
Light-Weight Ontology Alignment using
Best-Match Clone Detection

Paul L. Geesaman
School of Computing

Queen’s University
Kingston, Ontario, Canada
geesaman@cs.queensu.ca

James R. Cordy
School of Computing

Queen’s University
Kingston, Ontario, Canada

cordy@cs.queensu.ca

Amal Zouaq
Department of Mathematics

and Computer Science
Royal Military College of Canada

Kingston, Ontario, Canada
amal.zouaq@rmc.ca

Abstract—Ontologies are a key component of the Semantic
Web, providing a common basis for representing and exchanging
domain meaning in web documents and resources. Ontology
alignment is the problem of relating the elements of two formal
ontologies for a semantic domain, in order to identify common
concepts and relationships represented using different terminol-
ogy or language, and thus allow meaningful communication and
exchange of documents and resources represented using different
ontologies for the same domain. Many algorithms have been
proposed for ontology alignment, each with their own strengths
and weaknesses. The problem is in many ways similar to near-
miss clone detection: while much of the description of concepts
in two ontologies may be similar, there can be differences in
structure or vocabulary that make similarity detection challeng-
ing. Based on our previous work extending clone detection to
modelling languages such as WSDL using contextualization, in
this work we apply near-miss clone detection to the problem of
ontology alignment, and use the new notion of ”best-match” clone
detection to achieve results similar to many existing ontology
alignment algorithms when applied to standard benchmarks.

Index Terms—Clone detection techniques, OWL, ontology
matching, ontology alignment

I. INTRODUCTION

Ontologies, and more specifically domain ontologies, are
knowledge representations that describe the semantics of a
real-world conceptual domain in a way that is understand-
able by a computer. The purpose of these ontologies is the
sharing and reuse of domain knowledge between humans and
machines. As such, ontologies represent the backbone of the
Semantic Web.

The W3C consortium has recommended the Web Ontology
Language (OWL) as one of the languages to represent ontolo-
gies for the Semantic Web. OWL is a formal, RDF/XML-based
language explicitly designed for expressing domain ontologies.
OWL ontologies consist of concepts, links between concepts,
and other information such as properties and instances of
concepts.

Although the aim of the Semantic Web is to promote reuse
and sharing, various ontologies about the same domain can
be created by different communities of experts, thus leading
to problems in communication and hindering the sharing of
documents and knowledge. A challenge for the Semantic
Web community is bridging the gap between these different
ontologies by determining their similarities. The overall goal

is to allow for the cross-referencing of ontologies and their
components within the larger system of the Semantic Web.

Ontology alignment is the problem of identifying the con-
cepts of a target ontology that represent the same, or a
subset of, a corresponding concept in a given source ontology.
It includes identifying the correspondence between the RD-
F/XML elements which make up an OWL ontology (classes,
properties, individuals, and so on) in a source ontology to the
elements in a target ontology. Ontology alignment is a difficult
problem, and alignment algorithms can be expensive in time
and space.

In this work we propose applying near-miss cross-clone
detection to the ontology alignment problem, in order to
examine and overcome some of the problems faced by other
ontology alignment algorithms, in particular running time. We
analyze OWL RDF/XML source code for near-miss cross-
clones between the source and target ontologies, using the
clone relationship to find corresponding ontology elements.
Near-miss (type 3) clone detection [1] is particularly useful
in discovering copies of source code with differences such
as small modifications in structure, parts of code removed
or added, and names modified. These are the same kinds of
changes that are typical of the differences between similar
ontologies, which may contain small modifications in subclass
structure, properties removed or added, class names modified
or synonyms used.

In our previous work [2], we have applied near-miss clone
detection to WSDL, another modelling language which, like
OWL, is expressed in XML. Using a new technique called
contextual clones, we introduced context to XML elements re-
ferring to other elements by replacing each reference with the
element it refers to. The result is fully self-contained elements
that explicate their entire definition and have no dependence
on their environment, making them rich candidates for clone
comparison.

