
Service Discovery in Ubiquitous Computing Environments

Luis Javier Suarez

GIT

University of Cauca

Popayán, Colombia

ljsuarez@unicauca.edu.co

Luis Antonio Rojas

GIT

University of Cauca

Popayán, Colombia

luisrojas@unicauca.edu.co

Juan Carlos Corrales

GIT

University of Cauca

Popayán, Colombia

jcorral@unicauca.edu.co

Luke Albert Steller

Faculty of I.T.

Monash, University

Victoria, Australia

Luke.Steller@gmail.com

Abstract—Today, there is an increasing abundance of

information and services available to mobile users. Many

ubiquitous services retrieval architectures are based on

keyword or interface matching which does not provide very

accurate match results. More recently, semantic languages

have been used to improve accuracy. However, this often

requires the use of reasoning software which is very resource

intensive. Therefore, in this paper we propose a semantic

approach to service retrieval in ubiquitous computing

environments, which improves accuracy over keyword /

interface matching approaches but avoids the use of a semantic

reasoned in order to provide improved efficiency over

inference based proposals. In addition, our proposal

incorporates a user profile to limit the search space and takes

account of the capabilities of the requesting mobile device. Our

approach also transforms BPEL service descriptions into a

graph to perform atomic-level graph matching. Thus, we

calculate semantic similarity between two graph nodes to

provide a service ranking, so that it is possible obtain an

approximate match if there is no service that exactly matches

the user requirements. We have implemented our approach

and provide a performance evaluation on a mobile device

which clearly demonstrates that our approach is more efficient

than reasoning and produces accurate match results.

Keywords-matching; context-aware discovery; ubiquitous

environments; personalization

I. INTRODUCTION

The number of mobile subscribers is reaching the 3

billion mark, worldwide [1]. The vision of ubiquitous

computing is the amicable integration of small devices,

computing and communication capabilities with humans [2]

to assist them in performing their tasks, anytime and

anywhere. The goal is for this integration to be as seamless

as possible, ideally unconscious to the human user. Service

oriented architectures [3], are useful to support transparent

integration of software applications in ubiquitous

environments [4]. Service discovery is used to match the

requirements of a mobile user with the capabilities of

existing services available. Since ubiquitous mobile

environments are extremely dynamic, this matching process

must be both accurate / relevant [5] and fast /efficient [6].

Service discovery in ubiquitous environments presents

both new opportunities and new challenges [7, 8]. On one

hand there is an abundance of contextual information about

the mobile which can enrich the service discovery process.

On the other hand mobile devices used in ubiquitous

environments are typically resource constrained and cannot

interact with all services.
In this paper we propose a service discovery architecture

for ubiquitous environments which considers the preferences
of mobile users, the resource specifications of the user’s
device and the delivery context to provide the flexibility to
reconfigure services according to environmental changes.

Typically the Business Process Execution Language
(BPEL) [9] is used as an orchestration language for services.
It is used to form executable business processes which
involve message exchange. The number of business
processes described using BPEL on the web and at an
enterprise level is increasing. Additionally, BPEL is useful
for forming a composition of multiple services to meet the
user’s requirements when a single service alone cannot
perform the required task [10]. Therefore, in our approach
we propose an algorithm which matches services based on
BPEL descriptions.

It is well known that semantic matching is more accurate
than earlier approaches such as keyword / interface based
matching [11, 12]. Therefore, in order to meet the need for
accuracy, our matching algorithm evaluates semantic
distance between existing services. Many semantic matching
approaches utilize reasoners, however, the use of reasoners
has been shown to be extremely resource intensive [3, 13-
15]. Therefore, in order to support efficiency we avoid the
use of reasoners. Rather, we reduce the matching process to a
problem of graph matching by adapting existing algorithms
[16, 17]. As such our matching algorithm translates BPEL
processes into graph representations then matches these
graphs using semantic distance calculations [17].

We have implemented our proposed approach and
provide an evaluation on a resource constrained device
which shows that our approach supports both efficient
matching on a resource constrained device and effectively
provides accurate results.

The remainder of this paper is structured as follows: A
discussion of the current research in the field is given in
Section II. We present the high-level description of our
architecture and matching process in Section III. Then in
Section IV we discuss our approach to transform BPEL into
graphs. The overall ranking process is discussed in Section
V, followed by details about how two graph nodes are
compared in Section VI. In Section VII we discuss the way
in which our architecture filters services based on whether
they are capable of running on the user’s device. We provide

1

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

details about our implementation and evaluation in Section
VIII. Finally in Section IX we conclude the paper.

II. RELATED WORK

Service discovery is defined as the ability to find and use

a service based on a published description of its functionality

and operational parameters[18]. Service discovery can be

addressed under two main approaches: syntactic and

semantic discovery.

Syntactic discovery is based on interface matching

techniques (e.g., UDDI, ebXML, WSDL, IDL, RMI

interfaces, etc.) or keywords to search for services, requiring

exact matches at the syntactic level between service

descriptions and parameters employees [7, 19, 20], which

can result in that equivalent services at the logical level to be

discarded (e.g., two services described as printer and

printing may be differ syntactically but logically they are

equivalent).

