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Abstract. With the increased use of ontologies in semantically-enabled applica-
tions, the issues of debugging and aligning ontologies have become increasingly
important. The quality of the results of such applications is directly dependent on
the quality of the ontologies and mappings between the ontologies they employ.A
key step towards achieving high quality ontologies and mappings is discovering
and resolving modeling defects, e.g., wrong or missing relations and mappings. In
this paper we present a unified framework for aligning taxonomies, the most used
kind of ontologies, and debugging taxonomies and their alignments, whereontol-
ogy alignment is treated as a special kind of debugging. Our frameworksupports
the detection and repairing of missing and wrong is-a structure in taxonomies, as
well as the detection and repairing of missing (alignment) and wrong mappings
between ontologies. Further, we implemented a system based on this framework
and demonstrate its benefits through experiments with ontologies from the On-
tology Alignment Evaluation Initiative.

1 Motivation

To obtain high-quality results in semantically-enabled applications such as the ontology-
based text mining and search applications, high-quality ontologies and alignments are
both necessary. However, neither developing nor aligning ontologies are easy tasks, and
as the ontologies grow in size, it is difficult to ensure the correctness and completeness
of the structure of the ontologies. For instance, some structural relations may be miss-
ing or some existing or derivable relations may be unintended. This is not an uncom-
mon case. It is well known that people who are not expert in knowledge representation
often misuse and confuse equivalence, is-a and part-of (e.g., [2]). Further, ontology
alignment systems are used for generating alignments and, as shown in the Ontology
Alignment Evaluation Initiative (OAEI, http://oaei.ontologymatching.org/), alignments
usually contain mistakes and are incomplete. Such ontologies and alignments, although
often useful, lead to problems when used in semantically-enabled applications. Wrong
conclusions may be derived or valid conclusions may be missed.

A key step towards high-quality ontologies and alignments is debugging the ontolo-
gies and alignments. During the recent years several approaches have been proposed for
debugging semantic defects in ontologies, such as unsatisfiable concepts or inconsistent
ontologies (e.g., [24, 14, 15, 8]) and related to mappings (e.g., [22, 11, 23, 28]) or inte-
grated ontologies [13]. Further, there has been some work ondetecting modeling defects
(e.g., [9, 3]) such as missing relations, and repairing modeling defects [19, 18, 16]. The



increased interest in this field has also led to the creation of an international workshop
on this topic [20]. In a separate sub-field of ontology engineering, ontology alignment,
the correctness and completeness of the alignments has traditionally received much at-
tention (e.g., [25]). Systems have been developed that generate alignments and in some
cases validation of alignments is supported.

In this paper we propose a unified approach for ontology debugging and ontology
alignment, where ontology alignment can be seen as a specialkind of debugging. We
propose an integrated framework that, although it can be used as an ontology debugging
framework or an ontology alignment framework, presents additional benefits for both
and leads to an overall improvement of the quality of the ontologies and the alignments.
The ontology alignment provides new information that can beused for debugging and
the debugging provides new information that can be used by the ontology alignment.
Further, the framework allows for the interleaving of different debugging and align-
ment phases, thereby in an iterative way continuously generating new information and
improving the quality of the information used by the framework.

In sections 3, 4, 5 and 6 we propose our unified approach for ontology alignment and
debugging. To our knowledge this is the first approach that integrates ontology debug-
ging and ontology alignment in a uniform way and that allows for a strong interleaving
of these tasks. We present a framework (Section 3), algorithms for the components
(Sections 4 and 5) and their interactions (Section 6). Further, we show the advantages
of our approach in Section 7 through experiments with the ontologies and alignment
of the OAEI 2011 Anatomy track. Related work is given in Section 8 and the paper
concludes in Section 9. However, we start with some preliminaries.

2 Preliminaries

In this section we introduce notions that are needed for our approach. This paper focuses
on taxonomiesO = (C, I), the most widely used type of ontologies, whereC is a set
of atomic concepts andI ⊆ C × C represents a set of atomic concept subsumptions
(is-a relations). In the following we use ’ontologies’ and ’taxonomies’ interchangeably.
An alignment between ontologiesOi andOj is represented by a setMij of mappings
between concepts in different ontologies. The concepts that participate in mappings are
calledmapped concepts. Each mapped concept can participate in multiple mappings
and alignments. We currently consider equivalence mappings (≡) and is-a mappings
(subsumed-by (→) and subsumes (←)).

The output of ontology alignment systems aremapping suggestions. These should
be validated by a domain expert and if accepted, they become part of an alignment.

Definition 1. A taxonomy networkN is a tuple(O, M) with O = {Ok}n
k=1 the set of

the ontologies in the network andM = {Mij}
n
i,j=1;i<j the set of representations for

the alignments between these ontologies.