In this paper we explore whether this same technique can
be used in a new approach to ontology alignment. We begin
by introducing the ontology alignment problem, concentrating
on the representation of concepts in formal ontologies and the
challenges of matching concepts in one ontology to those in
another. We describe a process for contextualizing concepts
expressed in RDF/XML by inlining reference elements that

978-1-4673-6445-4/13 c© 2013 IEEE IWSC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1

<!-- A class -->
<owl:Class rdf:ID="Monograph">
<rdfs:subClassOf rdf:resource="#Book" />
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#chapters" />
<owl:allValuesFrom rdf:resource="#Chapter"/>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<!-- A property -->
<owl:ObjectProperty rdf:ID="chapters">
<rdfs:domain rdf:resource="#Reference"/>
<rdfs:range rdf:resource="#Chapter" />

</owl:ObjectProperty>

<!-- An instance -->
<Monograph rdf:about="#a108048723">
<rdfs:label>Object-Oriented Data Modeling</rdfs:label>
<publisher rdf:resource="#a85849488"/>
<title>Object-Oriented Data Modeling</title>
<date>
<Date>
<year rdf:datatype="&xsd;gYear">

2000
</year>

</Date>
</date>

</Monograph>

Fig. 1: Example excerpt from an OWL ontology

refer to other elements located elsewhere in the file to produce
fully expanded standalone concept descriptions for all of the
concepts in each of the two ontologies to be aligned. We
then apply the NICAD clone detector [1] to detect near-miss
cross-clones between the two sets of contextualized concept
descriptions, and using the near-miss clones of a concept in the
first ontology from the second ontology as proposed concept
alignments. We tune this process by varying the near-miss
threshold to optimize precision and recall with respect to the
gold standard answers for a standard set of ontology alignment
challenge problems. Finally, we show how to increase preci-
sion by considering only the best-match clones, those with the
highest similarity, as the proposed alignments.

II. ONTOLOGY ALIGNMENT

In this section we introduce the characteristics of formal
ontologies, the OWL language and the ontology alignment
process.

A. Formal Ontologies

An OWL ontology includes descriptions of classes, proper-
ties and their instances. Classes describe concepts, the main
building block of an ontology. They are generally organized
in a hierarchy through the subClassOf statement. Classes
have properties that describe them. Properties can be either
object properties or data types properties. Properties may have
a hierarchy through the subPropertyOf statement. Finally,
classes can have instances, which are members of the classes.

Figure 1 shows an excerpt from an OWL ontology in the
dataset introduced later in this paper, showing an example
of a class, a property, and an instance in the OWL XML
representation.

<map>
<Cell>
<entity1 rdf:resource="sourceOntology;MastersThesis"/>
<entity2 rdf:resource="targetOntology;MScThesis"/>
<measure rdf:datatype="XMLSchema;float">1.0</measure>
<relation>=</relation>

</Cell>
</map>

Fig. 2: Example ontology alignment

B. Alignment Process

The ontology alignment process is done with a source and
target ontology. Both ontologies are given to the alignment
tool, and a proposed alignment is provided as output. The
tool’s alignment can then be compared to a reference align-
ment for the sake of evaluation.

Figure 2 shows an example reference alignment for concepts
from two similar ontologies, taken from the gold standard
which we explain in greater detail in Section V-A. In this
example, the concept MastersThesis from the source ontology
should be aligned with MScThesis from the target ontology.
The alignment has an exact correspondence between the entity
in the source ontology and the entity in the target ontology, and
they are equal. The alignment process may permit ”=”, ”v”,
and ”w” relations; most of the benchmark dataset’s alignments
are ”=” relations.

III. CONTEXTUALIZING CONCEPTS

In order to experiment with best-match clone detection
on the ontology alignment problem, we began our experi-
mentation with alignment of OWL classes. Once we have
implemented and tuned our alignment successfully for classes,
we will apply the same process to properties and instances.
In this paper, we describe our results for classes only, which
represent 19% of the gold standard’s entities.

A challenge in applying clone detection to the alignment
problem was finding a way to meaningfully compare concept
classes for clones. Using the notion of contextual clones
from our previous work [2], we recursively inlined subclassOf
references to other classes in each class definition. This means
that for each concept class we build its entire concept tree,
giving us a way to meaningfully compare entire classes to
one another.

