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Abstract

The Internet has enabled the creation of a growing number of large-scale knowl-
edge bases in a variety of domains containing complementary information. Tools
for automatically aligning these knowledge bases would make it possible to unify
many sources of structured knowledge and answer complex queries. However,
the efficient alignment of large-scale knowledge bases still poses a considerable
challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algo-
rithm for aligning knowledge bases with millions of entities and facts. SiGMa is
an iterative propagation algorithm which leverages both the structural information
from the relationship graph as well as flexible similarity measures between entity
properties in a greedy local search, thus making it scalable. Despite its greedy
nature, our experiments indicate that SiGMa can efficiently match some of the
world’s largest knowledge bases with high accuracy. We provide additional ex-
periments on benchmark datasets which demonstrate that SiGMa can outperform
state-of-the-art approaches both in accuracy and efficiency.

1 Introduction

In the last decade, a growing number of large-scale knowledge bases have been created online.
Examples of domains include music, movies, publications and biological data1. As these knowledge
bases sometimes contain both overlapping and complementary information, there has been growing
interest in attempting to merge them by aligning their common elements. This alignment could
have important uses for information retrieval and question answering. For example, one could be
interested in finding a scientist with expertise on certain related protein functions – information
which could be obtained by aligning a biological database with a publication one. Unfortunately,
this task is challenging to automate as different knowledge bases generally use different terms to
represent their entities, and the space of possible matchings grows exponentially with the number of
entities.

A significant amount of research has been done in this area – particularly under the umbrella term
of ontology matching [1, 2, 3]. An ontology is a formal collection of world knowledge and can take
different structured representations. In this paper, we will use the term knowledge base to emphasize
that we assume very little structure about the ontology (to be specified in Section 2). Despite the
large body of literature in this area, most of the work on ontology matching has been demonstrated
only on fairly small datasets of the order of a few hundred entities. In particular, Shvaiko and

1Such as MusicBrainz, IMDb, DBLP and UnitProt.
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Euzenat [4] identified large-scale evaluation as one of the ten challenges for the field of ontology
matching.

In this paper, we consider the problem of aligning the instances in large knowledge bases, of the
order of millions of entities and facts, where aligning means automatically identifying correspond-
ing entities and interlinking them. Our starting point was the challenging task of aligning the movie
database IMDb to the Wikipedia-based YAGO [5], as another step towards the Semantic Web vision
of interlinking different sources of knowledge which is exemplified by the Linking Open Data Ini-
tiative2 [6]. Initial attempts to match IMDb entities to YAGO entities by naively exploiting string
and neighborhood information failed, and so we designed SiGMa (Simple Greedy Matching), a scal-
able greedy iterative algorithm which is able to exploit previous matching decisions as well as the
relationship graph information between entities.

The design decisions behind SiGMa were both to be able to take advantage of the combinatorial
structure of the matching problem (by contrast with database record linkage approaches which make
more independent decisions) as well as to focus on a simple approach which could be scalable.
SiGMa works in two stages: it first starts with a small seed matching assumed to be of good quality.
Then the algorithm incrementally augments the matching by using both structural information and
properties of entities such as their string representation to define a modular score function. Some
key aspects of the algorithm are that (1) it uses the current matching to obtain structural informa-
tion, thereby harnessing information from previous decisions; (2) it proposes candidate matches in
a local manner, from the structural information; and (3) it makes greedy decisions, enabling a scal-
able implementation. A surprising result is that we obtained accurate large-scale matchings in our
experiments despite the greediness of the algorithm.

Contributions The contributions of the present work are the following:

1. We present SiGMa, a knowledge base alignment algorithm which can handle millions of
entities. The algorithm is easily extensible with tailored scoring functions to incorporate
domain knowledge. It also provides a natural tradeoff between precision and recall, as well
as between computation and recall.

2. In the context of testing the algorithm, we constructed two large-scale partially labeled
knowledge base alignment datasets with hundreds of thousands of ground truth mappings.
We expect these to be a useful resource for the research community to develop and evaluate
new knowledge base alignment algorithms.

3. We provide a detailed experimental comparison illustrating how SiGMa improves over the
state-of-the-art. SiGMa is able to align knowledge bases with millions of entities with over
95% precision in less than two hours (a 50x speed-up over [7]). On standard benchmark
datasets, SiGMa obtains solutions with higher F-measure than the best previously published
results.