Figure 1 shows a small ontology network with two ontologies (concepts are represented
by nodes and the is-a structures are represented by directededges) and an alignment
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(represented by dashed edges).1 The alignment consists of 10 equivalence mappings.
One of these mappings represents the fact that the conceptbonein the first ontology is
equivalent to the conceptbonein the second ontology.

The domain knowledge inherent (logically derivable) in thenetwork is represented
by its induced ontology, an ontology that consists of the set of all concepts from the
taxonomies, all asserted is-a relations in the taxonomies and all mappings.

In our algorithms we useknowledge bases(KBs) related to the taxonomies and
taxonomy networks that allow us to do deductive inference.

3 Approach and Algorithms

Our framework consists of two major components - a debuggingcomponent and an
alignment component. They can be used independently or in close interaction. The
alignment component detects and repairs missing and wrong mappings between on-
tologies, while the debugging component additionally detects and repairs missing and
wrong is-a structure in ontologies. Although we describe the two components sepa-
rately, in our framework ontology alignment can be seen as a special kind of debugging.

The workflow (Figure 2) in both components consists of three phases during which
wrong and missing is-a relations/mappings are detected (Phase 1), validated (Phase 2)
and repaired (Phase 3) in a semi-automatic manner by a domain expert. Although the
algorithms for repairing are different for missing and wrong is-a relations/mappings,
the repairing goes through the same phases as shown in the figure - the generation of
repairing actions (Phase 3.1), the ranking of is-a relations/mappings (Phase 3.2), the
recommendation of repairing actions (Phase 3.3) and finally, the execution of repair-
ing actions (Phase 3.4). In our approach we repair ontologies and alignments one ata
time since dealing with all ontologies and alignments simultaneously would be infea-
sible. The is-a relations are handled in the context of the selected ontology, while the
mappings are handled in the context of the selected alignment and its pair of ontologies.

1 The first ontology is a part of AMA, the second ontology is a part of NCI-A, and the alignment
is a part of the alignment between AMA and NCI-A as defined in OAEI 2011.
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We note that at any time during the debugging/alignment workflow, the user can
switch between different ontologies and the different phases shown in Figure 2. We also
note that the repairing of defects often leads to the discovery of new defects, i.e., leading
to additional debugging opportunities. Thus several iterations are usually needed for
completing the debugging/alignment process. The process ends when no more missing
or wrong is-a relations and mappings are detected or need to be repaired.

In the next three sections we describe the components and their interactions, and
present algorithms for the different components and phases.

4 Debugging Component

The input for the debugging component is a taxonomy network,i.e., a set of taxonomies
and their alignments. The output is the set of repaired taxonomies and alignments.

Phase 1: Detect candidate missing is-a relations and mappings. In this compo-
nent we focus on detecting wrong and missing is-a relations and mappings in the ontol-
ogy network, based on knowledge that is inherent in the network. Therefore, given an
ontology network, we use the domain knowledge represented by the ontology network
to detect the deduced is-a relations and mappings in the network.

In our algorithm we initialize a KB for the ontology network (KBN ), KBs for each
ontology (KBk) and for each pair of ontologies and their alignment (KBij). For each
ontology in the network, the set ofcandidate missing is-a relations(CMIs) derivable
from the ontology network consists of is-a relations between two concepts of the ontol-
ogy, which can be inferred using logical derivation from thedomain knowledge inherent
in the network, but not from the ontology alone. Similarly, for each pair of ontologies
in the network, the set ofcandidate missing mappings(CMMs) derivable from the
ontology network consists of mappings between concepts in the two ontologies, which



can be inferred using logical derivation from the domain knowledge inherent in the
network, but not from the two ontologies and their alignmentalone.

Definition 2. Let N = (O, M) be an ontology network, withO = {Ok}
n
k=1, M =

{Mij}
n
i,j=1;i<j and induced ontologyON = (CN , IN ). LetOk = (Ck, Ik). Then, we

define the following.
(1) ∀k ∈ 1..n: CMIk = {(a, b) ∈ Ck × Ck | ON |= a → b ∧ Ok 6|= a → b}
is the set of candidate missing is-a relations forOk derivable from the network.
(2) ∀i, j ∈ 1..n, i < j: CMMij = {(a, b) ∈ (Ci × Cj) ∪ (Cj × Ci) | ON |= a →
b ∧ (Ci ∪ Cj , Ii ∪ Ij ∪Mij) 6|= a → b} is the set of candidate missing mappings for
(Oi,Oj ,Mij) derivable from the network.
(3) CMI = ∪n

k=1 CMIk is the set ofcandidate missing is-a relations derivable from
the network.
(4) CMM = ∪n

i,j=1;i<j CMMij is the set ofcandidate missing mappings derivable
from the network .