The most important piece of information used in
this contextualization is the OWL <rdfs:subclassOf
rdf:resource=[resourceName]> element, where
[resourceName] refers to another element. Replacing
the subclassof elements with their referred class elements
is done recursively, resulting in a fully contextualized
representation of each class in the OWL ontology.

Figure 3 shows an example of an OWL concept class
element before and after contextualization.

IV. CONCEPT CLONES

In order to use near-miss clone detection on our contex-
tualized concept classes, we created a NICAD plug-in to
parse, contextualize and extract class elements from OWL
ontology files. We began with a TXL [3] grammar to parse

2

<owl:Class rdf:ID="MastersThesis">
<rdfs:subClassOf rdf:resource="#Academic" />

</owl:Class>

(a) Original OWL concept definition

<owl:Class rdf:ID="MastersThesis">
<rdfs:subClassOf>
<owl:Class rdf:ID="Academic">
<rdfs:subClassOf>

<owl:Class rdf:ID="Reference">
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#date"/>
<owl:maxCardinality rdf:datatype=
"&xsd;nonNegativeInteger">
1

</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#title"/>
<owl:maxCardinality rdf:datatype=
"&xsd;nonNegativeInteger">
1

</owl:maxCardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

</rdfs:subClassOf>
</source>

(b) The same concept definition after contextualization

Fig. 3: Example OWL concept contextualization

OWL, adapted from the W3C OWL specification [4], and
used a TXL transformation to implement reference inlining
to contextualize and extract OWL concept classes in a way
analogous to the contextualization and extraction of WSDL
operations in our previous work [2]. Like the WSDL extractor,
our NICAD plug-in for OWL also performs some minor
normalization, eliminating irrelevant elements from the XML
representation.

Once we had extracted the contextualized classes from a
source and target ontology, we used NICAD to check for
cross-clones between them. We began using NICAD’s default
settings, simply looking for near-miss cross-clones at the 30%
near-miss threshold, and using the target ontology cross-clone
relationship as the proposed alignments for each concept in
the source ontology. Even in this naive default setting, some
alignments were found and many tests had good recall by
comparison with the gold standard, but there was far too much
noise and precision was very low.

Part of the problem was that in many cases there were
many good near-miss cross-clones for a concept in the source
ontology. While we were hoping that the near-miss clone
relationship would identify only the closest matches below
the threshold, in practice there were often many of these.

By examining what was happening when an ontology was
compared to itself, we realized that the match deemed correct
by the gold standard was typically the cross-clone with the
highest similarity (the “best match”), and that other clones
found at the NICAD threshold were not as interesting. We
also noticed that, by using only this highest similarity, or best-
match definition, most concepts in the source ontology would

yield a single match, which is ideally what we were seeking.
To implement this new best-match clone definition, we

modified our process to filter NICAD results to yield only
those cross-clone pairs that match at the highest similarity
value, returning a single alignment for each concept in the
best case, or a set of best-match alignments in the general
case.

V. AN EXPERIMENT

In order to test the efficacy of near-miss clone detection and
our new best-match clone definition in practice, we designed
an experiment to compare our results against an accepted
benchmark at various NICAD parameter settings, in order to
determine the best clone detection settings for the ontology
alignment problem. While good settings for near-miss code
clone detection have been explored in other work, there was
no reason to believe that those would be best for this very
different problem.

A. The OAEI Benchmarks

The Ontology Alignment Evaluation Initiative (OAEI) is an
organization that provides datasets for evaluation of ontology
alignment tools. Its goal is to improve ontology alignment
techniques, and the evaluation of the techniques at conferences
[5]. Since our new lightweight method is designed to compete
with other ontology alignment tools, the OAEI benchmarks
obviously make good examples with which to test it.

The dataset we chose for our experiment is the biblio
dataset that was used in the OAEI’s 2011 ontology alignment
challenge [6]. This dataset is designed to be a comprehensive
test for alignment tools, and because the 2011 competition
results have been published, we could compare our results to
other state-of-the-art tools. We chose the 2011 dataset before
the 2012 alignment challenge results were available, and we
plan to apply our technique to the 2012 dataset once we have
optimized our tool.

