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Abstract. We address the problem of matching imperfectly documented schemas of data streams and large databases. Instance-
level schema matching algorithms identify likely correspondences between attributes by quantifying the similarity of their
corresponding values. However, exact calculation of these similarities requires processing of all database records – which is
infeasible for data streams. We devise a fast matching algorithm that uses only a small sample of records, and is yet guaranteed
to find a matching that is a close approximation of the matching that would be obtained if the entire stream were processed. The
method can be applied to any given (combination of) similarity metrics that can be estimated from a sample with bounded error;
we apply the algorithm to several metrics. We give a rigorous proof of the method’s correctness and report on experiments
using large databases.

1. Introduction

Schema matching is the process of identification of semantic correspondences between attributes
across multiple database schemas [2]. Schema matching has recently gained in importance due to
frequent multinational company mergers such as Daimler-Benz merging with Chrysler. Such endeavors
require integrating both companies’ databases and data warehouses. This is an enormous task: there are
thousands of poorly documented database tables, hundreds of attributes each. Even partial automation
of the process can be a big help.

The schema matching process constitutes a knowledge discovery challenge in its own right. Research
revolves around the question how schema matching can be supported, or even automated, effectively.
Schema matching algorithms generally match elements of the distinct schemas such that some similarity
criterion is maximized. Schema-level matchers use a similarity criterion that refers to schema information
such as attribute names, descriptions, or the schemas’ structure. Unfortunately, the available schema
information is often insufficient. Cases arise in which attribute names are opaque and clues on their
semantics can only be found by inspecting the values. Instance-level schema matchers quantify the
similarity of attributes by comparing properties of their values.

In order to guarantee that the produced mapping in fact maximizes the chosen similarity function,
instance-level matchers need to exercise at least one entire pass over the databases. A complete pass is
unreasonable for transactional databases that record high-speed data streams as they occur, for instance,
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in retail chains, and telecommunication and banking applications and can easily grow into the order of
hundreds of terabytes. An arbitrary and uninformed choice of a small sample size of transactions results
in a loss of any guarantee on the optimality of the produced match. Known methods that use sampling
do not guarantee any properties of the retrieved mappings.

We formalize the matching problem in a way that is both mathematically rigorous and closely tied
to practical applications. We devise a schema matching algorithm, which isguaranteedto produce
a “near-optimal” match; we detail the term “near-optimal” by means of probabilistic bounds on the
difference between the retrieved matching and a matching that would result ifall database transactions
were processed. The guarantee holds even though the algorithm relies on sampling. In fact the efficiency
of our algorithm does not depend on the size of the original database to which it is applied, only on the
desired accuracy and error probability.

A useful similarity metric for the matching problem at hand is a base requirement for any sampling
algorithm, and designing such a problem-specific metric clearly is a challenging issue in itself. Therefore,
we design our solution to be generic with respect to the similarity criterion; weighted combinations of
several schema-level and instance-level criteria can be applied. We review a selection of criteria, many
more can be inserted into the algorithm.

The rest of this paper is organized as follows: after reviewing related work in Section 2, we formalize
the problem in Section 3. We phrase the schema matching problem in a way that pays tribute to typical
practical application scenarios, and is sufficiently rigid to allow us to state and rigorously prove the
correctness of our solutions. We detail our solution in Section 4, discuss attribute similarity metrics in
Section 5 and report on experimental results on real-world data in Section 6. Section 7 concludes.

2. Related work

Bernstein and Rahm [16] provide an overview of the schema matching problem [10,13] and a taxonomy
of schema matching algorithms. Matchers can be dichotomized into schema-level and instance-level
methods. Schema-level matchers maximize some similarity function that refers to attribute names and
other structural information (e.g., [4,6,12,15]) whereas the similarity metrics employed by instance-level
approaches (e.g., [1,10,14]) refer to the instance data; that is, to the attributes’ values. The instance-
level approach can even be applied in the complete absence of useful schema-level information [9] and
it allows to even identify complex matching relations –e.g.,a factor-equivalence relation between an
income attribute in Euros and a corresponding salary in Yen [3].

Most practical systems – such as Clio [19], SemInt [11], and LSD [5] – combine schema- and
instance-level similarity metrics. Assembling and balancing the similarity metric requires experience
and domain knowledge; machine learning [5] and experiments on synthetic matching problems can guide
the parameter optimization [17]. The algorithm that we present supports the possibility of combining
schema- and instance-level similarity metrics. However, accessing the database records is only required
for calculation of instance- level metrics.

Our algorithm relies on sampling and on data-dependent confidence bounds. Sampling strategies play
an important role for a range of data mining tasks. They have been used to find the approximately most
interesting association rules [7,18], or the most significant differences between graphical models and
corresponding databases [8].
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3. Approximately optimal schema matching

We focus on the followingschema matching problem setting. We are given two schemasR andS over
attributes〈r1, . . . , rn〉 and〈s1, . . . , sm〉, respectively. The schemas contain imperfect information about
the type and meaning of the attributes. The goal of schema matching is to identify pairs of attributes
(ri, sj) that are semantically identical. In order to approach this problem computationally, a similarity
metricfR,S(ri, sj) quantifies the similarity of attributesri andsj. The similarity can exploit schema-
level information such as attribute names if such information is available, and instance-level information.
Instance-level similarity metrics refer to the values that occur inR andS. Naturally, instance-level
information is always available – unless the databases are empty or inaccessible.

The contribution of this paper is relevant when the similarity metricfR,S(ri, sj) involves instance-level
information. In order to evaluate an instance-level metric exactly, it is generally necessary to exercise a
pass over the databasesR andS; the main challenge that we address is that this is impossible for streams.
The similarity criterionfR,S(ri, sj) is problem-specific and given in advance. We will only have to
assume that it is possible to obtain an estimate offR,S that lies within a bounded confidence interval.