Thus, while the syntax is focused on defining the services

from the input and output messages, types and parts of the

message, semantics aims to provide information about the

service functionality[19, 21].Thus, semantics improves

matching accuracy. The semantic representation of service

descriptions content enable machines to understand and

process their content, supporting the discovery and service

dynamic integration[7]. However, semantic descriptions

require reasoning applications which are resource intensive

applications which will significantly increase processing

time[22].
Therefore, we propose a service discovery approach for

ubiquitous environments based on semantic matching
without a reasoner. Our approach provides a ranked list of
services which completely or partially match a user request.
In addition, service retrieval process considers the
preferences of mobile users, the resource specifications of
the user’s device and the delivery context to provide the
flexibility to reconfigure services according to environmental
changes.

III. ARCHITECTURE AND MATCHING PROCESS

In this section we describe our proposed architecture to

perform semantic service discovery in ubiquitous

environments by considering the user request, user profile

and device context. In our approach, which is named U-

ServiceMatch, services and user requests are described

using BPEL. Figure 1 depicts our architecture which is

composed of the following modules:

 Advertiser: Service providers advertise their services as

BPEL documents, to the Advertiser Module, which

stores this service description into the Service

Repository.

 Requester: A service requesters is a mobile user which

submits a BPEL request for a service.

 BPEL Parser: This module transforms a BPEL service

description or user request into a graph, and vice versa.

 Device Repository: This repository stores the resource

capabilities of the requesting user’s device, including

processing power, screen size, input interface, etc.

 User Repository: This module stores details related to

the mobile user / requester including personal

information about the user and previously requested /

invoked services.

 Service Discovery: This module performs the matching

of a user request to service descriptions. It contains

several sub-modules including the Service Matcher

which performs the graph matching, the Context

Matcher which determines whether services can be

displayed on the user’s device and User Matcher which

matches user profiles.

Figure 1. Architecture U-ServiceMatch

The overall module interaction is presented as an activity
diagram in Figure 2. This can be described as follows.

A user submits a BPEL service description which is
transformed into a graph by the BPEL Parser. The Service
Discovery module then manages the matching process as
follows. The user request graph is first matched (by the
Service Matcher) with services that have been consumed in
the past by the current user or other users with a similar user
profile as the current user. Similar users are found by the
User Matcher module. This step is designed to limit the
search space. If a sufficiently matching service was not
found, then the user request is matched by the Service
Matcher against all other services in the Service Repository.
Each service in the ranked list of services is checked to
ensure it can be invoked / consumed by the requesting device
by the Context Matcher. A final ranked service list is
provided to the requester.

In the remainder of this paper we will discuss the
following. In Section IV we will discuss the BPEL to graph
transformation which is handled by the BPEL Parser
module. In Section V we will present the overall ranking
process and user profile matching handled by the Service
Discovery module which will interact with the User Matcher
sub-module, and the User and Device Repositories. In
Section VI we will discuss how two graph nodes are
compared by the Service Matcher module. In Section VII we
will talk over the way in which our Context Matcher filters
services based on whether they are capable of running on the
user’s device.

2

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

IV. BPEL TO GRAPH TRANSFORMATION

In this work the available services in the ubiquitous

network are represented by basic activities contained in a

business process, denoted by BPEL. Thus, in this section,

we will discuss how BPEL processes are transformed to

graphs. Similarly, the nodes of the transformed graph

represent the activities of the BPEL process.

Transforming BPEL to Graph:Graphs are a general and

powerful data structure for representing objects and

concepts. Thus, in this section will present the equivalence

between a BPEL description and a formal representation of

Graphs.

A graph G, in its basic form, is a pair G = (N, E) where

N is a non-empty finite set of elements called nodes (also

called vertices or points) such that N = {n1,…, nm}.E is a

multi-set of pairs (ni, nk) is not ordered distinct elements of

N called edges, such that and E N × N. N and E are

distinct, such that N ∩ E = . When all the edges have

directions, and therefore (ni, nk) and (nk, ni) can be

distinguished, the graph is directed. Thus, a directed

graph or digraphG = (N, E) consists of a set N of nodes

and a set E of edges, which are ordered pairs of elements of

N.

The BPEL Parsermodule transforms a BPEL behavior

model into a process graph. A process graphhas at least one

start node and can have multiple end nodes.The graph can

have two kindof nodes:(1) regular nodes representing BPEL

activities; and (2) BPEL connectors representing splitand

join rules of type XOR or AND. Nodes are connected via

edges which may have anoptional guard. Guards are

conditions that can evaluate to true or false.

We used the flettening strategy presented in [23] to

transform a BPEL document to a process graph. The general

idea is to map structured activities to respective process

graph fragments, Figure 3. The algorithm traverses the

nested structure of BPEL control flow in a top-down manner

and recursively applies a transformation procedure to each

type of structured activity.

A BPEL basic activity is transformed into a graph node

n. The BPEL sequence is transformed by connecting all

nested activities with graph edges; each sub-activity is then

transformed recursively. For the BPEL while activity, a loop

is created between an XOR join and a BPELXOR split, the

condition is added to the edge. The graph representation of

BPEL switch consists of a block of alternative branches

between a BPELXOR split and a BPELXOR join. The

branching conditions are each associated with an edge. The

BPEL flow is transformed to a block of parallel branches

starting with a BPEL AND split and synchronized with a

BPEL AND join.

