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Abstract

Enterprises integration has recently gained great attentions, as never before. The paper deals with an essential activity enabling seam-
less enterprises integration, that is, a similarity-based schema matching. To this end, we present a supervised approach to measure seman-
tic similarity between XML schema documents, and, more importantly, address a novel approach to augment reliably labeled training
data from a given few labeled samples in a semi-supervised manner. Experimental results reveal the proposed method is very cost-efficient
and reliably predicts semantic similarity.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Along with advances in the internet technology, we have
been daily facing countless information over the world,
without opportune evaluation of its relevance. Especially,
in the context of business-to-business (B2B) applications
integration, XML schema has been used as the standard
means to express and exchange information among enter-
prise applications. The profusion of XML schemas, how-
ever, hinders enterprises from seamless and interoperable
integration. For this reason, it is very important to identify
proper XML schema(s) for a particular integration need.
The identification process, so-called semantic matchmak-
ing or schema matching in short, is a reasoning process
to produce a set of semantic mappings among input sche-
mas with support of semantic similarity measures. The
applications of schema matching include, but not limited
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to, schema/ontology integration, XML message mapping,
e-catalog mapping, web service discovery and composition,
agent communication, and further enterprises integration,
wherever heterogeneity in syntax, system and/or semantics
exists (Sheth, 1999; Shvaiko & Euzenat, 2005). The key
prerequisite to the success of schema matching is a reliable
semantic similarity measure among XML schemas. To this
end, we envision a supervised measuring tool (i.e., a classi-
fier) used to predict semantic similarity that incorporates
and synthesizes various pieces of information attributing
XML schemas.

The paper envisages a schema matching framework
based on semantic similarity between XML schemas. Spe-
cifically, it first presents an integrated similarity measure
between structured documents (i.e., XML schema) by
incorporating prominent supervised learning (i.e., neural
network-based partial least squares, NNPLS), which
judges the latent similarity from various similarity mea-
sures. And, more importantly, the paper addresses a novel
approach, in a semi-supervised manner, to augment a
reliable dataset necessary for training the NNPLS classi-
fier. To encourage potential researchers to use the
semi-supervised approaches, we reviewed a number of
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semi-supervised algorithms and conducted exhaustive com-
parative experiments with both artificial data and indus-
trial data.

The rest of the paper is configured as follows: Section 2
provides an overview of similarity measures for XML
schemas. A conceptual schema matching framework is
presented in Section 3, and followed by reviews of the
NNPLS classifier and various semi-supervised techniques,
used for the proposed schema matching, in Section 4.
Section 5 addresses the empirical studies and discussions.
Finally, the paper summary with future works is given in
Section 6.
2. Similarity for XML documents

2.1. Motivating example

Take a simple example of schema discovery problem (Lu
& Jung, 2003) that matches a schema – Schema (b) or (c) –
for a query schema a user wants to retrieve (i.e., schema
(a)), as shown in Fig. 1. A näive matcher may return
Schema (b) as the answer because it has the same root ele-
ment name (i.e., Paper). However, this reasoning is misled
because the query represents a schema for a conference
paper, while Schema (b) for a newspaper article. A more
intelligent matcher absolutely answers that Schema (c) is
equivalent to the query (a) because Schema (c) has a similar
structure (including same child elements), even though dif-
ferent, but semantically same, root element labels (i.e.,
Paper vs. Article). This example illustrates that a schema
matcher must be capable of interpreting various informa-
tion, i.e., contextual relationship and semantics on terms
(e.g., Paper and Article), as well as schema labels.
Paper

Title Authors Conference
Name

Year

Paper

HeadLine Reporter Company Date

Article

Title Authors Conference

Name YearAuthor

a Query

b

c

Fig. 1. A simple example to match a query Schema (a) to target Schemas
(b) and (c).
2.2. Similarity measures

Similarity is formally defined as an increasing function
of commonality and decreasing function of differences
among objects to be compared. Similarity for structured
documents, i.e., XML schema, is very complicated to
define. Traditional similarity measures for XML schemas
fall into one of lexical, structural, or logical category
(Jeong, Kulvatunyou, Ivezic, Cho, & Jones, 2005).