In practice, the schema matching process is highly interactive. A user typically seeks to find out
which attributes inR have counterparts inS and identify these counterparts. We phrase this problem
setting as follows.We seek to construct an algorithm that finds, for every attribute inR, a set of thek
best matching candidates inS, sorted by their similarity to the attribute fromR, and vice versa for all
attributes inS. In addition, the algorithm has to order all attributes inR andS by their likelihood of
having a counterpart in the other schema.Our formulation of the problem setting builds uponε-correct
orderings of sequences. In anε-correct ordering, values are sorted in decreasing order, but in case of
near-ties between adjacent values (similarity differences of no more thanε), any ordering is considered
correct. The special case ofε = 0 corresponds to a regular ordering.

Definition 1. ε-Correct Ordering.A sequence of values(x1, . . . , xk) is in ε-correct ordering if, for alli
between 1 andk and all j between 1 andi− 1, the inequalityxj � xi − ε is satisfied.

In order to formalize theapproximately optimal matching problemwe refer to stochastic approxima-
tions with confidence bounds. Intuitively, the parametersε andδ that are involved have the following
meaning. When the algorithm is restarted multiple times, then the resulting match is “ε-close” to the
optimal match in a fraction of at least1 − δ of all runs.

Definition 2. Approximately Optimal Matching.Given schemasR andS over attributes〈r1, . . . , rn〉
and〈s1, . . . , sm〉 respectively, a desired number of matchesk, approximation and confidence parameters
ε and δ, find a sequence ofk attributes(si1 , . . . , sik) for eachri in R, a sequence ofk attributes
(rj1 , . . . , rjk

) for eachsj in S, and permutationsπr andπs such that, with confidence1 − δ,
1. for all attributes ri, the retrieved sequence(si1 , . . . , sik) contains the best matching at-

tributes (accurately up toε) and, analogously, the sequence(r j1, . . . , rjk
) contains the best

matching attributes for eachsj; i.e., there is no offendingsi′ �∈ (si1, . . . , sik) such that
fR,S(ri, si′) > mini′′∈{i1,...,ik}fR,S(ri, si′′)+ε and norj′ �∈ (rj1 , . . . , rjk

) such thatfR,S(rj′ , sj) >
minj′′∈{j1,...,jk}fR,S(rj′′ , sj) + ε;

2. for all attributes ri, the corresponding(si1 , . . . , sik) are ordered by their similarity tori
and for all sj , the corresponding(rj1, . . . , rjk

) are ordered by their similarity tosj; i.e.,
(fR,S(ri, si1), . . . , fR,S(ri, sik)) and(fR,S(rj1 , sj), . . . , fR,S(rjk

, sj)) areε-correct orderings;
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3. the permutationsπr andπs sort the attributes ofR andS, respectively, according to their likelihood
of having a matching partner in the other schema; i.e., the sequences(max j′fR,S(rπr(1), sj′), . . . ,
maxj′fR,S(rπr(n), sj′)) and(maxi′ fR,S(ri′ , sπs(1)), . . . ,maxi′fR,S(ri′ , sπs(m))) areε-correct or-
derings.

Our concept of an optimal matching intrinsically refers to the similarity metric. An approximately
optimal matching is one that is close,with high probability, to the optimal matching in which each attribute
has a similar matching partner. Whether this approximately optimal matching is a good matching in
practice additionally depends on the appropriateness of the similarity metric.

4. Schema matching algorithms

We will present two algorithms that differ from each other in the way they derive the sample size
required to solve the approximately optimal matching problem. The first algorithm, called FSM,
determines a “worst-case” sample size without accessing the data; the sample size only depends on the
similarity metric and parametersε andδ. The sample size determined suffices to assure the quality
guarantee for any possible stream; it may be pessimistically large for a given, particular stream. The
second algorithm is called progressive FSM. Its sample size depends on the database at hand. The
sample-dependent bounds are technically more involved than the worst-case bounds; therefore, FSM is
a natural baseline for progressive FSM and one of the questions that we will investigate empirically is
whether progressive FSM outperforms the simpler FSM algorithm.

Both algorithms usesimilarity confidence intervalswhich bound the similarityfR,S . These confidence
intervals are of salient importance to our solution because they bound the inaccuracy incurred by the
estimation process. A similarity confidence interval lays out a range of values such that, with a probability
of at least1− δ, the true similarity lies within that range. The benefit is that a confidence interval can be
calculated based on a random sample of any size whereas a full database pass is required to determine
the true similarity value. The confidence interval is wide for small samples and tightens for increasingly
large samples. Similarity confidence intervals can be constructed for a wide range of instance-level
similarity functions.

Definition 3. Similarity Confidence Interval.Let fR,S be a similarity function. LetR′, S′ be random
samples fromR and S; Then, �fR′,S′�δ and �fR′,S′	δ form a similarity confidence interval if, with
probability at least1 − δ, there is no pair of anyri ∈ R andsj ∈ S that violates

�fR′,S′(ri, sj)�δ � fR,S(ri, sj) � �fR′,S′(ri, sj)	δ. (1)

With probability1− δ, the true similarity ofall the pairs(ri, sj) are within their bounds. The probability
of any violation by at least one pair is bounded byδ. We will detail intervals for selected similarity
functions in Section 5.

The first algorithm, “FSM”, is detailed in Table 1. In Step 1, it uses a binary search to determine the
smallest sample sizeN that suffices to guarantee that the similarity confidence intervals are tight up to
ε. N is calculated without taking any samples from the database. For a given similarity metricfR,S, the
corresponding confidence interval that extends from�fR′,S′(·, ·)	δ to �fR′,S′(·, ·)�δ is inserted into the
algorithm. (Parameterization with “·” indicates “for any pair of attributes”.)

By contrast, the progressive FSM algorithm described in Table 2 uses sample-dependent bounds. It
starts to draw batches of example records from the databases and then calculates confidence intervals in
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Table 1
FSM: Fast schema matching

Input: SchemasR andS, respectively; desired number of candidatesk; approximation and confidence parametersε andδ.