Figure 3.Correspondence between BPEL elements and Graph elements

The graph nodes n that represent BPEL activities have

attributes which reflect the respective activity. These are

defined as ActivityType AT(n), Operation Op(n), PortType

PT(n) and PartnerLink PL(n). AT(n) may contain one of the

following values Invoke
syn

, Invoke
asyn

, Receive or Reply. The

graph nodes n that represent BPEL connectors have two

attributes defined as: ConnectorType(n) and ActivityType(n).

Figure 2. Matching of BPEL Basic Activities

3

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

ConnectorType(n) may contain one of the following

values: AND-split, AND-join, XOR-split or XOR-join.

ActivityType(n) is the BPEL structured activity from which

the node was derived during transformation. Figure 3 shows

the correspondence between BPEL constructs and graph

elements.

V. USER PROFILE MATCHING AND SERVICE RANKING

To produce a ranked set of services the mobile user’s

service request node ni must be matched against each service

node nj contained within a set S of potential services. There

may be many potential services in the Service Repository.

Therefore, we first check if any user has performed the same

request previously, and if so obtain a ranked service list from

the cache. If the request is not in the cache, the matching

algorithm matches the user request against those services

which have been invoked previously by the same user or a

different user which has a similar user profile as the current

user. If a valid service has still not been found, then the

remaining services in the Service Repository are compared

against the request.

This process is the focus of this section. First we will

describe the structure of our user profiles then secondly we

will describe the matching algorithm which provides a

ranked list of services.

A. User Profile Structure

The structure of our user profiles is based on [24]. These
profiles comprise domain of interest and personal data as
shown in Figure 4. In this paper, we present a proof of
concept which takes a few of these characteristics into
consideration. In future work, we will expand the contextual
attributes which are taken into consideration to provide a
broader matching of user profile similarity.

Figure 4. Meta-Model of User Profile

Several studies use different methods for collecting and

handling domain of interest information, depending on the

application: Web mining [25], clustering [26],

Application logs [27], etc. Each of these mechanisms

generates a set of parameters and their possible values for a

given domain of interest. The definition of these parameters

and values are not established in this work, due to the high

level of analysis and decoupling to a specific field.

Personal data falls into two categories: data

identification and demographics. The user profile meta-

model, is stored in the User Repository. In our system, we

compare a user profile with other profiles in order to

establish a set of similar user profiles. We assume that users

with similar profiles will request similar services [28]. Thus,

we suggest services to a user if these have been requested or

consumed by a similar user in order to reduce the search

space for potential services to compare against the user

request. To realize this goal, we will propose the matching

process in the next subsection.

B. Rank Services

Algorithm 1 defines the algorithm for obtaining a ranked
set of services which match the user request. This algorithm
makes use of two functions. Let the function
GetRankedServicesFromCache(n) provide a ranked list of
services from the cache for any user request n(if one exists).
If the current or another user has not submitted the request n
previously, then the algorithm retrieves a list of services
which the current user, or other users with a similar user
profile, has invoked in the past. Let ConsumedServices(pi)
denote a function which returns these services, where pi is
the user profile for the current user / requester.

Algorithm 1.RankServices

1. INPUTS: Node nq, UserProfile p

2. OUTPUT: RankedList RS /* ranked list of service nodes */

3. BEGIN
4. Let RS← GetRankedServicesFromCache(nq)

5. if RS != null then
6. return RS

7. else
8. Let S←ConsumedServices(p) /* where S is a set of nodes nk, such

that S = {n1, …, np} */

9. for each nkin Sdo

10. Let dist←CheckMatch(nk, nq) /*see Alg. 3, Sec. VI*/
11. ifdist< 1 then

12. RS← RS (dist, nk) /* add nk to set RS, ordered by

dist*/

13. end if

14. end for

15. end if

16. if BadSuggest(RS) then

17. RS←null

18. LetS = LookupServiceRepository(non-operational information)/*
where S is a set of nodes nk, such that S = {n1, …, np} */

19. for each nkin Sdo

20. Let dist ←CheckMatch(nk, nq) /*see Alg. 3 Sec. VI */

21. if dist< 1 then

22. RS← RS (dist, nk) /* add nk to set RS, ordered by dist

23. end if

24. end for

25. end if

26. return RS

27. END

The algorithm will obtain a match result by comparing
the user request node ni against each of these previously
invoked services and add these to a ranked list. The
CheckMatch(ni, np) is a function which returns a double
indicating the semantic similarity / distance between the

User Profile

Personal DataDomain of Interest

Identification Data

1..*

Demographics Data

1..*

Age

+Id

+Value

+MetricCivil Status

+Id

+Value

+Metric

0..1

0..1

Gender

+Id

+Value

+Metric

0..1

Address

+Id

+Value

+Metric

0..1

Name

+Id

+Value

+Metric

0..1
Email

+Id

+Value

+Metric

0..1

0..* 0..*

4

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

request node ni and a service node np, which will be defined
in Algorithm 3, Section VI.