The remainder of the paper is organized as follows. Section 2 presents the knowledge base alignment
problem with a real-world example as motivation for our assumptions. We describe the algorithm
SiGMa in Section 3 and evaluate it on benchmark and on real-world datasets in Section 4.

2 Aligning Large-Scale Knowledge Bases

2.1 Motivating example: YAGO and IMDb

Consider merging the information in the following two knowledge bases: YAGO, a large semantic
knowledge base derived from English Wikipedia [5], WordNet [8] and GeoNames3; and IMDb, a
large popular online database that stores information about movies.4 The information in YAGO is
available as a long list of triples (called facts) that we formalize as 〈e,r,e′〉, which means that the
directed relationship r holds from entity e to entity e′, such as 〈John Travolta,ActedIn,Grease〉.
The information from IMDb was originally available as several files which we merged into

2http://linkeddata.org/
3http://www.geonames.org/
4http://www.imdb.com/
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a similar list of triples. We call these two databases knowledge bases to emphasize that we
are not assuming a richer representation, such as RDFS [9], which would distinguish between
classes and instances for example. In the language of ontology matching, our setup is the
less studied instance matching problem, as pointed out by Castano et al. [10], for which the
goal is to match concrete instantiations of concepts such as specific actors and specific movies
rather than the general actor or movie class. YAGO comes with an RDFS representation,
but not IMDb. We will focus on methods that do not assume or require a class structure or
rich hierarchy in order to find a one-to-one matching of instances between YAGO and IMDb.
We will however assume that the relations between the two knowledge bases can be manually
aligned, which is straightforward for these two knowledge bases (column 1 and 3 of Table 1a).

k l

benjamin bratt

carlos carrasco

...

taylor hackford

benjamin bratt i

...

carlos carrasco i

bound by honor
hasProductionYear:

1993wasCreatedOnDate:
1993-04-16

taylor hackfordykl = 1

yij = ?blood in blood out i j

YAGO IMDb

Figure 1: Example of neighborhood to match in YAGO
and IMDb. Even though entities i and j have no words in
common, the fact that several of their respective neighbors
are matched together is a strong signal that i and j should
be matched together. This is a real example from the dataset
used in the experiments and SiGMa was able to correctly
match all these pairs (i and j are actually the same movie
despite their different stored titles in each KB).

Relationships vs. properties. Given
our assumption that the alignment is
1-1, it is important to distinguish be-
tween two types of objects which
could be present in the list of triples:
entities vs. literals. By our defini-
tion, the entities will be the only ob-
jects that we will try to align – they
will be objects like specific actors or
specific movies which have a clear
identity. The literals, on the other
hand, will correspond to a value re-
lated to an entity through a special
kind of relationship that we will call
property. The defining characteristic
of literals is that it would not make
sense to try to align them between the
two knowledge bases in a 1-1 fashion.
For example, in the YAGO triple 〈m1,
wasCreatedOnDate, 1999-12-11〉,
the object 1999-12-11 could be interpreted as a literal representing the value for the property
wasCreatedOnDate for the entity m1. The corresponding property in our version of IMDb is has-
ProductionYear which has values only at the year granularity (1999). The 1-1 restriction would
prevent us to align both 1999-12-11 and 1999-12-10 to 1999. On the other hand, we can use
these literals to define a similarity score between entities from the two knowledge bases (for ex-
ample in this case, whether the year matches, or how close the dates are to each other). We will
thus have two types of triples: entity-relationship-entity and entity-property-literal. We assume that
the distinction between relationships and properties (which depends on the domain and the user’s
goals) is easy to make; for example, in the Freebase dataset that we also used in our experiments,
the entities would have unique identifiers but not the literals. Figure 1 provides a concrete example
of information presents in the two knowledge bases that we will keep re-using in this paper. We now
define formally the problem that we address.

