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Chapter 1

Introduction

In this report we present the theoretical foundation of TRAMP. TRAMP is a schema mapping debugging
system that uses provides provenance and query support as debugging functality for schema mappings
scenarios. TRAMP is an extension of Perm, a relational provenance management system developed at Uni-
versity of Zurich. In this report we are not focussing on the debugging functionality added by TRAMP, but
instead focus on the theoretical foundation of the provenance types provided by the system. In chapter 2 we
present the contribution semantics for data provenance, transformation provenance, and mapping prove-
nance used by TRAMP. Contribution semantics define which parts of the input (in case of data provenance)
and which operators of a transformation (in case of transformation provenance) belong to the provenance
of an output of a transformation. Thus, contribution semantics define “what provenance actually is”. Based
on the presented contribution semantics we demonstrate in chapter 3 how provenance according to these
provenance types can be computed using algebraic rewrite techniques and proof the correctness and com-
pleteness of the algorithms used to compute provenance.
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Chapter 2

Contribution Semantics

In this chapter we formally define Perm-Influence-Contribution-Semantics (PI-CS) the contribution seman-
tics developed for the Perm system and prove several important properties of the provenance generated by
this CS type. PI-CS is a type of I-CS based on Lineage-CS. We decided to develop our own type of CS,
because the representation used by Lineage-CS (and also other CS types) is not suited for our approach to
implement a “purely relational” provenance management system. Furthermore, as we will demonstrate in
this chapter, Lineage-CS, in contrast to PI-CS, does not extend to queries with nested sub-queries (sublinks)
and queries with negation. We define transformation provenance CS for the use in TRAMP as extensions
of PI-CS.

First, we introduce an extended relational algebra which allows for a natural algebraic representation of
SQL queries. Afterwards, we introduce PI-CS, demonstrate its applicability to the operators of the algebra,
and study the relationship between this CS type and Lineage-CS. Finally, we present transformation prove-
nance. Note that in this chapter we are only discussing the semantics of provenance and do not develop
algorithms for generating provenance according to this semantics. Provenance computation is discussed in
chapter 3.

2.1 Algebra Definition
In this section we introduce notational preliminaries and the relational algebra that are needed for the theo-
retical foundation of Perm. The algebra is defined in such a way that SQL queries have natural counterpart
algebra expressions and it is easy to translate between the SQL and algebra representation of a query. This
property is important, because it is not feasible to build a formal framework of provenance based on SQL,
but, to be able to integrate provenance computation into a DBMS, the results established for algebra ex-
pressions have to be translated to SQL. As usual a relational database D is modeled as a database schema
S and a database instance I. A database schema is a set of relation schemas: S = {R1, . . . ,Rn}. Each
relation schema is a function from a finite set A ⊂ A to the set of attribute domains D (we refer to the
elements of this set as data types) where A is the set of possible attribute names. S is used to denote
the set of all possible relation schemas. Every attribute domain is expected to contain the special value
null: ε . Each relation schema is associated with a name by a function Name : S →N that assigns each
relation schema in a database schema to an unique name. We assume a total order on the attribute names
of a relation schema. I.e., a function posR : A → N that assigns each attribute from schema R to a unique
position from the set 1, . . . , | A |. We use R(a1 : d1, . . . ,an : dn) as a notational shortcut for a relation schema
with attributes a1 to an, name R, attribute order a1 : 1, . . . ,an : n, and domains d1, . . . ,dn.

A database instance I = {R1, . . . ,Rn} of a database schema S is a set of relations that contains one
relation R for each relational schema R in S. A relation R for a relation schema R is a subset of RI = d1×
. . .×dn and a function mult : RI → N. Each element t = (v1, . . . ,vn) in RI is called a tuple and the value m
assigned by mult to t is called the multiplicity of t. This means we are using the so-called bag- or multiset-
semantics where every tuple is allowed to occur more than once in a relation. The elements v1, . . . ,vn of a
tuple are called attribute values. For convenience we use tm to denote a tuple t with multiplicity m and t as
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4 CHAPTER 2. CONTRIBUTION SEMANTICS

a shortcut for t1.
If q is an algebra expression, then Q denotes the schema of the result relation produced by evaluating

q1. We use [[q]](I) to denote the result of evaluating algebra expression q over the database instance I. The
database instance is omitted if it is clear from the context or irrelevant to the discussion. Q is used as a
shortcut for [[q]]. The Perm algebra includes the standard operators of relational algebra. The evaluations
of all algebra operators is presented in Figure 2.1. To simplify the definition of some operators negative or
zero multiplicities of tuples indicate that a tuple does not belong to a relation.

Nullary Operators: A relation access is denoted by the name of the accessed relation. We allow for
construction of singleton relations containing only a constant tuple t denoted by t.

Unary Operators: Duplicate removal δ (q1) eliminates duplicates from its input (in other words it sets
the multiplicity of every tuple to one). Selection σC(q1) returns all tuples t from Q1 that fulfill the selec-
tion condition C (written as t |= C). A selection condition is an expression build from attributes, constants,
comparisons (e.g., equality, less than, . . . ), function calls, and logical operators (¬,∧,∨, . . .). C is restricted
to return a boolean result. In addition we allow for conditional expressions: i f (e1) then (e2) else (e3)
evaluates to e2 if e1 evaluates to true. Otherwise it evaluates to e3. This is similar to the CASE construct
in SQL. The algebra defines two versions of Projection. One duplicate preserving version (ΠB: the su-
perscript B stands for bag) and one duplicate removing version (ΠS: the superscript S stands for set). The
duplicate preserving version ΠB

A(q1) returns the results of evaluating all projection expressions from the
list A = (a1, . . . ,am) for each tuple in Q1. Projection expressions are similar to selection conditions ex-
cept that they are not restricted to return a boolean result and that the outermost construct in a projection
expression can be a renaming e → a that causes the attribute which stores expression e to be named a in
the result schema. The duplicate removing version of projection (ΠS

A(q1)) is defined as the application of
the duplicate removal operator to the result of the duplicate preserving projection. Sometimes we use Π

to denote the duplicate preserving version of projection. Aggregation αG,agg groups its input on a list of
group-by attributes and computes the aggregation functions from the list agg of aggregation functions for
each group. One output tuple is produced for each group that contains the values of the group-by attributes
for this group and the results of the aggregation functions 2. In the definition presented in Figure 2.1 aggi
is one aggregation function from the list agg and Bi is the attribute used as input to aggregation function
aggi

3.

Join Operators: The Perm algebra includes several join operators. The Cross product q1×q2 is defined
as in standard relational algebra. In the definition (t1, t2) denotes the concatenation of tuples t1 and t2. Inner
Join q1 ><C q2 is a shortcut for applying a selection with condition C to the result of the cross product
between q1 and q2. Three outer join types are defined in the algebra: Left outer join ( ><), Right outer
join (>< ), and Full outer join ( >< ). The outer join types are based on the inner join, but preserve tuples
that are not joined with any other tuple. As the names indicate left outer join preserves only tuples from
its left input, right outer join preserves only tuples from its right input, and full outer join preserves tuples
from both inputs. null(Q) denotes a tuple with schema Q and all attributes values set to null.

Set Operators: The algebra supports the three standard set operations union (∪), intersection (∩), and
set difference (−). Like the projection operator, set operations are provided as a duplicate preserving and
duplicate removing version (denoted by S and B).

1Defining Q independent of an database instance is valid, because the result schema of an algebra expression only depends on the
database schema over which it is defined.

2We define the semantics of the standard aggregation functions sum,avg,count, . . . as in SQL. I. e., applying count to an empty
relation returns zero and applying the other aggregation functions to an empty relations returns null

3Note that allowing only a single attribute as input of an aggregation function and only group-by attributes instead of
group-by expressions does not limit the expressive power of the algebra. Expressions like αc∗d,sum(a+b)(q1) can be written as
αg1,sum(agg1)(Πc∗d→g1,a+b→agg1 (q1) in our algebra. For brevity, we will use the first notation when appropriate.
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Nullary Operators
[[t]] = {t}
[[R]] = {tn | tn ∈ R}

Unary Operators
[[δ (q1)]] = {t | tn ∈ Q1}[[

Π
B

A(q1)
]]

= {t ′ = (v1, . . . ,vm)sum | sum = ∑
tn∈Q1,t.A=t ′

(n)} for A = (A1, . . . ,Am)[[
Π

S
A(q1)

]]
= δ (ΠB

A(q1)) = {a = (a1, . . . ,an)1 | tm ∈ Q1∧ t.A = a} for A = (A1, . . . ,Am)
[[σC(q1)]] = {tn | tn ∈ Q1∧ t |= C}

[[αG,agg(q1)]] = {(t.G,res1, . . . ,resn)1 | t ∈ Q1∧∀i ∈ {1,n} : resi = aggi(ΠB
Bi(σG=t.G(q1))}

Join Operators
[[q1×q2]] = {(t1, t2)n×m | t1n ∈ Q1∧ t2m ∈ Q2}

[[q1 ><C q2]] = {tn×m | tn×m ∈ q1×q2∧ t |= C}
[[q1 ><C q2]] = {(t1, t2)n×m | (t1, t2)n×m ∈ [[q1 ><C q2]]}

∪{(t1,null(Q2))n | t1n ∈ Q1∧ (6 ∃t2 ∈ Q2 : (t1, t2) |= C)}
[[q1>< C q2]] = {(t1, t2)n×m | (t1, t2)n×m ∈ [[q1 ><C q2]]}

∪{(null(Q1), t2)n | t2n ∈ Q2∧ (6 ∃t1 ∈ Q1 : (t1, t2) |= C)}
[[q1 >< C q2]] = {(t1, t2)n×m | (t1, t2)n×m ∈ [[q1 ><C q2]]}

∪{(null(Q1), t2)n | t2n ∈ Q2∧ (6 ∃t1 ∈ Q1 : (t1, t2) |= C)}
∪{(t1,null(Q2))n | t1n ∈ Q1∧ (6 ∃t2 ∈ Q2 : (t1, t2) |= C)}

Set Operators[[
q1∪Sq2

]]
= {t | tn ∈ Q1∨ tm ∈ Q2}[[

q1∩Sq2
]]

= {t | tn ∈ Q1∧ tm ∈ Q2}[[
q1−Sq2

]]
= {t | tn ∈ Q1∧ tm /∈ Q2}[[

q1∪Bq2
]]

= {tn+m | tn ∈ Q1∧ tm ∈ Q2}[[
q1∩Bq2

]]
= {tmin(n,m) | tn ∈ Q1∧ tm ∈ Q2}[[

q1−Bq2
]]

= {tn−m | tn ∈ Q1∧ tm ∈ Q2}

Sublink Expressions
[[e IN qsub]] = ∃t ∈ Qsub : t = e [[e NOT IN qsub]] = ¬∃t ∈ Qsub : t = e

[[e op ANY qsub]] = ∃t ∈ Qsub : e op t [[qsub]] = Qsub

[[e op ALL qsub]] = ∀t ∈ Qsub : e op t [[ EXIST S qsub]] = ∃t ∈ Qsub

Figure 2.1: Perm Relational Algebra
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Description Shortcut
Relation R,S,T . . .
Attribute a,b,c . . .
List or Set of Attributes A,B, . . .
Renaming attribute a to b a→ b
Shortcut for comparing all attributes from a list A =
(a1, . . . ,an) with attributes from a list B = (b1, . . . ,bn)

A = B := a1 = b1∧ . . .∧an = bn

Shortcut for renaming all attributes from a list A =
(a1, . . . ,an) to attributes from a list B = (b1, . . . ,bn)

A→ B := a1 → b1,a2 → b2, . . .an → bn

Concatenation of two tuples t1 and t2 (t1, t2)
Algebra expression q
Result relation generated by evaluation of algebra expres-
sion q

Q or [[q]]

Schema of an relation R or of the result of evaluating al-
gebra expression q

R and Q

Null-value ε

Figure 2.2: Notational Conventions for the Relational Model and Perm Algebra

Sublink Expressions: SQL allows for nested sub-queries in, e.g., the WHERE clause. To be able to
represent such sub-queries (which we refer to as sublinks) in the Perm algebra we introduce nesting ex-
pressions that resemble the nesting constructs of SQL (ALL, ANY, IN, EXISTS, and scalar sublink). Similar
approaches have been presented in [2, 1]. The EXIST S qsub expression evaluates to true, iff Qsub contains
at least one tuple. If an algebra expression qsub is directly applied in an projection expressions or selection
predicate, we call it a scalar sublink. A scalar sublink qsub evaluates to the result of evaluating algebra ex-
pression ([[qsub]]). This kind of sublink is only defined if qsub returns at most one tuple and Qsub contains
only a single attribute. If Qsub returns the empty set, then this nested expression evaluates to ε . The sublink
expression e op ANY qsub evaluates to true if for at least one tuple t from Qsub the expression e op t eval-
uates to true. Here op represents an arbitrary comparison operator. This nested expression is only defined
if Qsub contains a single attribute with a data type that is comparable to the result type of expression e 4.
The counterpart of the ANY-expression is the ALL-expression. e op ALL qsub evaluates to true, iff every
tuple t from Qsub fulfills the condition e op t. An ALL-sublink expression evaluates to true if Qsub is the
empty set. An ANY-sublink expression evaluates to false if Qsub = /0. Two additional nested expressions
are provided for convenience: e IN qsub which is equivalent to e = ANY qsub and e NOT IN qsub which is
equivalent to ¬(e = ANY qsub).

As in SQL we allow for correlations between sublinks and the algebra expression they are used in
(called outer expression or regular input of an operator). A correlation is a reference to an attribute of
the outer expression from inside the sublink. For instance, in the expression σ EXIST S σS.b=R.a(S)(R) the
attribute reference R.a is a correlation, because it references an attribute from relation R that is the regular
input of the selection. Sublinks with correlations are evaluated using so-called nested iteration. Nested
iteration evaluates the sublink expression separately for each tuple from the regular input of the operator.
We call a sublink expression correlated if it contains correlations and uncorrelated otherwise. A sublinks
expression that contains another sublink expression is called nested. In spite of the fact that SQL supports
sublinks in all clauses we limit the use of sublinks to projection and selection to simplify the provenance
computation for these expressions and because this restriction does not limit the expressive power of the
algebra. E.g., the following algebra expression R ><a IN ΠC(T ) S is equivalent to σa IN ΠC(T )(R× S) and
α EXIST S (S),sum(a)(R) is equivalent to αnew,sum(a)(ΠB

EXIST S (S)→new,a(R)).
Figure 2.2 shows notational conventions for algebra expressions that we will use throughout this thesis.

Most of these shortcut have already been used in the definition of the algebra.

