the results generalize to p-problems.
For Sections 3 and 4, this generalization is via a rather mechanical
replacement of the p-spacẽI with the p-spacẽP . Generalizing the
results of Section 5 is a little more involved.

We start with the results of Sections 3 and 4. In Theorem 3.6,
we need to replace every occurrence ofĨ with P̃ and, in addition,
the eventE of Part 2 is a subset ofDep∗

ST
× Instc(S) (rather than

Instc(S)). In Theorem 4.6, we replace the source instanceĨ with a
p-problemP̃ ; moreover, the setsSOLM andUSOLM are replaced
with dSOLST anddUSOLST, respectively. In Proposition 4.7 the
probability spacẽI is replaced with̃P ; that is,conf Q(a) is equal to

the probability that a random pair(Σ, I) of P̃ is such thata is a cer-
tain answer (i.e.,a ∈ certain(Q, I,Σ)). Finally, Proposition 4.9
generalizes, again, by simply replacingĨ with P̃ .

We now show how the results of Section 5 are generalized. For
that, we need to explain how a p-problem is encoded. Recall that a
source p-instance is encoded as a DNF instanceIα

p . We use a simi-
lar encoding for a probabilistic mapping. That is, every dependency
σ is assigned a DNF formula overEVar (namely, a condition) and
each variable is given a probability in[0, 1]. Formally, aDNF
schema mapping(S,T,Σγ

r ) comprises source and target schemas
S andT (without common relation symbols), a setΣ ∈ Dep∗

ST
of

dependencies, a functionγ that assigns to eachσ ∈ Σ a DNF for-
mulaγ(σ) overEVar, and a functionr : EVar(γ) → [0, 1] (where,
as usual,EVar(γ) is the set of all the event variables that appear
in the image ofγ). Now, we allow the source DNF instanceIα

p

and the DNF schema mapping(S,T,Σγ
r ) to share events, that is,



EVar(α) andEVar(γ) are not necessarily disjoint. In this case, we
requirep andr to agree on the common variables (i.e.,p(e) = r(e)
for all e ∈ EVar(α) ∩ EVar(γ)).

A DNF schema mapping(S,T,Σγ
r ) and a source DNF instance

Iα
p naturally encode a finite p-problem fromS toT, where a sample

(Σ′, I ′) is obtained as follows. First, a random truth assignment
τ : EVar(γ) ∪ EVar(α) → {true, false} is chosen for all the
event variablese of (S,T,Σγ

r ) andIα
p , by independently picking

a random Boolean valueτ (e), such that the probability fortrue is
r(e) orp(e) (depending on whethere ∈ EVar(γ) or e ∈ EVar(α)).
Second, all the members ofΣ andI having their condition satisfied
by τ are selected as members ofΣ′ andI ′, respectively. We denote
this probability space byp-space(Σγ

r , I
α
p ). Observe that, sinceγ

andα are allowed to use the same variables, the marginal source
p-instance and probabilistic schema mapping are not necessarily
probabilistically independent. Moreover, it is easy to show (e.g., by
using the encoding of finite probabilistic databases given in [1,24])
that every finite p-problem can be represented as a combination of
a DNF schema mapping(S,T,Σγ

r ) and a source DNF instanceIα
p .

When analyzing the complexity of the problems considered in
Section 5, we make the assumption that the DNF schema mapping
(S,T,Σγ

r ) is fixed (i.e., as in Section 5, data complexity is actually
analyzed) and, moreover, that every sample(S,T,Σ′) (obtained
by choosing a random truth assignment forEVar(γ)) is a union of
two finite sets, such that the first contains only st-tgds and t-egds,
and the second is a weakly acyclic set of t-tgds. Thus, as in Sec-
tion 5, the input for a computational problem consists of a source
DNF (or tuple-independent) instanceIα

p . Then, all the results of
Table 1 remain correct. For example, ifΣ contains only st-tgds
and t-tgds (and the above assumption about the samples(S,T,Σ′)
of (S,T,Σγ

r ) holds), then testing whether a p-solution for the p-
problemp-space(Σγ

r , I
α
p ) exists, given a source DNF instanceIα

p ,
is coNP-complete, but it is solvable in polynomial time ifIα

p is a
tuple-independent instance.

6.2 Probabilistic Mappings in the Literature
Data integration under uncertainty is studied in [13, 14, 41, 42],

where the schema mapping (which is called there ap-mapping) is
probabilistic and the source data are deterministic. We cancompare
our basic notions to those of [13, 14, 41, 42] by restricting our p-
problem to a finite one where the source instance is deterministic.

Given a source instanceI and a p-mappingM̃, a by-table so-
lution, as defined in [13, 42], is a special case of what we call a
p-solution, namely, a finite p-solutioñJ such that there is aleft-
trivial dSOLST-match of the corresponding p-problem̃P (namely,
the product spacẽM× I) in J̃ . (See Section 3.1 for the definition
of a left-trivial probabilistic match.) Thus, the notion ofa by-table
solution is more restrictive than our notion of a p-solution(even if
we restrict to deterministic source instances); namely, a by-table
solution is a p-solution but not necessarily vice versa. In particular,
the characterization of Theorem 3.6 for a p-solution does not hold
for a by-table solution. As an example, for a by-table solution J̃ ,
the setΩ+(J̃ ) must be at most as large asΩ+(M̃) whereas no
restriction of this nature exists for our p-solution.

A different type of solution studied (explicitly or implicitly) in [13,
14,41] is theby-tuple solution.13 A by-tuple solution differs from a
by-table solution in that a by-tuple solution allows different tuples
to be transformed by different possible worlds of the p-mapping;
that is, for each tuple there is a probabilistic choice of themapping
to apply thereon. This notion is restrictive, since it is makes sense
only when the mappings are transformations of individual facts. In

13In [42], only the by-table type is considered.

particular, the mappings of [13, 14, 41] for the by-tuple semantics
are essentiallyinclusion dependencies[7].

7. CONCLUSIONS
In this paper, we developed a broad and flexible framework for

data exchange over probabilistic data. For that, we had to consider
the fundamental notions of traditional data exchange, suchas solu-
tion, universal solution, and target query evaluation, andgeneralize
them appropriately. In particular, to accommodate source and tar-
get p-instances we defined the notion of ap-solutionin terms of a
probabilistic match (namely, theSOLM-match). We explored the
coherence of our basic definitions by scrutinizing them and pro-
viding several different characterizations for each of them. We ex-
plored the application of the framework to a concrete setting where
p-instances are compactly encoded by annotations. Finally, we
generalized the framework to allow for probabilistic schema map-
pings, by introducing thep-problemas a construct that represents a
joint probability distribution over the data and mappings.

The notion of a probabilistic match allows us to systematically
extend other concepts of data exchange into the probabilistic set-
ting. An example is thecore solution[16, 20]; in fact, it turns out
that this extension of the core has various desired properties, which
will be presented in a full version of the paper.
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