Definition: A knowledge base KB is a tuple (E ,L ,R,P,FR,FP) where E , L , R and P are
sets of entities, literals, relationships and properties respectively; FR ⊆ E ×R × E is a set of
relationship-facts whereas FP ⊆ E ×P ×L is a set of property-facts (both can be represented
as a simple list of triples). To simplify the notation, we assume that all inverse relations are also
present in FR – that is, if 〈e,r,e′〉 is in FR, we also have 〈e′,r−1,e〉 in FR, effectively doubling the
number of possible relations in the KB.5

Problem: one-to-one alignment of instances between two knowledge bases. Given two knowl-
edge bases KB1 and KB2 as well as a partial mapping between their corresponding relationships and
properties, we want to output a 1-1 partial mapping m from E1 to E2 which represents the semanti-
cally equivalent entities in the two knowledge bases (by partial mapping, we mean that the domain
of m does not have to be the whole of E1).

5This allows us to look at only one standard direction of facts and cover all possibilities – see for example
how it is used in the definition of compatible-neigbhors.
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2.2 Possible approaches

Standard approaches for the ontology matching problem, such as RiMOM [11], could be used to
align small knowledge bases. However, they do not scale to millions of entities as needed for our
task given that they usually consider all pairs of entities, suffering from a quadratic scaling cost. On
the other hand, the related problem of identifying duplicate entities known as record linkage or du-
plicate detection in the database field, and co-reference resolution in the natural language processing
field, do have scalable solutions [12, 13], though these do not exploit the 1-1 matching combinato-
rial structure present in our task, which reduces their accuracy. More specifically, they usually make
independent decisions for different entities using some kind of similarity function, rather than ex-
ploiting the competition between different assignments for entities. A notable exception is the work
on collective entity resolution by Bhattacharya and Getoor [14], solved using a greedy agglomera-
tive clustering algorithm. The algorithm SiGMa that we present in Section 3 can actually be seen as
an efficient specialization of their work to the task of knowledge base alignment.

Another approach to alignment arises from the word alignment problem in natural language pro-
cessing [15], which has been formulated as a maximum weighted bipartite matching problem [16]
(thus exploiting the 1-1 matching structure). It also has been formulated as a quadratic assignment
problem in [17], which encourages neighbor entities in one graph to align to neighbor entities in the
other graph, thus enabling alignment decisions to depend on each other — see the caption of Fig-
ure 1 for an example of this in our setup. The quadratic assignment formulation [18], which can be
solved as an integer linear program, is NP-hard in general though, and these approaches were only
used to align at most one hundred entities. In the algorithm SiGMa that we propose, we are inter-
ested in exploiting both the 1-1 matching constraint, as well as building on previous decisions, like
these word alignment approaches, but in a scalable manner which would handle millions of entities.
SiGMa does this by greedily optimizing the quadratic assignment objective, as we will describe in
Section 3.1. Finally, Suchanek et al. [7] recently proposed an ontology matching approach called
PARIS that they have succeeded to apply on the alignment of YAGO to IMDb as well, though the
scalability of their approach is not as clear, as we explain in the more detailed Related Work section
of the longer version of this work [19]. We will provide a detailed comparison with PARIS in the
experiments section.

3 The SiGMa Algorithm

3.1 Greedy optimization of a quadratic assignment objective

The SiGMa algorithm can be seen as the greedy optimization of an objective function which globally
scores the suitability of a particular matching m for a pair of given KBs. This objective function
will use two sources of information useful to choose matches: a similarity function between pairs of
entities defined from their properties; and a graph neighborhood contribution making use of neighbor
pairs being matched (see Figure 1 for a motivation). Let us encode the matching m : E1 → E2 by
a matrix y with entries indexed by the entities in each KB, with yi j = 1 if m(i) = j, meaning that
i ∈ E1 is matched to j ∈ E2, and yi j = 0 otherwise. The space of possible 1-1 partial mappings
is thus represented by the set of binary matrices: M

.
= {y ∈ {0,1}E1×E2 : ∑l yil ≤ 1 ∀i ∈ E1 and

∑k yk j ≤ 1 ∀ j ∈ E2}. We define the following quadratic objective function which globally scores the
suitability of a matching y:

obj(y) .
= ∑

(i, j)∈E1×E2

yi j [(1−α)si j +αgi j(y)] , where gi j(y)
.
= ∑

(k,l)∈Ni j

ykl wi j,kl . (1)