In the network in Figure 1 the CMIs are(nasal bone, bone), (maxilla, bone), (lacrimal
bone, bone), (jaw, bone), (upper jaw, jaw)and(lower jaw, jaw)in AMA, and (metatarsal
bone, foot bone)and(tarsal bone, foot bone)in NCI-A.

Our algorithms for detecting CMIs/CMMs rely on the knowledge inherent in the
network where the ontologies are connected in a network through mapped concepts.
Thus the derivation paths of all CMIs and CMMs, which can be found using the knowl-
edge inherent in the network, go through mapped concepts. Therefore, instead of check-
ing whether the is-a relations between all pairs of conceptsare derivable in the network,
we only check all pairs of mapped concepts.2,3

Phase 2: Validate candidate missing is-a relations and mappings. Since the
structure of the ontologies may contain wrong is-a relations and the alignments may
contain wrong mappings, some of the CMIs and CMMs may be derived due to some
wrong is-a relations and mappings. Therefore they have to bevalidated by a domain ex-
pert. During Phase 2 the domain expert validates the CMIs/CMMs and partitions them
into wrong andmissing is-a relations/mappings. As an aid to the domain expert, we
have developed recommendation algorithms based on the existence of is-a and part-of
relations in the ontologies and external domain knowledge (WordNet [29] and UMLS
[27]). In addition, the domain expert is provided with the derivation paths (justifica-
tions) for the CMI/CMM under validation.

In the network in Figure 1(upper jaw, jaw)and(lower jaw, jaw)are validated as
wrong since an upper/lower jaw isa part-of (not is-a) a jaw. The others are missing.

Phase 3: Repair wrong and missing is-a relations and mappings.Once missing
and wrong is-a relations and mappings have been obtained4, we need to repair them.

2 In the worst case scenario the number of mapped concept pairs is equal to the total number
of concept pairs. In practice, the use of mapped concepts may significantly reduce the search
space, e.g., when some ontologies are smaller than other ontologies in thenetwork or when not
all concepts participate in mappings. For instance, in the experiments in Section 7 the search
space is reduced by almost 90%.

3 For large ontologies or ontology networks, checking all pairs of concepts is also infeasible.
4 Using the technique for detection described above or the techniques usedby the alignment

component or any other technique.



For each ontology in the network, we want to repair the is-a structure in such a way
that (i) the missing is-a relations can be derived from theirrepaired host ontologies
and for each pair of ontologies, we want to repair the mappings in such a way that
(ii) the missing mappings can be derived from the repaired host ontologies of their
mapped concepts and the repaired alignment between the hostontologies of the mapped
concepts. Further (iii) the wrong is-a relations and (iv) the wrong mappings should
no longer be derivable from the repaired ontology network. The notion ofstructural
repair formalizes this. It contains is-a relations and mappings that should be added to
or removed from the ontologies and alignments to satisfy these requirements. These is-a
relations and mappings are calledrepairing actions.

Definition 3. Let N = (O, M) be an ontology network, withO = {Ok}n
k=1, M =

{Mij}
n
i,j=1;i<j and induced ontologyON = (CN , IN ). LetOk = (Ck, Ik). LetMIk

andWIk be the missing, respectively wrong, is-a relations for ontology Ok and let
MIN = ∪n

k=1MIk andWIN = ∪n
k=1WIk. LetMMij andWMij be the miss-

ing, respectively wrong, mappings between ontologiesOi andOj and letMMN =
∪n

i,j=1;i<jMMij andWMN = ∪n
i,j=1;i<jWMij . A structural repair for N with

respect to(MIN ,WIN ,MMN ,WMN ), denoted by(R+,R−), is a pair of sets of
is-a relations and mappings, such that
(1)R− ∩R+ = ∅
(2)R− = R−

M ∪R−

I ; R−

M ⊆ ∪n
i,j=1,i<jMij ; R−

I ⊆ ∪n
k=1Ik

(3)R+ = R+
M∪R+

I ; R+
M ⊆ ∪n

i,j=1,i<j((Ci×Cj)\Mij); R
+
I ⊆ ∪n

k=1((Ck×Ck)\Ik)

(4) ∀k ∈ 1..n : ∀(a, b) ∈ MIk: (Ck, (Ik ∪ (R+
I ∩ (Ck × Ck))) \ R−

I ) |= a → b

(5) ∀i, j ∈ 1..n, i < j : ∀(a, b) ∈ MMij : ((Ci ∪ Cj), (Ii ∪ ((Ci × Ci) ∩R+
I ) ∪ Ij ∪