The 2011 biblio dataset defines 173 entities to be matched,
including 33 named classes, 24 object properties, 40 data prop-
erties, 56 named individuals, and 20 anonymous individuals.
The source ontology is compared to a set of target ontologies,
each of which was obtained by applying transformations to
the source ontology. Every problem in the challenge has a
defined gold standard alignment that can be used to evaluate
the results obtained by an alignment tool.

The dataset is divided into three levels: the 100-level, 200-
level, and 300-level. The 100-level tests are simple tests that
have minor changes to the ontology - for example presenting
the same labels in OWL Lite, a light-weight version of OWL
which is a subset of OWL’s syntax.

The 200-level tests have a number of different transfor-
mations performed on the data in a systematic way. The
tests stack with one-another to create more difficult tests.
The transformations are: entity names can be replaced with
random strings, synonyms, or names are translated to differ-
ent languages; classes can be expanded, or have restrictions
imposed on the classes discarded; comments are suppressed or

3

TABLE I: Measurements of traditional clone detection with different
thresholds

Traditional
Threshold Precision Recall F-measure

.00 1.00 0.03 0.06

.10 0.98 0.04 0.08

.20 0.88 0.19 0.31

.30 0.69 0.42 0.52

.40 0.51 0.47 0.49

.50 0.46 0.50 0.48

.60 0.44 0.51 0.47

.70 0.42 0.52 0.46

.80 0.17 0.56 0.26

.90 0.17 0.68 0.27

changed to a different language; the hierarchy of the ontology
is suppressed, expanded, or flattened; instances are suppressed;
properties are suppressed, or have restrictions imposed on
them discarded.

For this first experiment, we are analyzing only classes, so
transformations that affect classes, hierarchy, and naming have
a greater impact on our matching results than transformations
on properties, instances, and comments (although these can
form part of the contextualized classes).

The 300-level tests are real-life ontologies describing the
same domain, but the OAEI webpage for the 2011 challenge
says that the gold standards for these ontologies contain flaws,
and thus the OAEI did not publish the results of tools for the
300-level tests in the 2011 alignment challenge. For this reason
we have not included these in our experiment.

B. Tuning Precision and Recall

To evaluate our results, we use the standard information
retrieval metrics of the ontology alignment community, preci-
sion, recall and f-measure, to compare our result alignments
with the gold standard for each problem.

Precision is a measure of how much confidence one may
put in the alignment returned by a tool.

precision =
|{Clone Pairs} ∩ {Gold Standard Pairs}|

|{Clone Pairs}|

Recall is a measure of how well a tool can discover the
gold standard alignments.

recall =
|{Clone Pairs} ∩ {Gold Standard Pairs}|

|{Gold Standard Pairs}|

Finally, F-measure is the harmonic mean of precision and
recall. F-measure is the metric we have chosen as the primary
measure of our new method’s success, and thus the one we
want to maximize. If two NICAD thresholds have the same
F-measure, then the lower threshold will be considered better
since it typically has a lower NICAD computation time.

F −measure =
2 ∗ precision ∗ recall
precision + recall

TABLE II: Measurements of best-match clone detection with different
thresholds

Best-match
Threshold Precision Recall F-measure

.00 1.00 0.03 0.06

.10 0.99 0.04 0.08

.20 0.95 0.19 0.32

.30 0.88 0.41 0.56

.40 0.80 0.45 0.58

.50 0.79 0.45 0.57

.60 0.79 0.45 0.57

.70 0.77 0.45 0.58

.80 0.52 0.46 0.49

.90 0.53 0.51 0.52

C. Traditional Clone Detection

In our first experiment, we used NICAD’s default cross-
clone algorithm at various near-miss thresholds, using the
set of all target ontology cross-clone pairs for a contextual-
ized concept class of the source ontology as the proposed
alignment. Rather than use NICAD’s clone classes, we treat
NICAD’s raw output of clone pairs as proposed ”=” align-
ments with correspondence 1.0 . To evaluate these results, we
treated every alignment in the gold standard as a reference
pairing, and compared the sets of clone pairs returned by
NICAD for each source concept class to the reference pairing
in the gold standard.