The objective contains linear coefficients si j which encode a similarity between entity i and j, as
well as quadratic coefficients wi j,kl which control the algorithm’s tendency to match i with j given
that k was matched to l6. Ni j is a local neighborhood around (i, j) that we define later and which
will depend on the graph information from the KBs – gi j(y) is basically counting (in a weighted
fashion) the number of matched pairs (k, l) which are in the neighborhood of i and j. α ∈ [0,1] is
a tradeoff parameter between the linear and quadratic contributions. Our approach is motivated by
the maximization problem:

max
y

obj(y) s.t. y ∈M , ‖y‖1 ≤ R, (2)

6In the rest of this paper, we will use the convention that i and k are always entities in KB1; whereas j and l
are in KB2. e could be in either KB.
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where the norm ‖y‖1
.
= ∑i j yi j represents the number of elements matched and R is an unknown

upper-bound which represents the size of the best partial mapping which can be made from KB1
to KB2. We note that if the coefficients are all positive (as will be the case in our formulation
– we are only encoding similarities and not repulsions between entities), then the maximizer y∗
will have ‖y∗‖1 = R. Problem (2) is thus related to one of the variations of the quadratic assignment
problems, a well-known NP-complete problem in operational research [18]7. Even though one could
approximate the solution to the combinatorial optimization (2) using a linear program relaxation (see
Lacoste-Julien et al. [17]), the number of variables is quadratic in the number of entities, and so is
obviously not scalable. Our approach is instead to greedily optimize (2) by adding the match element
yi j = 1 at each iteration which increases the objective the most and selected amongst a small set of
possibilities. In other words, the high-level operational definition of the SiGMa algorithm is as
follows:

1. Start with an initial good quality partial match y0.

2. At each iteration t, augment the previous matching with a new matched pair by setting
yi j = 1 for the (i, j) which maximally increases obj, chosen amongst a small set St of
reasonable candidates which preserve the feasibility of the new matching.

3. Stop when the bound ‖y‖1 = R is reached (and never undo previous decisions).

Having outlined the general framework, in the remainder of this section we will describe methods
for choosing the similarity coefficients si j and wi j,kl so that they guide the algorithm towards good
matchings (Section 3.3), the choice of neighbors, Ni j, the choice of a candidate set St , and the
stopping criterion, R. These choices influence both the speed and accuracy of the algorithm.

Compatible-neighbors. Ni j should be chosen so as to respect the graph structure defined by the KB
facts. Its contribution in the objective crucially encodes the fact that a neighbor k of i being matched
to a ‘compatible’ neighbor l of j should encourage i to be matched to j — see the caption of Figure 1
for an example. Here, compatibility means that they are related by the same relationship (they have
the same color in Figure 1). Formally, we define: Ni j = compatible-neighbors(i, j) .

= {(k, l):
〈i,r,k〉 is in FR1 and 〈 j,s, l〉 is in FR2 and relationship r is matched to s}. Note that a property of this
neighborhood is that (k, l) ∈Ni j iff (i, j) ∈Nkl , as we have that the relationship r is matched to s iff
r−1 is matched to s−1 as well. This means that the increase in the objective obtained by adding (i, j)
to the current matching y defines the following context dependent similarity score function which is
used to pick the next matched pair in the step 2 of the algorithm:

score(i, j;y) = (1−α)si j +α δgi j(y) where δgi j(y)
.
= ∑

(k,l)∈Ni j

ykl (wi j,kl +wkl,i j). (3)

Information propagation on the graph. The compatible-neighbors concept that we just de-
fined is one of the most crucial characteristics of SiGMa. It allows the information of a new matched
pair to propagate amongst its neighbors. It also defines a powerful heuristic to suggest new candi-
date pairs to include in a small set St of matches to choose from: after matching i to j, SiGMa adds
all the pairs (k, l) from compatible-neighbors(i, j) as new candidates. This yields a fire prop-
agation analogy for the algorithm: starting from an initial matching (fire) – it starts to match their
neighbors, letting the fire propagate through the graph. If the graph in each KB is well-connected
in a similar fashion, it can visit most nodes this way. This heuristic enables SiGMa to avoid the
potential quadratic number of pairs to consider by only focussing its attention on the neighborhoods
of current matches.