((Cj × Cj) ∩R+
I ) ∪Mij ∪ ((Ci × Cj) ∩R+

M )) \ R−) |= a → b

(6) ∀(a, b) ∈ WIN ∪WMN ∪R−: (CN , (IN ∪R+) \ R−) 6|= a → b

In our algorithm, at the start of the repairing phase we add all missing is-a rela-
tions and mappings to the relevant KBs. As these are validated to be correct, this is
extra knowledge that should be used in the repairing process. Adding the missing is-a
relations and mappings essentially means that we have repaired these using the least
informative repairing actions (≪I preference in [19]). Then during the repairing pro-
cess we try to improve this and find more informative repairing actions. We say that a
repairing action is more informative than another repairing action if adding the former
to the ontology also allows to derive the latter. In general,more informative repairing
actions that are correct according to the domain are preferred.

Definition 4. Let(x1, y1) and(x2, y2) be two different is-a relations in the same ontol-
ogyO (i.e.,x1 6≡ x2 or y1 6≡ y2), then we say that(x1, y1) is more informative than
(x2, y2) iff O |= x2 → x1 ∧ y1 → y2.

As an example, consider the missing is-a relation(nasal bone, bone)in Figure 1.
Knowing thatnasal bone→ viscerocranium bone, according to the definition of more
informative, we know that(viscerocranium bone, bone)is more informative than(nasal
bone, bone). As viscerocranium boneactually is a sub-concept ofboneaccording to the
domain, a domain expert would prefer to use the more informative repairing action.

Further, we initialize global variables for the current sets of missing (MI) and
wrong (WI) is-a relations, and the current sets of missing (MM) and wrong (WM)



1. ComputeAllJust(w, r,Oe)
whereOe = (Ce, Ie) such thatCe = ∪n

k=1Ck and
Ie = ((∪n

k=1Ik) ∪ (∪n
i,j=1;i<jMij) ∪MIN ∪MMN ∪R+

I ∪R+

M ) \ (R−

I ∪R−

M );
2. For everyI′ ∈ AllJust(w, r,Oe):

choose one element fromI′ \ (MIN ∪MMN ∪R+

I ∪R+

M ) to remove;

Fig. 3.Algorithm for generating repairing actions for wrong is-a relations and mappings.

mappings based on the validation results. Further, the setsof added (R+
I , R+

M ) and
removed (R−

I , R−

M ) repairing actions for is-a relations and mappings, and thecurrent
sets of CMIs (CMI) and CMMs (CMM) are initialized to∅.

Phase 3.1: Generate repairing actions.The structural repairs generated from the
repairing algorithms below follow the preferences defined in [19].
Wrong is-a relations and mappings.The algorithm for generating repairing actions
(Figure 3) computes all justifications (AllJust) for all wrong is-a relations (WI) and
mappings (WM). A justification for a wrong is-a relation or mapping can be seen as
an explanation for why this is-a relation or mapping is derivable from the network.

Definition 5. (similar definition as in [13]) Given an ontologyO = (C, I), and(a, b) ∈
C × C an is-a relation derivable fromO, then,I ′ ⊆ I is a justification for (a, b) in O,
denoted byJust(I ′, a, b,O) iff (i) (C, I ′) |= a → b; and (ii) there is noI ′′ ( I ′ such
that (C, I ′′) |= a → b. We useAll Just(a, b,O) to denote the set of all justifications for
(a, b) in O.

Our algorithm initializes a KB taking into account repairing actions up to now and
computes the minimal hitting sets for each wrong is-a relation or mapping. The wrong
is-a relation or mapping can then be repaired by removing at least one element in every
justification.

In the network in Figure 1(upper jaw, jaw)in AMA is validated as wrong. Its
justification isAMA:upper jaw≡ NCI-A:UpperJaw→ NCI-A:Jaw≡ AMA:jaw. To
repair itNCI-A:UpperJaw→ NCI-A:Jawshould be removed from NCI-A.
Missing is-a relations and mappings.It was shown in [16] that repairing missing is-a
relations (and mappings) can be seen as a generalized TBox abduction problem. Fig-
ure 4 shows our solution, an extension of the algorithm in [19], for the computation of
repairing actions for a missing is-a relation or mapping. The main component of the al-
gorithm (GenerateRepairingActions) computes, for a missing is-a relation or mapping,
the more general concepts of the first concept (Source) and the more specific concepts
of the second concept (Target) in the KB. To not introduce non-validated equivalence
relations where in the original ontologies and alignments there are only is-a relations,
we remove the super-concepts of the second concept from Source, and the sub-concepts
of the first concept from Target. The already known wrong is-arelations or mappings
and their repairing actions are removed from Repair (Source× Target). Adding an ele-
ment from Repair to the KB makes the missing is-a relation or mapping derivable.