A lexical similarity measure quantifies the commonality
between individual XML schema labels using purely lexical
information (Jeong et al., 2005). Commonly used lexical
similarity measures are also divided into lexical form-based
measures (e.g., affix, n-gram, edit distance) (Shvaiko & Euz-
enat, 2005; Do & Rahm, 2003) and semantic information-
based measures (e.g., word sense and synonym, (weighted)
edge counting, and information content-based one)
(Castano, Antonellis, & Capitani, 2001; Jarmasz & Szpako-
wicz, 2003; Pedersen, Patwardhan, & Michelizzi, 2004; Res-
nik, 1995). It is noted that for the second group a lexical
knowledge resource (e.g., thesaurus) is absolutely required.

A structural similarity measure quantifies the commonal-
ity between XML schemas by taking into account the
lexical similarities of multiple, structurally related sub-
elements/attributes of these terms (Jeong et al., 2005). A
structural similarity metric typically provides a more con-
servative measure than a lexical similarity, because it looks
beyond the individual labels. The tree structure is a native
structure for XML documents; hence, it is most related to
our problem context. Commonly used structural similarity
measures include node, edge and/or path matching, inclu-
sive path matching, tree edit distance (TED), (weighted-)
tag similarity, weighted tree similarity, and Fourier trans-
formation-based approach (Buttler, 2004; Zhang, Li, Cao,
& Zhu, 2003; Bhavsar, Boley, & Yang, 2003). It is noted
that a tree should be uniquely labeled and ordered for some
measures (e.g., TED, weighted-tree similarity). Otherwise, a
matching tool must be able to re-order the tree or relax the
structure in local areas, which is an NP-complete problem.

It is a natural and safe way to aggregate several mea-
sures when no one knows which measure is the best to
quantify the true similarity, possibly in a domain context-
contingent case. In addition, using a single measure (or
measures in a category) may fail to obtain optimal results.
For example, two documents are not matched even though
their labels are same (a high lexical similarity), when their
structures are totally different (very low structural similar-
ity) for different meanings. Another case is that two docu-
ments are highly related when their structures are very
similar, in spite of their lexical similarity. Note that here
we omit the description about the logical similarity cate-
gory for few studies on this category have been done.

3. The proposed schema matching framework

The conceptual framework of schema matching is
depicted in Fig. 2. Schema matching looks for a repository
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Fig. 2. Conceptual framework of real-time schema matching.
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(or over the Web) and gets the most similar one to the
query. To enable real-time schema matching, we present
a two-phase design, i.e., online matching and offline prep-
aration, because to obtain reliable training data and to con-
struct a prediction model (i.e., a supervised classifier) is
time consuming. The online phase is, in a narrow sense,
schema matching to find the most plausible schema(s)
based on the semantic similarity. The matching procedure
will be detailed below. On the other hand, the offline phase
supports the online matching by providing a robust super-
vised classifier that predicts semantic similarity from vari-
ous measures. In this paper, a more important point is
that this preparation phase generates reliably labeled data
to train the classifier. Since labeled data require enormous
expenses to collect, we adopt a semi-supervised strategy
that augments unlabeled training data from a few labeled
samples.

3.1. Online matching procedure

Schema matching is an engineering process of measuring
similarity among schemas and then selecting the most plau-
sible schema(s) based on the similarity (Shvaiko & Euze-
nat, 2005; Jeong et al., 2005; Do & Rahm, 2003; Castano
et al., 2001; Jeong, 2006). In this perspective, the matching
procedure is as follows:

1. Feature engineering: Read two XML schemas, extract
features such as labels (e.g., schema or root element
name) and structural data, and represent them in an
internal format digestible by similarity computation.
In this step, since labels are often recommended to be
concatenated with several words, so-called a compound
word (e.g., PurchaseOrder), such words must be normal-
ized through a process of ‘tokenization’, ‘lemmatization’
and ‘elimination’ to compute lexical similarity. More-
over, the structure data used in this study is not the
native XML tree structure, i.e., DOM (document object
model) tree, of a schema document. Rather, we use a
structure skeleton, namely an abstract tree representa-
tion, that actually captures an intrinsic structure to
instance documents derived from the schema (Jeong,
2006).