Assume ConsumedServices passes each (pi, pj) pair to
CheckProfileMatch which is defined in Algorithm 2, where
pi is the user request and pj is all user profiles in the User
Repository module. Algorithm 2 compares the age, marital
status, gender and all interest domain attributes, associated
with the two user profiles, using the algorithm LS, which will
defined in Algorithm 4 in Section VI.

Let BadSuggest(RS) denote a function which returns true
if a given ranked list of services RS, does not contain enough
services which meet a semantic similarity threshold against
the user request. This condition is set by the requesting user.
In the case that a service which satisfactorily matches the
user request was not found (i.e. BadSuggest returns true),
then all other services in the Service Repository will be
compared with the service request to produce a ranked
service list. Let LookupServiceRepository denote a function
which returns the services from the Service Repository.

Algorithm 2.CheckProfileMatch

1. INPUTSUserProfile pi, UserProfile pj /* where a pk has attributes:
Set InterestDomains(pk), int Age(pk), String Marital(pk), String

Gender(pk) */

2. OUTPUT: double

3. BEGIN

4. Let m ← 0, g ← 0, maxI← 0

5. Let a = 1-{[|Age(pi) – Age(pj)|/[(Age(pi)+Age(pj))/2]}

6. if Marital(pi) = Marital(pj)then, m ← 1

7. if Gender(pi) = Gender(pj)then, g ← 1

8. for each value vain InterestDomains(pi) do

9. for each value vb in InterestDomains(pj) do

10. if LS(va,vb) >maxI /* calculate similarity of pi and pj*/ then

11. maxI= LS(va,vb)

12. end if

13. end for

14. end for

15. */Let w(y) be a user assigned weight of importance where y is an
attribute, Age(pi), Marital(pi), Gender(pi) or InterestDomains(Pi), such

that 0 ≤ w(y)≤1*/

return

* *

 * *
1

i i

i i

i i i

i

w Age p a w Marital p m

w Gender p g w IntegerDomains p maxI

w Age p w Marital p w Gender p

w InterestDomains p

16. END

In the next section we will define the CheckMatch
function which calculates the semantic similarity between
two graph nodes.

VI. ATOMIC-LEVEL GRAPH MATCHING

Matching the user request to a potential service involves

the matching of two BPEL activities (as was shown in

Figure 2). Let the request / query graph be denoted as GQ

and a service / target graph as GT. Before running the

matching algorithm for the nodes (ni, nj) where ni GQ and

nj GT, we organize / filter nodes (ni, nj) according to their

BPEL activity type (this is completed by the Activities

Classifier action in Figure 2). Therefore, only the nodes that

belong to the same activity type in GQ and GT, respectively,

are compared.

The organized nodes are then compared for matching

(this is completed by the Similarity Analyzer module shown

in Figure 2). A pair of nodes (ni, nj) are compared by

considering their semantic distance which is outlined in

Algorithm 3. This algorithm also makes use of Algorithm 4

which determines the linguistic similarity between two

nodes and returns a value between 1 and 0, where 1 denotes

a complete match.

Algorithm 3 starts by giving priority to comparison of

the operation attribute. If the two operation attributes are

similar it continuing with the calculation of the similarity of

other parameters (i.e. port type and partner link) to estimate

the semantic distance between the two activities. In the

algorithm, let w(Op(ni)), or w(PT(ni)), w(PL(ni)), denote

user specified weights of importance associated with Op(ni),

PT(ni), PL(ni) in the user request, respectively.

Algorithm 3.CheckMatch

1. INPUTS: Node ni, Node nj:/* where ni is a request node and nj is a

service node and a node np has attributes such that Op(np), PT(np),
PL(np), AT(np) as defined in Section IV */

2. OUTPUT: double

3. BEGIN

4. OPS←LS(Op(ni), Op(nj))/* Operation Similarity (see Alg. 4)*/

5. if OPS = 0 (different Operations) then

6. return 1

7. else

8. Let PTS←LS(PT(ni), PT(nj))/*PortType Similarity (see Alg. 4)*/

9. Let PLS← LS(PL(ni), PL(nj))/* PartnerLink Similarity (see Alg. 4)*/

10. */w(z) is a weight of importance associated with an attribute z in the
user request, such that z = Op(ni), or z=PT(ni), or z=PL(ni), where 0≤

w(z)≤ 1*/

Let dist ←

* *
1

i i i

i i i

w Op n OPS w PT n PTS w PL n PLS

w Op n w PT n w PL n

11. Return dist

12. end if

13. END

The LS function is defined in Algorithm 4 and is used to

calculate the linguistic similarity of the values associated

with the same attribute of two separate graph nodes ni and nj

(e.g., the value of Op(ni) compared to the value of Op(nj)).

Algorithm 4.LS /* LinguisticSimilarity */

1. INPUTS: String vi, String vj
2. OUTPUT: double

3. BEGIN

4.

{

 ()

 ()

 ()

 (())

where m1 ← NGram(vi, vj),m2 = CheckSynonym(vi, vj),

m3 = CheckAbbreviation(vi, vj) /* see [29] */
5. return LS

6. END

In this algorithm, let NGram, CheckAbbreviation and
CheckSynonym denote measures which are defined in [29].