In the network in Figure 1(nasal bone, bone)in AMA is validated as missing.
After adding the missing is-a relations to the ontology, itsSource set is{nasal bone,



Repair missing is-a relation (a,b) with a∈ Ok and b∈ Ok:
Choose an element from GenerateRepairingActions(a, b,KBk);

Repair missing mapping (a,b) with a∈ Oi and b∈ Oj :
Choose an element from GenerateRepairingActions(a, b,KBij);

GenerateRepairingActions(a, b, KB):
1. Source(a, b) := super-concepts(a) − super-concepts(b) in KB;
2. Target(a, b) := sub-concepts(b) − sub-concepts(a) in KB;
3. Repair(a, b) := Source(a, b) × Target(a, b);
4. For each(s, t) ∈ Source(a, b) × Target(a, b):

if (s, t) ∈ WI ∪WM∪R−

I ∪R−

M then remove(s, t) from Repair(a, b);
else if∃(u, v) ∈ WI ∪WM∪R−

I ∪R−

M : (s, t) is more informative than(u, v) in KB
andu → s andt → v are derivable from validated to be correct only is-a relations and/or mappings

then remove(s, t) from Repair(a, b);
5. returnRepair(a, b);

Fig. 4.Algorithm for generating repairing actions for missing is-a relations and mappings.

viscerocranium bone} and its Target set is{bone, limb bone, forelimb bone, hindlimb
bone, foot bone, metatarsal bone, tarsal bone, jaw, maxilla, lacrimal bone}, i.e., Repair
contains2 × 10 = 20 possible repairing actions.

Phase 3.2: Rank wrong and missing is-a relations and mappings. In general,
there will be many is-a relations/mappings that need to be repaired and some of them
may be easier to start with such as the ones with fewer repairing actions. We therefore
rank them with respect to the number of possible repairing actions.

Phase 3.3: Recommend repairing actions.The recommendation algorithm for
wrong is-a relations/mappings assigns a priority to each possible repairing action based
on how often it occurs in the justifications and its importance in already repaired is-a
relations and mappings. For a missing is-a relation/mapping (a, b) (as defined in [19])
it computes the most informative repairing actions fromSource(a, b) × Target(a, b)
that are supported by external domain knowledge (WordNet and UMLS).

Phase 3.4: Execute repairing actions.Depending on whether a wrong or miss-
ing is-a relation/mapping is repaired the chosen repairingactions are removed from or
added to the relevant ontologies and alignments. The current sets of wrong (WI/WM)
and missing (MI/MM) is-a relations and mappings need to be updated since one
repairing action can repair more than one is-a relation/mapping or previously repaired
relations/mappings may need to be repaired again. The sets of repairing actions for
wrong (R−

I , R−

M ) and missing (R+
I , R+

M ) is-a relations/mappings need to be updated
as well. Further, new CMIs and CMMs may appear. In other casesthe possible repairing
actions for wrong and missing is-a relations and mappings may change (update justifi-
cations and sets of possible repairing actions for missing is-a relations and mappings).
We also need to update the KBs.



5 Alignment Component

The input for this component consists of two taxonomies. Theoutput is an alignment.
Phase 1: Detect candidate missing mappings.In ontology alignment mapping

suggestions are generated which essentially are CMMs. Whilethe generation of CMMs
in the debugging component is a specific kind of ontology alignment using the knowl-
edge inherent in the network, in the alignment component we use other types of align-
ment algorithms. Matchers are used to compute similarity values between concepts in
different ontologies. The results of the matchers can be combined and filtered in dif-
ferent ways to obtain mapping suggestions. In our approach we have currently used the
linguistic, WordNet-based and UMLS-based algorithms fromthe SAMBO system [21].
The matchern-gramcomputes a similarity based on 3-grams. The matcherTermBasic
uses a combination of n-gram, edit distance and an algorithmthat compares the lists
of words of which the terms are composed. The matcherTermWNextends TermBasic
by using WordNet for looking up is-a relations. The matcherUMLSMuses the domain
knowledge in UMLS to obtain similarity values. The results of the matchers can be
combined using a weighted-sum approach in which each matcher is given a weight and
the final similarity value between a pair of concepts is the weighted sum of the simi-
larity values divided by the sum of the weights of the used matchers. Further, we use a
threshold for filtering. A pair of concepts is a mapping suggestion if the similarity value
is equal to or higher than a given threshold value.

We note that in the alignment component the search space is not restricted to the
mapped conceptsonly - similarity values are calculated for all pairs of concepts. KBs
are initialized, in the same way as in the debugging component, for the taxonomy net-
work and the pairs of taxonomies and their alignments. We also note that no initial
alignment is needed for this component. Therefore, if alignments do not exist in the
network (at all or between specific ontologies) this component may be used before
starting debugging.