2. Similarity computation: Select a subset of individual sim-
ilarity measures and compute similarities. The selection
of a subset is to reduce the computation time due to a
large number of measures available. We assume that
an operator has rough knowledge about which measures
are more prominent to his/her own problem.

3. Similarity synthesis: Synthesize the individual similarity
measures using a supervised classifier (i.e., NNPLS in
the paper). This synthesis can be viewed as classifier con-
struction and prediction. To construct a robust and
accurate classifier, training data need to be augmented
via a semi-supervised method.

4. Interpretation and iteration: Using a threshold, deter-
mine whether or not the schemas are matched to the
query. If not, go back to step 1 with different candidate
schemas from the repository or to step 2 with a different
combination of similarity measures.

3.2. Offline preparation procedure

The offline preparation mainly consists in training data
augmentation and classifier construction. Of them, obtain-
ing a sufficient number of reliably labeled samples neces-
sary for training a classifier is the main burden – requires
huge efforts of human experts to determine whether two
XML schemas are similar or not. Therefore, we adopt a



1654 B. Jeong et al. / Expert Systems with Applications 34 (2008) 1651–1658
semi-supervised strategy to augment a number of labeled
data. The propagation procedure is as follows:

1. Randomly select a number of pairs of XML schemas
from a repository to be eventually used as a training
data set for the (online) schema matching tool.

2. Preprocessing: Represent the pairs in a numeric matrix,
each row of which consists of a number of individual
similarity measures (assuming that a row vector repre-
sents a sample).

3. Sampling and supervision: Select a few samples and
assign their true similarity by human experts. Since it
is desirable that training data sufficiently span the solu-
tion space, for initial sampling we first cluster the whole
samples and then pick out a few samples from each clus-
ter (Fung & Mangasarian, 1999).

4. Propagation: Apply semi-supervised techniques, that is,
train a classifier (e.g., ANN, clustering) or estimate dis-
tribution with the unlabeled samples as well as the
labeled samples, and propagate to assign labels to the
rest of unlabeled samples. Since all the samples labeled
in this way will be used for future training for which,
once again, reliability is the key, they are required to
go through verification. If the classifier with the resulting
samples shows poor performance, the following strate-
gies (among which 4.2 and 4.3 require more human
intervention) may be invoked.
4.1. In this own step, use a different classifier, a näive

Bayes classifier or other distributions, for example,
for labeling.

4.2. Go back step 3, and select and assign labels to a
different (or additional) set of unlabeled samples.

4.3. Alternatively, consider an iterative strategy used
in active learning from the beginning (Brinker,
2004).
5. Model construction: Finally, with the training data,
which are labeled by the propagation step as well as
human experts, construct a supervised classifier (e.g.,
Bayes classifier, multilayer perceptron, NNPLS, etc.)
that will be used in online similarity synthesis.

4. Methods for schema matching

This section details the proposed method that constructs
a schema matching model and enables data augmentation
for the propagation step.

4.1. NNPLS-based similarity synthesis

To synthesize various similarity measures, we propose to
use a supervised classifier that predicts the semantic simi-
larity between XML schemas. In particular, we advise to
use NNPLS (neural network-based partial least squares)
because multiple input variables (i.e., similarity measures)
are usually mutually collinear and a high dimension of
input variables requires much computation time. However,
as described below, NNPLS overcomes such problems
through the process of PCA-like dimension reduction
(Bennett & Embrechts, 2003).