5

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

NGram algorithm estimates the similarity according to a
common number of q-grams (a q-gram in this context refers
to a sequence of letters, q letters long, from a given word)
between the tags. CheckSynonym algorithm use WordNet
[30] linguistic dictionary to identify synonyms, It groups
English words into sets of synonyms called synsets. Synsets
are interlinked by means of conceptual-semantic and lexical
relations. The CheckAbbreviation algorithm uses a dictionary
of abbreviations appropriate to the application domain. If all
algorithms give a value of 1, then there is an exact match
between the tags. If all give a value of 0, then there is no
similarity between words. If the values produced by
CheckAbbreviation and Ngram are equal to 0 and
CheckSynonym value is between 0 and 1, the total value of
the similarity is equal to CheckSynonym. Finally, if all three
algorithms yield a value between 0 and 1, the linguistic
similarity is the average of the three.

VII. CONTEXT MANAGEMENT

Since mobile users carry their device with them

throughout their daily travels, there is an abundance of

contextual data available which can be fed into the service

matching process to provide more accurate search results

[22, 31]. Our architecture captures the resource capabilities

of the requesting user’s device and the resource requirements

for each service. The user’s device capabilities are stored in

our Device Repository and the service requirements of each

service are stored in the Service Repository. After the

matching process defined in the previous sections of this

paper, each service in the ranked list are checked to ensure

they will function on the user’s device. In the remainder of

this section we will describe the structure of user context

followed by the use of this information in the service ranking

process.

A. User Context Structure

We capture user context characteristics such as

processing power, modes of presentation, input interfaces,

connectivity, etc. According to [24] context constraints, are

defined as any information that could be used to characterize

an entity, where an entity can be a person or object that is

considered relevant to the interaction between user and an

application. We propose three dimensions for defining a

meta-model of user’s context:

a) Spatial Dimension: contains all the parameters that

are associated with geographical and spatial information of

the user;

b) Temporal Dimension: contains the date and time of

when a service is invoked;

c) Device DataDimension: contains information

related to the user’s mobile device such as installed

software, operating system, processing power, available

memory, etc. We capture this content using a CC/PP profile

[32].

These dimensions are illustrated in Figure 5.

Figure 5. Meta-Model of User´s Context

The Service Repository, supported by the work

presented in [33], stores BPEL documents and other XML

files which capture the business process of services with

context features. We define an XML meta-data, a model

based on EMF (Eclipse Modeling Framework) for

describing the restrictions specified by service providers or

service developers.

The CheckDeliveryContext function, defined in

Algorithm 5, obtains user’s context and the requirements of

a particular service.

Algorithm 5.CheckDeliveryContext

1. INPUTS: listRankedServices

2. OUTPUT: Set rankedFilteredServices

3. BEGIN

DeviceProfile deviceProfile←LookupDeviceProfile()

4. for eachnjin listRankedServices do

5. EmfContext serviceContext←LookupFeatures.Context(nj)
6. for each ck in serviceContext do

7. if ckdeviceProfile/* requirement supported */then

8. rankedFilteredServices← rankedFilteredServices nj

9. break for

10. end if

11. end for

12. end for

13. return rankedFilteredServices

14. END

Algorithm 5 takes set of ranked services obtained during
the matching phase, and checks each service to see whether
it meets the requirements of the service context retrieved
from the Service Repository. Let LookupDeviceProfile be a
function which returns the device profile for the current
device (i.e., from the Device Repository). Let
LookupFeatures.Context(nj) return the context requirements
for a service nj (i.e., from the Service Repository). In the case
that the current user’s device can support the current service
it’s added to the set which is returned, otherwise, it is
discarded.

VIII. IMPLEMENTATION AND EXPERIMENTATION

This section presents the implementation and

experimental study of our proposed service matching

scheme for ubiquitous computing environments. Our

prototype was implemented in Java. Our experiments were

User Context

Spatial Temporal Equipment Data

Software

+Id
+Value
+Metric Hardware

+Id
+Value
+Metric

Operating System

+Id
+Value
+Metric

Date

+Id
+Value
+Metric

Latitude

+Id
+Value
+Metriclongitude

+Id
+Value
+Metric

0..*

1 1 1

0..*

0..* 0..*

0..*

6

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

completed on the following machines / devices. The server

application was running on a Pentium 4, 2.30GHz

processor, 1,028 MB of RAM under the OS Linux Ubuntu.

We performed tests using two real client devices / phones

and two emulators. The specifications for each are provided

in Table I.

TABLE I. TECHNICAL SPECIFICATION OF DEVICES USED IN EACH TEST.

Device Processor RAM ROM Screen Size
Operating

Systems

Pocket PC

DELL

AXIM

x51v

Intel

PXA270,

520 MHz

64M

B

256M

B

480 X 640

Pixels.

Microsoft

Windows

Mobile 5.0

Nokia N93

Dual ARM

11 332

MHz

64M

B

50

MB

128 X 160

Pixels.
Symbian 9.1

Nokia 6212 NFC Series 40 5th Edition emulator SDK

Nokia 6260 Series 40 6th Edition emulator SDK

A. Evaluation Methodology

We evaluated our architecture to ensure that it is both

efficient and accurate. We categorized response time

efficiency as follows. Let r denote response time in seconds.

