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Abstract— When integrating data from multiple sources, a key
task that online communities often face is to match the schemas
of the data sources. Today, such matching often incurs a huge
workload that overwhelms the relatively small set of volunteer
integrators. In such cases, community members may not even
volunteer to be integrators, due to the high workload, and
consequently no integration systems can be built. To address
this problem, we propose to enlist the multitude of users in the
community to help match the schemas, in a Web 2.0 fashion.
We discuss the challenges of this approach and provide initial
solutions. Finally, we describe an extensive set of experiments on
both real-world and synthetic data that demonstrate the utility
of the approach.

I. INTRODUCTION

The World-Wide Web is teeming with communities, such

as those of movie fans, database researchers, bioinformatists,

intelligence analysts, and so on. As such communities pro-

liferate, research on their data management challenges has

attracted increasing attention [1], [2], [3], [4], [5]. A key

challenge is to integrate data from multiple community-related

sources. For example, the community of real estate agents

in the Great Lakes region may want to build a system that

integrates all real-estate sources in that area. As another

example, the database community may want to integrate all

information about publications, from DBLP, Google Scholar,

and researchers’ homepages, among others.

Today, integrating such data within a community is largely

shouldered by a relatively small set of volunteers, henceforth

called builders. To integrate the data, a key task that builders

often face is to establish semantic correspondences called

matches across the schemas of the data sources, such as

location = address and name = concat(fname,lname). To

solve this task, builders often employ a matching tool to find

match candidates, then examine and repair the candidates to

obtain the correct matches.

Much progress has been made in schema matching, and

many matching tools have been proposed (see [6], [7] for

recent surveys, and also [8], [9], [10], [11], [12]). However, no

robust, highly accurate tool has yet been found. Consequently,

schema matching still often incurs a huge workload that

overwhelms the small set of builders. Worse, community

members may not even volunteer to be builders, because the

workload is just too high, and so no integration system can be

built. Consequently, to facilitate the widespread deployment

of integration systems in online communities, it is crucial to

develop solutions that reduce the schema-matching burden of

system builders.

In this paper we explore such a solution. Our key idea is to

enlist the multitude of community members (i.e., users) to help

the builders match schemas. Specifically, suppose the builders

apply a tool M to match two schemas S and T . Then we

can modify M so that during the matching process it can ask

users relatively simple questions, then learn from the answers

to improve matching accuracy, thereby reducing the matching

workload of the builders.

For example, suppose M has predicted that attribute

monthly-fee-rate of schema S is of the type DATE (and

hence can benefit from a specialized date matcher), but it is not

entirely confident in that prediction. Then it can ask the users

to verify that prediction, by posing the question “is monthly-

fee-rate of the type DATE?”. As another example, suppose M
determines that it can significantly improve matching accuracy

if it knows whether lot-area is always greater than house-

size. Then M can ask the users “is lot-area always greater

than house-size?”. As yet another example, suppose M has

produced the match lot-id = ad-id, but is not entirely confident

in that match. Then, it can ask users to verify that match, by

posing the question “does lot-id match ad-id?”.

As described, this Web 2.0 approach to schema matching

is promising: it can harness the collective community feed-

back to help significantly reduce the matching workload of

the system builders. Realizing this approach, however, raises

several challenges. In the rest of the paper we elaborate on

these challenges and provide initial solutions.

We begin by defining the problem of Web 2.0 schema

matching for online communities. Specifically, our goal is to

leverage community users to significantly reduce the workload

of the builders, while keeping the average workload per user

minimal.

We then consider the challenges of which questions to

ask users, and how to pose those questions. Building on the

principle of selecting questions that are relatively easy for

human users, but difficult for “machines”, we consider ques-

tions that help a matching tool verify intermediate predictions

(e.g., bday is of type DATE), learn simple domain integrity

constraints (e.g., lot-area is always greater than house-size),

and verify final match predictions (e.g., house-size = sqft).

We then show how to generate such questions and pose them

to users.

Next, since community users can be malicious or ignorant,



we examine the challenge of evaluating their reliability and

combining their answers. We propose a conceptually simple,

yet effective solution. This solution classifies users into trusted

and untrusted, based on their answers to a set of evaluation

questions (with known answers), then combines the answers

of the trusted users using a voting scheme. We compare and

contrast this solution with more sophisticated ones.

In the next step, we discuss how to solicit user participation.

