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Abstract: The Linked Open Data community publishes an increasing number of data
sources on the so-called Data Web and interlinks them to support data integration ap-
plications. We investigate how the composition of existing links and mappings can
help discovering new links and mappings between LOD sources. Often there will be
many alternatives for composition so that the problem arises which paths can provide
the best linking results with the least computation effort. We therefore investigate
different methods to select and combine the most suitable mapping paths. We also
propose an approach for selecting and composing individual links instead of entire
mappings. We comparatively evaluate the methods on several real-world linking prob-
lems from the LOD cloud. The results show the high value of reusing and composing
existing links as well as the high effectiveness of our methods.

1 Introduction

The Linked Open Data (LOD) community publishes an increasing number of data sources
from different domains [BHBL09]. These sources are frequently linked with each other
to support distributed queries and other forms of data integration. The support of open
standards and uniform data and link representation in RDF simplifies the broad use of
LOD sources in diverse applications. In addition to general data sources such as DB-
pedia [BLK+09] there are hundreds of domain-specific sources. For instance, Bio2RDF
[BNT+08] provides many life science datasets and ontologies while GeoNames1 and the
New York Times2 publish data about geographical entities.

There are already numerous RDF links between LOD sources available (≈500 million in
Sep. 20123). Still, there is a strong need for increasing the number of links as most sources
are linked to only one or a few other sources and new sources need to be linked. The size of
the sources makes a manual link discovery infeasible, hence (semi-) automatic match algo-
rithms are needed to determine so-called mappings (sets of links) between sources. Many
approaches have thus been proposed to directly match the objects of different sources (see
Related Work). We aim at complementing these approaches by reusing and composing
existing links and mappings to indirectly create new links. Such an approach is especially
promising for domains with many existing mappings, e.g., in the life sciences.

1GeoNames: http://www.geonames.org/
2New York Times - Linked Open Data: http://data.nytimes.com/
3http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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Figure 1: Example scenarios with alternative routes for mapping composition

We already investigated mapping composition for matching biomedical ontologies [GHKR11].
That work focused on scenarios as shown in Fig. 1a where we only compose two mappings
(via one intermediate source) per path. By combining several such composed mappings via
different intermediates we were able to achieve high quality results with little computation
overhead. In [HGKR12] we also started to investigate methods to select the most promis-
ing routes for cases when we can compose across several intermediate sources. A main
goal of the present paper is to investigate mapping composition for more general mapping
topologies and for different domains. Furthermore, we study not only the composition and
combination of entire mappings but also the composition of individual links.

As shown in Fig. 1 there are typically many alternative paths to create a mapping between
two sources, S and T . For instance, in Fig. 1b the intermediates are connected with each
other resulting in ten possible composition routes compared to only three in Fig. 1a (for
the same sources). There can be also situations like in Fig. 1c where no route between S
and T exists with only one intermediate. Thus, one must consider longer mapping chains
consisting of>2 mappings. We therefore need an automatic and general approach to select
the most suitable routes that likely result in the best composed mappings.

In this paper, we make the following contributions:

• We study the composition of mappings for link discovery in general, i.e., for arbi-
trary mapping topologies and paths of arbitrary length.

• We propose different methods to select and combine composed mappings along
different paths. (Sec. 3) We further propose a link-based composition approach for
selecting and composing individual links instead of entire mappings. (Sec. 4)

• We comparatively evaluate the methods for two domains, namely to interconnect
anatomy ontologies and geographical data sources. The results show that we are able
to select the most promising routes along sources and entities for efficient mapping
composition resulting in high quality mappings. (Sec. 5)

In Sec. 2 we introduce our source and mapping model, discuss the concept of mapping
composition and outline the problem that we investigate. We discuss related work in Sec. 6
and summarize in Sec. 7. The Appendix provides the pseudo-code for the algorithms
proposed in the paper.



2 Preliminaries

We first describe our source and mapping model. We then discuss mapping composition
for two and multiple mappings. Finally, we outline the problem that we address.

2.1 Data Sources, Links and Mappings

A linked data source DS consists of a set of entities. Each entity has an unique URI that is
used to reference the object. For instance, the city Leipzig in DBpedia is unambiguously
referenced by http://dbpedia.org/resource/Leipzig. Entities and their re-
lationships are described by RDF triples of the form (subject, predicate, object) where the
third component is either a literal or a reference to an entity of the same or a different
source. For example we can use the following triple with a literal to specify the population
of Leipzig: (http://dbpedia.org/resource/Leipzig, populationTotal,
528049). On the other hand, we use an object reference to specify that Leipzig is the largest
city of Saxony: (http://dbpedia.org/resource/Leipzig, largestCity of,
http://dbpedia.org/resource/Saxony).