Let response time be classified as: Optimal where r ≤

0.1,Good where 0.1 ≤ r≤ 1; Acceptable where 1 ≤ r≤ 10; and

Deficient where r≥ 10 [34]. Accuracy was measured by

comparing a set of expected values against the results

obtained from our architecture, using the calculations of

Precision, Recall and Overall [11, 35]. Precision p is a

measure of whether the list of matching services returned by

our approach contains any services which were not expected

to match, such that p = x/N, where x denotes number of

services which were both expected and proven to match and

N denotes the number of services found to match. Recall r is

a measure of whether all of the services which were

expected to match are contained in list of matching services

returned by our architecture, such that r = x/n, where n

denotes the number of services which were expected to

match. The overall o match result takes account of both

precision and recall such that, by o = r * (2 – 1 / p).

In our evaluation we created and compared 30 BPEL

basic activities against 144 activities stored in the Service

Repository, resulting in 1106 pairs to evaluate. The

evaluations were done by 5 experts in service discovery,

resulting in 5530 comparisons. These comparisons evaluate

the attribute similarity between two BPEL basic activities.

The human evaluator first made a comparison between the

activities, and assigned an expected score to each activity

according to their similarity to each user request, using our

benchmarking tool [36]. Let s denote this score, such that 0

≤ s ≤ 5 where 0 implies no similarity / match and 5 implies

complete similarity / match. The expert evaluator also sets

the weights w(z) for each compared attribute z to determine

these expected results, which are also associated with the

user requests being compared against the services in the

actual system (see Algorithm 3, Section VI). The values

obtained during our results were calculated using the micro-

averaging technique [35].

B. Results

In this section we present the results from our tests.

1) Performance Evaluation (efficiency)

Figure 6 presents the execution times of our architecture

for each of the different mobile client devices.

In each test, there were 17 BPEL files published in the

Service Repository containing144 target nodes or basic

target activities. In addition, 5 BPEL files were used to

represent 5 separate user request queries, which were each

compared with the 144 target nodes.

All tests completed on the mobile devices produced

results in less than 1 second for up to 144 nodes, meaning

the behavior was good. These tests also show that our

approach is substantially more efficient than using semantic

reasoners which are resource intensive. For instance, in

other research we used ontologies BPMO (Business Process

Modeling Ontology), eTOM (enhanced Telecom Operations

Map) and SID (Shared Information/Data)[37] described in

WSML (Web Service Modeling Language) [38]and

performed an inference / matching task on the

WSML2Reasoner reasoner[39]and found that a reasoning

task required approximately 170ms for just one task [13].

Our approach performed 8 comparisons in this time on the

real devices (which includes network latency) and over 32

comparisons using the emulator.

Figure 6. Recovery process performance of services on different mobile

terminals.

Additionally, research shows that evaluating the control

flow of BPEL documents can be exponential [17]. Our

evaluation shows that our approach overcomes this problem,

providing more linear results. If we extrapolate the average

response time for the two real devices (i.e. Nokia and

Pocket PC) presented in Figure 6 linearly[34], we can say

that our architecture will have the following behavior:

Good: when the number of graph node comparisons are less

than 374.3. Acceptable: when the number of graph node

comparisons are greater than 374.3 and less than 4145.8.

Deficient: when the number of graph node comparisons

completed are greater than 4145.8.

2) Quality Test Results (efficacy): in the following we

present a simulation of the service matching process on a

Nokia 6260 Emulator.

0

100

200

300

400

500

600

700

800

900

8 24 32 61 98 135 144

Ti
m

e
 (

m
s)

Nodes

Series 40 5th Edition SDK Nokia 6267

Series 40 Nokia 6212 NFC SDK

Nokia N93

Pocket PC DELL AXIM x51v

7

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

Figure 7. Effectiveness Test Emulator Nokia 6260: (a) service request, (b)

retrievedservice (c) service selection.

In Figure 7(a) we provide an option to select one of the 5
user request queries to compare against the available
services. As shown in Figure 7(b) the user receives a listing
of services which are semantically similar to the user request
which was selected. In Figure 8(c) the user selects the most
appropriate service from the ranked list of semantically
similar services.

In Figure 8, we present the precision, recall and overall
match results for our tests. A precision, recall or overall
match results of 1 means that the results obtained from our
architecture were equivalent to the expected results. A result
of 0 means that none of the expected results were obtained.

Figure 8.Quality of results produced by the U-ServciceMatch Platform

The x-axis on the graph indicates the expected similarity

value s defined earlier in this section. Each bar shows an

average of the precision/recall/overall results returned by U-

ServiceMatch for all services with the same expected result

s. We observe that services which had an expected match

result of s=4.4 had the best precision, recall and overall

match results (i.e., at least0.9 for each). We observed that

while precision was high in all tests, a recall level above 0.7

was only achieved when the threshold value was s=4 or

above. The results also show that our approach effectively

supports approximate matching of a service description with

a request, when an exact match does not exist.