We show that the common scheme of volunteering (employed

by most current mass collaboration works) can also work in

our community context, then propose a novel scheme in which

users “pay” by answering a few questions in order to use

certain services.

We then describe experiments with both real-world and syn-

thetic data that demonstrate that the above Web 2.0 approach

can leverage minimal workload per user to improve matching

accuracy, thereby significantly reducing the workload of the

builders. In particular, we describe our experience in building

a small data integration system over 10 real-world book store

sources using 132 users, with very little work per user and

builder.

Finally, for future work, we briefly discuss how the current

work can be applied to other application settings, (e.g., enter-

prise schema matching, best-effort data integration), and other

problems (e.g., source discovery, wrapper construction, entity

matching, and matching pictures with persons).

II. RELATED WORK

Our work is most related to mass collaboration research,

which enlists a multitude of Internet users to build software

artifacts (e.g., Linux), knowledge bases (e.g., the online en-

cyclopedia wikipedia.com, see also [13], [14]), review and

technical support websites (e.g., amazon.com, epinions.com,

quiq.com, [15]). The research has also addressed improving

the accuracy of a range of algorithms (e.g., ranking function

in search engines, recommender systems [16]).

Our solution also enlists multiple users, but for the goal of

improving the accuracy of schema matching tools for online

communities. Furthermore, the above mass collaboration ap-

plications rely largely on volunteer users. In contrast, we can

also utilize users via a “payment” scheme (see Section VI),

which can potentially be applied to other mass collaboration

applications. Finally, many mass collaboration works have

combined user answers in ad-hoc ways. In contrast, we provide

a principled solution to this problem.

Mass collaboration approaches to data management have

also recently received increasing attention in the database com-

munity (e.g., Web 2.0 track at ICDE-08, mass collaboration

panel at VLDB-07, see also [17], [18], [19], [20], [21], [22]).

Our work here contributes to this emerging direction.

Our work is also related to active learning (e.g., [23]).

Active learning however usually involves only a single user,

whereas our work involves multiple users, and thus must

address the challenge of combining their noisy answers. Our

solution is therefore a form of collective active learning.

Within data integration contexts, several works [24], [25]

have provided sophisticated example-driven mechanisms to

interact with users, for schema and instance-level integration.

The interaction however is limited to a single user (who is

presumably the builder), whereas we consider interacting and

learning from multiple users. As far as we know, our work is

the first to take such a mass collaboration approach to schema

matching, a topic that has received much attention [6].

Finally, we have reported isolated parts of this work in

several workshop and poster papers [26], [27]. This paper

provides the first in-depth description of our overall approach.

III. BACKGROUND & PROBLEM DEFINITION

We now provide a brief background on schema matching,

then define the Web 2.0 style matching problem considered

in this paper. For simplicity, we consider only relational

schemas (our solution however generalizes to more complex

data representations, e.g., ontologies, see Section VIII). To

match such schemas, many tools have been proposed. Most

such tools find 1-1 matches, e.g., location = address. Some

recent tools can also find complex matches, e.g., name =

concat(fname,lname). In this paper we will consider both

types of matching tools.

Regardless of the type of matches produced, when applied to

two schemas S and T , such a matching tool M often treats one

schema, say S, as the source schema, and the other schema,

T , as the target schema. For each attribute of source schema

S, e.g., sqft, M then produces a list of candidate matches,

ranked in decreasing order of confidence, such as:

sqft = ad-id

sqft = lot-area

sqft = house-size

...

The builder B (henceforth we assume just a single builder, for

ease of exposition) then examines such a list in a top-down

fashion to find the correct match. If this match is not in the

list, B may try to provide some feedback to M , and “coax” it

into producing a new ranked list. When all else fails, B must

manually find the correct match, by painstakingly examining

the schemas and any associated documentation1.

Thus, ideally we would like the matching tool M to be

highly accurate and robust, in that it produces the correct

match in the top few matches of most ranked lists, across

a broad range of matching scenarios. Unfortunately no such

matching tool exists today. The fundamental reason is that

matching is an inherently knowledge-intensive activity. To

match two schemas accurately, we often need a significant

amount of knowledge about the attributes and the domain of

the schemas. However, such knowledge is often absent from

the schemas and data to be matched, causing problems for

even the most sophisticated current matching tools. Conse-

quently, schema matching remains a brittle business. When

1After finding the semantic matches, B may decide to elaborate them into
mappings – which are full-fledged SQL queries that express how to transform
data from one schema to the other – using a tool such as Clio [25]. This
mapping-creation step however is outside the scope of this paper.
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Fig. 1. Simplified real-estate schemas that are used in our examples in this paper.

much knowledge is available (e.g., in the schemas, data, and

available auxiliary sources), and the matching tool can make

use of this knowledge, then it can do well. Otherwise it does

badly.

