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Abstract—Description Logics (DLs) are a family of logic-
based knowledge representation formalisms, which can be
used to develop ontologies in a formally well-founded way.
The standard reasoning service of subsumption has proved
indispensable in ontology design and maintenance. This checks,
relative to the logical definitions in the ontology, whether
one concept is more general/specific than another. When no
subsumption relationship is identified, however, no information
about the two concepts can be given. This work presents a
new notion of semantic similarity which stems from the known
homomorphism-based structural subsumption algorithm. The
proposed similarity measure computes a numerical degree of
similarity between two EL concept descriptions despite not
being in the subsumption relation.
Keywords-similarity measure; description logic; semantic

web ontology; concept matching

I. INTRODUCTION
Description Logics (DLs) [2] are a family of logic-based

knowledge representation formalisms, which can be used to
develop ontologies in a formally well-founded way. This is
true both for expressive DLs, which are the logical basis of
the Web Ontology Language OWL 2, and for lightweight
DLs of the EL family [1], which are used in the design
of large-scale medical ontologies such as SNOMED CT [11]
and form one of the W3C-recommended tractable OWL
profiles, OWL 2 EL [9]. One of the main advantages of
employing a logic-based ontology language is that reasoning
services can be used to derive implicit knowledge from the
one explicitly represented. DL systems can, for example,
classify a given ontology, i.e. compute all the subsumption
(i.e. subclass–superclass) relationships between the concepts
defined in the ontology and arrange these relationships as
a hierarchical graph. The advantage of using a lightweight
DL of the EL family is that classification is tractable, i.e. a
subsumption hierarchy of a given ontology can be computed
in polynomial time.
Though inevitably useful in ontology design, the reason-

ing service of subsumption merely gives crisp responses, i.e.
a positive response concluding that one concept is subsumed
by the other, or a negative response concluding that they are
not related that way. In virtually every domain, however, a
concept may be more similar to certain concepts than others

despite the fact that they are out of the subsumption relation.
Consider, for instance, the concepts Grandfather, Father,
Uncle andMother with their natural definitions. It is not hard
to be convinced that Mother is more similar to Father than
to Grandfather; and that it is more similar to Grandfather
than to Uncle. Obviously, subsumption alone is not enough
to handle this matter since Mother is in no subsumption
relationship with the other concepts. The aim of the present
paper is to systematically and semantically define a measure
for similarity between two EL concept descriptions w.r.t. a
terminology.
The rest of the paper is organized in order. The back-

ground on the DL EL, unfoldable TBoxes, and the structural
subsumption algorithm is presented in the next section.
Section III and IV introduce the notions of homomorphism
likelihood and EL semantic similarity measure, respectively,
and exemplify the introduced measure by means of a
small yet prototypical medical ontology. Related works are
discussed in Section V, and the last section gives some
concluding remarks.

II. BACKGROUND
In DLs, concept descriptions are inductively defined with

the help of a set of constructors, starting with a set CN
of primitive concept names and a set RN of role names.
EL concept descriptions are formed using the constructors
shown in the upper part of Table I. An EL terminology or
TBox is a finite set of concept definitions, whose syntax is
shown in the lower part of Table I. A TBox is called unfold-
able if it contains at most one concept definition for each
concept name in CN and does not contain cyclic dependen-
cies. The set CNdef of defined concepts are concept names
that appear on the left hand side of a concept definition.
Other concepts are called primitive concepts, denoted by
CNpri. Conventionally, r, s possibly with subscripts are used
to range over RN, A, B to range over CN, and C, D to range
over concept descriptions. Primitive concept definitions are
commonly found in realistic terminologies to define those
concepts, of which only necessary conditions are known;
see, e.g., the concept Pericardium and its primitive definition
ω1 in Figure 2. Such a primitive definition B ! D can easily



Name Syntax Semantics
top ! ∆I

concept name A AI ⊆ ∆I

conjunction C # D CI ∩ DI

existential
restriction ∃r.C

{x ∈ ∆I | ∃y ∈ ∆I :
(x, y) ∈ rI ∧ y ∈ CI}

primitive definition B ( D AI ⊆ DI

full definition B ≡ D AI = DI

Table I
SYNTAX AND SEMANTICS OF THE DESCRIPTION LOGIC EL.