Our running time for 110 tests and measurements was
approximately 30 seconds on a machine with a 2.2 GHz Intel
Core i7 processor and 4 GB of RAM running MacOS X
version 10.7.5. Our results are displayed in Figure 4a and
Table I.

Using this raw application of NICAD clone detection, our
best results are obtained at threshold 0.30 (emboldened in
Table I), where we have obtained the highest F-measure. Based
on this finding, we believe that the best threshold for using
clone-detection for the task of ontology alignment may be
near this value.

D. Best-Match Clone Detection

We repeated our experiment using our new notion of “best-
match” clone detection. Best-match clone detection applies a
filter to the results of traditional clone detection. For each
contextualized concept class in the source ontology, we find
the clone pair(s) in the target ontology that have the highest
similarity and filter out the rest. If two or more clone pairs
share the highest similarity, then all of that similarity are kept.

Once again we assume that each best-match clone pair
returned by the tool is a proposed alignment, and we evaluate
our tool using the same measurements and conditions as in
Section V-C. Table II and Figure 4b show the results for
our best-match clone method. For the best-match algorithm,
we conclude that the best threshold for our dataset is 0.40
because it returns the highest F-measure, and takes less time to
compute than threshold 0.80, which has the same F-measure.

4

NICAD with best-match filtering was able to complete the
entire 110 tests of the biblio benchmark in approximately
50 seconds running on a machine with a 2.2 Intel Core i7
processor and 4 GB of RAM running MacOS X version 10.7.5,
still much faster than other algorithms.

Even with best-match clone detection, the algorithm may
return a set of possible alignments (clone pairs) for each
source concept class. Once again evaluation is calculated
using precision, recall, and F-measure compared to the gold
standard. Our best-match results are shown in Table II and
Figure 4. As we can see in Table II by comparison with
Table I, the best-match filtering at threshold 0.4 gives a
significant improvement over raw cross-clone detection at its
best threshold (0.3) in precision, and improves the F-measure
and recall as well.

E. Limitations

Thus far we have attempted to match only concept classes,
and have not yet worked on aligning properties or instances.
However, those elements are not fundamentally different, and
we are confident that the same contextualization strategy and
best-match filtering will serve for them also.

While our results so far seem promising, there are alignment
problems in the OAEI challenge set that have characteristics
that pure near-miss clone detection cannot solve, such as
randomly renamed concept classes, that have limited our
success. As we add consistent renaming to our clone detection
normalization, we expect to see better results as renamed
concepts will be more accurately matched.

In our work so far we have also have suppressed comments,
but including them may be beneficial, as some tests expect
comments to provide hints for alignment.

VI. RELATED WORK

Many other ontology alignment tools have been used in
past years of the ontology alignment evaluation challenge. The
methods described below are from the description of a recent
survey paper have listed tools which have made entries in
alignment competitions for several competitions [7].

For purposes of evaluation, we present our results on the
biblio dataset in the context of other tools which were entered
in the 2011 competition [8] in Figure 5 and Table III. While
our lightweight clone-based methods are by no means at the
top of the list, as we can see our best-match method already
fits well into the table of results for much more mature tools.

In terms of performance, in the competition the tools were
run on a 3 GHz Xeon5472 quad-core processor with 8GB
of RAM running Linux Fedora 8. In this configuration, the
other tools had running times between 1.07 minutes and 28.94
hours [9]. Although our results are not necessarily directly
comparable, even in its present prototype stage our clone-
based tool took less time on a less powerful machine than
any of the other tools, and we expect our running time to
improve as we do more normalization and tuning.

While our method is knowledge- and domain-independent,
many other tools take advantage of external background

Fig. 5: Alignment tool results on the biblio dataset, 2011

knowledge or are created for specific domains [10], [11], [12],
[13], [14], [15], [16], [17]. One such source of background
knowledge is WordNet [18]: a lexical database of nouns,
verbs, adverbs, and adjectives. The database can be queried
for synonyms, antonyms, and other relationships between
words in the English language. Another widely-used source
of knowledge is DBpedia [19]. DBpedia is a database of
information extracted from Wikipedia. A user can query the
information contained within DBpedia, and they can link other
data with the database. As opposed to other methods, our tool
is naive and domain-independent.