Thus, in a sense our goal is to harness the community users

to inject more knowledge into the matching process. We want

to do so with minimal workload for each user, otherwise they

could be reluctant to participate. We can now state our problem

as follows.

Problem Statement: Let W be the workload of a builder B
for the task of finding the correct matches between two given

schemas S and T , using a matching tool M . Then our goal

is to significantly reduce this workload W . Toward this goal,

develop a solution that leverages the population of community

users U to significantly improve the accuracy of matching

S and T , while keeping the workload of each user U ∈ U
minimal.

Intuitively, we can improve matching accuracy by trying to

leverage community users to “move” the correct matches up

in the ranked lists of matches, to be the top matches or as close

to the top as possible. This way, the builder B does not have

to examine deep into the ranked lists, thereby saving labor.

Our solution, described in the next few sections, follows

the above strategy. It is also important to note that the goal of

that solution is to reduce the builder workload, not the total

workload (of both the builder and users). We discuss this issue

further in Section VIII-A.

IV. GENERATING & POSING QUESTIONS

We now describe our solution to the above problem. In

this section we describe how to generate and pose questions

to users. The next section describes how to handle noisy

users. Section VI discusses how to entice users to participate.

Section VII then shows how to put all of these together in the

final system. For space reasons, we can only discuss the key

ideas behind the solution, and refer the reader to [28] for a

detailed description.

A. Generating Questions to Ask Users

Intuitively, when extending a tool to learn from users, we

want to ask questions that (a) significantly impact the tool’s

accuracy, and (b) are relatively easy for human users, but

difficult for machines (i.e., the tool) to answer. In schema

matching contexts, many such question types can be asked.

As a first step, in this paper we will consider those that can

help a matching tool (a) verify intermediate predictions (made

internally), (b) learn useful domain integrity constraints, and

(c) verify final match candidate predictions.

In what follows we discuss how to generate questions of

the above types, first for the case of 1-1 schema matching

Is attribute monthly-fee-rate of type MONTH?

6,5005Dan Kress

7,7507Laura Smith

lot-sizemonthly-fee-rateagent-name

YES NO DON’T KNOW POSTPONE

Fig. 2. A sample question to verify a type prediction.

and then for complex matching. Since the matching tool must

interact with users in real time, rather than trying to find the

best set of such questions, we focus instead on quickly finding

a reasonable set (that help reduce the builder’s workload).

Throughout the paper, we will use as a running example the

scenario of matching the two tiny real-estate schemas S and

T in Figure 1.

Generating Questions for 1-1 Matching

We modify a 1-1 matching tool M to generate questions as

follows.

1. Questions to Verify Intermediate Predictions: During

the matching process, a tool such as M often makes myr-

iad intermediate predictions. A very common kind of such

prediction assigns schema attributes into pre-defined types

such as person name, date, phone, price, etc. Correct typing

can be exploited to boost matching results, but conversely,

wrong typing can drastically reduce accuracy [29]. Hence, we

leverage users to help verify typing predictions.

Specifically, we first apply M to match S and T , and record

the type predictions made by M (e.g., “monthly-fee-rate is

of type MONTH”), as well as the number of components of

M (e.g., base matchers, combiner, constraint handler, etc., see

[30], [31]) that rely on each type prediction.

Next, to ensure a reasonable user workload, we select only

the k type predictions (where k is pre-specified) that we

believe would make the most impact on matching accuracy.

We approximate the impact of a type prediction p by the

number of components of M that rely on p.

Finally, we ask users to verify these k type predictions. For

example, to verify “monthly-fee-rate is of type MONTH”,

we generate and pose the question in Figure 2. Users can

answer “yes”, “no”, “don’t know”, or “postpone”. Section V

discusses how to merge the “yes” and “no” answers (that in

most cases come from different users) to obtain a final answer

to the question. Note that if a user answers “postpone”, then

we ask no further question from that user in that session (see

Section VI).