For linking different sources, we mainly use links of type owl:sameAs denoting that
the linked objects are equal, i.e., represent the same real-world entity. For example,
the triple (http://dbpedia.org/resource/Leipzig, owl:sameAs, http:
//data.nytimes.com/N86446625683764674801) specifies that Leipzig in DB-
pedia matches to an entity in the New York Times data source. Note that there can be other
link types but in this work we will focus on determining sameAs-links since they make up
the majority of links between different data sources in the LOD.

A mapping between two data sources S and T , MS,T = {(o1, o2, sim)|o1 ∈ S, o2 ∈
T, sim ∈ [0, 1]}, consists of a set of sameAs-links between these sources, e.g., as deter-
mined by some link discovery (match) method. Each link (correspondence) interconnects
two related objects o1 and o2. Their relatedness is represented by a similarity value sim
between 0 and 1 determined by the used match approach. The greater the sim value the
more similar are the corresponding objects. We assume a similarity of 1 for manually
curated links.

2.2 Mapping Composition

2.2.1 Binary Mapping Composition

In general mapping composition is applied to derive new mappings between two data
sources by reusing already existing mappings. Thus, new mappings are generated indi-
rectly via one or more intermediate sources instead of a direct match between the two
input sources. The basic situation is the following. We have two data sources (S,T )
and two mappings (MS,IS ,MIS,T ) w.r.t. an intermediate source IS. Using domain and



range of the mappings we can find out which entities of S, T or IS are covered by the
given mappings, e.g., the entities covered by MIS,T in T are in the range of the mapping:
range(MIS,T ). Mapping composition is then applied in the following way. A compose
operator takes as input two mappings (from S and T to IS) and produces new links be-
tween objects of S and T if links share the same object in IS:

MS,T = compose(MS,IS ,MIS,T ) = MS,IS ◦MIS,T =
{(o1, o2, aggSim(sim1, sim2))|o1 ∈ S, o2 ∈ T, b ∈ IS :
∃(o1, b, sim1) ∈MS,IS ∧ ∃(b, o2, sim2) ∈MIS,T }

The similarity values of input links are aggregated (aggSim) into new similarity values,
e.g., by computing their maximum, average or by multiplication.

2.2.2 n-ary Mapping Composition

To define the composition of more than two mappings, we first introduce the notion of
mapping paths. In particular, a mapping path P = (MS1,T1 ,MS2,T2 , . . . ,MSn,Tn) of size
n w.r.t. a given set of mappings M is an ordered chain of mappings with the following
properties:

1. Composability: ∀MSi,Ti ∈ P :MSi,Ti ∈M∧ Ti = Si+1

2. Start/End Sources: the input sources S and T form the start and end of the path, i.e.,
S = S1 and T = Tn

3. Max. Occurrence: A mapping MSi,Ti
∈M occurs at most one time in a path P

4. Acyclicity: P has no circles, i.e., there is no sub path (MSj ,Tj , . . . ,MSk,Tk
) in P

such that Sj = Tk

Property 1 ensures that we can traverse (compose) along the path, i.e., the range of a
mapping must equal the domain of the succeeding mapping. Furthermore, we can only
use mappings available in M. Property 2 guarantees that the start (end) of the path are
our sources to be matched, i.e., S or T , respectively. According to property 3 we only
allow one occurrence of a mapping within a path. Finally, property 4 restricts the number
of possible paths to those with no circles. Together with property 3 we thus exclude paths
of infinite length as well as paths visiting intermediate sources multiple times.

To generate a mapping MS,T using a mapping path P = (MS1,T1
,MS2,T2

. . . ,MSn,Tn
)

with S1 = S and Tn = T we can n-1 times apply the binary compose operator (◦) in the
following way:

MS,T = compose(P ) = (. . . (MS1,T1
◦MS2,T2

) ◦ . . .) ◦MSn,Tn

Starting with the first mapping MS1,T1
we compose succeeding mappings along the map-

ping path with the binary operator. The result of one binary compose step is used as input
for the next step until we processed the last mapping MSn,Tn

of the path.