4In principle a type system would be needed to decide if two data types are comparable. We do not formally define such a type
system for the Perm algebra because it is not needed in the definition and discussion of contribution semantics and would needlessly
increase the complexity of the algebra.
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person
SSN name
1-1 Peter Peterson
2-4 Jens Jensen
5-6 Knut Knutsen

newspaper
newsId name publisher

1 NZZ IEEE
2 20 Minuten Springer

reads
pSSN nNewsId

1-1 1
1-1 2
2-4 1

q1 = σ¬ EXIST S (qsub)(person) qsub = σ¬ EXIST S (σpSSN=SSN∧newsId=nNewsId(reads))(newspaper)

q2 = αname,count(∗)(reads><pSSN=SSN person)

q3 = Π
S

person.name→person,newspaper.name→paper(person ><SSN=pSSN (reads><nNewsId=newsId newspaper))

q1 = SELECT ∗ FROM p e r s o n
WHERE NOT EXISTS

(SELECT ∗ FROM newspaper
WHERE NOT EXISTS

(SELECT ∗ FROM r e a d s WHERE pSSN = SSN AND nNewsId = newsId ) ) ;

q2 = SELECT name , c o u n t ( ∗ ) FROM r e a d s , p e r s o n WHERE pSSN = SSN GROUP BY name ;

q3 = SELECT p . name a AS person , n . name AS p a p e r
FROM p e r s o n p LEFT JOIN

( r e a d s r JOIN newspaper n ON ( nNewsId = newsId ) ) ON (SSN = pSSN ) ;

Q1
SSN name
1-1 Peter Peterson

Q2
name count

Peter Peterson 2
Jens Jensen 1

Q3
person paper

Peter Peterson NZZ
Peter Peterson 20 Minuten

Jens Jensen NZZ
Knut Knutsen NULL

Figure 2.3: Example Algebra Expressions and Evaluations

Example 2.1. Figure 2.3 presents some example algebra expressions, equivalent formulations in SQL,
and the results of evaluating them over an example database instance. The example database models
newspapers, persons, and which person reads which newspapers. Query q1 from the example returns
the persons that are reading all newspapers stored in the database. This query can be expressed in SQL
as a nested NOT EXISTS: Return all persons for whom no newspaper exists that is not read by this
person. In the algebra this query is expressed using a nested EXISTS sublink expression in the condition
of the selection operator. Query q2 returns the number of newspapers read by each person. In SQL this
query is expressed using the standard aggregation function count grouping on the person relation’s name
attribute. Hence, the equivalent algebra expression uses the aggregation operator. Query q3 returns all
persons and the newspapers they are reading. An outer join is used to also return persons that do not read
any newspapers. The algebra version of q3 is an example for the application of renaming in projection
expressions.
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2.2 Influence Data Provenance Contribution Semantics

In this section we formally define the data provenance CS types implemented in Perm. We first intro-
duce the I-CS type of our system that is based on Lineage-CS, but extends this CS type for all algebra
operators presented in the last section and addresses several shortcomings of Lineage-CS regarding prove-
nance representation and applicability to algebra expressions with sublinks. Afterwards we compare the
expressiveness of Lineage-CS and PI-CS.

2.2.1 Lineage Contribution Semantics

We base the I-CS definition used in Perm on Lineage-CS presented in [5], because this definition has
several advantages over alternative I-CS types. First, users tend to intentionally express queries in a certain
way and, therefore, the strong dependency of Lineage-CS on the syntactical structure of a query is an
advantage. Second, this CS type is defined for a larger set of algebra operators than other approaches.
Third, provenance is defined for single algebra operators which allows easy extension to new algebra
operators. We provide a formal definition of Lineage-CS. The definition below is taken from [5] with the
notation adapted to our conventions:

Definition 2.1 (Lineage-CS). For an algebra operator op with inputs Q1, . . . ,Qn from a database in-
stance I and a tuple t ∈ op(Q1, . . . ,Qn) a set W (op, I, t) =< Q∗

1, . . . ,Q
∗
n > with Q∗

i ⊆ Qi is the witness
set of t if it fulfills the following conditions:

[[op(W (op, I, t))]] = {tx} (1)
∀i, t ′ ∈ Q∗

i :
[[

op(< Q∗
1, . . . ,Q

∗
i−1,{t ′},Q∗

i+1, . . . >)
]]
6= /0 (2)

¬∃W ′ ⊂< Q1, . . . ,Qn >: W ′ ⊃W (op, I, t)∧W ′ |= (1),(2) (3)

The first condition (1) in Definition 2.1 checks that the witness set produces exactly t and nothing else
by evaluating operator op over the witness set. The second condition (2) checks that each tuple t ′ in the
witness set contributes to t and, therefore, guarantees that no superficial tuples are included in the witness
set. Finally, the third condition (3) checks that the witness set is the maximal list with these properties,
meaning that no tuples that contribute to t are left out. Note that in condition 3 two lists of sets are
compared according to their subsumption relationship (⊃). Below we formalize the notion of subsumption
for lists:

Definition 2.2 (List Subsumption). A list of sets U subsumes of a list of sets V (U ⊃ V ), iff both lists
have the same length (|U |=|V |), each set in U contains the elements from the corresponding set in V ,
and at least one set from U contains an element that is not included in the corresponding set from V :

U ⊃V ⇔(|U |=|V |)∧ (∀i ∈ {1, . . . , |V |} : Ui ⊇Vi)∧ (∃i ∈ {1, . . . , |V |} : Ui ⊃Vi)

We omit the instance I for a witness set if it is clear from the context. Lineage-CS was originally studied
for selection, projection, join, cross product, aggregation, union and set difference. In our discussion we
include also intersection and outer joins. Note that the definition presented here is defined for set semantics
and under this semantics it was proven that W (q, t) is unique. We postpone the discussion of bag semantics
to later in this section.
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Example 2.2. As an example for Lineage-CS provenance consider the algebra expression q = ΠB
a(R)

over the relation presented below.

R
a b
1 2
2 3

Q
a
1
2

The Lineage-CS provenance of the result tuple t = (1) from q is as follows:

W (q,(1)) =< {(1,2)}>

The first condition of definition 2.1 is obviously fulfilled. The result of evaluating q over the set {(1,2)} is
a relation that only contains tuple (1). The second condition is trivially fulfilled, because the provenance
contains only a single tuple. For the third condition we have to check that no super set of W fulfills
conditions 1 and 2. In this case W ′ = {(1,2),(2,3)} the only super-set of W does not fulfill condition 1,
because the result of applying q to W ′ contains tuple (2) 6= t.

2.2.1.1 Transitivity and Sets of Output Tuples

Lineage-CS defines provenance to be transitive. I.e., if tuple t is in the provenance of tuple t ′ according
to an operator op1 and t ′ is in the provenance of t ′′ according to some operator op2, then t belongs to
the provenance of t ′′ according to q = op2(op1). Therefore, the witness set of an algebra expression q is
computed by recursively applying Definition 2.1 to each operator in q. An advantage of Lineage I-CS is
that the focus on a single operator leads to a simple evaluation strategy and the witness set of each operator
can be studied independently of the witness set of other operators. [5] also defines the provenance of a set
T of result tuples according to Lineage-CS as:

W (q,T ) =
⊔
t∈T

W (q, t)

Here
⊔

stands for the element-wise union of two lists. E.g.:

< {a},{b}> t< {c},{d}>=< {a,c},{b,d}>

2.2.1.2 Bag Semantics

Lineage-CS was also extended for bag semantics. Under bag semantics two duplicates of a tuple cannot
be distinguished, therefore it is impossible to determine from which duplicate a result tuple is derived.
Consider the query q = R−BS over the relations R = {(1)2} and S = {(1)}. The result tuple (1) could be
either derived from the first or the second tuple in R. Furthermore, if the result of an algebra expression
contains a tuple t with a multiplicity greater than one, each duplicate of t might have been derived from
different input tuples and its not clear which duplicate of t should be associated with which input tuple. As
an example for this problem consider expression q = ΠB

a(R) over relation R = {(1,2),(1,3)} with schema
R = (a,b). If definition 2.1 is applied to this query, then there are two sets W (q,(1))1 =< {(1,2)} >
and W (q,(1))2 =< {(1,3)} > that fulfill the conditions of the definition. Cui et al. present two solu-
tions to this problem. One called the derivation set is the set of all possible witness sets W (q, t) and
the second one called the derivation pool is generated by computing the bag union of the individual Q∗

i
elements of all possible witness sets W (q, t). The derivation set of the example query above would be
{W (q,(1))1,W (q,(1))2} and the derivation pool would be < {(1,2),(1,3)}>. The derivation set has the
disadvantage that its size is proportional to the number of different derivations of a result tuple. Therefore,
we use only the derivation pool. The definition we have given for Lineage-CS generates the derivation
pool.
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W (R, t) =< {un | un ∈ R∧u = t}>

W (σC(q1), t) =< {un | un ∈ Q1∧u = t}>

W (ΠA(q1), t) =< {un | un ∈ Q1∧u.A = t}>

W (αG,agg(q1), t) =< {un | un ∈ Q1∧ t.G = u.G}>

W (q1 ><C q2, t) =< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}>

W (q1 ><C q2, t) =

{
< {un | un ∈ Q1∧u = t.Q1},Q2 > if t 6|= C
< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}> else

W (q1>< C q2, t) =

{
< Q1,{un | un ∈ Q1∧u = t.Q2}> if t 6|= C
< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}> else

W (q1 >< C q2, t) =


< {un | un ∈ Q1∧u = t.Q1},Q2 > if t 6|= C∧ t.Q2 is ε

< Q1,{un | un ∈ Q1∧u = t.Q2}> if t 6|= C∧ t.Q1 is ε

< {un | un ∈ Q1∧u = t.Q1},{un | un ∈ Q2∧u = t.Q2}> else

W (q1∪q2, t) =< {un | un ∈ Q1∧u = t},{un | un ∈ Q2∧u = t}>

W (q1∩q2, t) =< {un | un ∈ Q1∧u = t},{un | un ∈ Q2∧u = t}>

W (q1−q2, t) =< {un | un ∈ Q1∧u = t},{un | un ∈ Q2∧u 6= t}>

Figure 2.4: Compositional Semantics for Lineage-CS

2.2.1.3 Compositional Semantics of Lineage-CS

To determine the provenance of an algebra expression using the conditions of definition 2.1 can be cum-
bersome, because the definition only states which conditions have to be fulfilled by the provenance, but
not how to construct the provenance. Cui et. al presented how to generate Lineage-CS provenance using
a construction based on the syntactical structure of an algebra expression. In the following we refer to the
conditions of definition 2.4 as the declarative semantics of Lineage-CS and the semantics defined by the set
construction as the compositional semantics of Lineage-CS. The construction rules for the compositional
semantics are presented in Figure 2.4.

Example 2.3. For example, the witness set of an output tuple t of a selection is always the singleton set
containing t, because selection outputs unmodified input tuples. An output tuple t from an aggregation is
derived from a set of input tuples that belong to the same group (have the same grouping attribute values
as t).

Example 2.4. Figure 2.5 presents some examples of provenance according to Lineage-CS. Query qa
is an example for the representation of duplicate removal. The result tuple (1) from this query was
generated from two result tuples of the inner join between R and S. Query qb demonstrates the inclusion
of the complete right input of the left join in the provenance for tuples that do not have join partners.
An example for aggregation is given with query qc. Note that all tuples from relation R with the same
grouping attribute value 1 are in the provenance of the result tuple (1,5). Both queries qd and qe
illustrate the provenance for set difference operations. Query qd is similar to an example from [4] that
was used to show that tuples from the right input of a set difference can contribute to the result of this
operator. Tuple (2) from relation T belongs to the provenance of result tuple u = (2), because it indirectly
contributed to u by removing tuple (2) from the result of (S−T ). If t had not been in relation T , then u
would not be in the result of qd . Query qe is a counterexample to this form of reasoning. According to
Lineage-CS tuple v = (2) from relation U is not in the provenance of result tuple x = (2), but if we apply
the same reasoning as used for query qd it contributes to x.

As apparent form the example presented above, the problem with Lineage-CS for set difference is that
it is defined for single algebra operators. But to distinguish between the cases presented with query qe and
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the one of query q f information about the context a operator is used in is needed. In spite of the fact that
Why-CS is defined for an algebra expression it does not solve this problem, because it generates the same
provenance for both cases.

Cui et. al. proved that the compositional semantics of Lineage-CS is equivalent to the declarative
semantics from definition 2.1. Recall that Lineage-CS was originally not studied for intersection and outer
join types. Therefore, we now prove the equivalence of provenance according to definition 2.1 and the
compositional semantics for these operators. The interested reader is referred to [4] for the proofs for the
remaining operators.

Theorem 2.1 (Equivalence of Declarative and Compositional Semantics of Lineage-CS). The composi-
tional and declarative semantics of Lineage-CS are equivalent.

Proof. We only prove this theorem for the cases not handled in [4]: outer joins and intersection. Let
W (op, t) be the witness set produced by the declarative semantics and O(op, t) be the witness set produced
by the compositional semantics. We have to show that W (op, t)=O(op, t) holds for op∈{ ><,>< , >< ,∩}
and all t ∈ [[op]]. This proposition can be proven by proving that O(op, t) fulfills conditions 1 to 3 from
definition 2.1 and, thus, is indeed equal to W (op, t).
Case ><:
We present the proof for the case t 6|= C because if t |= C holds then the behavior and provenance of the
left outer join is the same as for the inner join. Thus, O(q1 ><C q2, t) =< {un | un ∈Q1∧u = t.Q1},Q2 >.
Condition (1): From the definition of the left outer join we know that there is no tuple t ′ in Q2 for which
(t.Q1, t ′) |= C holds, because otherwise t |= C would hold. Therefore, [[{un} ><C Q2]] = {tx}.
Condition (2): Both

[[
{u1} ><C Q2

]]
6= /0 and [[{un} ><C {t ′}]] 6= /0 with t ′ ∈ Q2 trivially holds because

for a non empty left hand side input the left join operator never produces an empty result.
Condition (3): We prove the maximality of O(q1 ><C q2) by contradiction. Assume a list O ′ ⊃ O exists
that fulfills conditions 1 and 2 from the definition. Since Q2

∗ cannot be extended, Q1
∗ from O ′ has to

contain at least one tuple t ′ that is not in O with u 6= t ′. From the semantics of the left outer join follows that
[[{t ′} ><C Q2]] produces either a tuple x = (t ′, t ′′) with t ′′ from Q2 or a tuple x′ = (t ′,null(Q2)) depending
on the existence of an join partner for t ′ in Q2. Because t ′ 6= u we know that neither t = x nor t = x′ holds,
and, therefore condition 1 is violated. Hence, we conclude that, since no such O ′ can exists, O has to be
maximal.
Case >< :
The proof for right outer join is analog to the proof for left outer join.
Case >< :
For full outer join we have to distinguish two cases: (t 6|= C∧ t.Q1 is ε) and (t 6|= C∧ t.Q2 is ε). Both cases
can be proven analog to the proof for left join.
Case ∩:
According to the compositional semantics O(q1∩q2, t) =< {un | un ∈Q1∧u = t},{un | un ∈Q2∧u = t}>.
Condition (1): We have to prove [[{un}∩{um}]] = {tx} for some x.

[[{un}∩{um}]] = [[{tn}∩{tm}]] = {tmin(n,m)} (definition of ∩)

Condition (2): Since intersection is symmetric it suffices to show that
[[
{un}∩{u1}

]]
6= /0 which trivially

holds: [[
{un}∩{u1}

]]
= {t1} 6= /0

Condition (3): We prove the maximality of O(q1 ∩ q2, t) by contradiction. Assume a super-set O ′ of O
exists that fulfills conditions 1 and 2 from the definition. Then O ′ has to contain a tuple t ′ 6= t that is not in
O . w.l.o.g. assume t ′ ∈Q∗

1. Then for condition 2 to hold [[{t ′}∩Q∗
2]] 6= /0 has to be true. Either Q∗

2 contains
a tuple t ′′ that is equal to t ′, then condition 2 is fulfilled, but condition 1 is no longer fulfilled because
[[Q∗

1∩Q∗
2]] 6= {t}. Or Q∗

2 does not contain such an tuple and, therefore, [[{t ′}∩Q∗
2]] = /0 would hold which

contradicts condition 2. Using the same reasoning as for the left outer join case we conclude that O has to
be maximal.
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R
a b
1 2
1 3
2 3
2 5

S
c
2
3

T
d
2
5

U
e
2
5
6

Qa
a
1
2

Qb
a b c
1 2 2
1 3 3
2 3 3
2 5 ε

Qc
a sum(b)
1 5
2 8

Qd
b
2
5

Qe
c
2
3

Qf
a
1
2

qa = Π
S

a(R><b=c S) qb = R ><b=c S qc = αa,sum(b)(R)

qd = Π
S

b(R)− (S−T ) qe = S− (T −U) q f = Π
S

a(R ><b=c S)

W (qa,(1)) =< {(1,2),(1,3)},{(2),(3)}>

W (qb,(2,3,3)) =< {(2,3)},{(3)}> W (qb,(2,5,ε)) =< {(2,5)},{(2),(3)}>

W (qc,(1,5)) =< {(1,2),(1,3)}>

W (qd ,(2)) =< {(2,3),(2,5)},{(3)},{(2),(5)}>

W (qe,(2)) =< {(2)},{},{}>

W (q f ,(2)) =< {(2,3),(2,5)},{(2),(3)}>

L (qa,(1)) = {< (1,2),(2) >,< (1,3),(3) >}
L (qb,(2,3,3)) = {< (2,3),(3) >} L (qb,(2,5,ε)) = {< (2,5),(2) >,< (2,5),(3) >}
L (qc,(1,5)) = {< (1,2) >,< (1,3) >}
L (qd ,(2)) = {< (2,3),(3),(2) >,< (2,3),(3),(5) >,< (2,5),(3),(2) >,< (2,5),(3),(5) >}
L (qe,(2)) = {< (2),⊥,⊥>}
L (q f ,(2)) = {< (2,3),(2) >,< (2,5),(2) >,< (2,5),(3) >}

DD(qa,(1)) = {< (1,2),(2) >,< (1,3),(3) >}
DD(qb,(2,3,3)) = {< (2,3),(3) >} DD(qb,(2,5,ε)) = {< (2,5),⊥>}
DD(qc,(1,5)) = {< (1,2) >,< (1,3) >}
DD(qd ,(2)) = {< (2,3),⊥,⊥>}
DD(qe,(2)) = {< (2),⊥,⊥>}
DD(q f ,(2)) = {< (2,3),(2) >,< (2,5),⊥>}

Figure 2.5: Provenance According to Lineage-CS, WL-CS, and PI-CS
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2.2.2 Perm Influence Contribution Semantics
Definition 2.1 generates useful provenance information and is defined for a larger subset of relational
algebra than the Lineage-CS, but there are some issues with this definition that limit its usefulness:

1. Representation: Modeling provenance as independent sets of tuples has the disadvantage that the
information about which input tuples were combined to produce a result tuple is not modeled and that
in the provenance of a set of result tuples it is not clear to which result tuple a part of the provenance
belongs too.