Stopping criterion. R is implicitly chosen by the following heuristic: SiGMa terminates when the
variation in the objective value, score(i, j;y), of the latest added match (i, j) falls below a threshold
(or the queue becomes empty). The threshold in effect controls the precision / recall tradeoff of
the algorithm. By ensuring that the si j and gi j(y) terms are normalized between 0 and 1, we can
standardize the scale of the threshold for different score functions. In our experiments, a threshold
of 0.25 is observed to correlate well with a point at which the F-measure stops increasing and the
precision is significantly decreasing.

7See Appendix C of [19] for the traditional description of the quadratic assignment problem and its rela-
tionship to our problem.
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3.2 Algorithm and implementation Algorithm 1: SiGMa
Initialize matching m = m0.
Initialize priority queue S of suggested candidate pairs
as S0∪

(⋃
(i, j)∈m Ni j

)
– the compatible-neigbhors

of pairs in m, with score(i, j;m) as their key.
while priority queue S is not empty do

Extract 〈score, i, j〉 from queue S
if score≤ threshold then stop
if i or j is already matched to some entity then

skip them and continue loop
else

Set m(i) = j.
// Update candidate lists and scores:
for (k, l) in Ni j and not already matched do

Add 〈score(k, l;m),k, l〉 to queue S .

We present the pseudo-code for SiGMa
in Algorithm 1. More details on how we
can implement it efficiently is given in
Section 3.2 of [19]. We note that the
score defined in (3) to greedily select
the next matched pair is composed of a
static term si j, which does not depend
on the evolving matching y, and a dy-
namic term δgi j(y), which depends on
y, though only through the local neigh-
borhood Ni j. We call the δgi j compo-
nent of the score function the graph con-
tribution – its local dependence means
that it can be updated efficiently after a
new match has been added. We explain
in more details the choice of similarity
measures for these components in Section 3.3. The initial match seed m0 that we used in our exper-
iments are pairs of entities which are the only ones to have the same string representation – that is,
we do not include an exact matched pair when more than two entities have this same string repre-
sentation, thereby increasing precision. The algorithm also takes an optional static list of candidates
S0 which is built only once at the beginning and whose purpose is to increase exploration by using
another source of information (which is not from the graph). In our implementation, we use an in-
verted index built on words to efficiently suggest entities which have at least two words in common
in their string representation as potential candidates.

3.3 Score functions

An important factor for any matching algorithm is the similarity function between pairs of elements
to match. Designing good similarity functions has been the focus of much of the literature on record
linkage, entity resolution, etc., and because SiGMa uses the score function in a modular fashion,
SiGMa is free to use most of them for the term si j as long as they can be computed efficiently. We
provide in this section our implementation choices (which were motivated by simplicity), but we
note that the algorithm can easily handle more powerful similarity measures. The generic score
function used by SiGMa was given in (3). In the current implementation, the static part si j is defined
through the properties of entities only. The graph part δgi j(y) depends on the relationships between
entities (as this is what determines the graph), as well as the previous matching y. We also make
sure that si j and gi j stay normalized so that the score of different pairs are on the same scale.

3.3.1 Static similarity measure

The static property similarity measure is further decomposed in two parts: we single out a con-
tribution coming from the string representation property of entities (as it is such a strong sig-
nal for our datasets), and we consider the other properties together in a second term: si j =
(1−β )string(i, j)+βprop(i, j), where β ∈ [0,1] is a tradeoff coefficient between the two contri-
butions set to 0.25 during the experiments.

String similarity measure For the string similarity measure, we primarily consider the number
of words that two strings have in common, albeit weighted by their information content. In order
to handle the varying lengths of strings, we use the Jaccard similarity coefficient between the sets
of words, a metric often used in information retrieval and other data mining fields [20, 14]. To
capture the information that some words are more informative than others, we use the IDF (inverse-
document-frequency) weight for each word, a commonly used feature in information retrieval. The
weight for word v in KBo is wo

v
.
= log10 |Eo|/|Eo

v |, where Eo
v

.
= {e ∈ Eo : e has word v in its string

representation}. Combining these elements, we get the following string similarity measure:
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string(i, j) =

∑
v∈(Wi∩W j)

(w1
v +w2

v)

smoothing + ∑
v∈Wi

w1
v + ∑

v′∈W j

w2
v′
, (4)

where We is the set of words in the string representation of entity e and smoothing is a scalar
smoothing constant (we try different values in the experiments).