be transformed into a semantically equivalent full definitions
B ≡ X # D where X is a fresh concept name.
The semantics of EL is defined in terms of interpretations

I = (∆I , ·I), where the domain ∆I is a non-empty
set of individuals, and the interpretation function ·I maps
each concept name A ∈ CN to a subset AI of ∆I and
each role name r ∈ RN to a binary relation rI on ∆I .
The extension of ·I to arbitrary concept descriptions is
inductively defined, as shown in the semantics column of
Table I. An interpretation I is a model of a TBox O if,
for each concept definition in O, the conditions given in
the semantics column of Table I are satisfied. The main
inference problem for EL is the subsumption problem:

Definition (concept subsumption) Given two EL concept
descriptions C, D and an EL TBox O, C is subsumed by
D w.r.t. O (written C !O D) if CI ⊆ DI in every model
I of O. Moreover, C, D are equivalent w.r.t. O (written
C ≡O D) if C !O D and D !O C.

Provided that the TBox is unfoldable (i.e. acyclic and
definitional), any EL concept can be expanded to an equiv-
alent one that consists of only primitive concept names
in CNpri by repeatedly replacing defined concepts by their
definitions until no more defined concepts appear in the
concept description. Given, for example, a stated definition
of Grandfather:

Grandfather ≡ Man # ∃child.Parent

By replacing the defined concept Parent with its description
Person # ∃child.Person, and Man with Male # Person, the
description can be expanded to:

Male # Person # ∃child.(Person # ∃child.Person) (1)

where Person, Male ∈ CNpri. We denote by Ĉ the expanded
equivalence of the concept description C.
Henceforth, we assume without loss of generality that an

EL concept C is of the following form:

P1 # · · · # Pk # ∃r1.C1 # · · · # ∃r!.C! (2)

where Pi ∈ CNpri, rj ∈ RN, and Cj are concept descriptions,
for 1 ≤ i ≤ k and 1 ≤ j ≤ ". For convenience, we
denote by PC and EC the set of top-level primitive concepts

{P1, . . . , Pk} and the set of top-level existential restrictions
{∃r1.C1, . . . ,∃r!.C!}, respectively.
In [4], [3], a characterization of subsumption in EL w.r.t.

an unfoldable TBox using homomorphism has been pro-
posed. Instead of considering concept descriptions directly,
the characterization considers so-called EL description trees
that structurally correspond to the EL concept descriptions.
In essence, the root v of the EL description tree T for
the concept description in Formula 2 has {P1, . . . , Pk} as
its label, and has " outgoing edges, each labeled with Rj

to a vertex vj , for 1 ≤ j ≤ ". Then, the subtree T |vj

with the root vj is defined inductively based on Cj . The
subsumption is then characterized by means of an existence
of a homomorphism in the reverse direction.

Theorem 1 ([4], [3]). Let C, D be EL concept descriptions.
Then, C ! D iff there exists a homomorphism h : TD → TC

which maps the root of TD to the root of TC .

w0 : {Male, Person}

w1 : {Person}

w2 : {Person}

u0 : {Person}

u1 : {Person}

v0 : {Male, Person}

v1 : {Person}

v2 : {Person}

child child

child

sibling

child

×

Figure 1. A homomorphism h (dashed arrows) that maps the root of TParent

to the root of TGrandparent ; a failed attempt to identify a homomorphism
(dotted arrows) that maps the root of TParent to the root of TUncle.

Consider the aforementioned descriptions for Parent and
Grandfather, and the following description for Uncle:

Man # Person # ∃sibling.(Person # ∃child.Person)

Figure 1 depicts the EL description trees TParent (center),
TGrandfather (right), and TUncle (left), and shows a homomor-
phism h as the dashed arrows that maps the root u0 of TParent

to the root v0 of TGrandfather. It also shows a failed attempt
to obtain a homomorphism as the dotted arrows from TParent

to TUncle.
By Theorem 1, it is then ensured that Grandfather !O

Parent and that Uncle )!O Parent. Though sharing some
common feature, the classical reasoning of subsumption
does not suffice to tell how similar they are.