2. Negation: The maximization condition (2) is problematic if operations with negation or non-existence
checks including set difference and outer joins are involved.

3. Sublinks: Lineage-CS is not unique and produces false positives for queries that use sublink ex-
pressions. We do not discuss this problem in this report. An approach to overcome the problems of
Lineage-CS with sublinks is presented in [7].

Representation: As an example of the first problem consider query qa from Fig. 2.5. The tuple t = (1)
from the result of qa is derived from two tuples from relations R and S (all tuples from R and S that
were joined and have an a-attribute value of 1). Which tuples contributed to t is apparent from Lineage-
CS (W (qa, t)), but the information about which tuple from R was joined with which tuple from S is not
modeled. To record this information we change the provenance representation from a list of subsets of the
input relations to a set of witness lists. A witness list w is an element from (Qε

1× . . .×Qε
n) with Qε

i = Qi∪⊥.
Thus, a witness list w contains a tuple from each input of an operator or the special value ⊥. The value
⊥ at position i in a witness list w indicates that no tuple from the ith input relation belongs to w (and,
therefore, is useful in modeling outer joins and unions). Each witness list represents one combination of
input relation tuples that were used together to derive a tuple.

Definition 2.3 (Witness List). For an algebra operator op with inputs Q1, . . . ,Qn each element w from
(Qε

1 × . . .×Qε
n) with Qε

i = Qi∪ ⊥ is called a potential witness list of op. We use w[i] to denote the ith
component (tuple) of a witness list w and w[i− j] to denote a sub-list containing only the ith till the jth
component of w.

Example 2.5. Consider the following witness list: w =< (1),(3),(5) >. For example the third
component of w is w[3] = (5) and a list containing only the last two element of w is denoted by
w[2−3] =< (3),(5) >.

The modified version of Definition 2.1 using the witness list representation is presented below. We call
this new contribution semantics type Witness-List-CS or short WL-CS. Note that in condition 1 of the WL-
CS definition we use the evaluation of an operator over a set L of witness lists. We define this evaluation as
the evaluation of the operator over reconstructed subsets of the original input relations. The reconstructed
input relation subsets will contain all the tuples contained in the witness lists from L . The notation Qi

R is
used for the reconstructed subset of input relation Qi.

Definition 2.4 (Operator Evaluation over Witness Lists). The evaluation of an operator op with inputs
Q1, . . . ,Qn over a set of witness lists W for this operator is defined as:

[[op(W )]] =
[[

op(Q1
R, . . . ,Qn

R)
]]

Qi
R = {tn | tn ∈ Qi∧∃w ∈L : w[i] = t}

Qi
R contains all tuples with their original multiplicity that are mentioned by at least one witness list.

E.g., for a query q = R><a=b S over relations R = {(1)2} and S = {(1)}, and witness lists w1 =< (1),(1) >
and w2 =< (1),(1) > the result of q(L (q,(1,1)) would be Q = {(1,1)2}.
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Definition 2.5 (Witness-List-CS (WL-CS)). For an algebra operator op with inputs Q1, . . . ,Qn, and a
tuple t ∈ op(Q1, . . . ,Qn) a set L (op, t)⊆ (Qε

1× . . .×Qε
n) with Qε

i = Qi∪ ⊥ is the set of witness lists of
t according to WL-CS if it fulfills the following conditions:

[[op(L (op, t))]] ={tx} (1)
∀w ∈L (op, t) :[[op(w)]] 6= /0 (2)

¬∃L ′ ⊆ (Qε
1× . . .×Qε

n) :L ′ ⊃L (op, t)∧DD ′ |= (1),(2) (3)

Example 2.6. Some examples for WL-CS are shown in Fig. 2.5. For instance, the provenance of qa
demonstrates that under WL-CS we preserve the information that tuples (1,2) and (2) were joined. This
fact cannot be deduced from the Lineage-CS provenance of qa. Note that besides the representation of
provenance as witness-lists WL-CS bears some similarity with Lineage-CS. For example, under Lineage-
CS the provenance of tuple (1) from query qa would be {{(1,2),(2)},{(1,3),(3)}}. Thus, for queries
like this Lineage-CS also captures which tuples were used together to derive a result tuple. In contrast
to Lineage-CS, our definition also captures this information for, e.g., queries that combine aggregation
with set projection . For instance, the Lineage-CS provenance of tuple t = (1) from the result of query
αa,sum(b)(R ><b=c S) would be a single witness, thus, the information which tuples were joined is lost in
this representation.

Negation: As an example of the problems that arise with operators that use some form of non-existence
check, consider query qb from Figure 2.5. According to Definition 2.1, the witness list of the result tuple
t = (2,5,ε) contains all tuples from relation S, but in fact none of them contributed to t. Definition 2.5 does
not solve this problem - the WL-CS provenance includes witness lists which contain the tuple (2,5) paired
with every tuple in S. Thus, both Lineage-CS and WL-CS do not capture an intuitive notion of influence
when an operator includes negation. We believe a better semantics for the provenance of tuple t = (2,5,ε)
from the result of qb would be a witness list < (2,5),⊥>. This indicates that (2,5) paired with no tuples
from S contributed to t (rather than saying that every value of S is in the provenance of this tuple). To
achieve this semantics, we extend the WL-CS provenance definition with an additional condition (4). This
condition states that we will exclude a witness list w from the provenance, if there is a ”smaller” witness
list w′ in the provenance that subsumes w. A witness list w is subsumed by a witness list w′ (denoted by
w≺ w′) iff w′ can be derived from w by replacing some input tuples from w with ⊥.

Definition 2.6 (Witness List Subsumption). Let w and w′ be two witness lists from L (q, t). We define
the subsumption relationship between w and w′ (written as w≺ w′) as follows:

w≺ w′⇔ (∀i : w[i] = w′[i]∨w′[i] =⊥)∧ (∃i : w[i] 6=⊥ ∧w′[i] =⊥)

We use the definition of subsumption between witness lists to define a CS type with the desired negation
semantics which we call Perm-Influence-CS (PI-CS).

Definition 2.7 (Perm-Influence-CS (PI-CS)). For an algebra operator op with inputs Q1, . . . ,Qn, and a
tuple t ∈ op(Q1, . . . ,Qn) a set DD(op, t)⊆ (Qε

1× . . .×Qε
n) where Qε

i = Qi∪⊥ is the set of witness lists
of t according to PI-CS if it fulfills the following conditions:

[[op(DD(op, t))]] = {tx} (1)
∀w ∈DD(op, t) :[[op(w)]] 6= /0 (2)

¬∃DD ′ ⊆ (Qε
1× . . .×Qε

n) :DD ′ ⊃DD(op, t)∧DD ′ |= (1),(2),(4) (3)
∀w,w′ ∈DD(op, t) : w≺ w′⇒ w /∈DD(op, t) (4)

Condition (4) removes superfluous witness lists from the provenance of queries with outer joins and
other forms of negation. However, it changes the semantics for the ∪ operator from that of Definition 2.1.
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Under Definition 2.1, the provenance of a union result tuple would be a single witness list < t1, t2 > if
the result of the union is generated from a tuple t1 from the left input and a tuple t2 from the right input.
We feel this is a bit misleading as it indicates that these two tuples used together influence t, when in fact
each, independently, influences t. PI-CS captures this intuition by defining the provenance as {< t1,⊥>
,<⊥, t2 >}. If the union semantics of Definition 2.1 is desired, we can easily achieve it with a simple
post-processing rule to “repair” the provenance for unions. We define a operation + for two witness lists
w1 and w2 that combines them into a new witness list w by taking an input tuple from w1 if w2 is ⊥ on this
input and vice versa. If both w1 and w2 are not ⊥ on at least one input, the operation is undefined. Notice
that this post-processing does not influence the provenance of outer joins as it is defined on the provenance
of a single tuple t.

∀w,w′ ∈DD(q, t) : w+w′ = w′′⇒ w′′ ∈DD(q, t)∧w,w′ /∈DD(q, t) (U)

For some cases the provenance of set difference under WL-CS represents the semantics of this operation
more accurately than PI-CS (For instance, query qd from Figure 2.5). Therefore, we implement both PI-
CS data provenance after definition 2.7, and an alternative semantics which uses the WL-CS definition for
union and set difference operators.

2.2.2.1 Transitivity

We define the PI-CS provenance of an algebra expression q containing more than one operator as recur-
sively substituting tuples in a witness list for one of the operator in q with the witness lists for this tuple.
I.e., a witness list w of an operator op1 in q contains tuples from the input

Example 2.7. The provenance of an algebra expression q = σa=b(R×S) is computed by first computing
the provenance of q′ = σa=b([[R×S]]). Assume that W (q′,(1,2)) = w1 =< (1,2) >. (1,2) is a tuple
from the result of the cross product. We proceed by computing the provenance of w2 = (1,2) in R× S.
The provenance of this tuple is the witness list < (1),(2) >. Now (1,2) in w1 is replaced by the contents
of w2 resulting in the witness list < (1),(2) > for DD(q,(1,2)).

Definition 2.8 stated below defined the provenance of an algebra expression according to PI-CS.

Definition 2.8 (PI-CS for Algebra Expressions). The provenance according to PI-CS for an algebra
expression q = un(q1) or q = q1 bin q2 where un is an unary operator and bin is a binary operator is
defined as:

If q = un(q1):

DD(q, t) ={w =< v1, . . . ,vn >p| ∃w′ =< u >m∈DD(un(Q1), t)∧u ∈ Q1∧wp ∈DD(q1,u)}
∪{w =<⊥, . . . ,⊥>m| ∃w′ =<⊥>m∈DD(un(Q1), t)}

If q = q1 bin q2:

DD(q, t) = {w =< u1, . . . ,un,v1, . . . ,vm >q×r|w′ =< u,v >p∈DD(Q1 bin Q2, t)
∧u ∈ Q1∧w′ =< u1, . . . ,un >q∈DD(q1,u)
∧ v ∈ Q2∧w′′ =< v1, . . . ,vm >r∈DD(q2,v)}

∪{w =< u1, . . . ,un,⊥, . . . ,⊥>q|w′ =< u,⊥>p∈DD(Q1 bin Q2, t)
∧u ∈ Q1∧w′ =< u1, . . . ,un >q∈DD(q1,u)}

∪{w =<⊥, . . . ,⊥,v1, . . . ,vm >q|w′ =<⊥,v >p∈DD(Q1 bin Q2, t)
∧ v ∈ Q2∧w′′ =< v1, . . . ,vm >q∈DD(q2,v)}

∪{w =<⊥, . . . ,⊥>1|w′ =<⊥,⊥>1∈DD(Q1 bin Q2, t)}



16 CHAPTER 2. CONTRIBUTION SEMANTICS

DD(R, t) = {< u >n| un ∈ R∧u = t}
DD(σC(q1), t) = {< u >n| un ∈ Q1∧u = t}
DD(ΠA(q1), t) = {< u >n| un ∈ Q1∧u.A = t}

DD(αG,agg(q1), t) = {< u >n| un ∈ Q1∧u.G = t.G}∪{<⊥>| Q1 = /0∧ | G |= 0}
DD(q1 ><C q2, t) = {< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2}

DD(q1 ><C q2, t) =

{
{< u,⊥>n| un ∈ Q1∧u = t.Q1} if ¬t |= C
{< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2} else

DD(q1>< C q2, t) =

{
{<⊥,u >n| un ∈ Q2∧u = t.Q2} if ¬t |= C
{< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2} else

DD(q1 >< C q2, t) =


{< u,⊥>n| un ∈ Q1∧u = t.Q1} if ¬t |= C∧ t.Q2 is ε

{<⊥,u >n| un ∈ Q2∧u = t.Q2} if ¬t |= C∧ t.Q1 is ε

{< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2} else

DD(q1∪q2, t) = {< u,⊥>n| un ∈ Q1∧u = t}∪{<⊥,u >n| un ∈ Q2∧u = t}
DD(q1∩q2, t) = {< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Q2∧ v = t}
DD(q1−q2, t) = {< u,⊥>n| un ∈ Q1∧u = t}

Figure 2.6: Compositional Semantics for PI-CS for Single Operators

Though it might appear to be quite complex, this definition simply states that the witness list of an
algebra expression q is created by replacing tuples in each witness list w of the outmost operator of q with
the content of witness lists for these tuples (or ⊥, if w contains ⊥).

2.2.2.2 Compositional Semantics

Like for Lineage-CS we present an compositional semantics for PI-CS and prove its equivalence to the
declarative semantics defined by Definition 2.7. The compositional semantics of PI-CS for each algebra
operator are shown in Figure 2.6.

Example 2.8. The PI-CS provenance DD of the queries from the running example is presented in
Figure 2.5. Note the difference between WL-CS and PI-CS for queries with outer joins and set difference
(qb,qd ,qe, and q f ).

Theorem 2.2 (Equivalence of Compositional and Declarative Semantics of PI-CS). The compositional
and declarative semantics of PI-CS are equivalent.

Proof. Let I (op, t) be the witness set produced by the declarative semantics and DD(op, t) be the witness
set produced by the compositional semantics. We have to show that I (op, t) = DD(op, t) holds. This
proposition can be proven by showing that DD(op, t) fulfills conditions 1 to 4 from definition 2.7 and,
thus, is indeed equal to I (op, t).
Case q = R:
Obvious from the definition of R.
Case q = σC(q1):
Condition (1): Because u = t and t is in the result of q we know that t |= C. Therefore, [[σC(un)]] = {tn}
and condition 1 holds.
Condition (2): Using the same reasoning as for condition 1 we deduce that [[σc({u})]] = {u} 6= /0.
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Condition (3): We prove that DD(q, t) is maximal by contradiction. Assume a set O ⊃ DD exists that
fulfills conditions 1, 2, and 4. Then O contains a witness w =< t ′ > with t ′ 6= t. If t ′ |= C then O does not
fulfill condition 1. Else t ′ 6|= C holds. Hence, [[σC({t ′})]] = /0 and condition 2 is not fulfilled.
Condition (4): No witness w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q = ΠS/B

A(q1):
Condition (1): Because u.A = t we conclude that

[[
ΠS

A({un})
]]

= {t1} and
[[

ΠB
A({un})

]]
= {tn} holds.