1. Let N be the smallest number such that�fR′,S′(·, ·)�δ −�fR′,S′(·, ·)�δ � ε whenR′ andS′ containN records. (Where
we parameterize the bound with “·”, this means “for any argument”.)

2. DrawN records at random fromR andS, let them beR′ andS′.
3. For all (ri, sj), determinef̂R′,S′ (ri, sj) = 1

2
(�fR′,S′(ri, sj)�δ + �fR′,S′ (ri, sj)�δ) based on the samples.

4. For all attributesri: Let H∗
ri

be thek elementssj that maximizef̂R′,S′(ri, sj);
For all attributessj : Let H∗

sj
be thek elementsri that maximizef̂R′,S′(ri, sj).

5. Let πr sort the attributes inR by maxsi′∈H∗
ri

f̂R′,S′(ri, si′);

Let πs sort the attributes inS by maxrj′∈H∗
sj

f̂R′,S′(rj′ , sj).

6. Return πr, πs, and for all attributesp in R ∪ S: return the sequence of elements inH∗
p sorted byf̂R′,S′(p, q) ask best

matches.

Table 2
Progressive FSM algorithm

Input: SchemasR andS, respectively; desired number of candidatesk; approximation and confidence parametersε andδ.

Let R′ = S′ = ∅. Let the batch size parameter be 10,000, by default.Let t = 1.

Let N be the smallest number such that�fR′,S′(·, ·)� δ
2
− �fR′,S′(·, ·)� δ

2
� ε whenR′ andS′ containN records. Let

T = N/batch size.

For t = 1 . . . T Repeat:

1. Let δt = δ
2t(t+1)

.

2. Draw batches of records at random fromR andS, and add them toR′ andS′, respectively.
3. For all (ri, sj), calculate �fR′,S′(ri, sj)�δt , �fR′,S′(ri, sj)�δt , and f̂R′,S′(ri, sj) = 1

2
(�fR′,S′(ri, sj)�δt +

�fR′,S′(ri, sj)�δt). (�fR′,S′(ri, sj)�δ + �fR′,S′(ri, sj)�δ).
4. If all pairs(ri, si) satisfy that�fR′,S′(ri, sj)�δt − �fR′,S′(ri, sj)�δt � ε then break.

For all attributesri: Let H∗
ri

be thek elementssj that maximizef̂R′,S′(ri, sj); For all attributessj : Let H∗
sj

be thek

elementsri that maximizef̂R′,S′(ri, sj).

Let πr sort the attributes inR by maxs∗
i
∈H∗

ri
f̂R′,S′(ri, s

∗
i ); Let πs sort the attributes inS by maxr∗

j
∈H∗

sj
f̂R′,S′(r∗j , sj).

Return πr, πs, and for all attributesp in R ∪ S: return the sequence of elements inH∗
p sorted byf̂R′,S′(p, q) ask best

matches.

each step that depend on the sample processed so far. The progressive algorithm can terminate earlier
than the sample-independent bound would have suggested, depending on characteristics of the database.
The progressive algorithm terminates early if it is “easy” to confidently identify the matching partners for
the attributes. Identifying matching partners is easy if each attribute inR is similar to one, or very few,
attributes inS and dissimilar from most others. Our main result is that both, the FSM and progressive
FSM algorithm solve the approximately optimal matching problem.

Theorem 1. Let�fR′,S′(·, ·)	δ and�fR′,S′(·, ·)�δ be similarity confidence bounds that satisfy Definition
3. Then both, the FSM(Table 1) and progressive FSM algorithm(Table 2) find, for any pair of schemas
R andS and any input parameters0 < δ � 1, 0 < ε, andk, an approximately optimal matching as
detailed in Definition 2.

The proof of Theorem 1 is given in Appendix A. Copies of the implementation can be obtained for
research purposes from the authors.
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5. Attribute similarity metrics

We will now discuss three exemplary similarity measures for attributes and show how confidence
bounds can be derived. We will sketch the individual bounds as lemmas; the main result of this section
is the bound for the weighted sum of all presented similarity measures. Any similarity metric can be
integrated into the algorithm, if it can be estimated with bounded error based on a sample.

Various similarity measures require measuring the similarity of two probability distributions. For
this purpose we will use a measureE based on Euclidean distance. LetP = (p 1, . . . , pn) andQ =
(q1, . . . , qn) be probability distributions.E is defined asE(P,Q) = 2 − ∑n

i=1(pi − qi)2. We subtract
the sum of squares from2 in order to guarantee thatE has high values for similar distributions, while
remaining nonnegative.

Similarity measures will take two attributes as arguments and will be denoted with lowercase letterf
with different superscripts. When deriving the bounds for our similarity metrics, the following (well-
known) observations will be helpful. The following are upper and lower bounds on an underlying
probabilityp, given a corresponding observed frequency (a count of events divided by the total number
of observations)̂p.

�p�δ = max(p̂− e, 0), �p	δ = min(p̂+ e, 1),

wherep̂ is the value ofp estimated from data. The terme can be expressed in terms of the well-known
Hoeffding inequality or in terms of the inverse normal distribution. Based on Hoeffding’s inequality,

e =
√

1
2N log 2

δ ; and using the Normal distribution,e = z1− δ
2

√
p̂(1−p̂)

N , whereN denotes the sample

size andz1−δ is the1 − δ quantile of the normal distribution that can be looked up in a table.

5.1. Euclidean distance

Given two attributesr ands with identical domains, a natural measure of their similarity is given by

fE
R,S(r, s) = E(Pr, Qs), (2)

wherePr andQs are probability distributions ofr ands respectively.
Note that the requirement of equal domains is very strict. It can however easily be removed by

replacing the domain of each attribute with the union of both original domains.

Lemma 1. Let fR,S(ri, sj) be defined as in Eq.(2). Then for given schemasR, S and all pairs of
attributesr ∈ R, s ∈ S, the following similarity confidence intervals satisfy Definition 3.