2.3 Problem Statement

For two data sources S and T and a given set of mappingsM, the problem we investigate
is to use composition-based methods to determine a new mappingMS,T consisting of links
between entities of S and T . The mappings inM should contain at least one mapping path
between S and T but otherwise there are no restrictions about the number of mappings or
the degree of connectedness. The resulting mapping should be of good quality, i.e., all
discovered links should be correct (precision) and the number of discovered links should
be as high as possible (recall). A composition method should be efficient and scalable to
large sources and a large number of mappings.

3 Mapping-based Composition

In the following we propose different methods based on mapping composition to solve the
problem we address. We first present an All strategy that composes and combines all map-
ping paths for a given set of mappingsM. We then present Selection methods that select
the most promising mapping paths by considering their effectiveness or complement.

To exemplarily show how the proposed methods and algorithms work, we will use the
simple yet comprehensive running example shown in Fig. 2. The sources and mappings
are shown on the left side, while a more detailed view on the entities and links is provided
on the right side. For simplicity, we assume that all links have an unique similarity of 1.0.

3.1 All Strategy

The idea behind the All Strategy is to evaluate all possible mapping paths between the two
input sources S and T . For this purpose, we first need to find all possible paths. We can
then compose the mappings per path and combine the composed mappings. The first part
is related to computing the transitive closure ofM. However, we are only interested in all
S-T paths and do not consider paths between all available sources.

The determination of all mapping paths MP between two sources S and T for a given
set of mappingsM requires a traversal of mappings starting in S (see Algorithm 1 in the
Appendix). We assume that we can traverse a mapping in both directions, e.g., in our
example we can traverse from A to B as well as from B to A using MA,B . In our running
example of Fig. 2(left), we would first select MS,A and MS,B as possible starting paths.
In the first round, we consider (MS,A,MA,T ) as a final path. Furthermore, temporary
paths (MS,A,MA,B), (MS,B ,MB,A) as well as (MS,B ,MB,C) are created. The second
round would produce (MS,B ,MB,A,MA,T ) and (MS,B ,MB,C ,MC,T ) as final paths, one
temporary path namely (MS,A,MA,B ,MB,C) remains. In the last round, we can use
MC,T to build (MS,A,MA,B ,MB,C ,MC,T ). Thus, we find four mapping paths between
S and T .
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Figure 2: Composition scenario: sources and mappings (left), entity links (right)

Having found all possible paths between the input sources, we can now perform com-
position as described in Sec. 2.2.2. In particular, we generate |MP| composed (partial)
mappings which we need to merge (unify) to create a final mapping between S and T (see
Algorithm 2 in the Appendix). In this paper, we apply a union operator, i.e., the links from
all partial mappings are unified. For our example, composing along (MS,A,MA,T ) results
in a mapping consisting of two links: (s1,t1) and (s2,t2). The mapping path alongB andC
produces one link: (s3,t3). No link is created when considering the (MS,B ,MB,A,MA,T )
path. The longest path via A, B and C creates a link between s2 and t2: (s2,t2). We now
merge all determined links to get the final mapping: MS,T = {(s1, t1), (s2, t2), (s3, t3)}.

3.2 Selection Strategies

The introduced All Strategy evaluates all possible mapping paths. However, the individual
mapping paths are often redundant by leading to the same links. The Selection Strategy
tries to avoid the repeated calculation of the same links by selecting the most valuable
mapping paths and only considers these paths for composition and combination. In the
following we first introduce the notion of effectiveness for a mapping path. We will then
use this measure as well as others to rate mapping paths w.r.t. their usefulness for compo-
sition.

The basic situation for composing two mappings via one intermediate is illustrated in
Fig. 3 [HGKR12]. We observe that the compose can at best create new links between
entities of S/T that are mapped to the intermediate source IS. The more entities are
covered by a mapping to IS the more likely it is that they can be interlinked to entities
in the other data source. Thus, intermediates where mappings only cover a small portion
of S/T are less effective compared to those covering larger portions. Furthermore, there
should be a high overlap of mapped objects in IS, i.e., many IS objects should be in both
range(MS,IS) and domain(MIS,T ). This is because new links can only be created if
there are intermediate objects for the composition. By contrast, a small overlap will only
result in a few correspondences, i.e., small and likely incomplete mappings.