Our similarity measure is based on this structural character-
ization. Instead of merely giving either positive or negative
result between two descriptions, rather the similarity mea-
sure provides a numerical result such that 0 ≤ sim(C, D) =
sim(D, C) ≤ 1. Intuitively, the larger the number, the more
similar the two concepts are. In particular, if the similarity
measure is 1, then the two concepts are equivalent.



III. HOMOMORPHISM LIKELIHOOD
Theorem 1 suggests that an existence of a homomorphism

between EL description trees implies a subsumption rela-
tionship between the corresponding concept descriptions. We
extend this idea also to the case where no such homomor-
phism exists but there is some likelihood.
Let C, D be EL concept descriptions, PC ,PD, EC , ED

be as defined in the previous section, and TC , TD be the
corresponding EL description trees. Then, the likelihood
of having a homomorphism from TD to TC is defined as
follows:

Definition (homomorphism likelihood) Let TEL be the set
of all EL description trees. The homomorphism likelihood
function hl : TEL × T

EL → [0, 1] is inductively defined as
follows:

hl(TD, TC) := µ·p-hl(PD,PC)+(1−µ)·e-hl(ED, EC), (3)

where 0 < µ < 1;

p-hl(PD,PC) :=

{

1 if PD = ∅
|PD∩PC |

|PD | otherwise, (4)

where | · | represents the set cardinality;

e-hl(ED, EC) :=
∑

εi∈ED

max{e-hl(εi, εj) : εj ∈ EC}
| ED |

, (5)

where εi, εj are existential restrictions; and

e-hl(∃r.X, ∃s.Y ) :=

{

0 if r )= s
ν + (1 − ν) · hl(TX , TY ) if r = s,

(6)
where 0 ≤ ν < 1.

Intuitively, the homomorphism likelihood Formula 3 is
defined as the weighted sum of the likelihood of the label
set inclusion (p-hl) and the likelihood of the edge condition
matching (e-hl). Formula 4 calculates the proportion of the
matched primitive concepts to all the primitive concepts in
the top level. Formula 6 measures the likelihood of an edge
mapping in a potential homomorphism. If the edge-labeling
roles are the same, then there is some likelihood; but the
successors’ labels and structures have yet to be checked.
This is done recursively by calling the function hl(TX , TY ).
The values computed in Formula 6 collectively are used to
determine the likelihood of the edge condition matching.
Formula 5 calculates the maximum likelihood for each edge
in ED and returns the average thereof.
The weight µ in Formula 3 determines how important

the primitive concepts are to be considered for similarity
measure. It is recommended to set µ = |PD |

|PD∪ED | , i.e. the
proportion of the primitive concepts to all the terms in the
top level. For the special case where PD = ED = ∅, the
value of µ is irrelevant as T$ is the smallest EL description
tree and hl(T$, TC) = 1 for all concepts C.

ω1 Pericardium ! Tissue " ∃part.Heart

ω2 Endocardium ! Tissue " ∃part.Heart

ω3 Appendicitis ≡ Inflammation " ∃loc.Appendix

ω4 Pericarditis ≡ Inflammation " ∃loc.Pericardium

ω5 Endocarditis ≡ Inflammation " ∃loc.Endocardium

ω6 Inflammation ! Disease

ω7 HeartDisease ≡ Disease " ∃loc.∃part.Heart

Figure 2. An example EL unfoldable terminology Omed.

The value of ν in Formula 6 determines how impor-
tant the unqualified existential information, i.e. considering
merely roles in an existential restriction, should be con-
sidered for similarity measure. For instance, ∃child.Male
and ∃child.Female for dissimilar nested concepts Male
and Female should not be regarded as entirely dissimi-
lar themselves. If ν is assigned the values 0.2, 0.3, 0.4,
then e-hl(∃child.Male, ∃child.Female) is 0.2, 0.3, 0.4, re-
spectively. Providing more axiomatic information in the un-
foldable TBox like Male ! Gender and Female ! Gender,
the e-hl figures would be 0.6, 0.65, 0.7, respectively.
To better understand the notion of homomorphism like-

lihood, consider a medical ontology Omed in Figure 2. By
introducing fresh concept names X, Y, Z , the primitive def-
initions ω1, ω2 and ω6 can be transformed to the following
full definitions:

ω′
1 Pericardium ≡ X # Tissue # ∃part.Heart

ω′
2 Endocardium ≡ Y # Tissue # ∃part.Heart

ω′
6 Inflammation ≡ Z # Disease

Let O′
med be the unfoldable TBox obtained from Omed by

replacing ω1, ω2 and ω6, respectively, by their equivalent
ω′

1, ω′
2 and ω′

6.