�fE
R′,S′(r, s)�δ =

{
2 −

nr∑
i=1

(
(�pr,i	 δ

M
)2 + (�qs,i	 δ

M
)2 − 2�pr,i� δ

M
�qs,i� δ

M

)}
, (3)

�fE
R′,S′(r, s)	δ =

{
2 −

nr∑
i=1

(
(�pr,i� δ

M
)2 + (�qs,i� δ

M
)2 − 2�pr,i	 δ

M
�qs,i	 δ

M

)}
, (4)

whereR′, S′ are samples taken fromR andS respectively,nr andns are the size of the domains of
r ands, (pr,1, . . . , pr,nr) and(qs,1, . . . , qs,ns) are probability distributions ofr ands respectively, and
M =

∑
r∈R nr +

∑
s∈S ns, over categorical attributes.

The proof of lemma 1 is given in Appendix B.
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5.2. Permuted Euclidean distance

When comparing two categorical attributes, it is not clear which values correspond to each other.
Therefore, all possible permutations of values in the domains of attributes have to be considered.

Let π be a permutation of{1, . . . , n} and letr ands be categorical attributes such thatnr = ns = n.
Denote byπQs the result of applying permutationπ to the distributionQs = (qs,1, . . . , qs,n) of s, i.e.,
(qs,π(1), . . . , qs,π(n)). The similarity measure is now defined as

fπE
R,S(r, s) = max

π∈Π(n)
E (Pr, πQs) , (5)

whereΠ(n) is the set of all permutations of{1, . . . , n}.

Lemma 2. Let fR,S(ri, sj) be defined as in Eq.(5). Then for given schemasR, S and all pairs of
attributesr ∈ R, s ∈ S, the following similarity confidence intervals satisfy Definition 3.

�fπE
R′,S′(r, s)�δ = max

π∈Π
�fE

R′,S′(r, πs)�δ , (6)

�fπE
R′,S′(r, s)	δ = max

π∈Π
�fE

R′,S′(r, πs)	δ , (7)

whereR′, S′ are samples taken fromR andS respectively,(pr,1, . . . , pr,nr) and (qs,1, . . . , qs,ns) are
probability distributions ofr and s respectively, andM =

∑
r∈R nr +

∑
s∈S ns, over categorical

attributes.

The proof of lemma 2 is given in Appendix B.
It turns out that it is possible to compute the similarity without checking all possible permutations. It

is sufficient to sortPr andQs in order of decreasing probabilities. To see why this produces an optimal
ordering, notice that ifp1 > p2 andq1 > q2, then2−(p1−q1)2−(p2−q2)2 > 2−(p1−q2)2−(p2−q1)2.
Thus transposingq1 and q2 increases the similarity. The result follows by applying the transposes
repeatedly to first put both largest probabilities in the same positions, then both second largest probabilites
in the same positions, etc.

5.3. Bigrams

This measure is based on the distribution of bigrams (i.e., two character subsequences) in attribute
values. Such an n-gram matcher is also used in [4].

LetB be a small integer (10 in our case). For an attributer create a synthetic attributer ′ computed as
follows: for a given recordt, pick a random bigram from the valuet[r] and convert it to an integer based
on ASCII values of the two characters. Take this number moduloB. The obtained number is the value
of r′ in the recordt. It is easy to see thatr ′ is a categorical attribute withB values. Such attributes can
easily be compared usingfE

R,S giving rise to the following similarity measure

fBg
R,S(r, s) = fE

R,S(r′, s′). (8)

Drawing a random bigram assures thatr ′ ands′ are sampled iid (independently and from identical
distributions). Using the hashing scheme withB buckets reduces the domain of the random variables
compared to using the set of all bigrams which, in turn, narrows the confidence bounds. Empirically,
we find that matchings obtained using this method are similar those found without hashing; however,
hashing allows for tight confidence intervals.
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Lemma 3. LetfR,S(ri, sj) be defined as in Eq.(8). Then for given schemasR, S, samplesR ′, S′ taken
from those schemas and all pairs of attributesr ∈ R, s ∈ S, the following similarity confidence intervals
satisfy Definition 3.

�fBg
R′,S′(r, s)�δ = 2 −

nr′∑
i=1

[
(�pr′,i	 δ

M
)2 + (�qs′,i	 δ

M
)2 − 2�pr′,i� δ

M
�qs′,i� δ

M

]
(9)

�fBg
R′,S′(r, s)	δ = 2 −

nr′∑
i=1

[
(�pr′,i� δ

M
)2 + (�qs′,i� δ

M
)2 − 2�pr′,i	 δ

M
�qs′,i	 δ

M

]
(10)

The proof of lemma 3 is given in Appendix B.

5.4. Character proportions

This measure compares the proportions of characters that fall into predefined subsets. We use four
subsets: lowercase letters, uppercase letters, digits, and an additional set for all remaining printable
characters. For instance, Clio uses this idea [19]. Letr be an attribute. For each recordt we compute
the proportionspl, pu, pd, pp of characters oft[r] belonging to each subset. After taking the averages of
pl, pu, pd, pp over all records we obtain a vectorP r = (P r

l , P
r
u , P

r
d , P

r
p ). Elements of this vector lie in

the interval[0, 1] and sum up to1; hence, such vectors can be compared like probability distributions.
The similarity measure can now be defined as

f c
R,S(r, s) = E(P r, P s).

Bounds forf c
R,S are defined analogously to Lemma 3 but in terms of vectorsP r andP s defined above.

5.5. Weighted sum

A weighted sum of all similarity measures forms the most general case. Any weighted subset of
measures can be obtained by setting weights to either zero or desired nonzero values.

fR,S(r, s) =
wπEf

πE
R,S(r, s) + wBgf

Bg
R,S(r, s) + wcf

c
R,S(r, s)

wπE +wBg + wc
(11)

Theorem 2. Let fR,S(ri, sj) be defined as in Eq.(11). Then for given schemasR, S, samplesR ′, S′
taken from those schemas, and all pairs of attributesr ∈ R, s ∈ S, the following similarity confidence
intervals satisfy Definition 3.