Thus, condition 1 is fulfilled.
Condition (2): Using the same reasoning as in the proof of condition 1 we conclude that

[[
ΠS/B

A({u})
]]

=
{t} 6= /0.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
w =< t ′ > with t ′ 6∈ DD . From the compositional semantics of Π we know that t ′.A 6= t.A, because
otherwise t ′ would be contained in DD . Therefore,

[[
ΠS/B

A({t ′})
]]
6= {tx} and condition 1 is not fulfilled

by O .
Condition (4): No witness w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case αG,agg(q1):
Condition (1): Assume

[[
αG,agg(Q1

R)
]]
6= {t}. Then

[[
αG,agg(Q1

R)
]]

contains a tuple t ′ 6= t. We know
t ′.G = t.G because of the definition of aggregation and the compositional semantics of aggregation. There-
fore, t.agg 6= t ′.agg holds. At least for one aggregation function aggi from agg the tuples t and t ′ contain a
different result: t.aggi 6= t ′.aggi. But from

t.aggi = aggi(ΠB
Bi(σG=t.G(q1))) = aggi(ΠB

Bi({u | u.G = t.G∧u ∈ Q1})) = t ′.aggi

follows t = t ′.
Condition (2): From the definition of the aggregation operator we know that the result of this operator is
never the empty set. Thus, condition 2 holds.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1, 2, and 4. Then O contains a witness
list w =< t ′ > with t ′ 6∈ DD . If t ′.G 6= t ′′.G for t ′′ ∈ DD holds, then condition 1 is not fulfilled, because
t ′ belongs to another group than t ′′ which by definition belongs to the same group as t. If t ′ belongs to the
same group as t ′′ then it would be included in DD .
Condition (4): No witness list w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q1 ><C q2:
Condition (1): From the definition of the compositional semantics of PI-CS provenance for the join operator
we know that t = (u,v) holds for each witness list w =< u,v > in DD . Applying the definition of the join
operator we get [[{u}><C {v}]] = {t} and according to the semantics attached to computing an operator
over a set of witnesses: [[op(DD)]] = {tn×m}.
Condition (2): From the proof of condition 1 we know that [[{u}><C {v}]] = {t} 6= /0 and, therefore,
condition 2 holds.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
w =< u′,v′ >6∈DD . We know that (u′,v′) 6= t. Either (u′,v′) |= C which breaks condition 1 or (u′,v′) 6|= C
which breaks condition 2.
Condition (4): No witness w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q1 ><q2:
We present only the proof for the case t 6|= C because if t |= C holds then the behavior and provenance of
the left outer join is the same as for the inner join.
Condition (1): For each witness list w =< u,⊥>∈ DD : [[{u} ><C /0]] = {t} . Therefore, [[op(DD)]] =
{tx} and condition 1 holds.
Condition (2): The left join operator never produces the empty set for an non empty left input. Thus,
because each witness list in DD is of the form < u,⊥> we can deduce that condition 2 holds.
Condition (3): We prove the maximality of DD by contradiction. Assume a set O ⊃DD exists that fulfills
conditions 1, 2, and 4 from the PI-CS definition. Then O contains a witness list w′ =< u′,v′ >6∈ DD .
u′ = t.Q1 has to hold because else condition 1 would not be fulfilled. It follows that v′ 6=⊥, because
< u′,⊥>∈DD . Clearly, w′ ≺< u′,⊥>, which breaks condition 4.
Condition (4): Each witness in DD is of the form < u,⊥>. Thus, for two witnesses w and w′ the condition
w≺ w′ can never be fulfilled. If follows that condition 4 holds.
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Case q1>< q2:
The proof for right outer join is analog to the proof for left outer join.
Case q1 >< q2:
For full outer join we have to distinguish two cases: (t 6|= C∧ t.Q1 is ε) and (t 6|= C∧ t.Q2 is ε). Both cases
can be proven analog to the proof for left outer join.
Case q1∪q2:
Condition (1): Each witness list w from DD is either < u,⊥> or <⊥,u > with u = t. Applying the
definition of the union operator we get [[{u}∪ /0]] = [[ /0∪{u}]] = {t}. Since [[op(DD)]] is defined as the
applying op to the union of the input to [[op(w)]] for w ∈DD , condition 1 holds.
Condition (2): Using the fact [[{u}∪ /0]] = [[ /0∪{u}]] = {t} established in the proof of condition 1 we
conclude that condition 2 is fulfilled.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
list w =< u′,v′ > with w 6∈ DD . If either u′ or v′ are neither ⊥ nor equal to t, then condition 1 is not
fulfilled. If only one of u′ and v′ is equal to ⊥ then w would be in DD . For the remaining two cases
(w =<⊥,⊥> and w =< t, t >) either condition 2 or condition 4 is not fulfilled.
Condition (4): All witness lists from DD are either of the form < u,⊥> or <⊥,u >. Thus, there are no
two witness lists w and w′ from DD for which the precondition w ≺ w′ from condition 4 is fulfilled and
condition 4 holds.
Case q1∩q2:
Condition (1): Each witness list w from DD is of the form w =< u,v > with u = v = t. Since [[{t}∩{t}]] =
{t} condition 1 holds.
Condition (2): Since intersection is symmetric it suffices to show that

[[
{un}∩{u1}

]]
6= /0 which trivially

holds.
Condition (3): We prove the maximality of DD by contradiction. Assume a super-set O of DD exists that
fulfills conditions 1,2 and 4 from the definition. Then O has to contain a witness list that includes a tuple
t ′ 6= t that is not in DD . w.l.o.g. assume t ′ ∈ Q1

R. Then for condition 2 to hold
[[
{t ′}∩Q2

R]]
6= /0 has

to be true. Either Q2
R contains a tuple t ′′ that is equal to t ′, then condition 2 is fulfilled, but condition 1 is

no longer fulfilled because
[[

Q1
R∩Q2

R]]
6= {tx}. Or Q2

R does not contain such an tuple and, therefore,[[
{t ′}∩Q2

R]]
= /0 would hold which contradicts condition 2. Hence, DD is maximal.

Condition (4): No witness list w from DD contains ⊥ and, therefore, condition 4 trivially holds.
Case q1−q2:
Condition (1): Each witness list in DD is of the form < u,⊥>. Since [[{u}− /0]] = {u} condition 1 holds.
Condition (2): Follows from the proof of condition 1.
Condition (3): Assume a set O ⊃DD exists that fulfills conditions 1,2, and 4. Then O contains a witness
w =< u′,v′ > with w 6∈DD . u′ = t has to hold otherwise condition 1 would break. If v′ =⊥ then w would
be in DD . Else, a w′ =< t,⊥>∈DD subsumes w which would break condition 4.
Condition (4): Every witness list in DD is of the form < u,⊥>. Thus, there are no two witness lists w and
w′ from DD for which the precondition w≺ w′ from condition 4 is fulfilled and condition 4 holds.

2.2.3 Comparison of the Expressiveness of Lineage-CS and PI-CS

Having iteratively refined the definitions of Lineage-CS and PI-CS to produce meaningful provenance for
a wide set of algebra expressions we now compare the expressiveness of the two contribution semantics. In
detail, we answer the question: Does the provenance generated by both contribution semantics contain the
same information? Of course this question can only be answered for the operators on which both semantics
are meant to produce the same provenance. For instance, the provenance for left outer joins is different for
Lineage-CS and PI-CS.

Intuitively, it is clear that PI-CS provenance contains information that is not modeled by Lineage-CS,
because, for instance, for a set of result tuples of a join the representation used by Lineage-CS does not
model which tuples were used together by the join. On the other hand, the representation of PI-CS does
not model the original multiplicity of input tuples. Formally, this intuitions can be proven, by showing that
every function that translates between these two representations cannot have an inverse.
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Theorem 2.3 (Non Equivalence of PI-CS and Lineage-CS). Let function H be a function that maps a
witness set to a set of witness lists with the property H(W (q, I, t)) = DD(q, I, t). Let H ′ be a function
that maps a set of witness lists to a witness set with H ′(DD(q, I, t)) = W (q, I, t). It follows that both H
and H ′ are not invertible and, therefore, none of them can exist.

Proof.
Case H:

If H has an inverse, then H has to be injective and surjective. Thus, if we find two queries q1 and
q2,database instance I1 and I2, and tuples t1 ∈ Q1 and t2 ∈ Q2 for which W (q1, I1, t1) 6= W (q2, I2, t2) and
DD(q1, I1, t1) = DD(q2, I2, t2) hold, we have proven our claim by demonstrating that H is not injective
(given that either q1 6= q2, I1 6= I2, or t1 6= t2). Consider the following queries, database instances, and result
tuples:

q1 = R><a=b S q2 = R><a=b S

t1 = (1,1) t2 = (1,1)

I1 = {R = {(1)},S = {(1)2}} I2 = {R = {(1)2},S = {(1)}}

As shown below for this parameter combinations no injective function H can exists that fulfills the
condition H(W (q, I, t)) = DD(q, I, t):

W (q1, I1, t1) =< {(1)},{(1)2}> 6= < {(1)2},{(1)}> = W (q2, I2, t2)
DD(q1, I1, t1) = {< (1),(1) >,< (1),(1) >} = {< (1),(1) >,< (1),(1) >}= DD(q2, I2, t2)

Case H ′:
We present an example for which DD(q1, t1) 6= DD(q2, t2) and W (q1, t1) = W (q2, t2) hold to prove

that H ′ has no inverse:

q1 = Π
S

a(R><b=c S) q2 = Π
S

a(R><b 6=c S)
t1 = (1) t2 = (1)
I1 = {R = {(1,1),(1,2)},S = {(1),(2)}} I2 = {R = {(1,1),(1,2)},S = {(1),(2)}}

W (q1, I1, t1) =< {(1,1),(1,2)},{(1),(2)}> = < {(1,1),(1,2)},{(1),(2)}> = W (q2, I2, t2)
DD(q1, I1, t1) = {< (1,1),(1) >,< (1,2),(2) >} 6= {< (1,1),(2) >,< (1,2),(1) >}= DD(q2, I2, t2)

Despite the fact that PI-CS and Lineage-CS are not equivalent which we have proven above, these CS
types are nonetheless related to each other in the sense that they consider the same input relation tuples
to belong to the provenance (with the obvious exception of operators such as left outer join for which
PI-CS was deliberately defined to generate a different provenance than Lineage-CS). We prove this claim
by presenting a third representation of provenance and functions H and H ′ that translate from the PI-CS
and Lineage-CS representations into this representation. If we are able to define these functions in a way
that H(W (q, I, t)) = H ′(DD(q, I, t)) then we have shown that regarding the information stored in this new
representation both CS types are equivalent. The reduced representation we use is the same as the one
of Lineage-CS except that the Qi

∗ subsets of the input relations are sets instead of bags. Therefore, the
translation from Lineage-CS to the new representation is trivial:

H(W (q, I, t)) =< {t | tx ∈ Q1
∗}, . . . ,{t | tx ∈ Qn

∗}>

The definition of H ′ is straightforward too:

H ′(DD(Q, I, t)) =< {t | ∃w ∈DD ∧w[1] = t}, . . . ,{t | ∃w ∈DD ∧w[n] = t}>



20 CHAPTER 2. CONTRIBUTION SEMANTICS

Theorem 2.4 (Equivalence of the Reduced Representation of Lineage-CS and PI-CS). The reduced
representations of Lineage-CS and PI-CS are equivalent for algebra expressions containing only the
following operators: Π,σ ,><,∪,∩,α . Thus, for the translation functions H and H ′ the following holds:

H(W (q, t)) = H ′(DD(q, t))

Proof. We prove this theorem by induction over the structure of an algebra expression q and for an arbitrary
result tuple t of q:
Base Case:
q = σC(q1):

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t}>)
= < {t}>

=H ′({< u >n| un ∈ Q1∧u = t})
=H ′(DD(q, t))

q = ΠA(q1):

H(W (q, t))
=H(< {un | un ∈ Q1∧u.A = t}>)
= < {u | un ∈ Q1∧u.A = t}>

=H ′({< u >n| un ∈ Q1∧u.A = t})
=H ′(DD(q, t))

q = αG,agg(q1):

H(W (q, t))
=H(< {un | un ∈ Q1∧u.G = t.G}>)
= < {u | un ∈ Q1∧u.G = t.G}>

=H ′({< u >n| un ∈ Q1∧u.G = t.G})
=H ′(DD(q, t))

q = q1 ><C q2

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t.Q1},{vm | vm ∈ Q2∧ v = t.Q2}>)
= < {u | un ∈ Q1∧u = t.Q1},{v | vm ∈ Q2∧ v = t.Q2}>

=H ′({< u,v >n×m| un ∈ Q1∧u = t.Q1∧ vm ∈ Q2∧ v = t.Q2})
=H ′(DD(q, t))

q = q1∪q2

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t},{vm | vm ∈ Q2∧ v = t}>)
= < {u | un ∈ Q1∧u = t},{v | vm ∈ Q2∧ v = t >

=H ′({< u,⊥>n| un ∈ Q1∧u = t}∪{<⊥,v >m| vm ∈ Q2∧ v = t})
=H ′(DD(q, t))
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q = q1∩q2

H(W (q, t))
=H(< {un | un ∈ Q1∧u = t},{vm | vm ∈ Q2∧ v = t}>)
= < {u | un ∈ Q1∧u = t},{v | vm ∈ Q2∧ v = t}>

=H ′({< u,v >n×m| un ∈ Q1∧u = t ∧ vm ∈ Q2∧ v = t})
=H ′(DD(q, t))

Induction step:
Follows from the transitivity of Lineage-CS and PI-CS.
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2.3 Transformation Provenance Contribution Semantics
In this section we present the contribution semantics for transformation provenance developed for TRAMP
and based on PI-CS. data provenance relates output and input data, but does not provide any information
about how data was processed by a transformation. More specifically, it does not contain information
about which parts of a transformation were used to derive an output tuple. As an example, consider a
transformation that uses the duplicate preserving union operator. Each output tuple of the union is produced
from exactly one of the relations that are the inputs of the union. Recall that the notion transformation
provenance is used to describe this type of provenance information.

Transformation provenance is similar in motivation to how-provenance[8] that models some trans-
formation information by recording alternative and conjunctive use of tuples by a query. Unlike how-
provenance, transformation provenance is operator-centric, describing the contribution of each operator in
a transformation. This is also in contrast to other data CS types, which are in general data-centric. Our
approach is more similar to provenance approaches for workflow-management systems, that traditionally
have focused more on transformations [9]. Transformation provenance is extremely useful in understand-
ing how data is processed by an algebra expression, because it allows us to understand which parts of
the expression (that is, which operators) produced a result data item. Hence, we model transformation
provenance as what parts of a query contributed to an output tuple. This approach bears some similarities
with Why-not provenance presented in [3], so we will discuss the relation to this model and the superior
evaluation strategy developed for our model while introducing transformation provenance.

We model the transformation provenance of a query q using an annotated algebra tree for q. For an
output tuple t and a witness list w in the PI-CS data provenance of t, the transformation provenance will
include 1 and 0 annotations on the operators of the transformation q. A 1 indicates this operator on w
influences t, a 0 indicates it does not.

Example 2.9. Consider query qa in Fig. 2.7. The data provenance of output tuple (2) according to
PI-CS contains two witness lists. The transformation provenance of (2) for the first witness list is a tree
with every node annotated by a 1 (the left tree presented in Figure 2.7). The transformation provenance
of (2) with the second witness is a tree with every node annotated by a 1, except the node for the base
relation S which does not contribute and hence would have an annotation of 0 (the right tree presented
in Figure 2.7).

We now formalize annotations for algebra trees and then define transformation provenance based on
the notion of data provenance according to PI-CS.

Definition 2.9 (Algebra Tree). An algebra tree Treeq = (V,E) for a query q is a tree that contains a
node for each algebra operator used in q (including the base relation accesses as leaves). In such tree
there is a parent-child relationship between two nodes n1 and n2, iff the algebra operator represented by
n2 is an input of the algebra operator represented by n1. We define a pre-order on the nodes to give each
node an identifier (and to order the children of binary operators)a.

aThis is necessary, because for non commutative operators like left outer join the order of inputs matters.