Summarizing these observations, we can estimate the effectiveness of two mappingsMS,IS



link 

entity

S T
IS

MS,IO MIO,T

do
m

ai
n(

M
S

,I
S
) range(M

IS
,T )

range(MS,IS)

domain(MIS,T)

Figure 3: General situation for mapping composition with two mappings and one intermediate

/ MIS,T to be composed as follows:

eff(MS,IS ,MIS,T ) =
2 · |range(MS,IS) ∩ domain(MIS,T )|

|S|+ |T |

The measure is mainly based on the size of overlapping objects in the intermediate, i.e.,
the larger the overlap the better the effectiveness. Second, we relate this overlap to the
sizes of the sources to be matched S and T . Thus, only mappings with many links can
produce a high overlap and a good coverage of objects in S and T . For instance, applying
the measure to the scenario displayed in Fig. 3, we would get an effectiveness of 2·2

5+5=0.4.

We can generalize the effectiveness measure for mapping paths of arbitrary length. When
performing composition along multiple mappings of a path, it is intuitive that the effec-
tiveness of the path decreases with more mappings. Since each single compose step (see
Sec. 2.2.2) has its own effectiveness, the overall effectiveness of a path P = (MS1,T1 , . . . ,
MSn,Tn) can be estimated by multiplying the single effectiveness values for all mapping
pairs along the path:

eff((MS1,T1
, . . . ,MSn,Tn

)) =

n−1∏
i=1

eff(MSi,Ti
,MSi+1,Ti+1

)

Considering our running example from Fig. 2 we would derive the following effectiveness
values for our paths. For (MS,A,MA,T ) the effectiveness is 2·2

4+5 ≈ 0.44. The two paths of
length three result in an effectiveness of 2·0

4+5 ·
2·1
4+5 = 0 for (MS,B ,MB,A,MA,T ) and 2·1

4+4 ·
2·2
4+5 ≈ 0.11 for (MS,B ,MB,C ,MC,T ), respectively. The longest path (MS,A,MA,B ,MB,C ,

MC,T ) has an effectiveness of 2·1
4+4 ·

2·2
5+4 ·

2·2
4+5 ≈ 0.05.

SelectByEffectiveness We can now use the effectiveness measure to select the most valu-
able (e.g., the best k) paths and compose and combine only these selected paths (select-
ByEffectiveness). For instance, in our example we could only use the two best paths
((MS,A,MA,T ) and (MS,B ,MB,C ,MC,T )) for composition. This would lead to exactly
the same mapping MS,T as performing the All Strategy described in Sec. 3.1.



SelectByComplement A second option for path selection is to consider complementing
paths. The strategy would first select the most effective mapping path according to our
effectiveness measure. After that, we iteratively select those paths with the largest com-
plement compared to the already covered entities in S/T by the previous selected mapping
paths. The intuition behind this procedure is to increase the number of covered entities
in S/T in the mapping (and thus the recall). For instance, when linking two general
data sources about geography, one might consider paths which include complementing
knowledge about airports, countries, waters, cities etc.. For our running example and k=2
we would select (MS,A,MA,T ) (most effective path) and the (MS,B ,MB,C ,MC,T ) path,
since it offers the best complement (s3 and s4 in S, and t3 in T ).

The overall procedure of the Selection Strategy (see Algorithm 3 for details) first deter-
mines all possible mapping paths. Afterwards we apply the effectiveness measure on each
of the possible paths to compute a ranked list of mapping paths. We then can select and
compose the most promising (top k) paths either by their effectiveness or complement.

4 Link-based Composition

The introduced strategies so far composed and combined entire mappings. The Link-based
Strategy aims at a more fine-grained approach by selecting and composing individual links
to generate composed links between the two sources to interconnect. For this purpose, we
model link discovery as a graph problem and reuse known graph algorithms such as Short-
est Path to identify the most promising link paths for composition. In the following we first
describe how we create the graph representation from the given sources and mappings. We
then show how we select and compose the links to determine the mapping MS,T .