�fR′,S′(r, s)�δ =
wπE�fπE

R′,S′(r, s)�δ +wBg�fBg
R′,S′(r, s)�δ+wc�f c

R′,S′(r, s)�δ

wπE + wBg + wc
(12)

�fR′,S′(r, s)	δ =
wπE�fπE

R′,S′(r, s)	δ +wBg�fBg
R′,S′(r, s)	δ+wc�f c

R′,S′(r, s)	δ

wπE + wBg + wc
(13)

The proof of Theorem 2 is given in Appendix B.
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5.6. Combining schema- and instance-level

When schema-level information is available – for instance in the form of attribute names or descriptions
– it is advisable to use this information. The similarity function can combine schema- and instance-level
components:

fR,S(r, s) = wSf
Schema(r, s) + wIf

Instance
R,S (r, s).

For instance,f Schema can quantify the similarity of attributes’ names and descriptions. Sincef Schema is
independent of the database, it follows immediately that the bounds are

�fR′,S′(r, s)� = wSf
Schema + wI�f Instance

R′,S′ (r, s)�, and�fR′,S′(r, s)	
= wSf

Schema + wI�f Instance
R′,S′ (r, s)	.

6. Experiments

We want to investigate empirically (a) whether the FSM and progressiveFSM algorithms are practically
applicable for large databases. We want to (b) compare the performances of FSM (using Hoeffding’s
bounds and normal bounds), progressive FSM (using normal bounds), and a baseline instance-based
matcher that uses the same similarity function but processes the entire database. The baseline is not
practical for streams and large databases, it always retrieves the matches that maximize the similarity
on the database. Theorem 1guaranteesthat FSM and progressive FSM return approximately optimal
matches; nevertheless, we will (c) empirically study the chance of the algorithms finding the correct
matches for attributes. The similarity function used for all experiments is the weighted average of all
similarity functions studied in Section 5, with all weights fixed to 1.

6.1. Benchmark problems

In order to assure the reproducibility of our results, we use three publicly available databases. The
KDDCup 1998 customer relationship management database contains 481 attributes and over 190,000
records; the majority of attributes are numerical but some categorical attributes are included. The
KDDCup 1999 database is another standard benchmark to be audited; it includes a wide variety of
intrusions simulated in a military network environment. The database has in total 42 attributes, 17 of
which are almost always zero; another 14 almost always assume the value “0.00”. This database contains
nearly 5 million records. The census database is an extract from the 1994 and 1995 current population
surveys conducted by the U.S. Census Bureau. The database has 42 attributes in total, the majority of
them contain text. There are close to 300,000 records. The execution time of both FSM and progressive
FSM is constant in the desired number of solutionsk (except for the final step of printing the output);
the experimental results are identical for any possible value ofk.

In order to conduct controlled experiments, we randomly split each of the databases into two parts
containing half of the records – for the KDDCup 1998 database, we use the split that is provided with
the data. We then use the schema matching algorithms to match the two halves of the databases. When
the algorithm matches an attribute with itself, this is counted as a true positive. Based on the number of
attributes that are matched with itself, we determine precision and recall, and F-measure.
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Fig. 1. Sample size againstε for schema matching algorithms.
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Fig. 2. Sample size againstδ for schema matching algorithms.

Figure 1 shows the number of database records that FSM and progressive FSM draw from the database
and process before finding an approximately optimal match (usingδ = 0.05). For the census and KDD
Cup 1998 data, the early stopping criterion (Step 4) of progressive FSM occasionally kicks in, reducing
the number of samples on average compared to FSM. For the KDD Cup 1999 database, early stopping
in Step 4 is never exercised. The reason is that due to the sparseness of the data the matching problem is
very hard. Many attributes assume zeros most of the time which makes many potential matching partners
appear equally good. For all problems, we observe that the normal bounds reduce the required sample
size over the Hoeffding bounds.

Figure 2 compares the sample size required by FSM and progressive FSM for varying values ofδ (using
ε = 0.15). For small values ofδ, we can observe the benefit of the progressive version of the algorithm
more clearly. In particular, while the sample-independent bounds of FSM and FSM with normal bounds
follow a smooth curve, we observe that the point of termination of progressive FSM depends on the data
and progresses in steps of 10,000; progressive FSM can terminate significantly earlier, depending on the
data and on the value chosen forδ.

Figure 3 compares the execution time of FSM, progressive FSM, and the baseline algorithm that
executes a pass over the entire database for varying values ofε (usingδ = 0.1). Again, progressive FSM
is the fastest method, followed by FSM. The baseline algorithm that calculates the similarities based
on the entire database is substantially slower, depending on the database size. For the KDD Cup 1999
database, we are unable to obtain results for the baseline algorithm which here exceeds our patience.

Finally, Fig. 4 compares the F-measure of FSM, progressive FSM and the baseline algorithm that
processes the entire database. For the census and KDD Cup 1998 databases, the F-measures are above
0.9 and 0.8, respectively, even forε = 1! For decreasing values ofε, the F-measure grows further. The
KDD Cup 1999 database, by contrast, is very difficult. Since many attributes almost always assume
a value of zero, most similarity values are very close and it is difficult to identify the best match; the
F-measure is lower, accordingly.
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Fig. 3. Execution time againstε for schema matching algorithms.
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Fig. 4. F-measure againstε for schema matching algorithms.

Note that the low F-measure for the KDD Cup 1999 database is not in contradiction to the guarantee
provided by FSM: The F-measure quantifies how frequently attributes are matched to their actually
semantically equivalent partner (in our experimental setting, to themselves). By contrast, Theorem 1
guarantees that the retrieved match for each attribute is “nearly as good as the optimal match”. The
baseline algorithm processes the entire database in the first place and therefore obtains a constantly high
F- measure for the census and KDD Cup 1998 databases. For the KDD Cup 1999 problem, the baseline
algorithm exceeds reasonable execution time, no result can be provided. For the FSM and progressive
FSM algorithms, execution time and sample size as well as the quality of the solution depend on the
parametersε andδ rather than on the size of the database.