IX. CONCLUSION AND FUTURE WORK

In this paper we propose, develop and implement a

service discovery architecture for ubiquitous computing

environments. Our approach transforms BPEL user request

and service descriptions into graphs which are semantically

compared to produce a ranked list of services. We also limit

the search space of potential services by initially matching

of the user’s request with those services which have been

invoked previously by the current or other user with similar

interests. Additionally, our approach filters the services

which cannot be consumed on the user’s device by

comparing the user’s device capabilities with the

requirements of the service.

We have implemented our system as a prototype and

presented an evaluation which assesses both the efficiency

and accuracy of our approach. The evaluation shows that

our approach is more efficient that using semantic reasoners

providing good efficiency, performing 144 comparisons in

under 1 second. We hypothesize that our approach provides

acceptable efficiency for up to 4145.8 node comparisons,

where acceptable implies a result was obtained within 10

seconds. U-ServiceMatch also provided extremely accurate

results in terms of precision, achieving a result of 0.78-1. In

terms of recall, a result of 0.7 or above was achieved with a

semantic similarity threshold of 4 or above.

The next step of this work is to study and define new

features that extend the user description in a ubiquitous

environment. Additionally, we wish to implement a system

of service registry, to reduce the search space where the

Service Repository of considerable size in order to further

improves efficiency.

REFERENCES

[1] J. Veijalainen, "Mobile ontologies: Concept, development, usage, and

business potential," International Journal on Semantic Web and

Information Systems, Special Issue on Mobile Services and
Ontologies, vol. 4, pp. 20–34 2008.

[2] F. Almenárez, "Arquitectura de Seguridad para Entornos de

Computación Ubicua Abiertos y Dinámicos," Tesis Doctoral.
Departamento de Ingeniería Telemática, Escuela Politécnica Superior,

2005.

[3] J. Zoric, N. Gjermundshaug, and S. Alapnes, "Service mobility a
challenge for semantic support," presented at the 16th IST Mobile and

Wireless Communications Summit, IEEE, Budapest, Hungary, pp.1-7,

2007.
[4] C. Xiaosu and L. Jian, "Build mobile services on service oriented

structure," in IEEE International Conference on Wireless

Communications, Networking and Mobile Computing, pp. 1472–1476,
2005.

[5] B. Kargin and N. Basoglu "Factors affecting the adoption of mobile

services," Portland International Center for Management of
Engineering and Technology, IEEE, pp. 2993–3001, 2007.

[6] V. Roto and A. Oulasvirta., "Need for non-visual feedback with long
response times in mobile hci," International World Wide Web

Conference Committee (IW3C2), Chiba, Japan, pp. 775-781, 2005.

[7] S. Ben Mokhtar, Semantic Middleware for Service-Oriented
Pervasive Computing. Tesis Doctoral, 2007.

[8] M. Sellami, S. Tata, and B. Defude, "Service Discovery in Ubiquitous

Environments: Approaches and Requirement for Context-Awareness,"
ed Milan, Italy: BPM Workshops, pp. 516-522, 2009.

[9] T. Andrews, et al., (2003, 05 05). Business Process Execution

Language Version 1.1. the BPEL4WS Specification. Available:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-

bpel/ws-bpel.pdf

[10] V. Hermida, O. Caicedo, J.C. Corrales, D. Grigori, and M.
Bouzeghoub, "Service Composition Platform for Ubiquitous

Environments Based on Service and Context Matchmaking", In the

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 4,05 4,1 4,15 4,3 4,35 4,4 4,55 4,8 5

Thereshold

Presicion

Recall

Overall

8

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

4th Colombian Congress of Computer, Bucaramanga, Colombia,

2009.
[11] A. Bernstein and M. Klein, "Discovering services: Towards

highprecision service retrieval," International Workshop on Web

Services, EBusiness, and the Semantic Web (CAiSE ’02), Springer-
Verlag, Toronto, Canada, vol. 2512, pp. 260 – 275, 2002.

[12] W. Abramowicz, K. Haniewicz, M. Kaczmarek, and D. Zyskowski,

"E-marketplace for semantic web services," 6th International
Conference on Service-Oriented Computing (ICSOC ’08), Springer-

Verlag, Sydney, Australia, vol. 5364, pp. 271 – 285, 2008.

[13] L. Ordoñez, A. Bastidas, C. Figueroa, and J.C. Corrales, "Task
Semantic Comparison between the Telecommunications Business

Processes," in The 5th National Seminar on Emerging Technologies in

Telecommunications and Telematics - TET, Popayán, Colombia,
2010, pp. 26-31.

[14] V. Zacharias, et al., "Mind the web," in 1st Workshop on New forms

of Reasoning for the Semantic Web: Scalable, Tolerant and Dynamic
in-conjunction with International Semantic Web Conference (ISWC

’07) and Asian Semantic Web Conference (ASWC ’07), vol. 291,

CEUR-WS.org, Busan, Korea, 2007. Available:
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-

291/paper08.pdf.

[15] U. K. a. B. Köning-Rics, "Dynamic Binding for BPEL Processes - a
Lightweight Aprproach to Integrate Semantics into Web Services," in

ICSQC, 2007, pp. 116-127.

[16] H. Almohamed, "A linear programming approach for the weighted
graph matching problem," presented at the IEEE Trans. PAMI 15,

1993.
[17] J. C. Corrales, Behavioral matchmaking for service retrieval.