We assume a directed, weighted graph G = (V,E) consisting of vertexes V and edges
E. Each directed edge e = (v1, v2, weight) ∈ E interlinks two vertexes of V (from v1 to
v2) including a similarity-based weight which we will later use for path selection within
the graph. The transformation from the given mappings inM, the data sources S/T to be
linked into such a graph G = (V,E) can be described by some basic rules:

1. Each entity referenced by a link in a mapping ofM becomes a vertex v ∈ V .

2. For each link (o1, o2, sim) in a mapping MS′,T ′ ∈M we create edges as follows:

(a) if(S′ = S): (o1, o2, 1− sim+ ε) ∈ E
(b) if(T ′ = T ): (o1, o2, 1− sim+ ε) ∈ E
(c) otherwise: (o1, o2, 1− sim+ ε) ∈ E and (o2, o1, 1− sim+ ε) ∈ E

3. There exists an unambiguous target vertex target ∈ V .

4. All vertexes v representing entities of T are connected with target, i.e., we create
edges (v, target, ε) for all v ∈ T .

The idea of the transformation is to model a routing problem, i.e., we like to find the
shortest paths from each source vertex (representing an entity in S) to the unambiguous
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Figure 4: Resulting graph for running example displayed in Fig. 2(right)

target vertex. We thus consider each entity as a vertex and transform links into directed,
weighted edges. Vertexes representing source entities have no incoming edges, whereas
vertexes of target entities have no outgoing edges (except the ones to the unambiguous
target vertex). Edges between entities of intermediate sources can be traversed in both
directions (two edges for one link). The greater the similarity of a link, the smaller the
weight of an edge, i.e., routing algorithms will likely traverse along edges with small
weights. We consider basic costs ε for each edge to prefer short paths over longer ones.
For our running example of Fig. 2(right) we would create the graph shown in Fig. 4 when
using an ε of 0.01. We consider s1, . . . , s4 as starting vertexes with only outgoing edges.
The unambiguous target vertex is displayed on the right hand side. All other vertexes
involved in at least one link are shown in circles. The vertexes t1, . . . , t4 of T have only
outgoing edges to the unambiguous target vertex. Links between entities of A, B, or C
are binary, e.g., one can traverse from b2 ∈ B to c2 ∈ C and vice versa. Since we assume
an unique similarity value of 1.0 for each edge, we have weights of 0.01 for each link, e.g.,
the link (a1, t1, 1.0) is transformed into an edge (a1, t1, 1.0−1.0+0.01) = (a1, t1, 0.01).

Using the generated graph we can now exploit the structure to find the most cost-effective
routes between entities of S and T . In particular, we will make use of the Shortest-Path
(Dijkstra) algorithm [Dij59] to solve the problem (see Algorithm 4 in the Appendix). We
iterate over all entities of source S and try to find the shortest path to the target vertex
according to the given graph G. For paths found, we create a new link between the current
source entity and the last entity before target in the path belonging to T . The similarity
is computed according to the formula described in Sec. 2.2.1. The newly created link is
added to the mapping MS,T . Considering the graph of our running example, we would
detect the following paths and thus links between S and T . For entity s1 there is only one
route via a1 and t1 to reach target. Thus, we would create a link (s1, t1) for the mapping.
For entity s2 the shortest path is using the (s2,a2,t2,target) route with costs of 0.03. The
route via b2 and c2 has more costs (0.05) and is not considered. From the third entity s3
one can traverse along b3, c3 and t3 with minimum costs of 0.03 to the target vertex. For
s4 no path to the target exists (route stops in b4). Hence, no link for s4 can be created. In
summary, we determine three links, namely (s1, t1), (s2,t2) and (s3,t3) for MS,T .

The previously explained procedure returns only the shortest paths in one direction, namely
from S to T . This could result in incomplete mappings, e.g., when one entity in a data



source links to multiple entities in the opposite source. We therefore evaluate both direc-
tions from S to T , and from T to S to find all links between both sources. Traversing in the
opposite direction (from T to S) is analogously implemented than the forward traversal
already described. When constructing the graph we now insert an unambiguous source
vertex where all entities of S are connected with. Furthermore, vertexes representing
entities of T have only outgoing edges and we search for the shortest paths from those ver-
texes to the unambiguous source vertex. The overall procedure of link-based composition
is shown in Algorithm 5 in the Appendix.

5 Evaluation

We evaluate our composition methods by analyzing four real-world link discovery prob-
lems from two domains. In particular, we produce mappings for the Geography instance
matching tasks4 and the Anatomy5 match task of the Ontology Alignment Evaluation Ini-
tiative (OAEI). By doing so, we can evaluate the quality of our computed mappings w.r.t.
the publicly available OAEI gold standard mappings using precision, recall and F-measure.
We first introduce the experimental setup, the used data sources and mappings. We then
compare the effectiveness and efficiency of our composition strategies and analyze the
impact of the number k of selected mappings and the number of intermediate sources.