Given an algebra expression q and an operator op used in this expression, we denote the subtree under
op by subop. We use subop(w) to denote the evaluation of subop over the witness list w. Based on the
concept of the algebra tree of an algebra expression we define annotated algebra trees and will use them to
represent transformation provenance information.

Definition 2.10 (Annotated Algebra Tree). An A -annotated algebra tree for a transformation q is a pair
(Treeq,θ) where θ : V ∈ Treeq → Pow(A ) is a function that associates each operator in the tree with a
set of annotations from a domain A .

For transformation provenance, the annotations sets will be singleton sets from the domain A = {0,1}
and we assign these annotations specific semantics. However, we include the more general definition as
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R
a b
1 2
1 3
2 3
2 5

S
c
2
3

Qa
a
1
2

R S

1

1

1 1
R S

1

1

1 0

qa = Πa(R ><b=c S)

DD(qa,(1)) = {< (1,2),(2) >,< (1,3),(3) >} DD(qa,(2)) = {< (2,3),(3) >,< (2,5),⊥>}

T (qc,(1)) :
θ<(1,2),(2)>(op) = 1 θ<(1,3),(3)>(op) = 1

T (qc,(2)) :

θ<(2,3),(3)>(op) = 1 θ<(2,5),⊥>(op) =

{
0 if op = S
1 else

Figure 2.7: Transformation Provenance Example

annotations could be used in a more general way to represent other provenance information (the developer
who last checked-in a query, the origin of a transformation).

This representation is conceptually similar to the one use in [3] to model Why-not provenance. Recall
that Why-not provenance models why a certain input (represented as a pattern) does not contribute to some
result. This information is presented as so-called picky parts of a query, which means the parts of a query
where the input of interest ”got lost”. In our representation the picky operations would be labeled with 0
annotations. In contrast to their work we do not require a user to come up with a certain input that got lost,
but define the annotations based solely on data provenance. Transformation provenance can be computed
efficiently without the need to compute data provenance which is the way Why-not provenance is computed
in [3].

We now have the necessary preliminaries to formally define transformation provenance based on data
provenance. Intuitively, each witness list of the data provenance of a tuple t represents one evaluation of
an algebra expression q. For each witness list, each part of the algebra expression has either contributed to
the result of evaluating q on w or not. Therefore, we represent the transformation provenance as a set of
annotated algebra trees of q with one member per witness list w. We use data provenance to decide whether
an operator op in q should get a 0 or a 1 annotation. Basically, if evaluating the subtree subop under op on
w results in the empty set, then op has contributed nothing to the result t and should not be included in the
transformation provenance.

Definition 2.11 (Transformation Provenance Contribution Semantics). The transformation provenance
of an output tuple t of q is a set T (q, t) of {0,1}-annotated-trees defined as follows:

T (q, t) = {(Treeq,θw) | w ∈DD(q, t)}

θw(op) =

{
0 if [[subop(w)]] = /0
1 else
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Example 2.10. Fig. 2.7 shows the PI-CS data and transformation provenance for both result tuples
of query qa. The PI-CS provenance of tuple t1 = (1) contains two witness lists w1 =< (1,2),(2) >
and w2 =< (1,3),(3) >. For both witness lists the transformation provenance annotation function θw
annotates each operator of q with 1. We can verify that this is correct by computing [[subop(w1)]]
and [[subop(w2)]] for each operator in the query. For the second result tuple t2 = (2) there are two
witness lists w3 =< (2,3),(3) > and w4 =< (2,5),⊥>. The annotation function θw4 for witness list
w4 annotates S with 0 and every other operator in q with 1. S is not contained in the transformation
provenance, because no tuple from S was joined with the tuple (2,5) from R to produce tuple t2 and,
therefore, the access to relation S does not contribute to t2 according to w4.
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2.4 Summary
In this chapter we presented the contribution semantics realized in Perm and its extension TRAMP. CS types
are of immense importance for a provenance management system, because they define ”What provenance
actually is”. We discussed how our definitions of CS relate to existing CS types and to each other, and how
we extended the existing notion of Lineage-CS to overcome problems of the original definition and make
it applicable to algebra expression with sublinks. Furthermore, for TRAMP we introduced a contribution
semantics for transformation provenance based on the PI-CS data provenance contribution semantics. In
summary, in this chapter we presented sound formal definitions of the semantics of provenance, but did not
discuss how to compute provenance according to a certain CS type. Note that the compositional semantics
can be used to compute provenance by recursively applying the constructions from this semantics for each
operator in a query, but, as we will demonstrate in the next chapter, there are more practical and efficient
approaches for computing provenance.
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Chapter 3

Provenance Computation through
Algebraic Rewrite

In the last chapter we introduced the CS types developed for Perm and prove several import properties of
their compositional semantics and relationships to standard CS types. However, we did not discuss how
provenance can be computed efficiently according to these CS types. In this chapter we present algorithms
that allow the efficient computation of provenance by using algebraic rewrites. In detail, we demonstrate
how to represent provenance information as normal relations and introduce rewrite rules that transform an
algebra expression q into an algebra expression q+ that computes the provenance of q in addition to its
original result.

Out of the possible approaches to provenance computation we choose algebraic rewrite, because this
approach has several important advantages over alternative approaches like, e.g., the inverse approach:

• No Modification of Data Model: Provenance information is modeled as normal relations which can
be, e.g., stored in a standard DBMS, queried using SQL, and stored as a view.

• No Modification of Execution Model: The rewritten query q+ that computes the provenance of a
query q is expressed in the same algebra as q (To be more precise, the Perm algebra introduced in
section 2.1). This will allow for the seamless integration of the rewrite rules into an existing DBMS
and enables us to benefit from the advanced query optimizations applied by this system. Furthermore,
provenance information can be queried using the same query language as for normal data.

• Sound Theoretical Foundation: The algebraic representation of provenance computation enables
us to prove the correctness of the developed algorithms.

In the following we discuss how to represent provenance in the relational model in section 3.1 and
demonstrate how we can transform a query q into a query q+ that generates this representation for PI-CS
provenance (section 3.2). In section 3.3 we present a relational representation of transformation provenance
and rewrite rules for this type of provenance in section 3.4.

27
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shop
name numEmpl
Merdies 3
Joba 14

sales
sName itemId
Merdies 1
Merdies 2
Merdies 2
Joba 3
Joba 3

items
id price
1 100
2 10
3 25

Qex
name sum(price)
Merdies 120
Joba 50

qex = αname,sum(price)(σname=sName∧itemId=id(shop× sales× items))

DD(qex,(Merdies,120)) = {< (Merdies,3),(Merdies,1),(1,100) >,

< (Merdies,3),(Merdies,2),(2,50) >2}
DD(qex,(Joba,50)) = {< (Joba,14),(Joba,3),(3,25) >2}

Figure 3.1: Running Example

3.1 Relational Representation of Data Provenance Information
The witness lists used by the Perm CS types for data provenance have a natural representation in the
relational model. For instance, the set DD of witness lists generated by PI-CS can be represented as a
single relation, because each witness list contains tuples with the same schema (We postpone the discussion
of the representation of ⊥ for now).

Example 3.1. As an example of this representation consider the provenance of query qex presented in
Figure 3.1 that computes the total profit for each shop over an example database of shops (with name
and number of employees), items they are selling, and purchases (sales relation). The witness lists from
DD(qex,(Merdies,120)) can be represented as the following relation:

{(Merdies,3,Merdies,1,1,100),(Merdies,3,Merdies,2,2,10)2}

If this representation is used to represent complete sets of witness lists according to some CS type
the problem arises that it is no longer clear to which output tuple of a query a witness lists belongs to.
Recall that we identified this association between original query results and provenance as one of the main
requirements of a PMS. Therefore, we include the original query results in our representation of data
provenance. The extended representation models each witness list w and the original result tuple it is
associated to as a single tuple.

Example 3.2. The PI-CS provenance of query qex would be represented as (The part of a tuple marked
in red corresponds to the original result tuple) :

{(Merdies,120,Merdies,3,Merdies,1,1,100),

(Merdies,120,Merdies,3,Merdies,2,2,10)2,

(Joba,50,Joba,14,Joba,3,3,25)2,}

Let us now consider the provenance representation for an arbitrary algebra statement q. We use QPI

to denote the relational representation of the provenance of a query q according to PI-CS. To produce
the provenance relation QPI , the original result relation Q is extended with all attributes from all base
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Qex
PI

name sum(price) N (name) N (numEmpl) N (sName) N (itemId) N (id) N (price)
Merdies 120 Merdies 3 Merdies 1 1 100
Merdies 120 Merdies 3 Merdies 2 2 100
Merdies 120 Merdies 3 Merdies 2 2 100
Joba 50 Joba 14 Joba 3 3 25
Joba 50 Joba 14 Joba 3 3 25

Figure 3.2: Example Provenance Representation

relations accessed by q. Multiple references to a base relation are handled as separate relations. For each
original result tuple t and witness list w ∈ DD(q, t) a tuple (t,w[1], . . . ,w[n]) is added to QPI . Hence, the
original tuple has to be duplicated, if there is more than one witness list in the provenance of this tuple.
The attribute names in the schema of QPI are used to indicated from which base relation attribute a result
attribute is derived from. The attributes that correspond to the original result attributes of q are not renamed.
To generate unique and predictable names for attributes storing provenance information we introduce a
function Nq : N→A that maps each attribute position in QPI to a unique name. The definition of N can
be found in [6]. Here we just assume that N exists and present an attribute name that is generated by N
from a base relation attribute a as N (a). For example, query qex accesses base relations shop, sales and
items. In consequence, the schema of Qex

PI according to the simplified representation is:

Qex
PI = (name,sum(price),N (name),N (numEmpl),N (sName),N (itemId),N (id),N (price))

To be able to represent ⊥ values in a witness list using the same schema as for regular tuple values we
represent a ⊥ at position i of witness list w as a tuple with schema Nq(Ri) and all attributes set to ε . For
instance, a witness list w =< (1),⊥> for tuple t = (3,2) from the provenance of a query over relations R
and S with schemas R = (a) and S = (b,c) would be represented as:

(3,4,1,ε,ε)

Below we present a formal definition of the relational representation of data provenance. This definition
will be used in the correctness proofs of the query rewrite rules that generate queries to compute this
representation.

Definition 3.1 (Relational PI-CS Data Provenance Representation). Let q be an algebra expression over
base relations R1, . . . ,Rn. The relational representation QPI of the provenance of q according to PI-CS
is defined as:

QPI = {(t,w[1]′, . . . ,w[n]′)m | t p ∈ Q∧wm ∈DD(q, t)}

w[i]′ =

{
w[i] if w[i] 6=⊥
null(Ri) else

Example 3.3. Figure 3.1 shows the provenance representation for query qex according to definition 3.1.
For instance, the first tuple in Qex

PI represents the original result tuple t = (Merdies,1) and the relational
representation of witness list w =< (Merdies,3),(Merdies,1),(1,100) > from the provenance of t.

This representation is quite verbose, but has several advantages over alternative representations:

• Single Relation: Provenance and original data is represented together in a single relation which can,
e.g., be stored in as a view.
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• Association between Provenance and Normal Data: Which witness list belongs to which result
tuple is explicitly stored in the representation, because each tuple in Q+ contains one original result
tuple and one of its witness lists.

• Provenance represented as Complete Tuples: We deliberately choose to represent provenance as
complete tuples instead of tuple identifiers to simplify the interpretation and querying of provenance.

We demonstrate the disadvantages of non-relational provenance representations on hand of the running
example from Figure 3.1 and for the representation used for Lineage-CS (e.g., [4]). Lineage-CS provenance
would represent the provenance of qex as the following list of relations1:

<{(Merdies,3),(Joba,14)},
{(Merdies,1),(Merdies,2),(Merdies,2),(Joba,3),(Joba,3)},
{(1,100),(2,10),(3,25)}>

This representation has two major disadvantages. First, a query having a list of relations as its result
can not be expressed in relational algebra, because each algebra operator has only a single result relation.
Thus, provenance queries and data are not in the same data model as the original data and queries. Second,
the result only includes provenance data. There is no direct association between the original result and
the contributing tuples. This is especially problematic if the provenance of a set of tuples is computed,
because one would loose the information about which of the provenance tuples contributed to which of
the original result tuples. This example presents an extreme case of this problem where the provenance is
the complete original database instance. As demonstrated above, these shortcomings are avoided by the
provenance representation used by Perm.

1The actual representation would be different because we are using bag semantics here.
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3.2 Rewrite Rules for Perm-Influence Contribution Semantics
Having presented the provenance representation for which rewrites should be produced, we now present
how a query q is transformed by the Perm approach into a query q+ that generates the desired provenance
result schema and propagates provenance according to PI-CS. In this section we limit the discussion to
algebra expressions without sublinks. Rewrite rules for algebra expressions with sublinks can be found in
[7]. The algebraic rewrites we use to propagate provenance from the base relations to the result of a query is
defined for single algebra operators. The approach used by Cui in [5] for Lineage-CS, the CS from which
PI-CS is derived from, is based on inversion of queries that trace the origin of a tuple (or set of tuples)
from the result back to the source. A disadvantage of this approach is that it requires the instantiation
of intermediate results for some operators like aggregation that are not invertible. The Perm approach
omits the instantiation of intermediate results. The provenance computation for each operator in a query
depends exclusively on the result relation of its rewritten inputs and is independent of the computation that
generated this rewritten inputs. Thus, we do not have to keep earlier results to compute the current step.
This approach has additional advantages if the provenance of only a part of a query should be computed.

The Perm algebraic rewrites are modeled as a function + : (E ,< A >)→ (E ,< A >) that transforms
a query q into a provenance computing query q+. Recall that E denotes the set of all possible algebra
expressions and < A > denotes the set of all possible lists of attribute names. The list of attribute names
(called provenance attribute list P of a query) is needed to define + as rewrite rules for each algebra
operator that are independent of each other. P is used to store the list of attributes of Q+ that are used to
store the witness lists. The result of + for a query q that contains multiple algebra operators is computed
by recursively applying the rewrite rules for to each operator in the query. To be able to rewrite a query
incrementally, the rewrite rules have to be applicable to rewritten inputs, i.e., a rewrite has to distinguish
between normal and provenance attributes in its input (This is why P is needed).

Each rewrite rule is modeled as a structural modification (the E → E part of +) and a modification of
the provenance attribute list (the < A >→< A > part of +). For two provenance attribute lists P1 =<
a1, . . . ,an > and P2 =< b1, . . . ,bn >, the list concatenation operation I is defined as P1 I P2 =<
a1, . . . ,an,b1, . . . ,bn >.

Definition 3.2 (Provenance Rewrite Meta-Operator). The provenance rewrite meta-operator + : (E ,<
A >)→ (E ,< A >) maps a pair (q,<>) to a pair q+,P(q+). + is defined over the structure of q as
rewrite rules for each algebra operator which are shown in Figure 3.3.

We call + a meta-operator, because, in contrast to algebra operator that transform relational data, it
transforms algebra expressions.

3.2.1 Unary Operators Rewrite Rules
In Figure 3.3 the structural and provenance attribute list rewrites for each algebra operator are presented
separately. We now discuss each rewrite rule in detail. The rewrite rule (R1) for base relation accesses
duplicates the attributes from a base relation R and renames them according to the provenance attribute
naming function Nq

2. The provenance attribute list of the rewritten base relation access contains the
duplicated attributes.

Rewrite rule (R2), the rule for ΠS/B
A(q1), rewrites a projection by adding the list of provenance at-

tributes from q1
+ to the projection list. For example, if q1 is an access of base relation items, P(q+) is

< N (id),N (price) >. (ΠS/B
A(item))+ preserves the complete tuples from relation item that were used

to compute the result of ΠA(item).
The result of applying + to a selection (rewrite rule (R3)) is generated by applying the unmodified

selection to its rewritten input, because adding the provenance attributes to the input of the selection does
not change the result of the selection condition. Therefore, only tuples that are extended versions of original
result tuples are in the result of the rewritten selection. The provenance attribute list of a rewritten selection
is the provenance attribute list of its rewritten input.