NNPLS is a supervised and efficient learning algorithm
that extracts latent variables from observed input variables.
Its basic principle is (1) to reduce the original input variable
space (X and Y) into a smaller PC-like latent variable space
(V and U), and then (2) to relate the correlated latent
variables using SISO (single-input–single-output) neural
networks. The dimension reduction makes it possible to
build a robust prediction model from collinear and ’fat
and short’ data, while the use of neural networks
enables to build the nonlinear relationship between the
input variables. The original variables are decomposed as
follows:

X ¼ VPT þ E

Y ¼ UQT þ F

V ¼ XW

U ¼ NðVÞ

where V(n · a) and U(n · a) are the score matrices,
P(m · a) and Q(r · a) are the loading matrices, and
E(n · m) and F(n · r) are the residual matrices of X and
Y, respectively. And, W(m · a) is used for constructing
orthogonal score vectors of X. A nonlinear mapping (i.e.,
N(Æ), a SISO network) is established between input and out-
put score vectors whenever a pair of latent variables is ex-
tracted. This mapping procedure is repeated until the
desired number of latent variables reaches. This approach
circumvents the problems of over-parameterization and
convergence to local optima. In addition, this NNPLS
model can be collapsed into an equivalent feedforward arti-
ficial neural network with one hidden layer. More detailed
descriptions about NNPLS and its collapse procedure are
referred to Jeong, Lee, and Cho (2005) and Jeong and
Cho (2006).

Fig. 3 depicts an NNPLS model to synthesize a number
of similarity measures. The input vector consists of m indi-
vidual similarity measures used (i.e., X 2 Rm) and the out-
put vector consists of only a single value (i.e., semantic
similarity, Y 2 R) over [0,1], where 1(0) means two XML
documents are equal (totally different). Since it is hard to
interpret the meaning of a value near 0.5, for example,
the output vector can alternatively be defined in R3, for
example. In such a case, three ideal output vectors, i.e.,
[1 0 0]T, [0 1 0]T, and [0 0 1]T, are possible to specify two
schemas to be compared are matched, somehow related,
or not related at all, respectively.

4.2. Semi-supervised learning techniques

From experiences, we know that supervised learning,
using only labeled data to train a classifier, is outperform-
ing in a variety of classification applications under a critical
precondition that reliably labeled training samples are suf-
ficiently ready. However, satisfying this precondition is
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nearly impossible in most of real applications because it is
very expensive and time consuming to assign desirable
labels to each sample – requiring significant involvement
of experienced human experts (more is better for reliabil-
ity), and/or the labeling procedure may be error-prone even
for experts. Meanwhile unlabeled data may be relatively
easy to gather, but less useful nor practical for classification
applications of interest. For these reasons, we often have to
envision a novel compromised approach, namely a semi-
supervised approach, that is, to use a large number of
unlabeled samples (u) with a few number of labeled
samples (l� u). The semi-supervised approach incremen-
tally assigns a label to each unlabeled sample by estimating
from an initial set of labeled samples. They are known to
require less human involvement while to be able to achieve
higher accuracy (Zhu, 2006). Here, we thoroughly reviewed
various semi-supervised approaches including a generative
model (e.g., expectation maximization (EM) algorithm,
cluster-and-label), self-training, co-training, graph-based
propagation, transductive support vector machine (TSVM),
and active learning.

The generative model, the oldest semi-supervised
approach, assumes a model p(x,y) = p(y)p(xjy), where
p(xjy) is an identifiable mixture distribution. Ideally speak-
ing, if a mixture distribution is identified, then an unlabeled
sample is said to be in the same distribution. The EM algo-
rithm is a typical one using a mixture of distributions (Zhu,
2006). Another generative approach is Cluster-and-Label,
which first clusters the whole dataset, followed by label
assignment to each cluster with labeled data. It is worthy
noting that although they can perform well if the particular
clustering algorithms (Guldemir & Sengur, 2006) match the
true data distribution, these approaches are hard to analyze
due to their algorithm nature.

Self-training (or self-teaching) is a common technique,
in which a classifier is first trained with a small amount
of labeled data available, and then guesses labels of the
unclassified data gradually. After an iteration, self-training
selects the most confident previously unlabeled samples,
together with their predicted labels, and adds them to the
training set. The classifier is re-trained and the procedure
is repeated. However, it is noted that this approach is very
sensitive to initial labeled samples as well as it may rein-
force itself with inaccurate data (Zhu, 2006).