Phase 2: Validate candidate missing mappings.The CMMs (mapping sugges-
tions) are presented to a domain expert for validation, which is performed in the same
way as in the debugging component. The domain expert can use the recommendation
algorithms during the validation as well. As before, the CMMs are partitioned into two
sets - wrong mappings and missing mappings. The wrong mappings are not repaired
since they are not in the alignments. However, we store this information in order to
avoid recomputations and for conflict checking/prevention. The concepts in the missing
mappings are added to the set ofmapped concepts(if they are not already there), and
they will be used the next time CMMs/CMIs are derived in the debugging component.

Phase 3: Repairing missing mappings.As mentioned, we only need to repair the
missing mappings. Initially, the missing mappings are added to the KBs in the same
way as in the debugging component and then we try to repair them using more infor-
mative repairing actions. For repairing a missing mapping the same algorithms as in
the debugging component are used to generate the Source and Target sets and the re-
pairing process continues with the same actions described for the debugging workflow.
In Phase 3.4 the repairing actions are executed analogically to those in the debugging
component and their consequences are computed. Further, the concepts in the repairing
actions are added to the set ofmapped concepts(if not there yet).



6 Interaction between the Components

The alignment component generates CMMs that are validated in the same way as in the
debugging component. The CMMs validated to be correct oftenare missing mappings
that are not found by the debugging component. Further, theymay lead to new mapped
concepts that are used in the debugging component. The CMMs validated to be wrong
are used to avoid unnecessary recomputations and validations.

The debugging component repairs the is-a structure and the mappings. This can
be used by the alignment component. For instance, the performance of structure-based
matchers (e.g., [21]) and partial-alignment-based preprocessing and filtering methods
[17] heavily depends on the correctness and completeness ofthe is-a structure.

We also note that the different phases in the components can be interleaved. This
allows for an iterative and modular approach, where, for instance, some parts of the
ontologies can be fully debugged and aligned before proceeding to other parts.

7 Experiments

We performed three experiments to demonstrate the benefits of the integrated ontology
alignment and debugging framework. As input for Experiment1 and 2 we used the two
ontologies from the Anatomy track of OAEI 2011 - AMA contains2,737 concepts and
1,807 asserted is-a relations, and NCI-A contains 3,298 concepts and 3,761 asserted is-
a relations. The input for the last experiment contained thereference alignment (1516
equivalence mappings between AMA and NCI-A) together with the two ontologies.
The reference alignment was used indirectly as external knowledge during the valida-
tion phase in the first two experiments. The experiments wereperformed on an Intel
Core i7-2620M Processor 2.7GHz with 4 GB memory underWindows 7 Professional
operating system and Java 1.7 compiler. The first author performed the validation in the
experiments with help of two domain experts.

Experiment 1 - aligning and debugging OAEI Anatomy. The first experiment
demonstrates a complete debugging and aligning session where the input is a set with
the two ontologies. After loading the ontologies mapping suggestions were computed
using matchers TermWN and UMLSM, weight 1 for both and threshold 0.5. This re-
sulted in 1384 mapping suggestions. The 1233 mapping suggestions that are also in the
reference alignment were validated as missing equivalencemappings (although, as we
will see, there are defects in the reference alignment) and repaired by adding them to
the alignment. The others were validated manually and resulted in missing mappings
(53 equivalence and 39 is-a) and wrong mappings (59 equivalence and 39 is-a). These
missing mappings were repaired by adding 53 equivalence and28 is-a mappings (5 of
them more informative) and 5 is-a relations (3 to AMA and 2 to NCI-A). 6 of these
missing mappings were repaired by repairing others. Among the wrong mappings there
were 3 which were derivable in the network. These were repaired by removing 2 is-a
relations from NCI-A. Figure 5 - part A summarizes the results.

The generated alignment was then used in the debugging of thenetwork created
by the ontologies and the alignment. Two iterations of the debugging workflow were
performed, since the repairing of wrong and missing is-a relations in the first iteration



candidate missingmissing wrong repair missing repair missing
mappings ≡/← or→ ≡/← or→ ≡/←/→/derivable is-relations

part A /more informative
Alignment 1384 1286/39 59/39 1286/20/8/6/5 -
AMA - - - - 3
NCI-A - - - - 2

candidate missingmissing wrong repair missing repair wrong
part B all/non-redundant self/more informative/otherremoved
AMA 410/263 224 39 144/57/23 30
NCI-A 355/183 166 17 127/13/26 17
Alignment - - - - 8≡ and 1→

Fig. 5.Experiment 1 results: A - debugging of the alignment; B - debugging of theontologies.

led to the detection of new CMIs which had to be validated and repaired. Over 90% of
the CMIs for both ontologies were detected during the first iteration, the detection of
CMIs took less than 30 seconds per ontology. Figure 5 - part B summarizes the results.