2. Questions to Learn Domain Constraints: During the

matching process, knowing whether a certain domain integrity

constraint holds (e.g., s-date is always less than e-date) can

make a drastic impact on the matching accuracy [31], [29].



Are values of lot-area always greater than house-size?

43,000430,0008,500Raleigh, NC

32,500360,0007,000Atlanta, GA

num-bedshouse-sizepricelot-areaaddress

YES NO DON’T KNOW POSTPONE

Fig. 3. A sample question to verify a domain constraint.

Hence, after verifying type predictions, we generate questions

to help M learn certain domain integrity constraints.

Specifically, we first rerun M on S and T , leveraging all

previously verified type predictions. Next, we compile all

constraints of certain types. As a first step, in this paper

we consider only two types: comparison and uniqueness,

which have been exploited in recent matching work [31], [29].

Comparison constraints claim that the values of an attribute A
are always greater than or equal to those of an attribute B
(e.g., lot-area vs. house-size). Uniqueness constraints claim

that if two attributes of S match a single attribute of T (e.g.,

house-loc), then they must be the same attribute.

We then select the top v constraints that appear to have

the most impact on matching accuracy. For each constraint c,

assuming c is true, we rerun M to obtain the new matching

result. We then approximate the impact of c as the difference

between the new and old matching results (we omit the

details of computing this difference for space reasons). Finally

we ask users to verify each of the selected constraints. For

example, Figure 3 shows a question that asks users to verify

the constraint “lot-area is greater than house-size”.

3. Questions to Verify Final Match Predictions: In the last

step we ask users to verify the matches predicted by M . First,

we rerun M on S and T , taking into account the previously

verified type predictions and the learned domain constraints.

Recall that for each attribute of schema S, M produces a

ranked list of matches, in decreasing order of confidence.

Figure 4.a shows for example such a ranked list for approx-

sqft.

We then ask users to verify the top-ranked match: approx-

sqft = ad-id, by posing the question in Figure 5. If users say

no, then we ask them to verify the next match: approx-sqft =

lot-area, and so on, until users have said yes to a match, or

we have reached a pre-specified depth of k matches.

Suppose users have just said yes to the match approx-sqft

= house-size. We then revise the ranked list to create a final

ranked list that we will output. Specifically, we bring the above

match to the top of the current ranked list, then rerank the

other matches using any user answers we have collected: if

two matches x and y both receive at least v user answers

each (with v pre-specified), and the fraction of users saying

yes to x is higher than that to y, then we rank x higher than

y. Figure 4.b shows a possible revised ranked list for approx-

sqft, which we then output as the final ranked list for approx-

sqft.

Thus, the intuition is that user feedback will have revised

the ranked list such that the likely matches “bubble” to the

top of the list (e.g., house-size and lot-area in this case),

approx-sqft = ad-id

approx-sqft = lot-area

approx-sqft = price

approx-sqft = house-size

approx-sqft = house-size

approx-sqft = lot-area

approx-sqft = ad-id

approx-sqft = price
. . .

(a)

. . .

(b)

Fig. 4. (a) A sample ranked list, and (b) its revision after soliciting user
feedback. � �� � � � � � � 	 
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Fig. 5. A sample question to verify a predicted 1-1 match.

later saving the builder from having to examine deep into the

ranked list to find the correct match.

Generating Questions for Complex Matching

If M finds complex matches (e.g. [29]), then we modify it

as follows. First, we still leverage users to correct wrong

typing predictions and to learn domain constraints, in a fashion

similar to modifying 1-1 matching tools.

We then try to verify the predicted complex matches.

However, a direct verification of complex matches is often

difficult. For example, using systems such as [29] we may

obtain the ranked list of matches in Figure 6.a for price.

Asking users to verify such matches would be cognitively

too heavy and time consuming, because they would have to

perform, e.g., arithmetic computation, among others. Hence,

we allow users to indirectly evaluate the matches as follows.

Step 1: Take the top k matches for price (we set k to 10 in our

experiments). Compile the set of all attributes that appear in

these matches. For example, if k = 3, then the set of attributes

in the top 3 matches for price is {list-price, t-rate, disc-fac,

agent-id}.

Step 2: For each attribute in the above set, ask users if a

complex match for price can possibly involve that attribute.

For example, Figure 7 shows a question that asks users if the

complex match for price can involve disc-fac.

Step 3: For price, suppose users have indicated that the

attributes that can be in its matches are list-price and t-rate.