Example Consider the defined concepts HeartDisease and
Pericarditis in O′

med; and their expanded descriptions as
follows:

Disease # ∃loc.(∃part.Heart) (7)

Z # Disease # ∃loc.(X # Tissue # ∃part.Heart) (8)

Using ν = 0.4, the homomorphism likelihood from



hl(↓,→) Pdm Edm Ats Pts Ets Inf Hds

Pericardium 1.0 0.67 0 0 0 0 0
Endocardium 0.67 1.0 0 0 0 0 0
Appendicitis 0 0 1.0 0.8 0.8 0.67 0.47
Pericarditis 0 0 0.8 1.0 0.93 0.67 0.53
Endocarditis 0 0 0.8 0.93 1.0 0.67 0.53
Inflammation 0 0 1.0 1.0 1.0 1.0 0.5
HeartDisease 0 0 0.70 1.0 1.0 0.5 1.0

Table II
HOMOMORPHISM LIKELIHOOD AMONG DEFINED CONCEPTS IN OMED .

HeartDisease to Pericarditis can be computed as follows:1

hl(THds, TPts) := 1
2
p-hl(PHds,PPts) + 1

2
e-hl(EHds, EPts)

:= 1
2
[ 1
1
] + 1

2
e-hl(εi, εj)

// with εi = ∃l.∃p.H and εj = ∃l.(X # T # ∃p.H)

:= 1
2
[ 1
1
] + 1

2
[ 2
5

+ 3
5
hl(T∃p.H, TX'T'∃p.H)]

:= 1
2
[ 1
1
] + 1

2
[ 2
5

+ 3
5
e-hl(∃p.H, ∃p.H)]

:= 1
2
[ 1
1
] + 1

2
[ 2
5

+ 3
5
{ 2

5
+ 3

5
hl(TH, TH)}]

:= 1
2
[ 1
1
] + 1

2
[ 2
5

+ 3
5
{ 2

5
+ 3

5
· 1}]

:= 1

Intuitively, the homomorphism likelihood of 1 means there
is a homomorphism; see the dashed arrows in Figure 3. The
reverse direction can be computed as follows:

hl(TPts, THds) := 2
3
p-hl(PPts,PHds) + 1

3
e-hl(EPts, EHds)

:= 2
3
[ 1
2
] + 1

3
e-hl(εi, εj)

// with εi = ∃l.(X # T # ∃p.H) and εj = ∃l.∃p.H

:= 2
3
[ 1
2
] + 1

3
[ 2
5

+ 3
5
hl(TX'T'∃p.H, T∃p.H)]

// where hl(TX'T'∃p.H, T∃p.H) yields 1
3
; see below

:= 2
3
[ 1
2
] + 1

3
[ 2
5

+ 3
5
{ 1

3
}]

:= 8
15

= 0.53

The computation for the sub-descriptions, corresponding to
v1 and u1 in Figure 3, is as follows:

hl(TX'T'∃p.H, T∃p.H)

:= 2
3
p-hl({X, T}, ∅) + 1

3
e-hl(∃p.H, ∃p.H)

:= 2
3
[ 0
2
] + 1

3
[ 2
5

+ 3
5
hl(TH, TH)]

:= 2
3
[ 0
2
] + 1

3
[ 2
5

+ 3
5
· 1]

:= 1
3

Hence, the likelihood of having a homomorphism from
HeartDisease to Pericarditis is 1, and that for the opposite
direction is 0.53. The hl values for other pairs can be
obtained in an analogous manner and are shown in Table II.

Using a proof by induction, together with Theorem 1 [4],
[3], it is not difficult to obtain the correspondence between
the homomorphism likelihood and subsumption.