6.2. Weather data case study

In this set of experiments, we explore the behavior of the progressive FSM algorithm on schemas
of distinct weather databases that share only a common subset of attributes. Semantically identical
attributes of the two distinct databases vary greatly, and the data contain many missing values which
makes this problem a challenging benchmark. We choose a snapshot of 275,000 records in 2005 from the
University of Washington and Arlington Airport weather streams. Excerpts are visualized in Figure 5.
We use the progressive FSM with normal bounds. Forδ = 0.1 andε = 0.2, progressive FSM terminates
after seeingN = 20, 000 records; forδ = 0.1 andε = 0.15 after 40,000 transactions. The retrieved
match does not improve after processing the entire 275,000 records. Therefore, the early stopping does
not come at the price of a poorer match.

Figure 5 shows the attributes of both schemas sorted according to the ordering determined by pro-
gressive FSM; i.e., the algorithm considers the leftmost attributes most likely (the rightmost attributes
least likely) to have corresponding attributes in the other database. The arrows indicate the single best
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Fig. 5. Uni Washington (top) matched against Arlington Airport (bottom) weather stream.

match for each attribute; to avoid cluttering the diagram, we draw only arrows between attributes with a
particularly high similarity value (� 2). The rightmost attributes therefore have no displayed arrows.

The algorithm finds exact matches for time, date, Julian date, andTair. These attributes can be
matched based on character bigrams that occur in their values AttributeTdew is erroneously matched
to Tair. Attribute Cht (all missing values) is matched to avg (also all missing values). The Arlington
stream contains attributes with almost only missing values that are not present in the Washington stream;
they are matched to vis (also almost only missing values). It is inevitable that an instance-based schema
matcher will map attributes with all missing values to other attributes with all missing values, when no
additional schema-level clues are available. ForTdew, the diverging ranges of values prevent the involved
similarity metrics from identifying these attributes as equivalent.

These results underscore that (a) the sampling-based approximation and stopping criterion are feasible,
scalable, and do not deteriorate the quality of the results compared to processing all data. (b) The results
emphasize that instance-information can in many cases be used to match equivalent attributes; however,
the similarity metric has to be designed to be appropriate for the problem at hand, and attributes with all
missing values and attributes whose values diverge too strongly between databases limit the applicability
of instance-level metrics.

7. Conclusion

Our formulation of the approximately optimal schema matching problem is closely tied to practical
applications and at the same time mathematically rigorous. The FSM and progressive FSM algorithm
provably solve this problem; that is, for each attribute of either schema, they find thek approximately
best matching partners, and approximately order them according to their similarity. Finally, the attributes
in either schema are approximately sorted according to their likelihood of having a partner in the other
schema. The term “approximately” here means “up to user-specified approximation parametersε andδ”.

The required sample size and execution time of the algorithms depends on these parameters, but are
independent of the amount of data available; therefore, the algorithms apply to infinite streams. For
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the progressive FSM algorithm, sample size and execution time depend on the stream at hand. If there
are some similar but many dissimilar potential matches, then progressive FSM can identify the similar
matches faster and terminate early.

Our experiments lead to a number of conclusions. (a) FSM and progressive FSM are feasible and
practically applicable for streams and very large databases. They can be applied to a range of similarity
metrics; we specified bounds for a selection of measures that can easily be extended. (b) FSM with
normal bounds and progressive FSM are equally fast for difficult matching problems with many very
similar attributes. Progressive FSM is faster than FSM otherwise. The normal bounds outperform the
Hoeffding bounds. (c) While theoretical results guarantee an approximately optimal match, we observe
empirically that attributes are often actually matched to semantically equivalent attributes. For the census
and KDD Cup 1998 databases, high F-measures are observed even for large values ofε.
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Appendix A. Proof of Theorem 1

We will prove Theorem 1 separately for FSM and progressive FSM.

Theorem 1 for FSM

From Definition 3 (definition of a similarity confidence interval) it follows that, after Step 1 has
been executed, with probability1 − δ there is no pair of attributesri in R and sj in S such that
�fR′,S′(ri, sj)�δ � fR,S(ri, sj) � �fR′,S′(ri, sj)	δ . We will now show that the nonexistence of such
an offending pair(ri, sj) implies that the returned solution satisfies the three conditions of Definition 2.
Since the risk of existence of an offending pair is bounded byδ, this suffices to prove the theorem.

Before proving the three properties that characterize an approximately optimal match, let us show
a useful property of the algorithm. Let(r, s) and (r ′, s′) be two pairs of attributes whose similarity
confidence bounds have been determined in Step 3 of the algorithm. Then,

f̂R′,S′(r, s) � f̂R′,S′(r′, s′) ⇒ fR,S(r, s) � fR,S(r′, s′) − ε (14)

Implication (14) is proven as follows. Equation (15) follows from the definition off̂R′,S′ in Step
3 of the algorithm. This implies Eq. (16) because, in Step 1,N is chosen such that for all pairs
�fR′,S′(·, ·)	 − �fR′,S′(·, ·)� � ε. In addition, from Definition 3 and the first sentence of this proof we
know that, for any pair,�fR′,S′(·, ·)	 � fR,S(·, ·) � �fR′,S′(·, ·)�.

f̂R′,S′(r, s) � f̂R′,S′(r′s′) ⇔ 1
2
(�fR′,S′(r, s)	 + �fR′,S′(r, s)�)

� 1
2
(�fR′,S′(r′, s′)	 + �fR′,S′(r′, s′)�) (15)

⇒ fR,S(r, s) +
ε

2
� fR,S(r′, s′) − ε

2
(16)

⇔ fR,S(r, s) � fR,S(r′, s′) − ε (17)
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1. In step 4, the algorithm selectsH ∗
ri

such thatf̂R′,S′(ri, sj) is maximized. That is, for every element

sj insideH∗
ri

, includingsimin = argmins∈H∗
ri
f̂R′,S′(ri, s) and every elements′ outsideH∗

ri
, we

have thatf̂R′,S′(ri, simin) � f̂R′,S′(ri, s′). Then Eq. (14) impliesfR,S(ri, simin) � fR,S(ri, s′)−ε,
and so the first condition of an approximately optimal match is satisfied.