Some alignment tools treat the problem as a graph problem,
and examine the structure of the graph [20], [21]. Lily [22] is
one such tool which examines subgraphs in order to make
alignments. In a similar fashion, LogMap uses logic and
structure in order to generate an alignment [23].

Some tools use rules exploiting OWL characteristics to do
alignment [24]. Similarly, naive Bayes classifiers have been
used to align ontologies [10], [14]. Other approaches use
probabilities with rules to generate alignments [25].

CIDER [8], one of the tools reported in the 2011 compe-
tition uses rules of inference and background knowledge in
order to extract features of an entity. The features are then
used as an input to an artificial neural network, which outputs
a matrix of similarity between entities. The alignment of the
ontology is based on the similarity matrix.

Term frequency by inverse document frequency (TF · IDF)
is used by AgreementMaker [14] and other information re-
trieval methods [26]. TF · IDF makes a table of terms by
documents, and each entry presents how many times the term
appears in the document multiplied by the inverse of how
many time the term appears in all the documents. The cosines
of elements are calculated to generate a similarity metric which
is then used to aid in alignment.

Falcon [27] is an ontology matching algorithm that has the
same basic steps as our tool: the tool partitions ontologies to

5

(a) Traditional Near-miss Clone Detection (b) Results After Best-match Filtering
Fig. 4: NICAD Results With and Without Best-match Filtering

TABLE III: Measurements of tools on the 2011 Biblio dataset in descending order. Thresholds selected are 0.30 and 0.40 for our traditional
and best-match clone detection respectively

Tools sorted by Precision Tools sorted by Recall Tools sorted by F-measure
LogMap 0.99 CSA 0.65 MapSSS 0.77

MassMatch 0.99 MapSSS 0.62 CODI 0.74
AgreementMaker 0.98 CODI 0.60 YAM++ 0.74

YAM++ 0.97 YAM++ 0.60 CSA 0.73
Aroma 0.93 CIDER 0.58 AgreementMaker 0.71
CODI 0.93 Lily 0.57 CIDER 0.70
Lily 0.93 AgreementMaker 0.56 Lily 0.70

CIDER 0.89 Aroma 0.53 Aroma 0.68
CSA 0.89 Optima 0.53 LogMap 0.67

Best-Match Clone tool 0.80 edna 0.52 MassMatch 0.61
MapSSS 0.80 LDOA 0.51 Best-match clone tool 0.58

Traditional Clone Detection 0.69 LogMap 0.50 Optima 0.56
Optima 0.60 Best-Match Clone tool 0.45 Traditional Clone Detection 0.52
MapEvo 0.54 MassMatch 0.44 edna 0.51
LDOA 0.51 Traditional Clone Detection 0.42 LDOA 0.51
edna 0.50 MapEvo 0.22 MapEvo 0.32

smaller blocks, matches blocks, and discover blocks. The tool
also uses the subClassOf relation to find relationships between
classes, and to discover structural similarities. It’s different in
that it uses clustering algorithms to generate alignments. Other
algorithms use clustering techniques as well [28].

Some tools use edit distance, and in some cases specifically
Levenstein distance is used to find alignment [11]. Her-
tuda [29] tokenizes entities and examines the edit distance of
the entities as strings using the Damerau-Levenstein algorithm
with threshold selected separately for classes, properties, and
instances. The tool returned the Hertuda was not included in
the evaluation because its results are not comparable to the
dataset we used. Hertuda was entered in the 2011.5, and 2012
competition, but not the 2011 competition.

MapEVO is an algorithm that uses evolutionary program-
ming to make an ontology alignment [30].

Our tool works with a 1-to-many alignment, however some
tools have been developed to do many-to-many relationships.
We had decided to work primarily with 1-to-many for the sake
of comparing two ontologies. We can examine in the future

whether NICAD’s clone classes may be of use in many-to-
many matching. Our method only finds equalities, but some
of the of the alignments propose a ”<” alignment.

By comparison with other tools, our method is fast, and
scales well to very large ontologies due to its basis on a
production code clone detector. Unlike many of the other
tools, it requires no training on the domain or problem set
to be applied, and requires no external sources of domain
knowledge. It is simple, lightweight and general. However,
it has yet to prove that it can return results comparable to the
very best of these tools.