1Obvious abbreviations are used here for the sake of succinctness.

u0 : {Disease}

u1 : ∅

u2 : {Heart}

v0 : {Z, Disease}

v1 : {X, Tissue}

v2 : {Heart}

loc

part

loc

part

(hl=0.53)

(hl=0.33)

(hl=1.0)

Figure 3. A homomorphism mapping the root of THeartDisease to the root
of TPericarditis a failed attempt to identify (dashed arrows); a homomorphism
likelihood that could map the root of TPericarditis to the root of THeartDisease

(dotted arrows).

Proposition 2. Let C, D be EL concept descriptions, and O
an EL unfoldable TBox. Then, the following are equivalent:

• C !O D
• hl(TD̂, TĈ) = 1,

where X̂ is the equivalent expanded concept description
from X w.r.t. O, and TX̂ is its corresponding EL description
tree, with X ∈ {C, D}.

In fact, the closer the hl(TD̂, TĈ) value is to 1, the more
likely the corresponding subsumption may hold. Putting
more simply, the label and edge constraints in TD̂ can likely
be simulated by those in TĈ .

IV. EL SEMANTIC SIMILARITY

The homomorphism likelihood function provides a nu-
merical value that represents structural similarity of one
concept description when compared against another concept
description. As illustrated by the example in the previous
section, the direction of the homomorphism likelihood mat-
ters, viz., hl(TPts, THds) = 0.53, whereas hl(THds, TPts) = 1.
Since both directions constitute the likelihood of the two
concepts being equivalent (i.e. highest degree of similarity),
our similarity measure for EL concept descriptions is defined
by means of these values.

Definition (EL similarity degree) Let C, D be EL concept
descriptions, and O an EL unfoldable TBox. The degree
of similarity between C and D, in symbols sim(C, D), is
defined as:

sim(C, D) :=
hl(TĈ , TD̂) + hl(TD̂, TĈ)

2
, (9)

where X̂ is the equivalent expanded concept description
from X w.r.t. O, and TX̂ is its corresponding EL description
tree, with X ∈ {C, D}.

Intuitively, the degree of similarity between two concepts is
the average of the likelihood of having homomorphisms in
both directions, thus sim(C, D) = sim(D, C) as required.



hl(↓,→) Pdm Edm Ats Pts Ets Inf Hds

Pericardium 1.0 0.67 0 0 0 0 0
Endocardium - 1.0 0 0 0 0 0
Appendicitis - - 1.0 0.80 0.80 0.84 0.59
Pericarditis - - - 1.0 0.93 0.84 0.77
Endocarditis - - - - 1.0 0.84 0.77
Inflammation - - - - - 1.0 0.50
HeartDisease - - - - - - 1.0

Table III
SIMILARITY DEGREE AMONG DEFINED CONCEPTS IN OMED .

Proposition 3. Let C, D be EL concept descriptions, and O
an EL unfoldable TBox. Then, the following are equivalent:

• C ≡O D
• sim(C, D) = sim(D, C) = 1,

Note that one could adopt an alternative definition, e.g.,
based on the multiplication simmult(C, D) or the root mean
square simrms(C, D). Alas, these would give rather unsat-
isfactory values for the extreme cases such as the concepts
A and -, where simmult(A,-) = 0 and simrms(A,-) =
0.707. Since simmult(C, D) ≤ sim(C, D) ≤ simrms(C, D),
we believe that the average-based definition given above is
most appropriate.
Based on the homomorphism likelihood values in Table II,

the degrees of similarity among the defined concepts in
the example ontology Omed can be obtained; see Table III.
Observe that there are two mutually exclusive clusters of
similar concepts {Pdm, Edm} and {Ats, Pts, Ets, Inf, Hds},
where concepts from the same clusters are relatively similar
(i.e. sim ≥ 0.5) and any from the different clusters are
totally dissimilar (i.e. sim = 0). This observation directly
matches separate hierarchical structures in the classification
results (see Figure 4). Note also that, though not included in
Table II and III, the similarity involving primitive concepts
like Heart, Tissue and Disease can also be computed.
Nevertheless, the pairwise similarity degree between any two
primitive concepts is zero by our definition since there is
absolutely no commonality between them apart from both
being subsumed by -.
Figure 4 highlights on Pericarditis to exemplify a possible

utility of the EL semantic similarity. On top of the known
subsumption relationships, similarity relationships together
with their numerical degree can be displayed. It may appear
more natural also to place more similar concepts closer to
each other in a visualization tool.