2. For all attributesri, the retrieved sequence(si1 , . . . , sik) is sorted according tôfR′,S′(ri, si′).
Therefore, if some elementsi′ occurs prior tosi′′ it must be true that̂fR′,S′(ri, si′) � f̂R′,S′(ri, si′′).
Equation (14) then implies thatfR,S(ri, si′) � fR,S(ri, si′′)− ε which satisfies the definition of an
ε-correct ordering (Definition 1). The same argument applies to the ordering of(rj1, . . . , rjk

).
3. In Step 5, the permutationπr sorts the attributes inR according tomaxsi′∈H∗

ri
f̂R′,S′(ri, si′). When

πr sorts some attributer prior to r′, thenmaxs∗i ∈H∗
r
f̂R′,S′(r, si′) � maxsi′∈H∗

r′
f̂R′,S′(r′, si′).

Equation (14) now impliesmaxsi′∈H∗
r
fR,S(r, si′) � maxsi′∈H∗

r′
fR,S(r′, si′) − ε; that is,

(maxj′fR,S(rπr(1), sj′), . . . , maxj′fR,S(rπr(n), sj′)) is anε-correct ordering. The same argument
applies to the ordering(maxi′ fR,S(ri′ , sπs(1)), . . . ,maxi′fR,S(ri′ , sπs(m))).

This proves Theorem 1.�

Theorem 1 for Progressive FSM

The main loop of the algorithm in Table 2 can terminate for two reasons. EitherN examples have
been processed and from the calculation ofN and the definition of the similarity confidence interval
(Definition 3) we know that in this case, with probability 1-δ

2 , there is no pair(ri, sj) that violates
�fR′,S′(ri, sj)� δ

2
� fR,S(ri, sj) � �fR′,S′(ri, sj)	 δ

2
. Alternatively, the algorithm can terminate in step

4 when all pairs(ri, sj) satisfy�fR′,S′(ri, sj)	δt − �fR′,S′(ri, sj)�δt � ε. In this case, Definition 3 says
that with probability1 − δt, there is no pair(ri, sj) that violates�fR′,S′(ri, sj)�δt � fR,S(ri, sj) �
�fR′,S′(ri, sj)	δt . After terminating in either of these steps, the algorithm returns results analogously to
the algorithm in Table 1.

Assuming that all similarities lie within their corresponding similarity confidence intervals, Eq. (14)
is satisfied again and the proof in Section 7 shows that the returned solution satisfies the three conditions
of an approximately optimal matching characterized in Definition 2. However, we have assumed that all
the similarity values throughout the execution of the algorithm lie within their corresponding similarity
confidence interval. We now have to bound the risk that during the course of execution of the algorithm
there is any pair(ri, sj) whose true similarity lies outside its similarity confidence interval.

WhenN examples have been processed, then the risk that any pair(r i, sj) violates

�fR′,S′(ri, sj)� δ
2

� fR,S(ri, sj) � �fR′,S′(ri, sj)	 δ
2

(18)

is at mostδ2 ; this follows immediately from Definition 2. Furthermore, during thet-th iteration of the
main loop the algorithm incurs an additional risk ofδt that there is at least one pair whose similarity lies
outside its confidence interval. We use the union bound to assess this risk as follows.

Pr[During execution, there is a(ri, sj) that violates(18)]

� δ

2
+ Pr[Step 4, iterationt some(ri, sj) violates(18)]

� δ

2
+

∞∑
t=1

δt =
δ

2
+

∞∑
t=1

δ

2t(t+ 1)
(19)
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� δ

2
+
δ

2

∞∑
t=1

1
t(t+ 1)

= δ (20)

This completes the proof.�

Appendix B. Proof of correctness of confidence intervals

We will now prove Theorem 2; during the course of the proof, we will also prove Lemmas 1 and 2.
Recall thatfR,S is a weighted sum of three other measures. The following Lemma makes it possible to
derive intervals forfR,S from the intervals for its three constituents.

Lemma 4. If [�xi�δ , �xi	δ] for i = 1, . . . ,m are simultaneous confidence intervals forx1, . . . , xm

respectively, with significance levelδ, andwi � 0 for i = 1, . . . ,m, then

�w1x1 + . . . + wmxm�δ =
m∑

i=1

wi�xi�δ (21)

�w1x1 + . . . + wmxm	δ =
m∑

i=1

wi�xi	δ (22)

is a confidence interval forw1x1 + . . .+ wmxm with significance levelδ.

Proof.

Pr

{
w1x1 +. . .+ wmxm �∈

[
m∑

i=1

wi�xi�δ ,

m∑
i=1

wi�xi	δ

]}
� Pr{∃i : wixi �∈ [wi�xi�δ, wi�xi	δ ]}

= Pr{∃i : xi �∈ [�xi�δ , �xi	δ]} � δ. �
It is easy to see from the definitions in Section 5 that we only need to prove confidence intervals for

fE
R,S andfπE

R,S. We will therefore now prove Lemmas 1 and 2.