Then we rerun the matching tools for price, focusing on

formulas that combine these two attributes. We then select

the top few matches from the output. Suppose we select

price = list-price * (1 + t-rate/100)

price = list-price.

Then now we can place these matches on top of the previous

complex matches, to form the new ranked list shown in

Figure 6.b.

Step 4: In the last step, we clean the above matches by

dropping terms that involve attributes that users have identified

not to be included, which are disc-fac and agent-id in this

case, then merge identical matches. Figure 6.c shows the final

revised list of matches to be output.



price = list-price * (1 + t-rate) * disc-fac

price = list-price * t-rate – disc-fac

price = list-price + 0.01 * t-rate * agent-id

price = list-price * (1 + t-rate/100) – disc-fac

price = list-price * (1 + t-rate/100)

price = list-price

price = list-price * (1 + t-rate) * disc-fac

price = list-price * t-rate – disc-fac

price = list-price + 0.01 * t-rate * agent-id

(a) (b)

price = list-price * (1 + t-rate/100)

price = list-price

price = list-price * (1 + t-rate)

price = list-price * t-rate

(c)

. . .

. . .
. . .

Fig. 6. (a) A sample ranked list of complex matches, and (b)-(c) its revisions after user feedback.

3,000430,0008,500

2,500360,0007,000

house-sizepricelot-area

Can a complex match for price possibly include attribute disc-fac?

6.513375,000

710430,000

t-ratedisc-faclist-price

YES NO DON’T KNOW POSTPONE

Fig. 7. A sample question to verify the involvement of an attribute in a
complex match.

B. Posing Questions to the Users

When posing each question Q (generated as described

earlier) to users, we try to provide enough context so that users

can quickly grasp the meanings of the attributes mentioned in

Q and thus answer Q correctly.

Specifically, for each attribute s mentioned in Q, we first

mention s by name in the concrete question posed to the

users (at the top of the question window). Next, we select m
attributes (currently set to 3) that are closest to s in the schema

(including s itself), and show a snapshot of n tuples (currently

set to 5) projected onto these attributes, in the form of a table.

We then highlight the column for s in the table, highlight

mention of s in the question, and visually link the two. All

sample questions shown so far in this paper are generated in

this format.

For the experiments described in Section VIII, we found

that contexts generated as above were helpful, in that using

them users were able to answer most questions accurately,

thereby improving matching accuracy. In future work we will

explore more sophisticated contexts, such as showing users

both the original Web query interfaces (if any) and the schemas

obtained from them, and both “before” and “after” query

results (so that users can gauge the potential impact of their

answers).

V. MANAGING NOISY USERS

We have described how to generate and pose questions.

Since online communities often contain “noisy” (e.g., mali-

cious or ignorant) users, whose answers to such questions

cannot be trusted, developing a way to manage such users

is critical. We now describe our solution to this problem.

A. A Spectrum of Solutions

To manage noisy users, a reasonable solution is to develop

a model of user reliability, then use the model to combine

users’ answers (to each question). Many such models can be

developed. A basic one can simply classify users as trusted

or untrusted, then consider only the answers of trusted users.

Such a model is easy to understand and tune, and takes

relatively little training data (e.g., data of the form 〈question,

correct answer, user answer〉) to infer the trustworthiness of

each user. However, the model cannot utilize the full range of

user feedback. Consider for example a user Ubad who always

answers questions incorrectly. The above model would classify

Ubad as untrusted, and ignore his answers. Intuitively, this is

a “waste”, because if the model can learn that Ubad always

gives incorrect answers, then it can make use of that fact in

deriving correct answers for the questions.

At the other end of the spectrum, we can develop sophisti-

cated models, such as one that employs a Bayesian network to

model all major factors that affect user answers. These models

typically estimate real-valued reliability scores for users, then

use such scores to combine answers. The models are powerful

in that they can utilize the full range of user feedback, e.g.,

exploit the answers of user Ubad described earlier. On the

other hand, they are difficult to understand and tune, and often

require a large amount of training data for accurate estimation

of reliability scores.

In this paper, as a first step, we consider simple

trusted/untrusted models, for three reasons. First, such models

require relatively little training data (as described earlier),

thereby minimizing the workload of each user, an important

requirement in our context. Second, it turned out that in prac-

tice (based on our experiments) users such as Ubad described

earlier often behave in a highly unreliable fashion, e.g., switch-

ing unpredictably between answering questions incorrectly and

correctly. Hence, it is unclear how to effectively model and

exploit such users, even with current sophisticated models.