V. RELATED WORKS

There have been a good number of works on concept
similarity in the literature which vary both in terms of
algorithmic approaches and representation formalisms.
The path distance approach measures the distance be-

tween concepts in the pre-computed hierarchical structures
of an ontology [6], [7]. Here, the definitions and constraints

Pericarditis

( Heart

Tissue

Pericardium

Endocardium

Disease

Inflammation

HeartDisease

Appendicitis

Endocarditis

0.77

0.84

0.33

0.93

0.80

Figure 4. The classification hierarchy of the example medical TBox Omed
(bold arrows) augmented with the similarity relationships revolving the
concept Pericarditis.

of concept definitions in the ontology are not used. Merely
the placement of concepts in the hierarchy is relevant.
Tversky introduced feature matching [13] which suggests

that both common and discriminant features between two
concepts or concept instances be considered for the com-
putation of a semantic similarity. Although the focus in
that paper is on similarity between objects in geometric and
dimensional spaces, the idea is so general that it can also be
applied to conceptual representation.
It has been suggested in [12] that the effort for deducing

certain relationship such as subsumption can be regarded
as a distance between the concepts in question. This was
in contrast to the path distance approach that ignores such
information. The limitation of this reasoning effort approach
is that any pair of concepts out of the subsumption relation
are always treated as totally dissimilar.
Another similarity measure for concepts within a hier-

archy is defined in terms of variation of the information
content depicted by concepts of interest and the one depicted
by their common parent concept [10].
Fanizzi and d’Amato has proposed a semantic similarity

measure specific for the EL ALN [5]. This measure is
based on the structural subsumption algorithm for the logic
and computes commonality and distinctness between two
ALN concept descriptions by resorting to counting named
individuals (instances) in the knowledge base. One potential
disadvantage of this measure is that it cannot be applied to
an ontology without instances, for example, SNOMED CT.
In [8], the authors introduced two kernel functions for

EL++ (i.e. an extension of the DL EL) concepts which
could be used for measuring similarity between concept
descriptions. This approach stems from the kernel methods
for pattern analysis. Unfortunately, neither details nor exam-
ples were given in the paper as to how numeric values can
actually be computed. Besides, the canonical form, together



with its transformation rules, appears to contain a flaw since
a concept may not be expandable w.r.t. expressive axioms
allowed in DL EL++.
Our proposed measure is similar to that in [5], but

the homomorphism-based structural subsumption algorithm
for the DL EL is considered. The introduced notion of
homomorphism likelihood does away with counting (named)
individuals which allows our similarity measure to be appli-
cable to various ontologies without the need to populate all
the concepts with instances.

VI. DISCUSSIONS AND FUTURE DEVELOPMENT

This paper is the first attempt of extending the EL
structural subsumption algorithm to calculate the degree of
similarity between two concept descriptions. Though the
concepts in question are not in the subsumption relation,
the measure is capable of informing their relationship based
on the common and discriminant features.
This non-standard reasoning service is believed to be use-

ful in real-world applications, in which concept descriptions
may be formed not by the domain expert but rather by
the abundant data. For example, one could extract technical
terms from a text and use them to create a concept descrip-
tion. This description may not be related via the subsumption
relation to a reference concept in the ontology but could
hold certain information facets pertinent to the ontology and
user’s interest. Another promising application of the EL
semantic similarity measure is visualization. Traditionally,
concepts are visualized with equal distances. More intuitive
visualization tools could employ the degree of similarity to
determine the most appropriate placement of each concept.
Besides, additional similarity links could be added to the
graph as illustrated by the dashed edges in Figure 4.
There are a few directions for future work. Firstly, it

appears to be a natural next step to consider tractable
extensions to EL, especially with role inclusions and ter-
minological cycles. Secondly, we aim at carrying out an ef-
ficient implementation of this similarity measure algorithm.
Obviously, one needs to ponder on how to efficiently calcu-
late the homomorphism likelihood values in the bottom-up
fashion, in order to avoid the possible exponential matching.
Finally, it would be interesting to explore the EL semantic
similarity among concepts in SNOMED CT and to compare
the usefulness and meaningfulness of different measures
w.r.t. this medical ontology.
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