5.1 Setup and Overview

For Geography, we focus on interlinking NYTimes Data (NYT) with the three LOD
sources DBpedia (DBp), FreeBase (FB) and GeoNames (GeoN), i.e., we compare NYT-
DBp, NYT-FB and NYT-GeoN. In each case, two of the sources are not matched and
can thus be used for composition. We further use mappings to three other intermediate
sources from the LOD cloud, namely WorldFactBook (WFB), LinkedGeoData (LGeo)
and YAGO. For Anatomy, we generate mappings between Adult Mouse Anatomy (MA)
and the anatomy part of NCI Thesaurus (NCIT) by composing mappings to four further
intermediate sources, namely RadLex, Foundational Model of Anatomy (FMA), Unified
Medical Language System (UMLS) and Uberon.

While our composition methods should reuse existing high quality mappings, we did not
have them for the considered scenarios. We thus precomputed approximate mappings be-
tween any two sources of a domain. These input mappings are generated by a standard
metadata-based match technique using our prototype GOMMA [KGHR11]. We compute
links between entities based on the similarity of their names and synonyms, i.e., we use
links with similarity values between 0 and 1 in the evaluation. We include links of high
TriGram similarity and select only the best correspondence(s) per entity. All experiments
were performed on an Intel(R) Core (TM) i5-2500 CPU, 4x3.30GHz, 8GB memory ma-

4http://www.instancematching.org/oaei/
5http://oaei.ontologymatching.org/2012/anatomy/



MouseAnatomy NCIThesaurus UberOn UMLS RadLex FMA |entities|
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Figure 5: Source and mapping sizes for Anatomy (a) and Geography scenario (b).

chine with 64-bit Windows 7 Professional OS and a 64-bit JVM.

Fig. 5 gives an overview about the size of the used data sources and mappings between
them. For Anatomy (Fig. 5a), there are two very large intermediate ontologies (UMLS,
FMA) with more than 80,000 entities and a mapping between them with more than 63,000
links. Uberon is the smallest of the used intermediate sources. However, it provides
links to 2,300 MA entities while the large FMA covers only ≈1,600 links to MA. UMLS
provides most links to MA (≈3,000) and NCIT (≈4,200). Note, that we do not use the
mapping between MA and NCIT (size printed in italic numbers) for composition.

The sources and mappings for the Geography domain are comparatively small (Fig. 5b).
NYT, DBp and FB cover more than 1,900 geographical entities while LGeo and WFB
comprise less then 500. While DBpedia and some of the other sources contain many more
entities the goal of the OAEI Instance Matching task is to find links w.r.t. NYT in the
geography area so that the sources were restricted to the relevant subsets. This also leads
to small mapping sizes of<500 links between LGeo/WFB and the other sources. For each
of the considered geographical data sources most links point to FB (Freebase). Again,
we do not use the shown direct mappings for composition in case this is the mapping to
be evaluated (italic numbers). For instance, when computing the NYT-DBp mapping we
include direct mappings between all sources except the one between NYT and DBp.

5.2 Comparison of Composition Methods

We consider the All Strategy (all), the two selection strategies SelectByEffectiveness (se-
lEff ) and SelectByComplement (selCompl) as well as the Link-based Strategy (link) for
evaluation. The results achieved for each method and match task are displayed in Fig. 6a.
For each match task we used the maximum number of available mappings. This results
in 325 possible paths for each of the three Geography tasks and 64 paths for Anatomy.
For all tasks we are able to achieve F-measure values over 90%. However, there are some
slight differences between the methods. The all strategy performs worst for all tasks, ap-
parently because the large number of mapping paths lead to a relatively low precision
(incorrect links). By contrast, link achieves the best quality in all geography tasks. The
two selection methods and especially selEff also perform well. selCompl is slightly less
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Figure 6: Comparison of composition strategies – (a) Composition results for all four tasks (b),
Comparison with direct match approaches, (c) Execution times (in s)

effective since it may select paths with a good complement but lower effectiveness when
the complementing entities cannot be linked.