Property similarity measure We recall that we assume that the user provided a partial matching
between properties of both databases. This enables us to use them in a property similarity measure.
In order to elegantly handle missing values of properties, varying number of property values present,
etc., we also use a smoothed weighted Jaccard similarity measure between the sets of properties. The
detailed formulation is given in Appendix A of the longer technical report [19] for completeness,
but we note that it can make use of a similarity measure between literals such a normalized distance
on numbers (for dates, years etc.) or a string-edit distance on strings.

3.3.2 Dynamic graph similarity measure

We now introduce the part of the score function which enables SiGMa to build on previous decisions
and exploit the relationship graph information. We need to determine wi j,kl , the weight of the con-
tribution of a neighboring matched pair (k, l) for the score of the candidate pair (i, j). The general
idea of the graph score function is to count the number of compatible neighbors which are currently
matched together for a pair of candidates (this is the gi j(y) contribution in (1)). Going back at the
example in Figure 1, there were three compatible matched pairs shown in the neighborhood of i
and j. We would like to normalize this count by dividing by the number of possible neighbors, and
we would possibly want to weight each neighbor differently. We again use a smoothed weighted
Jaccard measure to summarize this information, averaging the contribution from each KB. This can
be obtained by defining wi j,kl = γiwik + γ jw jl , where γi and γ j are normalization factors specific to i
and j in each database and wik is the weight of the contribution of k to i in KB1 (and similarly for w jl
in KB2). We use unit weights in our final experiments. A more detailed explanation for the graph
contribution is given in Section 3.3.2 of [19].

4 Experiments

We made a prototype implementation of SiGMa in Python8 and compared its performance on bench-
mark datasets as well as on large-scale knowledge bases. The output of SiGMa is a list of matched
pairs (e1,e2) with their score information and the iteration number at which they were added to the
solution. We evaluate the final alignment (after reaching the stopping threshold) by comparing it to
a ground truth using the standard metrics of precision, recall and F-measure on the number of en-
tities correctly matched. The benchmark datasets are available together with corresponding ground
truth data; for the large-scale knowledge bases, we built their ground truth using web url informa-
tion as described in [19]. We found reasonable values for the parameters of SiGMa by exploring
its performance on the YAGO to IMDb pair, and then kept them fixed for all the other experimental
comparisons. This reflects the situation where one would like to apply SiGMa to a new dataset
without ground truth or to minimize parameter adaptation. The standard parameters that we used
in these experiments are given in Appendix D of [19] for reproducibility. Additional experiments
exploring the role of different parameter configurations for SiGMa as well as choosing the stopping
threshold are given in section 4.5 of [19], but overall, the results were fairly robust to the parameter
choice.

4.1 Experiment 1: Large-scale alignment

In this experiment, we test the performance of SiGMa on three pairs of large-scale KBs and com-
pare it with PARIS [7]. The first dataset pair is YAGO-IMDb (the main motivating example for
developing and testing SiGMa). The second pair is Freebase-IMDb, for which we could obtain a

8The code and datasets will be made available at http://mlg.eng.cam.ac.uk/slacoste/sigma.
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YAGO IMDb PARIS IMDb Freebase
Relations

actedIn actedIn actedIn actedIn
directed directorOf directed directed
produced producerOf produced produced
created writerOf composed

wasBornIn bornIn
diedIn deceasedIn

capitalOf locatedIn
Properties

hasLabel hasLabel hasLabel hasLabel
wasCreatedOnDate hasProductionYear initialReleaseDate

wasBornOnDate bornOn
diedOnDate deceasedOn

hasGivenName firstName
hasFamilyName lastName

hasGender gender
hasHeight hasHeight

(a) Manually aligned movie related relationships and
properties in large-scale KBs.

Dataset #facts #entities
YAGO 442K 1.4M

IMDb PARIS 20.9M 4.8M
IMDb 9.3M 3.1M

Freebase 1.5M 474K
DBLP 2.5M 1.6M
Rexa 12.6K 14.7K

person11 500 1000
person12 500 1000

restaurant1 113 339
restaurant2 752 2256

(b) Datasets statistics

Table 1: Information about datasets.