The system detected 410 (263 non-redundant) CMIs for AMA and355 (183 non-
redundant) CMIs for NCI-A. The non-redundant CMIs were displayed in groups, 45
groups for AMA and 31 for NCI-A. Among the 263 non-redundant CMIs in AMA 224
were validated as missing and 39 as wrong. In NCI-A 166 were validated as missing
and 17 as wrong. The 39 wrong is-a relations in AMA were repaired by removing 30
is-a relations from NCI-A, and 8 equivalence and 1 is-a mapping from the alignment.
The 17 wrong is-a relations in NCI-A were repaired by removing 17 is-a relations in
AMA. The missing is-a relations in AMA were repaired by adding 201 is-a relations
- in 144 cases the missing is-a relation itself and in 57 casesa more informative is-a
relation. 23 of the 224 missing is-a relations became derivable after repairing some of
the others. To repair the missing is-a relations in NCI-A 140is-a relations were added
- in 127 cases the missing is-a relation itself and in 13 casesa more informative is-a
relation. 26 out of the 166 missing is-a relations were repaired while other is-a relations
were repaired.

We observe that for 57 missing is-a relations in AMA and 13 in NCI-A the repairing
actions are more informative than the missing is-a relationitself, i.e., for each of these,
knowledge, which was not derivable from the network before,was added to the network.
Thus the knowledge represented by the ontologies and the network has increased.

Experiment 2. For this experiment the alignment process was run twice and at the
end the alignments were compared. The same matchers, weights and threshold as in Ex-
periment 1 were used. During both runs the CMMs (mapping suggestions) were com-
puted and validated in the same manner. This step is as in Experiment 1 and the results
are the ones in Figure 5 - part A. The difference between both runs is in the repairing
phase. In the first run the missing mappings were repaired by directly adding them to
the final alignment without benefiting from the repairing algorithms - in the same way



most of the alignment systems do. The final alignment contained 1286 equivalence and
39 is-a5 mappings.

During the repairing phase in the second run the debugging component was used
to provide alternative repairing actions than those available in the initial set of map-
ping suggestions. The final alignment then contained 1286 equivalence mappings from
the mapping suggestions, 28 is-a mappings from the mapping suggestions where 5 of
them are more informative, thus adding knowledge to the network. Further, 5 mapping
suggestions were repaired adding is-a relations (3 in AMA and 2 in NCI-A) and thus
adding more knowledge to each of the ontologies. 6 more mapping suggestions became
derivable from the network as a result from the repairing actions for other CMMs.

Experiment 3. In this experiment the debugging process was run twice, CMIswere
detected for both ontologies and compared between the runs.The input for the first run
was the set of the two ontologies and their alignment from theAnatomy track in OAEI
2011. The network was loaded in the system and the CMIs were detected. 496 CMIs
were detected for AMA, of which 280 were non-redundant. For NCI-A 365 CMIs were
detected of which 193 were non-redundant. The same input wasused in the second run.
However, the alignment algorithms were used to extend the set with mappings prior
to generating the CMIs. The set-up for the aligning was the same as in Experiment 1
and the mapping suggestions were computed, validated and repaired in the same way
as well. Then CMIs were generated - 638 CMIs were detected forAMA (357 non-
redundant), and 460 CMIs for NCI-A (234 non-redundant). In total 145 new CMIs were
detected for AMA - 120 were validated as missing and 25 validated as wrong6. 103 new
CMIs were detected for NCI-A - 53 were validated as missing and 50 as wrong.

Discussion.Experiment 1 shows the usefulness of the system through a complete
session where an alignment was generated and many defects inthe ontologies were
repaired. Some of the repairs added new knowledge. As a side effect, we have shown
that the ontologies that are used by the OAEI contain over 200and 150 missing is-a
relations, respectively and 39 and 17 wrong is-a relations,respectively. We have also
shown that the alignment is not complete and contains wrong information. We also note
that our system allows validation and allows a domain expertto distinguish between
equivalence and is-a mappings. Most ontology alignment systems do not support this.

Experiment 2 shows the advantages for ontology alignment when also a debugging
component is added. The debugging component allowed to add more informative map-
pings, reduce redundancy in the alignment as well as debug the ontologies leading to
further reduced redundancy in the alignment. For the ontologies and alignment new
knowledge not found when only aligning, was added. In general, the quality of the final
alignment (and the ontologies) becomes higher.