Regarding runtime efficiency the differences between the methods are even greater (see
Fig. 6c). As expected, all requires the most time (with up to 5 minutes for Anatomy) since
it composes all possible mapping paths. The selection methods are the fastest with <1s
for each Geography task and about 5s for Anatomy. link requires some more time than
the selection strategies due to the time needed for constructing the graphs and running
the Shortest Path algorithm. In summary, the results show that using the selection or link
strategy one can achieve high quality results with very short execution times.

We further compare the effectiveness of our composition approaches (BestComp) with
those of the systems that participated in the OAEI 2011 campaign (SERMI [AHSdV11],
Zhishi.Links [NRZW11], AgreementMaker [CSC+11]) and with our own match strategy
(DirectMatch) described in the setup. The results in Fig. 6b show that composition of ex-
isting mappings can improve the match quality compared to traditional match approaches.
In particular, for all Geography tasks we achieve the best quality in terms of F-measure.
Interestingly, the results of DirectMatch are topped by our composition methods which
use mappings produced with DirectMatch. This shows that mapping composition can
harvest additional knowledge in intermediate sources to discover more and better links.
For Anatomy, AgreementMaker achieves the best quality (SERMI, Zhishi.Links did not
participate in this track). They also exploit background knowledge from other anatomy
ontologies and combine the results with those from a direct match of the sources.

5.3 Sensitivity Analysis

When applying the selection strategies, one needs to set the value of k to specify how many
of the possibly numerous paths should be considered. The diagram presented in Fig. 7a
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Figure 7: Sensitivity Analysis – (a) Influence of k for selEff strategy, (b) Results for increasing
number of intermediates for NYT-DBp match task

shows how the number of selected paths for selEff influences the final match quality. We
increased the number from 1 to 8 and noticed a similar behavior in all scenarios. A single
mapping path generally leads to insufficient match quality but the combination of two
or three paths achieves already high F-Measure values. The match quality can not be
improved further for more than 6 mapping paths or may even decrease at some point (e.g.,
for Anatomy). These results show, that one can already achieve a good match quality when
selecting only a few but effective paths.

In a further sensitivity experiment we test how the methods perform for a varying number
of intermediates. In particular, we increase the number of possible intermediates (and thus
mappings) and measured the quality. In each step we considered all available mappings
among the used intermediates. The results for the NYT-DBp task are shown in Fig. 7b. We
observe that an increasing number of intermediates leads to a better match quality, since
more mapping paths can be exploited. When using one or two intermediates the methods
do not differ due to the small number of possible paths, namely only 1 (4) paths for one
(two) intermediates. link achieves the best quality for 5 intermediates with 325 paths. This
shows that the link-based strategy is especially valuable for composition scenarios where
a large number of possible paths need to be explored. When only a few paths exist, one
can apply all or a selection strategy instead.

6 Related Work

Many approaches have already been published for link discovery and the related problems
of entity resolution and ontology matching. General frameworks for link discovery include
SILK [VBGK09], LIMES [NNA11] and Zhishi.links [NRZW11]. These approaches sup-
port different similarity measures to directly compute links between LOD data sources.
Some of them incorporate methods to scale with large data sources, e.g., LIMES exploits
the mathematical characteristics of metric spaces to speed up the match process, or SILK
performs a blocking step to reduce the number of comparisons. Many more approaches
have been proposed for entity resolution (see [KR10, EIV07] for surveys) as well as ontol-



ogy matching (see [ES07, RB01] for surveys). Usually the approaches directly compare
the input sources by employing different lexical or structural methods in workflows.

The principle of composition has mainly been studied for schemas [DL04, Rah11] and
in model management [FKPT05, BM07]. Only a few approaches consider this technique
for ontology matching or link discovery. For instance, [ZB05] utilizes the FMA ontology
to derive mappings between MA and NCIT. Furthermore, the SAMBO system [LT06] or
AgreementMaker [CSC+11] utilize background knowledge like the UMLS or Uberon to
find additional links in their match process. [TGO+10] presents an empirical study of map-
ping composition with mappings from BioPortal. In own previous works, we investigated
one-hop mapping composition for ontologies in the life sciences [GHKR11, HGKR12]
and found out that the usage of multiple intermediates can help to increase the overall
match quality.

In contrast to previous works, we study mapping composition for link discovery in general
and differ in the following points. First, we match indirectly by reusing existing mappings
and by applying composition along different mapping paths of different length. Second,
the proposed methods can cope with various mapping composition scenarios, i.e., we can
perform composition for a fully connected network of sources as well as for sparsely
interconnected sources. Third, we evaluate the effectiveness and usefulness of paths to
select and process only the most promising one for a fast and effective link discovery.