Proof. Using basic algebraic transformations it is easy to see that(∀r ∈ R,∀i ∈ {1 . . . nr} : pr,i ∈ [�pr,i� δ
M
, �pr,i	 δ

M
]
)

and
(∀s ∈ S,∀j ∈ {1 . . . ns} : qs,j ∈ [�qs,j� δ

M
, �qs,j	 δ

M
]
)

implies

∀r ∈ R,∀i ∈ {1 . . . nr} ,∀{s ∈ S : ns = nr},∀j ∈ {1 . . . ns} : (pr,i − qs,j)2 ∈[
(�pr,i� δ

M
)2 + (�qs,j� δ

M
)2 − 2�pr,i	 δ

M
�qs,j	 δ

M
, (�pr,i	 δ

M
)2 + (�qs,j	 δ

M
)2 − 2�pr,i� δ

M
�qs,j� δ

M

]
,

and after replacingj with ani-th index of a permutation of{1, . . . , n}:

∀r ∈ R,∀{s ∈ S : ns = nr},∀i ∈ {1 . . . nr} ,∀π ∈ Π(nr) : (pr,i − qs,π(i)
)2 ∈[

(�pr,i� δ
M

)2 + (�qs,π(i)
� δ

M
)2 − 2�pr,i	 δ

M
�qs,π(i)

	 δ
M
, (�pr,i	 δ

M
)2

+(�qs,π(i)
	 δ

M
)2 − 2�pr,i� δ

M
�qs,π(i)

� δ
M

]
.
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Notice that we are just permuting the confidence intervals for single probability estimates, and not
introducing any new ones. This allows us to test all permutations without increasingM .

After summing over alli = 1, . . . , nr we get

∀r ∈ R,∀{s ∈ S : ns = nr},∀π ∈ Π(nr) :
nr∑
i=1

(pr,i − qs,π(i)
)2 ∈

[ nr∑
i=1

(
(�pr,i� δ

M
)2 + (�qs,π(i)

� δ
M

)2 − 2�pr,i	 δ
M
�qs,π(i)

	 δ
M

)
,

nr∑
i=1

(
(�pr,i	 δ

M
)2 + (�qs,π(i)

	 δ
M

)2 − 2�pr,i� δ
M
�qs,π(i)

� δ
M

)]
.

Subtracting from2 we get l

∀r ∈ R,∀{s ∈ S : ns = nr},∀π ∈ Π(nr) : 2 −
nr∑
i=1

(pr,i − qs,π(i)
)2 ∈

[
2 −

nr∑
i=1

(
(�pr,i	 δ

M
)2 + (�qs,π(i)

	 δ
M

)2 − 2�pr,i� δ
M
�qs,π(i)

� δ
M

)
,

2 −
nr∑
i=1

(
(�pr,i� δ

M
)2 + (�qs,π(i)

� δ
M

)2 − 2�pr,i	 δ
M
�qs,π(i)

	 δ
M

)]
.

After substituting confidence interval forfE
R,S

∀r ∈ R,∀{s ∈ S : ns = nr},∀π ∈ Π(nr) : fE
R,S(r, πs) ∈ [�fE

R′,S′(r, πs)�δ , �fE
R′,S′(r, πs)	δ ],

and finally

∀r ∈ R,∀{s ∈ S : ns = nr} : max
π∈Π(nr)

fE
R,S(r, πs) ∈ [ max

π∈Π(nr)
�fE

R′,S′(r, πs)�δ ,

max
π∈Π(nr)

�fE
R′,S′(r, πs)	δ ].

Below ‘⇒’ denotes logical implication. By a similar (and simpler) argument we can derive

(∀r ∈ R,∀i ∈ {1 . . . nr} : pr,i ∈ [�pr,i� δ
M
, �pr,i	 δ

M
])

and(∀s ∈ S,∀j ∈ {1 . . . ns} : qs,j ∈ [�qs,j� δ
M
, �qs,j	 δ

M
])

⇒ ∀r ∈ R,∀{s ∈ S : ns = nr} : fE
R,S(r, s) ∈ [�fE

R′,S′(r, s)�δ , �fE
R′,S′(r, s)	δ ].

Combining the two above implications and using modus tollens we get

∃r ∈ R,∃s ∈ S : ns = nr, f
E
R′,S′(r, s) �∈ [�fE

R′,S′(r, s)�δ , �fE
R′,S′(r, s)	δ ]

∨ ∃r ∈ R,∃s ∈ S : ns = nr, f
πE
R,S(r, s) �∈ [�fπE

R′,S′(r, πs)�δ , �fπE
R′,S′(r, πs)	δ ] (23)
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⇒ ∃r ∈ R, i ∈ {1 . . . nr} : pr,i �∈ [�pr,i� δ
M
, �pr,i	 δ

M
] ∨ ∃s ∈ S, j ∈ {1 . . . ns}

: qs,i �∈ [�qs,j� δ
M
, �qs,j	 δ

M
].

LetA denote an event that one of the similarity measures considered is outside of its confidence interval,
i.e. Eq. (23). Since if for two eventsA andB we have: ifA⇒ B then Pr{A} � Pr{B}, it follows that

Pr{A} � Pr
{∃r ∈ R, i ∈ {1 . . . nr} : pr,i �∈ [�pr,i� δ

M
, �pr,i	 δ

M
] ∨ ∃s ∈ S, j ∈ {1 . . . ns} :

qs,j �∈ [�qs,j� δ
M
, �qs,j	 δ

M
]
}

�
∑
r∈R

nr∑
i=1

Pr
{
pr,i �∈ [�pr,i� δ

M
, �pr,i	 δ

M
]} +

∑
s∈S

ns∑
j=1

Pr
{
qs,j �∈ [�qs,j� δ

M
, �qs,j	 δ

M
]
}

�
∑
r∈R

nr∑
i=1

δ

M
+

∑
s∈S

ns∑
j=1

δ

M
= δ. �

Proof of Theorem 2. Bounds for single probability estimates, together with Lemmas 2 and 3 prove
bounds forfπE

R,S andfBg
R,S. For the case off c

R,S(r, s), note that the elements of vectorsP r andP s are
averages of numbers from the interval [0,1], so they are, in fact, random variables on that interval, and
Hoeffding and normal bounds (through Central Limit Theorem) apply to them. Now, Lemma 1 applies
giving confidence intervals forf c

R,S. Applying Lemma 4 to confidence intervals forf πE
R,S, fBg

R,S andf c
R,S

completes the proof.�
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