Experiment 3 shows that the debugging process can take advantage of the alignment
component even when an alignment is available. The alignment algorithms can provide
additional mapping suggestions and thus extending the alignment. More mappings be-
tween two ontologies means higher coverage and possibly more detected and repaired

5 5 of these are repaired in the second run by adding is-a relations in the ontologies.
6 The sum of the newly generated CMIs and those in the first run is not equal to the number of

the CMIs in the second run because some of the CMIs generated in the first run are derivable
in the second run.



defects. In the experiment more than 100 CMIs (of which many correct) were detected
for each ontology using the extended set of mappings. We alsonote that the initial align-
ment contained many mappings (1516). In the case that the alignment contains fewer
mappings the benefit to the debugging process will be even more significant.

8 Related Work

To our knowledge there is no other system that integrates ontology debugging and on-
tology alignment in a uniform way and that allows for a stronginterleaving of these
tasks. There are some ontology alignment systems that do semantic verification and
disallow mappings that lead to unsatisfiable concepts (e.g., [10, 12]). Further, adding
missing is-a relations to ontologies was a step in the alignment process in [17].

Regarding the debugging component, this work extends the work in [19, 18] that
dealt with debugging is-a structure in taxonomy networks. These were one of the few
approaches dealing with repairing missing is-a structure and in the case of [18] de-
bugging both missing and wrong is-a structure. The current work extends this by also
including debugging of mappings in a uniform way as well as ontology alignment. The
ontology alignment component also removed the restrictionof [18] that required the
existence of an initial alignment.

There are different ways todetectmissing is-a relations. One way is by inspection
of the ontologies by domain experts. Another way is to use external knowledge sources.
For instance, there is much work on finding relationships between terms in the ontology
learning area [1]. Regarding the detection of is-a relations, one paradigm is based on
linguistics using lexico-syntactic patterns. The pioneering research conducted in this
line is in [9], which defines a set of patterns indicating is-arelationships between words
in the text. Another paradigm is based on machine learning and statistical methods.
Further, guidelines based on logical patterns can be used [3]. These approaches are
complementary to the approach used in this paper. There is, however, not much work
on therepairingof missing is-a relations that goes beyond adding them to theontologies
except for [19] for taxonomies and [16] forALC acyclic terminologies.

There is more work on the debugging of semantic defects. Mostof it aims at iden-
tifying and removing logical contradictions from an ontology. Standard reasoners are
used to identify the existence of a contradiction, and provide support for resolving and
eliminating it [6]. In [24] minimal sets of axioms are identified which need to be re-
moved to render an ontology coherent. In [15, 14] strategiesare described for repairing
unsatisfiable concepts detected by reasoners, explanationof errors, ranking erroneous
axioms, and generating repair plans. In [8] the focus is on maintaining the consistency
as the ontology evolves through a formalization of the semantics of change for ontolo-
gies. [26] introduces a method for interactive ontology debugging. In [22] and [11]
the setting is extended to repairing ontologies connected by mappings. In this case, se-
mantic defects may be introduced by integrating ontologies. Both works assume that
ontologies are more reliable than the mappings and try to remove some of the mappings
to restore consistency. The solutions are often based on thecomputation of minimal
unsatisfiability-preserving sets or minimal conflict sets.The work in [23] further char-
acterizes the problem as mapping revision. Using belief revision theory, the authors



give an analysis for the logical properties of the revision algorithms. Another approach
for debugging mappings is proposed in [28] where the authorsfocus on the detection
of certain kinds of defects and redundancy. The approach in [13] deals with the in-
consistencies introduced by the integration of ontologies, and unintended entailments
validated by the user.

Regarding the alignment component there are some systems that allow validation
of mappings such as SAMBO [21], COGZ [5] for PROMPT, and COMA++ [4]. [7]
introduces an efficient algorithm for computing a minimal set with mappings which
could reduce user interaction. Many matchers have been proposed (e.g., many papers on
http://ontologymatching.org/), and most systems use similar combination and filtering
strategies as in this paper. For an overview we refer to [25].

9 Conclusion

In this paper we presented a unified approach for aligning taxonomies and debugging
taxonomies and their alignments. This is the first approach which integrates ontology
alignment and ontology debugging and allows debugging of both the structure of the
ontologies as well as their alignments. Further, we have shown the benefits of our ap-
proach through experiments. The interactions between ontology alignment and debug-
ging significantly raise the quality of both taxonomies and their alignments. The on-
tology alignment provides or extends alignments that are used by the debugging. The
debugging provides algorithms for repairing defects in alignments and possibly add
new knowledge.

We will continue exploring the interactions between ontology alignment and debug-
ging. We will include and investigate the benefits when usingstructure-based alignment
algorithms and partial-alignment-based techniques. Further, we will investigate the de-
bugging problem for ontologies represented in more expressive formalisms.
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