7 Summary and Future Work

We proposed general composition methods to solve the link discovery problem of the Data
Web. The introduced mapping- and link-based methods can be applied in different link
discovery scenarios with sparsely or heavily interconnected data sources. The evaluation
on real-world link discovery problems showed that focusing on the most effective mapping
paths / links is a good strategy to produce mappings of high quality in very short execution
times. For scenarios with only few mapping paths one can apply a selection strategy or the
all strategy to create new mappings. For more complex networks with a large number of
possible paths the link-based strategy is most promising.

In future work we aim at investigating more complex kinds of mapping composition by
also taking into account relationships within intermediate sources. We further plan to study
other graph algorithms such as Ford & Fulkerson for selecting links for composition.
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A Algorithms

In the following, we show the pseudo-code of the algorithms used by the different strate-
gies proposed in the paper.

Algorithm 1 (findAllMappingPaths) is used to determine all possible mapping paths
between two sources S and T based on given mappings in a mapping setM.

Algorithm 1: findAllMappingPaths
Input: source S, target T , set of all mappingsM
Output: all mapping pathsMP between S and T

1 MP ← ∅;
2 P ← getAllMappingsWithDomain(M, S);
3 while P 6= ∅ do
4 P ′ ← ∅;
5 foreach P ∈ P do
6 lastDataSource← getLastDataSource(P);
7 CM← getAllMappingsWithDomain(M, lastDataSource);
8 foreach MS′,T ′ ∈ CM do
9 if ¬contains(P, T ′) then

10 P .append(MS′,T ′);
11 if T = T ′ then
12 MP ←MP ∪ {P};
13 else
14 P ′ ←P ′ ∪ {P};
15 P ← P ′
16 returnMP;

With the help of Algorithm 2 (composeAndMergeMappingPaths) we perform com-
position along the paths inMP to create the mapping MS,T between S and T .

Algorithm 2: composeAndMergeMappingPaths
Input: source S, target T , mapping pathsMP
Output: mapping MS,T between S and T

1 allMappings← ∅;
2 foreach P ∈MP do
3 MS,Tmp← P .getNextMapping();
4 while P .hasNextMapping() do
5 MS′,T ′ ← P .getNextMapping();
6 MS,Tmp← compose(MS,Tmp,MS′,T ′);
7 allMappings← allMappings ∪ {MS,Tmp};
8 MS,T ← union(allMappings);
9 return MS,T ;



Algorithm 3 (composeSelectionStrategy) shows the overall procedure for selection-
based mapping composition either by considering path effectiveness or complement.

Algorithm 3: composeSelectionStrategy
Input: source S, target T , mappingsM
Output: mapping MS,T between S and T

1 MPall ← findAllMappingPaths(S,T ,M);
2 MPranked← computeEffectiveness(MPall);
3 MPtopK ← selectByEffectiveness(MPranked) or
SelectByComplement(MPranked);

4 return composeAndMergeMappingPaths(S,T ,MPtopK);

Using shortestPathCompose (Algorithm 4) we create a mapping MS,T by deter-
mining the shortest paths between entities of S and T in graph G.

Algorithm 4: shortestPathCompose
Input: source S, target T , graph G = (V,E)
Output: mapping MS,T between S and T

1 MS,T ← ∅;
2 foreach s ∈ S do
3 shortestPath← getShortestPath(s, target,G);
4 if ¬shortestPath.isEmpty() then
5 link← compose(shortestPath);
6 MS,T ←MS,T ∪ {link};
7 return MS,T ;

Algorithm 5 (linkBasedCompose) shows the overall procedure for the link-based
composition approach. In particular, we create a forward and a backward graph on which
we perform the shortest path algorithm (shortestPathCompose). We finally unify
the results to create the mapping MS,T between in the input sources.

Algorithm 5: linkBasedCompose
Input: source S, target T , mappingsM
Output: mapping MS,T between S and T

1 Gforward ← buildComposeGraph(S, T,M);
2 MS,T ← shortestPathCompose(S, T,Gforward);
3 Gbackward← buildComposeGraph(T, S,M);
4 MT,S ← shortestPathCompose(T, S,Gbackward);
5 MS,T ←MS,T ∪ inverse(MT,S);
6 return MS,T ;