Co-training has two (or more) complementary classifiers
trained with conditionally independent training datasets,
respectively. The basic procedure is (1) to split the labeled
samples into two separate datasets by features (not by sam-
ples), (2) for each dataset to train a classifier (one may train
different type classifiers while other may train the same type
classifier), and consequently (3) for each classifier to teach
the other classifier with a few most confident unlabeled
samples with corresponding predicted labels. A critical
assumption is that each labeled set (or sub-features) is good
enough to trust the labels by each classifier on unlabeled
samples. To hold this assumption, each set must be condi-
tionally independent so that one classifier’s high confident
data points are iid samples for the other classifier (Seeger,
2002).

Graph propagation has recently gained great attention.
It constructs a graph where the nodes are the labeled and
unlabeled data points, and edges reflect their proximity of
corresponding nodes. It has a basic assumption that two
nodes probably have a similar label if they are similar (high
proximity on their connecting edge). With this assumption,
labels propagate though adjacent nodes. However, a whole
graph must be re-constructed to inductively assign labels to
unseen data (Zhu, 2006).

TSVM copes with the weakness of discriminative meth-
ods, i.e., a semi-supervised learning cannot work well when
p(x) and p(yjx) do not share parameters, by means of the
connection between p(x) and the discriminative decision
boundary by not putting the boundary in high density
regions. As an extension of the standard SVM to unlabeled
samples, TSVM assigns labels to unlabeled samples in
order for the hyperplane to maximize margin on the whole
(both originally labeled and newly labeled) samples. In
other words, TSVM also minimizes the generalization error
bound on unlabeled samples. It is noted that the exact
TSVM (i.e., integer programming or non-convex optimiza-
tion problem) is NP-complete (i.e., Oð2nÞ) (Chapelle &
Zien, 2005).

Active learning is a special type of semi-supervised
learning, and resembles to co-training having different
types of classifiers without feature separation. Unlike to
general semi-supervised algorithms, active learning
assumes labeled samples are not initially given. Rather,
the algorithm selects a few number of unlabeled samples
and requests an oracle (e.g., human expert) to assign their
labels. Hence, the initial sampling is critical to the perfor-
mance (see Zhu, 2006; Lee & Lee, 2007a; Lee & Lee,
2007b; Lee & Lee, 2006; Lee & Lee, 2005; Seeger, 2002
for the detailed and updated algorithms of other learning
techniques including semi-supervised learning).
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5. Experimental analysis and discussion

For demonstration purposes, we conduct experiments
with two datasets – one is a word similarity dataset1 to
prove the feasibility of using semi-supervised approaches
in synthesizing several measures and the other is a real
industrial dataset2 to show the performance of the pro-
posed schema matching in real applications. The first data-
set, denoted as D1, consists of 327 samples and ten
similarity measures to compute the similarities for each
sample (i.e., D1 2 R327·10). From the 327 samples, we use
60 samples as a labeled training set, 190 samples as an unla-
beled set for assigning labels by using semi-supervised
learning, and the rest 77 samples as a test set for evaluating
the semantic similarity predicted by the proposed method.
It is noted since the supervised labels are continuous in
[0, 1], we stratify them with three discrete classes (to be a
classification problem). For the second dataset, denoted
as D2, 200 pairs of XML schemas are randomly selected
to score their relation (i.e., 0 for not related, 1 for somehow
related, and 2 for strongly related) by four human experts,
and 18 similarity measures, both in lexical and structural
categories, are used (i.e., D2 2 R200·18). Among them, we
use 60 samples as a labeled set, 90 samples as an unlabeled
set, and the rest 50 samples as a test set. We use five partic-
ular semi-supervised algorithms (typical or predominant
ones from each approach) – generative mixture model
using EM (GMMEM), self-training using NNPLS (Self),
low density separation (LDS)-based graph (Chapelle &
Zien, 2005) (Graph), co-training using NNPLS (Co), and
gradient-based TSVM (Chapelle & Zien, 2005) (TSVM).
Each experiment is replicated 20 times.