2Here q is the complete query that is rewritten, because the attribute names depend on the structure of the complete query.
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Structural Rewrite
Unary Operators

q+ = R+ = ΠR,R→N (R)(R) (R1)

q+ = (σC(q1))+ = σC(q1
+) (R2)

q+ = (ΠS/B
A(q1))+ = Π

B
A,P(q+)(q1

+) (R3)

q+ = (αG,agg(q1))+ = Π
B

G,agg,P(q+)(αG,agg(q1) ><G=nX Π
B

G→X ,P(q1+)(q1
+)) (R4)

Join Operators

q+ = (q1×q2)+ = Π
B

Q1,Q2,P(q+)(q1
+×q2

+) (R5.a)

q+ = (q1 ><C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+ ><C q2

+) (R5.b)

q+ = (q1 ><C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+ ><C q2

+) (R5.c)

q+ = (q1>< C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+>< C q2

+) (R5.d)

q+ = (q1 >< C q2)+ = Π
B

Q1,Q2,P(q+)(q1
+ >< C q2

+) (R5.e)

Set Operations

q+ = (q1∪S/Bq2)+ = Π
B

Q1,P(q+)(q1∪Sq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)) (R6.a)

q+ = (q1∪S/Bq2)+ = (q1
+×null(P(q2

+)))∪B(ΠB
Q1,P(q+)(q2

+×null(P(q1
+)))) (R6.b)

q+ = (q1∩S/Bq2)+ = Π
B

Q1,P(q+)(q1∩Sq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)) (R7)

q+ = (q1−S/Bq2)+ = Π
B

Q1,P(q+)(Π
S

Q1(q1−S/Bq2)><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1 6=nQ2 q2

+) (R8.a)

q+ = (q1−S/Bq2)+ = Π
B

Q1,P(q+)(Π
S

Q1(q1−S/Bq2)><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)×null(P(q2

+))) (R8.b)

Provenance Attribute List Rewrite

P(q+) =


P(q+) if q = σC(q1)∨q = ΠA(q1)∨q = αG,agg(q1)
P(q1

+) I P(q2
+) if q = (q1 �C q2)∨q = (q1∪S/Bq2)∨q = (q1∩S/Bq2)∨q = (q1−S/Bq2)

N (R) if q = R

Figure 3.3: PI-CS Algebraic Rewrite Rules for Queries without Sublinks
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The rewrite rule (R4) rewrites an aggregation operation. We can not add additional tuples to the in-
put of an aggregation or add additional attributes to its result schema without changing the values of the
aggregation functions. This means we cannot propagate provenance information through an aggregation
directly. Therefore, the rewritten query contains the original aggregation. The result of the original aggre-
gation is joined with the rewritten version of q1 using an equality condition on the grouping attributes. This
is feasible because, according to the compositional semantics of PI-CS, all tuples with the same grouping
attribute values as an result tuple t belong to the witness lists of t. We use an left outer join to handle the
case of an aggregation with an empty input. According to the semantics of the aggregation operator the
result of the aggregation is a single tuple in this case (with empty provenance). Note that the comparison
operator =n instead of normal equality is used in the rewrite rule. This comparison operator is defined as:

a=nb⇔ a = b∨ (a is ε ∧b is ε)

If the input of an aggregation contains tuples with null values in the group-by attributes, one output
tuple is generated for this group of tuples. The =n comparison operator guarantees that the provenance of
such a group is handled correctly. The provenance attribute list of a rewritten aggregation is the provenance
attribute list of its rewritten input.

3.2.2 Join Operator Rewrite Rules
The rewrite rules (R5.a) to (R5.e) rewrite join operators.The provenance attribute list of a rewritten join
operator is the concatenation of the provenance attribute lists of its rewritten inputs, because each witness
list in the provenance of a join result contains a witness list for the left input and a witness list for a right
input. � is used in the provenance attribute list construction as a placeholder for one of the join types of the
Perm algebra. A join operator is rewritten by applying the join to the rewritten inputs and using a projection
to produce the correct ordering of the result attributes (provenance attribute after normal attributes). This
is possible, because adding provenance attributes to the input relations q1 and q2 does not change the result
of the join condition.

3.2.3 Set Operations Rewrite Rules
The provenance attribute list of a rewritten set operation is the concatenation of the provenance attribute
lists of its rewritten inputs. Recall that we defined two contribution semantics for union. One that combines
two tuples from both inputs into a single witness list if they contributed to the same result tuple (this is the
behaviour of Lineage-CS) and one the would generate two separate witness lists for this case. Rewrite
rule (R6.a) implements the first version. The desired combination of rewritten input tuples into a single
output cannot be achieved by applying the union to the rewritten inputs. Thus, each input is rewritten
separately and then joined with original union query on the complete set of original result attributes (Recall
that according to the compositional semantics for union input tuples belong to a witness list of a result tuple
t if they are equal to t). We have to use outer joins to preserve tuples that are derived from only one of the
inputs. The projection that is applied to the output of the joins removes superficial attributes introduced by
the joins.

Rewrite rule (R6.b) implements the other contribution semantics for union. This rewrite rule simply
extends the tuples from both rewritten inputs with null values to make them union compatible. Each tuple
in the result of the rewritten query is derived from either the left or the right input and has the provenance
attributes of the other rewritten input set to null. Hence, each tuple models a witness list of type < t,⊥> or
<⊥, t > which are the two types of witness lists produced by the second compositional semantics of union.

The rewrite of an intersection operator (rewrite rule (R7) is similar to rule (R6.a). It also uses joins to
attach the provenance attributes from the rewritten inputs to the original result tuples of the intersection. In
contrast to union it is not necessary to use outer joins, because each result tuple of an intersection is derived
from tuples of both inputs.

Like for union, we proposed two contribution semantics for set difference. One that, like Lineage-CS,
includes tuples from the right input of the set difference in the provenance and the other one that includes
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Original Query qex = αname,sum(price)(σname=sName∧itemid=id(shop× sales× items))
Step 1 qex

+ = Πname,sum(price),P(q+)(αname,sum(price)(q)><name=x Πname→x,P(q+)(q+))

q = σname=sName∧itemid=id(shop× sales× items)
P(qex

+) = P(q+)
Step 2 q+ = Πname,numEmpl,sName,itemId,id,price,P(q+)(σname=sName∧itemid=id(qcross

+))

qcross
+ = shop+× sales+× items+

P(q+) = P(shop+) I P(sales+) I P(items+)
Step 3 shop+ = Πname,numEmpl,name→N (name),numEmpl→N (numEmpl)(shop)

P(shop+) = (N (name),N (numEmpl))
Step 4 sales+ = ΠsName,itemId,sName→N (sName),itemId→N (itemid)(sales)

P(sales+) = (N (sName),N (itemId))
Step 5 items+ = Πid,price,id→N (id),price→N (price)(items)

P(items+) = (N (id),N (price))

Qex
+

name sum(price) N (name) N (numEmpl) N (sName) N (itemId) N (id) N (price)
Merdies 120 Merdies 3 Merdies 1 1 100

Merdies 120 Merdies 3 Merdies 2 2 100

Merdies 120 Merdies 3 Merdies 2 2 100

Joba 50 Joba 14 Joba 3 3 25

Joba 50 Joba 14 Joba 3 3 25

Figure 3.4: Example Application of the Provenance Rewrite Meta-Operator

only tuples from the left input. Rewrite rule (R8.a) implements the first semantics in a similar way as the
union and intersection rewrite rules. Rewrite Rule (R8.b) only joins the rewritten left input and fills the
provenance attributes of the rewritten right input with null values. Note that the joins applied by the set
operation rewrite rules use the =n comparison operator to deal with input tuples that contain null values.

3.2.4 Example Query Rewrite
As an example, reconsider query qex from the running example. Figure 3.4 presents the application of +
to this query. The top level operator of qex is an aggregation operator. Applying rewrite rule (R4) we get
qex

+ as shown in 3.4 (step 1). Rule (R4) states that the P-list for qex
+ equals P(q+). At this point,

q+ has not been computed, thus, P(qex
+) is not expanded further in this step. The remaining sub-query

q is a selection, which is left untouched by the rewrite (R2). The cross-product qcross = shop× sales×
item is handled by rewrite rule (R5.a) (see 3.4 (step 2)). The P-list of a rewritten cross product is the
concatenation of the P-lists of its rewritten inputs. In this case, the provenance attribute lists of rewritten
base relations shop, sales and items. In Figure 3.4 (steps 3-5) rewrite rule (R1) is used to derive the
rewritten base relations shop+, sales+ and items+. The result of qex

+ is presented at the lower part of
Figure 3.4. Note that qex

+ generates exactly the PI-CS provenance representation introduced in section
3.1.

If one takes a careful look at this example, it is obvious that if qex had been represented as an operator-
tree, we would have computed the structural rewrite top-down and computed the P-lists in a second
bottom-up tree-traversal according to the sequence of operations applied in the example. A single bottom-
up computation of a rewrite is possible as well, because the rewrite rules do not enforce a specific eval-
uation order. It seems that the bottom-up approach is better suited, because the P-lists of rewritten sub-
expressions of a query q needed to compute q+’s P-list are immediately available, but the bottom-up
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approach has other disadvantages.
Using the set of rewrite rules, we are able to transform a algebra expression q into a single relational al-

gebra expression q+ generating the provenance of q. A major advantage of this approach is that provenance
computation and normal queries are expressed with the same query language which enables provenance to
be queried like normal data. For example, if a user needs to know which items where sold by shops with
a total sales bigger than 100, this query can be represented as q1 = ΠpId(σsum(price)>100(qex

+)). Note that
it is possible to write down the algebra expression of this query as a query solely on qex

+, because of the
direct association between provenance and original data in Qex

+, i.e., we can use provenance and original
attributes in conditions and projections.

3.2.5 Proof of Correctness and Completeness
As mentioned before computing provenance by evaluating algebra expressions allows us to prove the cor-
rectness of provenance computation. To show that the + meta-operator generates a query that computes
provenance according to PI-CS we have to prove that the result Q+ of the query q+ generated by the
algebraic rewrite rules is equal to QPI , the relational representation of provenance according to PI-CS.

Theorem 3.1 (Correctness and Completeness of the PI-CS Rewrite Rules). Let q be an algebra expres-
sion without sublink expressions. The result Q+ of the algebra expression q+ generated by applying the
provenance rewrite meta-operator to (q,<>) is equal to QPI and, thus, generates provenance according
to PI-CS:

Q+ = QPI

Proof. We have to show that each tuple in Q+ is of the form (t,w[1]′, . . . ,w[n]′) for an original result tuple
t and one of its witness lists w (soundness) and for each combination of t ∈ Q and w ∈ DD(q, t) there
is a corresponding tuple (t,w[1]′, . . . ,w[n]′) in Q+ (completeness). The proof of this theorem is twofold.
First, we show that each tuple in Q+ is an extension of an tuple from Q and that for each tuple in Q
there is a corresponding extended tuple in Q+. This proves that the tuples in Q+ and QPI agree on the
original result attributes. We call this property result preservation, because it states that all the original
result tuples of q and nothing else is stored in the original result attributes of Q+. Second, we prove that
each extension t+ = (t,w[1]′, . . . ,w[n]′) ∈ Q+ of t ∈ Q contains the relational representation of a witness
list w from DD(q, t) and that Q+ contains an extended tuple t+ for each witness list in DD(q, t). We refer
to this property as witness list preservation.

Result Preservation

The result preservation property is proven by showing that ΠS
Q(q+) = ΠS

Q(q). We prove this proposition
by induction over the structure of an algebra expression. Assuming we have proven ΠS

Q(q+) = ΠS
Q(q) for

all algebra expressions with maximal operator nesting depth i we have to show that ΠS
OP(Q)((op(q))+) =

ΠS
OP(Q)(op(q)) holds for every unary operator op and that ΠS

Q1 OP Q2((q1 op q2)+)= ΠS
Q1 OP Q2(q1 op q2)

holds for every binary operator.

Induction Start:
The only algebra expression with nesting depth 0 is a base relation access R. The other nullary operator t
is not of interest because its result is not derived from base data but instead generated by the query itself.
Therefore, the provenance of this operator is empty.

Π
S

R(R+)

=Π
S

R(ΠB
R,R→N (R)(R)) (algebraic equivalences)

=Π
S

R(R)

Induction Step:
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Case q = ΠS/B
A(q1):

Π
S

Q(q+)

=Π
S

A((ΠS/B
A(q1))+)

=Π
S

A((ΠS/B
A,P(q1+)(q1

+)))

=Π
S

A(q1
+)

=Π
S

A(ΠS
Q1(q1

+)) (because expression A is defined solely over attributes from Q1)

=Π
S

A(ΠS
Q1(q1)) (induction hypothesis)

=Π
S

A(ΠS/B
A(q1))

=Π
S

A(q)

Case q = σC(q1):

Π
S

Q(q+)

=Π
S

Q(σC(q1
+))

=Π
S

Q(σC(ΠS
Q1(q1

+))) (since C is defined solely over attributes from Q and Q = Q1)

=Π
S

Q(σC(ΠS
Q1(q1))) (induction hypothesis)

=Π
S

Q(σC(q1))

=Π
S

Q(q)

Case q = αG,agg(q1):

Π
S

Q(q+)

=Π
S

G,agg(αG,agg(q1) ><G=nX Π
B

G→X ,P(q1+)(q1
+))

=Π
S

G,agg(αG,agg(q1)) (semantics of left join and duplicate removal of projection)

=Π
S

Q(q)

Case q = q1 �C q2:

Π
S

Q(q+)

=Π
S

Q1,Q2(q1
+ �C q2

+)

=Π
S

Q1,Q2(Π
B

Q1(q1
+)�C Π

B
Q2(q2

+)) (equivalence of ΠB
Q(q) with q)

=Π
S

Q1,Q2(Π
S

Q1(q1
+)�C Π

S
Q2(q2

+)) (pushing duplicate removal into the join)

=Π
S

Q1,Q2(Π
S

Q1(q1)�C Π
S

Q2(q2)) (induction hypothesis)

=Π
S

Q(q)

Case q = q1∪S/Bq2 (R6.a):

Π
S

Q(q+)

=Π
S

Q1(Π
B

Q1,P(q+)(q1∪S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

=Π
S

Q1(Π
B

Q1(q1∪S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

=Π
S

Q1(Π
S

Q1(q1∪S/Bq2)) (semantics of left outer join and duplicate removal of projection)

=Π
S

Q(q)
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Case q = q1∪S/Bq2 (R6.b):

Π
S

Q(q+)

=Π
S

Q1((q1
+ ><null(P(q2

+)))∪B(ΠQ1,P(q+)(q2
+ ><null(P(q1

+)))))

=Π
S

Q1(Π
S

Q1((q1
+ ><null(P(q2

+))))∪B
Π

S
Q1((Π

B
Q1,P(q+)(q2

+ ><null(P(q1
+))))))

Pushing projection into union:

=Π
S

Q1(Π
S

Q1(q1
+))∪B

Π
S

Q2(Π
B

Q2(q2
+))

=Π
S

Q1(Π
S

Q1(q1))∪B
Π

S
Q2(Π

S
Q2(q2)) (induction hypothesis)

=Π
S

Q(q)

Case q = q1∩S/Bq2:

Π
S

Q(q+)

=Π
S

Q1(Π
B

Q1,P(q+)(q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

=Π
S

Q1(Π
B

Q1(q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+)><Q1=nY Π

B
Q2→Y,P(q2+)(q2

+)))

From the semantics of intersection and the induction hypothesis we know that every tuple from q1∩q2 will
find join partners in ΠB

Q1→X ,P(q1+)(q1
+) and ΠB

Q2→Y,P(q2+)(q2
+).