We chose to use NICAD as our tool for evaluation, however
we would expect good results using other clone detection
tools [31]. File modifications and file movement was discov-
ered using nearest-neighbour to return a single clone [32].

VII. SUMMARY AND FUTURE WORK

Our purpose was to discover how well ontology match-
ing can be accomplished by treating it as a software-clone
problem. The motivation of ontology alignment is to identify

6

two ontologies as describing the same entity. We saw similar
success in using clone detection to find WSDL clones [2],
as well as in Simulink models [33]. An advantage of using
clone-detection techniques lies in the fact that some of the
ontology alignment algorithms can take several hours to run
with small ontologies [9], whereas NICAD was designed to
run on software engineering projects, which are orders of
magnitude larger than the ontologies being tested. Thus is our
belief that methods based on clone-detection techniques will
easily scale to very large ontologies.

We plan to continue to tune our method, in particular its
normalizations, and to generalize it to OWL properties and
instances. Our tool does not yet perform any renaming - a
feature we will implement soon - so the results in this paper
are still preliminary. Our tool also ignores comments. We plan
to rename the labels of entities, and provide alignments for
classes, properties, and instances. We will conduct experiments
on whether comments may provide information. We expect our
measurements to improve as we conduct more experiments.

Using best-match clone-detection has increased precision at
a small cost to recall. We plan on figuring out whether there’s a
way to increase recall. Traditional clone-detection has a recall
rate of 0.56 for threshold 0.80, and 0.68 for threshold 0.90.
It would be of interest to discover whether best-match clone
detection could be modified to decrease this gap for cases
where recall is more important than precision.

Other ontology datasets are available from the OAEI web-
site. We plan to run the tool on the other datasets to see
how well ontology alignment works with best-matching clone
detection techniques. We will compare our results with other
techniques from the 2011.5 and 2012 datasets.

ACKNOWLEDGEMENTS

This work is supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

REFERENCES

[1] C. Roy and J. Cordy, “NICAD: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization,” in
Program Comprehension, 2008. ICPC 2008. The 16th IEEE Interna-
tional Conference on. IEEE, 2008, pp. 172–181.

[2] D. Martin and J. Cordy, “Analyzing web service similarity using
contextual clones,” in Proceedings of the 5th International Workshop
on Software Clones, IWSC 2011, 2011, pp. 41–46.

[3] J. Cordy, “The TXL source transformation language,” Science of Com-
puter Programming, vol. 61, no. 3, pp. 190–210, 2006.

[4] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue, P. Haase,
R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler, and M. Smith,
“OWL 2 web ontology language structural specification and functional-
style syntax (second edition).”

[5] J. Euzenat. Ontology alignment evaluation initiative. [Online]. Available:
http://oaei.ontologymatching.org

[6] Ontology alignment evaluation initiative - oaei-2011 campaign.
[Online]. Available: http://oaei.ontologymatching.org/2011/benchmarks/

[7] P. Shvaiko and J. Euzenat, “Ontology matching: state of the art and
future challenges,” 2012.

[8] J. Gracia, J. Bernad, and E. Mena, “Ontology matching with CIDER:
evaluation report for OAEI 2011,” 2011.

[9] J. Euzenat, A. Ferrara, W. R. van Hage, L. Hollink, C. Meilicke,
A. Nikolov, F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O. S̆váb
Zamazal, and C. Trojahn, “Fianl results of the ontology alignment
evaluation initiative 2011,” Tech. Rep., 2011. [Online]. Available:
http://oaei.ontologymatching.org/2011/benchmarks/

[10] P. Lambrix and H. Tan, “Sambo a system for aligning and merging
biomedical ontologies,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 4, no. 3, pp. 196–206, 2006.

[11] M. Nagy, M. Vargas-Vera, and E. Motta, “DSSim-managing uncertainty
on the semantic web,” 2007.

[12] J. Li, J. Tang, Y. Li, and Q. Luo, “RiMOM: A dynamic multistrategy
ontology alignment framework,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 21, no. 8, pp. 1218–1232, 2009.