Versailles, France: tesis presentada a la University of Versailles Saint-

Quentin-en-Yvelines para optar al grado de Doctor of Philosophy in
Sciences, 2008.

[18] A. Bandara, et al., "A Semantic Approach for Service Matching in

Pervasive Environments," ed: Universidad de Southampton, 2007.
[19] J. C. Corrales, D. Grigori, M. Bouzeghoub, and J.E. Burbano,

"Bematch: A platform for matchmaking service behavior models," In

the 11th International Conference on Extending database technology:
Advances in database technology (EDBT'08), pp. 695-699, 2008, doi:

10.1145/1353343.1353428.

[20] W. Kokash, et al., "Leveraging web services discovery with
customizable hybrid matching," presented at the In Proc. of ICSOC,

2006, pp.522-528.

[21] E. Stroulia and Y. Wang, "Structural and semantic matching for
assessing web-service similarity," presented at the Int. J. Cooperative

Inf. Syst., 2005, pp. 407–438.

[22] L. Steller and S. Krishnaswamy, "Efficient Mobile Reasoning for
Pervasive Discovery," in Proceedings of the 2009 ACM symposium on

Applied Computing (SAC 2009), pp. 1247-1251, 2009.

[23] J. Mendling, and J. Ziemann, “Transformation of BPEL Processes to
EPCs”, EPK 2005, Hamburg, Germany, vol. 167, December 2005, pp.

41-53.

[24] E. Guerrero, J.C. Corrales, and R. Ruggia, " Service Selection based
on Profile Context and QoS Metamodels", in The 5th Conference of

the Euro-American Association on Telematics and Information

Systems (EATIS'10), 2010. ISBN 978-958-44-7280-9, in press.
[25] S.P. Tocarruncho, F.A. Aponte, and A. Tocarruncho, "Extracción

de Perfiles Basada en Agrupamiento Genetico para Recomendación

de Contenido," in Conferência IADIS Ibero-Americana
WWW/Internet, pp. 299-303, 2007.

[26] M. Zhang and N. Hurley, "Novel Item Recommendation by User

Profile Partitioning," in 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology,

Milan, Italy, 2009, pp. 508-515.

[27] S. Abbar, et al., "A personalized access model: concepts and services
for content delivery platforms," in Proceedings of the 10th

International Conference on Information Integration and Web-based

Applications & Services, Linz, Austria, 2008, pp. 41-47.
[28] S. Kurkovsky, V. Zanev, and A. Kurkovsky. "SMMART, a context-

aware mobile marketing application: Experiences and lessons",

Embedded and Ubiquitous Computing, vol. 3823, Springer-Verlag,

Nagasaki, Japan, 2005, pp. 141 – 150.
[29] J D. Grigori, J.C. Corrales, M. Bouzeghoub, and A. Gater, "Ranking

BPEL Processes for Service Discovery." vol. 3, ed: IEEE

Transactions on Services Computing, pp. 178-192., 2010.
[30] G. Miller, "Wordnet: A lexical database for english.," in

Communications of the ACM, vol. 38 no. 11, pp. 39–41, 1995.

[31] C. Doulkeridis and N. Loutas, M. Vazirgiannis. "A System
Architecture for Context-Aware Service Discovery". International

Workshop on Context for Web Services (CWS'05), Paris, France, pp.

101 - 106, 2006.
[32] Mobile W3C Device Independence Working Group, "Composite

Capability / Preference Profiles (CC/PP): Structure and Vocabularies

2,0," ed, 2006.
[33] J. Vanhatalo, J. Koehler, and F. Leymann, "Repository for business

processes and arbitrary associated metadata," presented at the BPM

Demo Session at the Fourth International Conference on Business
Process Management, Viena. Austria, 2006, pp. 25–31.

[34] S. Joines, R. Willenborg, and K. Hygh, "Performance Analysis for

Java Websites," ed: Addison-Wesley, ISBN-13: 978-0201844542,
2002.

[35] D. Lewis, "Representation and learning in information retrieval," in

Ph.D. Thesis, ed University of Massachusetts: Department of
Computer and Information Science, 1992.

[36] L.J. Suarez, L.A. Rojas, J.C. Corrales, and O.M. Caicedo,(2010)

Be4SeD: Benchmarking for evaluation of Service discovery
techniques. Revista de Ingeniería y Competitividad, Universidad del

Valle, in press.
[37] A. Duke, J. Davies, M. Richardson, and N. Kings, "A Semantic

Service Orientated Architecture for the Telecommunications Industry

", INTELCOM, vol. 3283, 2004, pp. 236-245, doi: 10.1007/978-3-
540-30179-0_21.

[38] WSML. Web Service Modeling Language. Available:

http://www.wsmo.org/wsml/index.html
[39] WSML2Reasoner. WSML2Reasoner framework. Available:

http://tools.sti-innsbruck.at/wsml2reasoner/

9

ICIW 2011 : The Sixth International Conference on Internet and Web Applications and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-124-3

http://www.wsmo.org/wsml/index.html
http://tools.sti-innsbruck.at/wsml2reasoner/