=Π
S

Q1(Π
B

Q1(q1∩S/Bq2))

=Π
S

Q(q)

Case q = q1−S/Bq2 (R8.a):

Π
S

Q(q+)

=Π
S

Q1(Π
B

Q1,P(q+)(q1−S/Bq2 ><Q1=nX ΠQ1→X ,P(q1+)(q1
+) ><Q1 6=nQ2 q2

+))

=Π
S

Q1(Π
B

Q1(q1−S/Bq2 ><Q1=nX Π
B

Q1→X ,P(q1+)(q1
+) ><Q1 6=nQ2 q2

+))

From the semantics of set difference we know that every tuple from q1−S/Bq2 will find at least on join
partner in ΠQ1→X ,P(q1+)(q1

+).

=Π
S

Q1(Π
B

Q1(q1−S/Bq2))

=Π
S

Q(q)

Case q = q1−S/Bq2 (R8.b):

Π
S

Q(q+)

=Π
S

Q1(ΠQ1,P(q+)(q1−S/Bq2 ><Q1=nX ΠQ1→X ,P(q1+)(q1
+) ><null(P(q2

+))))

=Π
S

Q1(Π
B

Q1(q1−S/Bq2)) (same argument as for rewrite rule (R8.a))

=Π
S

Q(q)

Witness List Preservation
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To prove the witness list preservation property we have to show that each tuple in Q+ is an extension of an
original result tuple t with the relational representation of one of t’s PI-CS witness lists. Let q be an algebra
expression defined over base relations R1, . . . ,Rn then we have to proof the following equivalence:

Q+ = QPI

This equality can be expressed as:

u = (t,v1, . . . ,vn) ∈ Q+ ⇔ w ∈DD(q, t)∧w[i]′ = vi

These is equivalent to Q+ = QPI because we have already proven that q+ fulfills the result preservation
property. Otherwise we would have to include an additional condition t ∈ Q on both sides of the equiv-
alence. As for Result Preservation we proof this property by induction over the structure of an algebra
expression.
Induction Start:
Case q = R:
⇒:

um = (t,v1) ∈ R+

⇒v1 = t ∧ tm ∈ R (R+ duplicates the attribute values of attributes in R)
⇒wm ∈DD(q, t)∧w[1]′ = v1 (since DD(R, t) = {< t >m| tm ∈ R})

⇐:

wm ∈DD(q, t)∧w[1]′ = v1

⇒v1 = t (compositional semantics of DD)

⇒u = (t,v1)m ∈ R+ (R+ duplicates values of attributes in R)

Induction Step for Unary Operators:
Assuming that witness list preservation holds for algebra expressions with a maximal nesting depth i

we have to show that this property holds for algebra expressions with maximal nesting depth i+1. Hence,
for unary operators op we have to show that for an algebra expression q = op(q1) with nesting depth i+1
the following holds under the assumption that (t,v1, . . . ,vn) ∈ Q1

+ ⇔ w ∈DD(q1, t)∧w[i]′ = vi:

(t,v1, . . . ,vn)m ∈ Q+ ⇔ wm ∈DD(q, t)∧w[i]′ = vi

Using the definition of transitivity for DD the right hand side can be transformed into:

(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧w1
m ∈DD(q1, t ′)∧w1[i]′ = vi)

∨ (wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))

Substituting the induction hypothesis we get:

(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1
+)

∨(wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))

Thus, we have to prove the following equivalence:

(t,v1, . . . ,vn) ∈ Q+

⇔
(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1

+)
∨ (wm ∈DD(op(Q1), t)∧w =<⊥> ∧m = 1∧∀i : vi = (ε, . . . ,ε))
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This means q+ produces correct results if it propagates witness list representation correctly. For a
witness list representation w′ from the rewritten input, q+ has to attach w′ to a tuple t in the output iff t is
derived from a tuple t ′ from the input and in the rewritten input t ′ is attached to w′.

Case q = σC(q1):
Applying rewrite rule (R2) to q we get q+ = σC(q1

+). From the compositional semantics of PI-CS for
selection we know that a witness list w in DD(σC(Q1), t) will never contain ⊥. Therefore, the right
disjunct of the right hand side of the equivalence we have to prove is never fulfilled. It follows that we can
simplify the right hand side to:

(wx ∈DD(op(Q1), t)∧w =< t ′ > ∧(t ′,v1, . . . ,vn)m ∈ Q1
+)

Using the simplified equivalence we get:

(t,v1, . . . ,vn)m ∈ Q+

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧ t ′ = t (definition of selection)

⇔(t ′,v1, . . . ,vn) ∈ Q1
+∧wm =< t ′ >∈DD(σC(Q1), t) (compositional semantics of PI-CS)

Case q = ΠS/B
A(q1):

Applying rewrite rule (R3) to q we get q+ = ΠB
A,P(q+)(q1

+) = ΠB
A,P(q1+)(q1

+). Using the same argu-
ments as applied in the proof for selection we deduce that the simplified equivalence can be applied in the
proof for projection too.

(t,v1, . . . ,vn)m ∈ Q+

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧ t ′.A = t (definition of projection)

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧wm =< t ′ >∈DD(ΠS/B

A(Q1), t) (compositional semantics of PI-CS)

Case q = αG,agg(q1):
Applying rewrite (R2) to q we get q+ = ΠB

G,agg,P(q+)(αaggr,G(q1) ><G=nX ΠB
G→X ,P(q1+)(q1

+)) with
P(q+) = P(q1

+). We distinguish between two cases:

1. G = () and Q1 = /0

2. else

Case 1: For the first case we know that DD(q, t) = {<⊥>}. Therefore, the left disjunction of the right-
hand side of the equivalence we have to prove can be removed. In the following let v = (v1, . . . ,vn).

(t,v1, . . . ,vn)m ∈ Q+

⇔t ∈ Q∧ (((u,v)m ∈ Q′∧q′ = Π
B

G→X ,P(q1+)(q1
+)∧u.X=nt.G)∨ (v = ε, . . .ε))

⇔t ∈ Q∧ (v = ε, . . . ,ε) ∈ Q′

⇔<⊥>∈DD(αG,agg(Q1), t)

Case 2: For the second case we know that every result tuple t in αG,agg(q1) will find a join partner in
ΠB

G→X ,P(q1+)(q1
+), because otherwise t would not in Q.

(t,v1, . . . ,vn)m ∈ Q+

⇔(u,v)m ∈ Q′∧q′ = Π
B

G→X ,P(q1+)(q1
+)∧u.X = t.G∧u.v = t.v (definition of left join)

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧ t ′.G = t.G

⇔(t ′,v1, . . . ,vn)m ∈ Q1
+∧wx =< t ′ >∈DD(αG,agg(Q1), t)
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Induction Step for Binary Operators:
To prove witness list preservation for binary operators we use the same approach as applied for unary

operators. The difference is that applying the transitivity definition of PI-CS to q = q1 op q2 generates a
more complex equivalence:

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+ ⇔ case1∨ case2∨ case3∨ case4

where

case1 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′, t ′′ >

∧w[q1]p ∈DD(q1, t ′)∧w[i]′ = vi∧w[q2]r ∈DD(q2, t ′′)∧w[i+n]′ = ui)
case2 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′,⊥>

∧w[q1]p ∈DD(q1, t ′)∧w[i]′ = vi∧∀i : ui = (ε, . . . ,ε)∧ r = 1)
case3 =(wx ∈DD(Q1 op Q2, t)∧w =<⊥, t ′ >

∧∀i : vi = (ε, . . . ,ε)∧ p = 1∧w[q2]r ∈DD(q2, t ′)∧w[n+ i]′ = ui)
case4 =(w ∈DD(Q1 op Q2, t)∧w =<⊥,⊥> ∧∀i : vi = (ε, . . . ,ε)∧∀i : ui = (ε, . . . ,ε)∧ p = r = 1)

Substituting the induction hypothesis for each of these cases produces the following equivalent formu-
lation:

case1 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′, t ′′ >

∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′,u1, . . . ,um)p ∈ Q2

+)
case2 =(wx ∈DD(Q1 op Q2, t)∧w =< t ′,⊥>

∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧∀i : ui = (ε, . . . ,ε)∧ r = 1)

case3 =(wx ∈DD(Q1 op Q2, t)∧w =<⊥, t ′ >

∧∀i : vi = (ε, . . . ,ε)∧ (t ′,u1, . . . ,um)p ∈ Q2
+)

case4 =(w ∈DD(Q1 op Q2, t)∧w =<⊥,⊥> ∧∀i : vi = (ε, . . . ,ε)∧∀i : ui = (ε, . . . ,ε)∧ p = r = 1)

We prove this equivalence by identifying under which pre-conditions each of the cases is fulfilled
(the individual case are non-overlapping) and then under assumption of these pre-conditions prove the
equivalence of the left hand side with this case. Note that some of these cases can be precluded for several of
the binary operators, because the provenance of these operators never contains witness lists of the requested
format.
Case q = q1×q2:

According to the compositional semantics of PI-CS for cross product each witness list is of the form
w =< u,v > where u respective v are tuples from Q1 respective Q2. Therefore, all cases except case1 can
be excluded.

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t.Q1,v1, . . . ,vn)p ∈ Q1
+∧ (t.Q2,u1, . . . ,um)q ∈ Q2

+ (semantics of projection and cross product)

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)q ∈ Q2

+∧ t ′ = t.Q1∧ t ′′ = t.Q2

⇔wx =< t ′, t ′′ >∈DD(Q1×Q2, t)∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)q ∈ Q2

+

(compositional semantics for cross product)
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Case q = q1 ><C q2:
According to the compositional semantics of PI-CS for join each witness list is of the form w =< u,v >

where u respective v are tuples from Q1 respective Q2. Therefore, all cases except case 1 can be excluded.

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t.Q1,v1, . . . ,vn)p ∈ Q1
+∧ (t.Q2,u1, . . . ,um)q ∈ Q2

+ (semantics of projection and join)

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)q ∈ Q2

+∧ t ′ = t.Q1∧ t ′′ = t.Q2

⇔wx =< t ′, t ′′ >x∈DD(Q1 ><C Q2, t)∧ (t ′,v1, . . . ,vn)p ∈ Q1
+∧ (t ′′,u1, . . . ,um)q ∈ Q2

+

(compositional semantics for join)

Case q = q1 ><C q2:
Each witness list w in the PI-CS provenance for left outer join is either of the form < u,v > with u from

Q1 and v from Q2 or of form < u,⊥> with u from Q1. Hence, only cases 1 and 2 have to be considered.
Case 1: According to the compositional semantics for left outer join case 1 applies if t |= C. In this case
the semantics of left outer join, its compositional semantics and rewrite rule coincide with the join case.
Case 2: Case 2 applies if t = (t ′,ε, . . . ,ε) where t ′ ∈ Q1. This means t is generated from a left hand side
input tuple that does not have a join partner in Q2.

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧ t = (t ′,ε, . . . ,ε)

⇔(t ′,v1, . . . ,vn)p ∈ Q1
+∧wx =< t ′,⊥>x∈DD(Q1 ><C Q2, t)

Case q = q1>< C q2:
For right outer join only cases 1 and 3 apply. The proves for both cases are analog to the proves for left

outer join.
Case q = q1 >< C q2:

For full outer join case 1 to 3 apply and are proven as for the other outer join types.
Case q = q1∪S/Bq2 (PI semantics):

All witness lists in the provenance of a union are either < u,⊥> or <⊥,v > with u ∈ Q1 and v ∈ Q2 if
PI-CS semantics are applied. This means only cases 2 and 3 apply.
Case 2:

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧wx ∈DD(Q1∪Q2)∧w =< t,⊥>

Case 3: Is symmetric to the proof of case 2.
Case q = q1∪S/Bq2 (alternative semantics):

For the alternative semantics of union provenance (rewrite rule 6.a) also case 1 applies.
Case 1:

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+ (semantics of left outer join)

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+∧wx ∈DD(Q1∪S/BQ2)∧w =< t, t >
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Case 2:

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧wx ∈DD(Q1∪S/BQ2)∧w =< t,⊥>

Case 3: Is symmetric to the proof of case 2.
Case q = q1∩S/Bq2:

For intersection all witness lists are of the form < u,v > with u ∈ Q1 and v ∈ Q2. Only case 1 applies.

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+ (semantics of join)

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t,u1, . . . ,um)r ∈ Q2

+∧< t, t >x∈DD(Q1∩S/BQ2)

Case q = q1−S/Bq2 (PI-CS semantics):
All witness lists for set difference are of the form < u,⊥> with u ∈ Q1. Therefore, only case 2 applies

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧< t,⊥>x∈DD(Q1−S/BQ2)

Case q = q1−S/Bq2 (alternative semantics):
Under the alternative semantics a witness lists from DD(q, t) is either of form < t,v > with t ∈Q1 and

v ∈Q2 if Q2 contains tuples that are not equal to t or of form < t,⊥> otherwise. This means cases 1 and 2
apply.
Case 1:

(t,v1, . . . ,vn,u1, . . . ,um)p×r ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t ′,u1, . . . ,um)r ∈ Q2

+∧ t 6= t ′

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ (t ′,u1, . . . ,um)r ∈ Q2

+∧< t, t ′ >x∈DD(Q1−S/BQ2, t)

Case 2:

(t,v1, . . . ,vn,ε, . . . ,ε)p ∈ Q+

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧ 6 ∃(t ′,u1, . . . ,um) ∈ Q2

+ : t 6= t ′

⇔(t,v1, . . . ,vn)p ∈ Q1
+∧< t,⊥>x∈DD(Q1−S/BQ2, t)

Having proven theorem 3.1 we established an very important property. Given a query q (without sub-
links) we know how to transform it into a query q+ by applying the meta-operator +. q+ is guaranteed to
compute the provenance of q according to PI-CS alongside with the original results of q. Furthermore, in
the result of Q+ each original tuple t is extended with the relational representations of its PI-CS witness
lists. The correctness and completeness of + was proven in two steps. First, we demonstrated that q+

preserves the original result tuples of q (result preservation). I.e., if Q contains a tuples t then Q+ will
contain extended versions of t and all tuples (t,v) in Q+ are extended versions of tuples from Q. Sec-
ond, we have proven that each extended version of a tuple t in Q+ is generated by attaching the relational
representation of a witness list from DD(q, t) to t (witness list preservation). This means only relational
representations of witness lists from DD(q, t) are included in Q+ and q+ generates the correct associations
between witness lists and original result tuples as requested by the relational representation QPI of PI-CS
provenance. In the next section we extend the rewrite rules for algebra expressions with sublinks and prove
the correctness and completeness of these extensions.
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R
a b
1 2
1 3
2 3
2 5

S
c
2
3

Qa
a
1
2

R S

1

2

3 4

qa = Π
S

a(R ><b=c S)

T (qc,(1)) :θ<(1,2),(2)>(op) = 1 θ<(1,3),(3)>(op) = 1

T (qc,(2)) :θ<(2,3),(3)>(op) = 1 θ<(2,5),⊥>(op) =

{
0 if op = S
1 else

Θ<(1,2),(2)> = {1,2,3,4} Θ<(1,3),(3)> = {1,2,3,4}
Θ<(2,3),(3)> = {1,2,3,4} Θ<(2,5),⊥> = {1,2,3}

Qa
Trans

a T
1 {1,2,3,4}
1 {1,2,3,4}
2 {1,2,3,4}
2 {1,2,3}

Figure 3.5: Transformation Provenance Representation Example

3.3 Relational Representation of Transformation Provenance Infor-
mation

In this section we introduce a simplistic relational representation of transformation provenance. More user-
friendly representations are not discussed in this report. Recall that the transformation provenance of an
algebra expression q contains one annotated algebra tree for each witness list in the PI-CS data provenance
of q. These annotated trees all have the same nodes and edges; they only differ in their annotations functions
θw. Therefore, we factor out the static part (that is the tree) in the relational representation of transformation
provenance and only represent the annotation functions. Each annotation function θw is represented as the
set of nodes from the algebra tree for which θw evaluates to 1. To simplify this representation identifiers for
the nodes in an algebra tree are created by a pre-order traversal of the tree. We call the set representation
of an annotation function θw the annotation set Θw.