Fig. 4 depicts the results on the first dataset (in box-plot),
which evaluate how correctly a semi-supervised algorithm
can assign labels to unlabeled samples (i.e., unlabeled set)
as well as how precisely the supervised NNPLS classifier
can predict unknown test samples (i.e., test set), in terms
of correlation coefficients between supervised labels and pre-
dicted labels. The first two boxplots, ‘Labeled’ and ‘Super-
vised’ are obtained from NNPLS classifiers trained with
60 labeled samples and 250 labeled samples by human
experts, respectively. They may be considered as the baseline
and benchmarking performance, respectively. While others
are obtained from NNPLS classifiers trained with 250 sam-
ples augmented from 60 labeled samples and 190 unlabeled
samples using each of semi-supervised algorithms. The fig-
ure shows that the training data augmented by semi-super-
vised algorithms are very reliable enough to construct a
supervised classifier. Clearly the five ‘semi-supervised’ plots
are, on the median, larger than the first ‘labeled’ plot. This
1 A list of word pairs widely used in evaluating the accuracy of lexical
similarity measures (available online via http://www.cs.technion.ac.il/
~gabr/resources/data/wordsim353). Note that we remove some meaning-
less samples.

2 A list of XML schema pairs from OAGIS 9.0 BOD specifications
(http://www.openapplications.org).
strongly indicates that using unlabeled samples can consid-
erably improve the performance of a classifier if only the
unlabeled samples are properly augmented. In other words,
the use of semi-supervised algorithms is a feasible approach
when only few labeled samples are available. Even though
some algorithms, i.e., Self-training and Co-training, are
not outperforming than the second ‘supervised’ one, we
can conclude that the semi-supervised algorithms in general
are a good method to augment reliable training data. It is
hard to expect for the semi-supervision to outperform the
supervision, but for all that we can certainly obtain a reli-
ably labeled dataset with lower costs. In a particular case,
we dramatically reduced the costs necessary to assign labels
76% (i.e., 60 labeled samples only), compared with the costs
when human experts assign labels to 250 samples, while pre-
serving the reliability of the training data.

Fig. 5 summarizes the results on the second experiment.
Similar to the first experiment, the results, except Co-train-
ing, designate that the use of semi-supervised learning
when a few labeled data exist is a feasible, and the best,
way in real applications. The Co-training shows a poor per-
formance due to poor feature separation. TSVM often pro-
vides as a good performance as the supervised one, but the
tendency to converge to a local minimum keeps it from an
excellent performance. The other methods show stable and
fair results, even though not so good as the supervised one.
However, by using such semi-supervised methods, we
expect a significant cost reduction to obtain such fairly reli-
able training data.

Some comments can be made on the characteristics of
various algorithms for a potential use of semi-supervised
learning in schema matching and its labeled training data
augmentation as follows. The selection of a classifier for
self-training and co-training is critical to determine their
performance in terms of both accuracy and efficiency. With
the same classifier, co-training takes much longer computa-
tion time than self-training. In the first particular case
above, co-training needs 212 sec., on the average, to assign

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353
http://www.openapplications.org
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labels, approximately eight times larger than self-training
of 25 s. In the point of computation time, the others are
very efficient algorithms (i.e., 0.017 s, 0.706 s and 0.572 s
with respect to GMMEM, Graph-based, and TSVM, in
the same case). The separation of features in co-training
makes it less stable than self-training. A generative model
is very efficient but relies heavily on the initial data distri-
bution. The graph-based algorithm works well for data
lying on a low dimensional manifold, but graph construc-
tion is the initial annoyance and inability to inductive prop-
agation for unseen samples is the main difficulty to use. As
shown in Fig. 5, a relaxed implementation of the original
TSVM (i.e., Oð2nÞ) often converges into local minima,
hence its performance varies from iterations.

6. Conclusion

Schema matching is a crucial process in many applica-
tions from XML message mapping to enterprises integra-
tion and the core task of successful schema matching is a
correct measurement of similarity among XML schemas.
This paper proposed a similarity-based approximate
schema matching, used a supervised classifier (NNPLS in
the paper) to get semantic similarity by synthesizing vari-
ous similarity measures, and more importantly, presented
a robust approach to obtain reliable training data when
only a few supervised labels are available. In particular,
we utilized unlabeled data for this data preparation in a
semi-supervised manner due to the limited number of
labeled training samples. The results on experiments show
that the proposed method is reliable and cost-efficient.
More investigations on large scale real XML schema
matching cases are still present.
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