[13] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka, “Ontology
matching with semantic verification,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 7, no. 3, pp. 235–251, 2009.

[14] I. F. Cruz, F. P. Antonelli, and C. Stroe, “AgreementMaker: efficient
matching for large real-world schemas and ontologies,” Proceedings of
the VLDB Endowment, vol. 2, no. 2, pp. 1586–1589, 2009.

[15] D. Ngo and Z. Bellahsene, “YAM++ : A multi-strategy based approach
for ontology matching task,” in Knowledge Engineering and Knowledge
Management, ser. LNCS. Springer, 2012, vol. 7603, pp. 421–425.

[16] M. Kachroudi, E. B. Moussa, S. Zghal, and S. Ben, “LDOA results for
OAEI 2011,” Ontology Matching, p. 148, 2011.

[17] S. Hertling and H. Paulheim, “WikiMatch results for OAEI 2012,”
Ontology Matching, p. 220, 2012.

[18] G. A. Miller et al., “WordNet: a lexical database for english,” Commu-
nications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[19] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“DBpedia: A nucleus for a web of open data,” The Semantic Web, pp.
722–735, 2007.

[20] M. Cheatham, “MapSSS results for OAEI 2011,” in Proceedings of the
ISWC 2011 workshop on ontology matching, 2011, pp. 184–190.

[21] U. Thayasivam and P. Doshi, “Optima results for OAEI 2011,” in Proc.
of 6th OM Workshop, 2011, pp. 204–211.

[22] P. Wang, “Lily results on SEALS platform for oaei 2011,” in Proc. of
6th OM Workshop, 2011, pp. 156–162.

[23] E. Jiménez-Ruiz and B. Cuenca Grau, “Logmap: Logic-based and
scalable ontology matching,” The Semantic Web–ISWC 2011, pp. 273–
288, 2011.

[24] J. David, F. Guillet, and H. Briand, “Matching directories and OWL
ontologies with AROMA,” in CIKM, vol. 6, no. 11, 2006, pp. 830–831.

[25] J. Huber, T. Sztyler, J. Noessner, and C. Meilicke, “CODI: Combinatorial
optimization for data integration–results for OAEI 2011,” Ontology
Matching, p. 134, 2011.

[26] F. C. Schadd and N. Roos, “Maasmatch results for OAEI 2011,”
Ontology Matching, p. 171, 2011.

[27] W. Hu, Y. Qu, and G. Cheng, “Matching large ontologies: A divide-
and-conquer approach,” Data & Knowledge Engineering, vol. 67, no. 1,
pp. 140–160, 2008.

[28] Q.-V. Tran, R. Ichise, and B.-Q. Ho, “Cluster-based similarity aggre-
gation for ontology matching,” in Proc. of 6th Ontology Matching
Workshop, 2011, pp. 142–147.

[29] S. Hertling, “Hertuda results for OAEI 2012,” Ontology Matching, p.
141, 2012.

[30] J. Bock, C. Dänschel, and M. Stumpp, “MapPSO and MapEVO results
for oaei 2011,” Ontology Matching, p. 179, 2011.

[31] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[32] T. Lavoie, F. Khomh, E. Merlo, and Y. Zou, “Inferring repository
file structure modifications using nearest-neighbor clone detection,” in
WCRE, 2012, pp. 325–334.

[33] M. Alalfi, J. R. Cordy, T. Dean, M. Stephan, and A. Stevenson, “Models
are code too: Near-miss clone detection for simulink models,” in Proc.
of ICSM, vol. 12, 2012.

[34] J. Euzenat and P. Shvaiko, Ontology matching. Springer Berlin, 2007,
vol. 18.

[35] OWL2 web ontology language primer (second edition). [Online].
Available: www.w3c.org/TR/2012/REC-owl2-primer-20121211/

[36] S. Bechhofer, et al., “OWL web ontology language reference,” W3C
recommendation, vol. 10, pp. 2006–01, 2004.

[37] D. L. McGuinness et al., “OWL web ontology language overview,” W3C
recommendation, vol. 10, no. 2004-03, p. 10, 2004.

7