Example 3.4. In Figure 3.5 we reconsider the transformation provenance example from chapter 2. The
algebra tree presented on the top right of this figure shows the generated node identifiers. These node
identifiers are used in the set representations of the θw annotations functions for the transformation
provenance of example query qa. For instance, Θ<(2,5),⊥> contains the identifiers for all nodes except
the one for the base relation access S, because θ<(2,5),⊥ > evaluates to 0 for this node.

Similar to the relational representation of data provenance we represent transformation provenance and
the original result data in a single relation Qtrans. The annotation sets for the witness lists of a original result
tuple are stored in a single additional attribute T . Each tuple in Qtrans stores one original result tuple and
one annotation set Θw for a w ∈DD(q, t).
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Definition 3.3 (Relational Transformation Provenance Representation). Let q be an algebra expression.
The relational representation QTrans of the provenance of q according to the transformation provenance
CS is defined as:

QTrans = {(t,Θw)m×p | t p ∈ Q∧wm ∈DD(q, t)}

Example 3.5. The relational representation Qa
trans of the transformation provenance of example query

qa is shown at the bottom of Figure 3.5. For instance, the last tuple in this relation represents the original
result tuple (2) and the annotation set Θ<(2,5),⊥> and, therefore, the set stored in the T attribute of this
tuple includes all node identifiers except the one for the access to base relation S.
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Structural Rewrite

qT = (R)T =Π
B

R,T (qT )→T (R) (T1)

qT = (σC(q1))T =Π
B

Q1,T (qT )→T (σC(q1
T )) (T2)

qT = (ΠS/B
A(q1))T =Π

B
A,T (qT )→T (q1

T ) (T3)

qT = (αG,agg(q1))T =Π
B

G,agg,T (qT )→T (αG,agg(q1) ><G=nX Π
B

G→X ,T (q1
T )) (T4)

qT = (q1 �C q2)T =Π
B

Q1,Q2,T (qT )→T (q1
T �C q2

T ) (T5)

qT = (q1∪S/Bq2)T =Π
B

Q1,T (qT )→T (q1
T∪S/Bq2

T ) (T6)

qT = (q1∩S/Bq2)T =Π
B

Q1,T (qT )→T (q1∩S/Bq2 ><Q1=nX Π
B

Q1→X ,T (q1
T )><Q1=nQ2 q2

T ) (T7)

qT = (q1−S/Bq2)T =Π
B

Q1,T (qT )→T (q1−S/Bq2 ><Q1=nX Π
B

Q1→X ,T (q1
T )) (T8)

Transformation Provenance Attribute Rewrite

T (RT ) = {R}
T ((σC(q1))T ) = {σc(q1)}∪Q1.T

T ((ΠS/B
A(q1))T ) = {Π

S/B
A(q1)}∪Q1.T

T ((αG,agg(q1))T ) = {αG,agg(q1)}∪Q1.T

T ((q1 �C q2)T ) = {q1 �C q2}∪Q1.T ∪Q2.T

T ((q1∪S/Bq2)T ) = {q1∪S/Bq2}∪Q1.T

T ((q1∩S/Bq2)T ) = {q1∩S/Bq2}∪Q1.T ∪Q2.T

T ((q1−S/Bq2)T ) = {q1−S/Bq2}∪Q1.T

Figure 3.6: Transformation Provenance Rewrite Rules

3.4 Rewrite Rules for Transformation Provenance
We now present a meta-operator T for transformation provenance that transforms an algebra expression
q into an algebra expression qT that computes the relational representation QTrans of the transformation
provenance of q. Like for data provenance these meta-operator is defined inductively over the structure of
an algebra expression as rewrite rules for each algebra operator.

Definition 3.4 (Transformation Provenance Rewrite Meta-Operator). The transformation provenance
rewrite meta-operator T : E → E is defined inductively over the structure of an input algebra expression
q by applying the rewrite rules presented in Figure 3.6 to each operator in q.

Fig. 3.6 presents the rewrite rules that implement T . For each rewrite rules the structural modification of
the algebra expression and the computation of the new transformation provenance attribute T is presented
separately. For the transformation provenance attribute rewrite we use the following notational conventions:
{q} denotes the node identifier of the top operator of q in the algebra tree of q. E.g., for the algebra
expression σC(R ><a=b S) the expression {R ><a=b S} represents the node identifier 2. The ∪ used in the
definition of the annotation sets is the normal set union operation except that we define T ∪ ε = T .

The rewrite rule (T1) for a base relation access adds the singleton annotation set containing the node
identifier of the base relation access {R} as the value for attribute T to each generated result tuple. A
selection is rewritten by rule (T2) by applying the unmodified selection to q1

T and adding an outermost
projection that simply adds the node identifier of the selection operator to the annotation set of the rewritten
input q1

T . (T3), the rewrite rule for projection, works analogously. An aggregation is rewritten (T4) by
joining the rewritten input q1

T with the original aggregation and using a projection to add the node identifier
for the aggregation to the annotation set of qT .
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qa = Π
S

a(R ><b=c S)

qa
T = Π

B
a,{1}∪T →T (ΠB

a,b,c,{2}∪R+.T ∪S+.T →T (ΠB
a,b,{3}→T (R) ><b=c Π

B
c,{4}→T (S)))

Qa
T

a T
1 {1,2,3,4}
1 {1,2,3,4}
2 {1,2,3,4}
2 {1,2,3}

Figure 3.7: Transformation Provenance Rewrite Example

The rewrite rule for join operators (T5) (here � denotes one of the algebra join operators) unions the
annotation sets of the rewritten inputs and add the node identifier of the join to the result. Note that this is
correct behavior for outer joins, because we have defined the union of a annotation set with ε as T ∪ε = T .

Rewrite rule (T6) for the union operator unions the rewritten inputs and uses a projection to union the
annotation sets of both rewritten inputs with the node identifier of the union operator. In the transformation
provenance attribute rewrite the T attribute of the input is referenced without using a qualification (e.g.,
S+.T ), because the result schema of the union operator is the schema of its the left hand input. (T7), the
rewrite rule for intersection works in a similar way as the PI-CS rewrite rule for this operator: the original
intersection is joined with the rewritten left and right input on the original result attributes. The applied
projection unions the annotation sets from both rewritten inputs with the node identifier of the intersection
operator. A set difference is rewritten by (T8) using the same approach. For set difference the right input is
not rewritten, because the PI-CS provenance of the right input is ⊥. Hence, the annotation set of the right
input is always the empty set.

Example 3.6. Figure 3.7 shows the application of the T meta-operator to the example query qa from
Figure 3.5. In qa

T the node identifiers of the individual operators are added to the intermediate annota-
tion set produced by the the rewritten input of the operator. Note that some node identifiers (1,2, and 3)
are guaranteed to be contained in each annotation set produced by qa

T . Thus, the rewritten query could
be simplified to:

Π
B

a,{1,2,3}∪S+.T →T (R ><b=c Π
B

c,{4}→T (S))

Note that in the simplified query R is not rewritten at all. This kind of simplification is not specific to
the example, but can be applied to a wide range of algebra expressions. We now prove the correctness
and completeness of the rewrite rules and then discuss the simplification in detail.

Theorem 3.2 (Correctness and Completeness of the Transformation Provenance Rewrite Rules). For a
algebra expression q the transformation provenance rewrite rules as presented in Figure 3.6 compute the
relational representation of transformation provenance as defined in Definition 3.3:

QTrans = QT

Proof.
To prove this theorem we use a modified version of the transformation provenance rewrite rules (denoted
by qT+ that in addition to the annotation sets also propagate PI-CS witness list representations. The meta-
operator implemented by the modified rewrite rules is called T+. The transformation provenance rewrite
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rules use the same structural rewrites as the PI-CS. Therefore, the modified rewrites can be derived from the
original T meta-operator rewrite rules by simply adding the provenance attribute list P to each outermost
projection of an rewritten operator. E.g., the modified rule for projection is:

qT+ = (ΠS/B
A(q1))T+ = Π

B
A,T (qT+)→T ,P(q+)(q1

T+)

The modified versions allow us to reason over witness list over which a T set is defined. Instead of the
original equivalence QTrans = QT we proof the equivalence QTransPI = QT+ where QTransPI is defined as

QTransPI = {(t,Θw,w′)m×p | t p ∈ Q∧wm ∈DD(q, t)}

The only difference between QTrans and QTransPI respective QT and QT+ is that, in addition to the an-
notation sets, also the witness list from which the annotation set is derived from is represented. Therefore,
the equivalence QTrans = QT follows from QTransPI = QT+. Similar to the proof for PI-CS, the equivalence
QTransPI = QT+ is proven in two steps. First the result preservation property of T+ is proven. Afterwards,
we prove that for tuple (t,w′,x)∈QT+, the set x is the annotation set Θw derived for witness list w (correct-
ness), and that for every witness list w ∈DD(q, t) the tuple (t,w′,Θw) is in QT+ (completeness). We refer
to this property as Annotation Set Preservation). From the proof of PI-CS we know that for a witness list
w∈DD(q, t) a tuple (t,w′,x) is in QT+. Hence, only the correctness part of the annotation set preservation
has to be proven.

Result Preservation

The transformation provenance rewrite rules apply the same structural rewrites as the PI-CS rewrite
rules. For the PI-CS rewrite rules we have proven that they fulfill the result preservation property. There-
fore, this property is also fulfilled for the transformation rewrite rules.

Annotation Set Preservation

We prove the annotation set preservation by induction over the structure of an algebra expression q.
We have to show that each result tuple in QT+ is of the form (t,w′,Θw).
Induction Start:

For q = R each tuple in QT+ is of form (t,w′,T ) with w′ = t and T = {R}. We have to show that {R}=
Θw. {R} is contained in Θw if R(w) = R(< t >) 6= /0 which is trivially fulfilled, because R(< t >) = {t}.
Induction Step: Given that the transformation provenance rewrite rules produce correct annotation sets
for algebra expressions with a maximal nesting depth of n we have to prove that the same holds for algebra
expressions with nesting depth n + 1. Let op be an unary operator and q1 be an algebra expression with
maximal nesting depth n + 1. Then we have to show that for (t,w′,T ) in (op(q1))T+ the following holds:
T = Θw.
Case σC(q1):

The rewrite rule for selection applies the unmodified selection and adds the annotation for the selection
to the annotation set from q1

T+. Hence, each tuple from qT+ is of form (t,w′,{q}∪Θv)) where Θv is the
annotation set of the witness list v in DD(q1, t ′) from which w is derived from. To prove that {q}∪Θv = Θw
we have to show that (1) Θw contains {q} and that (2) Θw∩OP(q1) agrees with Θv∩OP(q1). Here OP(q1)
denotes the node identifiers for all operators in q1. If w is a witness list for q then q(w) 6= /0. Thus, the
first property is fulfilled. From the compositional semantics of PI-CS we know that w = v. Therefore, the
property (2) is fulfilled, because each subop(w) = subop(v) for op in q1.
Case ΠS/B

A(q1):
Case αG,agg(q1):

As for selection the rewrite rules for projection and aggregation produce tuples of the following form
(t,w′,{q}∪Θv). Property (1) and (2) holds for the same reason as for selection.

For binary operators we can use the same reasoning as for unary operators to prove property (1) (the
node identifier of op is included in the annotation set of op). For the proof of property (2) for binary
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operators the following cases have to be considered (based on the three cases in the definition of transitivity
for PI-CS):

1. The witness list w = v1 I v2 for v1 and v2 being the witness lists for q1 respective q2 from which w
is derived trough transitivity.

2. The witness list w = v1 I<⊥, . . . ,⊥> for v1 being the witness lists for q1 from which w is derived
trough transitivity.

3. The witness list w =<⊥, . . . ,⊥>I v2 for v2 being the witness lists for q2 from which w is derived
trough transitivity.

Case q1×q2:
Case q1 ><C q2:
Case q1∩S/Bq2:

For cross product, join, and intersection only the first case applies and the proof is analog to the proof
for unary operators, because each of these operators combine the Θv1 and Θv2 sets.
Case q1 ><C q2:

For left outer join the first and the second case apply. The first case applies for tuples which fulfill
the join condition. Therefore, the annotation set construction ({q1 ><q2}∪Q1.T ∪Q2.T ) applied by
the rewrite rule generates the correct set. The second case applies for tuples t that do not fulfill the join
condition. In this case all parts of w that correspond to q2 are set to /0. It follows that [[q2(w)]] = /0. This
means in Θw does not include any node identifiers from OP(q2). This correctly modeled in the rewrite rule,
because t does not fulfill the join condition and, therefore, attribute Q2.T is null (Recall that we use ε is
an alternative representation of the empty set).
Case q1>< C q2:
Case q1 >< C q2:
Case q1∪S/Bq2:

The proof for right outer join, full outer join, and union are analog to the proof of left outer join.
Case q1−S/Bq2:

For set difference only the second case applies. The rewrite rule discards the annotation set for q2.
Hence, no node identifiers from OP(q2) are included in the resulting annotation set.

3.4.1 Rewrite Rules Simplification
Recall that we presented a simplification of the rewritten example query qa

T that uses the fact that some
node identifiers are guaranteed to be in the annotation sets of qa

T . In general a node identifier for an
operator op is guaranteed to be in the annotation set of a rewritten query if computing subop(w) for a witness
list w ∈ DD(q, t) for t ∈ Q never returns the empty set. We use this fact to identify criteria for applying
the presented simplification. According to the compositional semantics of PI-CS the only operators that
include ⊥ in witness lists are the outer joins, union and set difference. According to the transitivity of
PI-CS the only possibility ⊥ can occur in a witness list of a query q is that one of the aforementioned
operators is used in q. From the definition of PI-CS (condition 2) and the definition of the algebra operators
we can deduce that the evaluation of q over a witness list will never result in the empty set if none of the
⊥ generating operators is used in q. This means queries involving only operators that never include ⊥ in
their witness lists (which we refer to as transformation static) are rewritten by simply adding an projection
to the query that generates the static annotation set for this query. By static we mean that the annotation
set is independent of the input data. Even more, if a query includes non-static operators, all static operators
that are in an sub-tree for which the root operator is non-static can be rewritten by adding the annotation
set trough a projection.

Proposition 3.1 (Transformation Provenance Rewrite Simplification). For an algebra expression q, all
operators that are static and do not have a non-static operator as their ancestor in the algebra tree of q
or are only in the left/right sub-tree of an left/right outer join have static transformation provenance.
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3.5 Summary
In this chapter we introduced relational representations for provenance according to the contribution se-
mantics presented in chapter 2 and demonstrated how to generate these representations by evaluating rewrit-
ten algebra expressions. Several meta-operators were discussed that transform an algebra expression q into
a rewritten form that computes the relational representation of a type of provenance for q. For each of
the meta-operators we proved that the rewritten algebra expressions generated by this operator computes
the corresponding relational representation of provenance. For PI-CS provenance of algebra expressions
with sublinks we have introduced several rewrite strategies that utilize un-nesting and de-correlation tech-
niques to rewrite these queries. Furthermore, for transformation provenance we presented simplifications
for the rewrites and demonstrated when they can be applied. In summary, we have theoretically sound al-
gorithms for computing relational provenance representations according to several CS types. The relational
representations allow us to store provenance in a relational database and query it using SQL. Which is a
huge advantage over existing approaches that do not support querying of provenance information at all or
supply only very limited query capabilities. Modeling provenance computation as algebraic rewrites has
the intrinsic advantage that provenance computations can be seamlessly integrated into SQL which is not
the case for other provenance approaches, because they usually develop a new language for provenance
computation and querying. Note that though these languages may be implemented as rewrites too, this in
general does not mean that they can be easily integrated in SQL. This is due to the fact that the applied
provenance representation is not relational and is produced by post-processing the result of the rewritten
queries. In the next chapter we will demonstrate how to integrate the Perm provenance representation and
computation into a relational DBMS.
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