Dataset System Prec Rec F GT size # pred. Time

Freebase-IMdb SiGMa 99 95 97 255k 366k 90 min
Exact-string 99 70 82 244k 1 min

YAGO-IMDb SiGMa 98 93 95 54k 188k 50 min
Exact-string 99 57 72 162k 1 min

YAGO-IMDb PARIS
(new ground truth)

SiGMa 98 96 97 237k 70 min
PARIS 97 96 97 57k 702k 3100 min
Exact-string 99 56 72 202k 1 min

YAGO-IMDb PARIS
(ground truth from [7])

SiGMa 98 84 91 237k 70 min
PARIS 94 90 92 11k 702k 3100 min
Exact-string 99 61 75 202k 1 min

(a) Large-scale alignment results

Dataset System Prec Rec F GT size
Person SiGMa 100 100 100 500PARIS 100 100 100
Restaurant SiGMa-linear 100 100 100

89SiGMa 98 96 97
PARIS 95 88 91
Exact-string 100 75 86

Rexa-DBLP SiGMa 97 90 94

1464SiGMa-linear 96 86 91
Exact-string 98 81 89
RiMOM 80 72 76

(b) Benchmark comparison results

Table 2: (a) Results (precision, recall, F-measure) on large-scale datasets for SiGMa in comparison
to a simple exact-matching phase on strings as well as PARIS [7]. The ‘GT Size’ column gives
the number entities with ground truth information. Time is total running time, including loading
the dataset (quoted from [7] for PARIS). (b) Results on the benchmark datasets for SiGMa, com-
pared with PARIS [7] and RiMOM [11]. SiGMa-linear and Exact-string are also included on the
interesting datasets as further comparison points.

sizable ground truth. We describe their construction in Section 4.2 of [19]. Finally, to facilitate the
comparison of SiGMa with PARIS, the authors of PARIS gave us their own version of IMDb that
we will refer from now on as IMDb PARIS – this version has actually a richer structure in terms of
properties. We present the aligned relationships and properties in Table 1a, and the number of unique
entities and relationship-facts included in Table 1b. We also compare SiGMa and PARIS with the
simple baseline of doing the unambiguous exact string matching step described in Section 3.2 which
is used to obtain an initial match m0 (called Exact-string). Table 2a presents the results.

Despite its simple greedy nature which never goes back to correct a mistake, SiGMa obtains an im-
pressive F-measure above 90% for all datasets, significantly improving over the Exact-string base-
line. We tried running PARIS [7] on a smaller subset of YAGO-IMDb, using the code available
from its author’s website. It did not complete its first iteration after a week of computation and
so we halted it (we did not have the SSD drive which seems crucial to reasonable running times).
The results for PARIS in Table 2a are thus computed using the prediction files provided to us by
its authors on the YAGO-IMDb PARIS dataset. In order to better relate the YAGO-IMDb PARIS
results with the YAGO-IMDb ones, we also constructed a larger ground truth reference on YAGO-
IMDb PARIS by using the same process as described in [19]. On both ground truth evaluations,
SiGMa obtains a similar F-measure as PARIS, but in 50x less time.

About 2% of the predicted matched pairs from SiGMa on YAGO-IMDb have no word in common
and thus zero string similarity – difficult pairs to match without any graph information. Examples
of these pairs came from spelling variations of names, movie titles in different languages, foreign
characters in names which are not handled uniformly or multiple titles for movies (such as the ‘Blood
In, Blood Out’ example of Figure 1).

Error analysis. Examining the few errors made by SiGMa, we observed the following types of
matching errors: 1) errors in the ground truth (either coming from the scraping scheme used; or
from Wikipedia (YAGO) which had incorrect information); 2) having multiple very similar entities
(e.g. mistaking the ‘making of’ of the movie vs. the movie itself); 3) pair of entities which shared
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exactly the same neighbors (e.g. two different movies with exactly the same actors) but without
other discriminating information. Finally, we note that going through the predictions of SiGMa that
had a low property score revealed a significant number of errors in the databases (e.g. wildly incon-
sistent birth dates for people), indicating that SiGMa could be used to highlight data inconsistencies
between databases.

4.2 Experiment 2: Benchmark comparisons

In this experiment, we test the performance of SiGMa on three benchmark dataset pairs provided by
the ontology alignment evaluation initiative (OAEI), which allowed us to compare the performance
of SiGMa to some previously published methods [11, 21]. From the OAEI 2009 edition,9 we use
the Rexa-DBLP instance matching benchmark from the domain of scientific publications, where the
goal is to align publications and authors. The other two datasets come from the Person-Restaurants
(PR) task from the OAEI 2010 edition,10 containing data about people and restaurants. In particular,
there are person11-person12 pairs where the second entity is a copy of the first with one property
field corrupted, and restaurant1-restaurants2 pairs coming from two different online databases that
were manually aligned. All datasets were downloaded from the corresponding OAEI webpages,
with dataset sizes given in Table 1b.

We compare SiGMa with the best published results so far that we are aware of: PARIS [7] for the
Person-Restaurants datasets (which compared favorably over ObjectCoref [21]); and RiMoM [11]
for Rexa-DBPL. Table 2b presents the results. We also include the results for Exact-string as a
simple baseline as well as SiGMa-linear, which is the SiGMa algorithm without using the graph
information at all,11 to give an idea of how important the graph information is in these cases.

Interestingly, SiGMa significantly improved the previous results without needing any parameter
tweaking. The Person-Restaurants datasets did not have a rich relationship structure to exploit: each
entity (a person or a restaurant) was linked to exactly one another in a 1-1 bipartite fashion (their
address). This is perhaps why SiGMa-linear is surprisingly able to perfectly match both the Person
and Restaurants datasets. Analyzing the errors made by SiGMa, we noticed that they were due to a
violation of the assumption that each entity is unique in each KB: the same address is represented
as different entities in Restaurant2, and SiGMa greedily matched the one which was not linked to
another restaurant in Restaurant2, thus reducing the graph score for the correct match. SiGMa-linear
couldn’t suffer from this problem, and thus obtained a perfect matching.

The Rexa-DBLP dataset has a more interesting relationship structure which is not just 1-1: papers
have multiple authors and authors have written multiple papers, enabling the fire propagation algo-
rithm to explore more possibilities. However, it appears that a purely string based algorithm can
already do quite well on this dataset — Exact-string obtains a 89% F-measure, already significantly
improving the previously best published results (RiMOM at 76% F-measure), thus nuancing the dif-
ficulty of this standard benchmark. SiGMa-linear improves this to 91%, and finally using the graph
structure helps to improve this to 94%. This benchmark which has a medium size also highlights
the nice scalability of SiGMa: despite using the interpreted language Python, our implementation
runs in less than 10 minutes on this dataset, which can be compared to RiMOM taking 36 hours on
a 8-core server in 2009.

5 Conclusion

We have presented SiGMa, a simple and scalable algorithm for the alignment of large-scale knowl-
edge bases. Despite making greedy decisions and never backtracking to correct decisions, SiGMa
obtained a higher F-measure than the previously best published results on the OAEI benchmark
datasets, and matched the performance of the more involved algorithm PARIS while being 50x
faster on large-scale knowledge bases of millions of entities. Our experiments indicate that SiGMa
can obtain good performance over a range of datasets with the same parameter setting. On the other
hand, SiGMa is easily extensible to more powerful scoring functions between entities, as long as
they can be efficiently computed.

9http://oaei.ontologymatching.org/2009/instances/
10http://oaei.ontologymatching.org/2010/im/index.html
11SiGMa-linear is not using the graph score component (α is set to 0) and is only using the inverted index

S0 to suggest candidates – not the neighbors in Ni j.
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Some apparent limitations of SiGMa are a) that it cannot correct previous mistakes and b) cannot
handle alignments other than 1-1. Addressing these in a scalable fashion which preserves high ac-
curacy are open questions for future work. We note though that the non-corrective nature of the
algorithm didn’t seem to be an issue in our experiments. Moreover, pre-processing each knowledge
base with a de-duplication method can help make the 1-1 assumption, which is a powerful feature
to exploit in an alignment algorithm, more reasonable. Another interesting direction for future work
would be to use machine learning methods to learn the parameters of more powerful scoring func-
tion. In particular, the ‘learning to rank’ model seems suitable to learn a score function which would
rank the correctly labeled matched pairs above the other ones. The current level of performance of
SiGMa already makes it suitable though as a powerful generic alignment tool for knowledge bases
and hence takes us closer to the vision of Linked Open Data and the Semantic Web. We could also
envision using it to align social networks, as they have a rich graph information as well as multiple
entity properties.
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