Consequently, we opt instead to use a simpler model that

ignores such users. Third, again from our experiments, we

found that it is critical that the system builder understand how

noisy users are managed, and be able to tune the parameters of

the management scheme, to adjust to the situation at hand (e.g.,

tightening the trustworthiness criteria if the user population

appears to be largely unreliable).

In the rest of this section, we describe the basic

trusted/untrusted model that we currently employ.

B. Classifying Users as Trusted or Untrusted

To classify users as trusted or untrusted, we first create a set

of questions with known answers (henceforth called evaluation

questions). The builder can make up these questions, or obtain

them from a small set of matches that he or she has manually

verified.

Next, we ask users these evaluation questions (randomly

mixed in with real questions, see Section VII). Suppose a

user U has answered a evaluation questions, and b out of

a correctly. Then we classify U as trusted if a ≥ v1 and



b/a ≥ v2, for pre-specified v1 and v2. Intuitively, we want to

make sure U has answered at least v1 evaluation questions,

and at least a sizable fraction v2 of those correctly, before we

can trust U .

C. Combining Answers of Trusted Users

From now on, we will use the term “answer” to refer to

an answer from a trusted user, when there is no ambiguity.

Consider a “real” question Q (asked by matching tool M ,

as described in Section IV). As users answer this question,

we will in essence see a “stream” of answers to Q, as time

progresses.

We then monitor and stop this stream (i.e., no longer solicit

answer for Q) as soon as

• we have collected at least v3 answers and the gap between

the majority and minority answer is at least g, or

• we have collected v4 answers, where v4 > v3.

In either case, we return the majority answer as the final

answer for Q.

Intuitively, we can confidently output the majority answer if

it has achieved a statistically significant lead over the minority

answer (signified by the gap g, see more below). But in any

case, we do not want users to devote more than a fixed limit

v4 of answers to any single question. Note that all answers

above refer to those from trusted users.

The following theorem shows that the above algorithm

produces correct answers with high probability:

Theorem 1: For any question Q, the above algorithm will

halt and return the correct answer with probability at least

1 − E1 − E2, where E1 is P
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v1, v2, v3, g, and v4 are as defined in Section V-B and

Section V-C, and p denotes the expectation of the distribution

P (r) ·

Pv1
i=v1v2

“

v1
i

”

ri(1 − r)(v1−i), where P (r) is the distribution

of individual user probabilities of correctness induced by

soliciting answers from the user population. �

Intuitively, Theorem 1 bounds the probability that a given

question will converge to the incorrect answer. E1 bounds

the probability that our gap criteria g will be reached with

an incorrect majority answer. E2 bounds the probability of

the majority answer being incorrect after reaching our max-

imum number of answers v4. The overall quality of user

answers is quantified by p, the probability that, through the

process of soliciting feedback from a population of distinct

users with individual “reliabilities”, a given answer will be

correct. Specifically, if each user answers correctly with some

individual probability r (their “reliability”) and our process of

soliciting participation produces a stream of user answers that

were generated by individual probabilities with distribution

Pr[r], then the answers will be correct with probability

equal to p as stated in the theorem (evaluating and ignoring

untrusted users boost the reliabilities for these answers by the
∑

v1

i=v1v2

(

v1

i

)

ri(1 − r)(v1−i) factor).

Our experiments show that the algorithm often halts short

of reaching the limit v4 on number of answers per question,

thereby minimizing user effort. It also merges user answers

correctly with very high probabilities. For example, suppose

that user reliability scores are distributed following some

Normal distribution with mean 0.75 (recall that a user with

reliability score 0.6, say, answers on average 6 questions

correctly out of 10 questions). If we set the user evaluation

thresholds to v1 = 8 and v2 = 0.7 and the answer convergence

criteria to g = 6, v3 = 8, and v4 = 15, then the above theorem

states that we will output the correct answer for question Q
with probability greater than 0.99.

VI. SOLICITING USER PARTICIPATION

Our final challenge is to secure user participation. To this

end, we discuss two solutions: volunteering and “payment”.

Volunteering: Most mass collaboration schemes (see the

related work section) have solicited user participation via

volunteering. The success of many volunteering-based online

collaborative projects suggests that this scheme can also work

in our data integration context for online communities, pro-

vided that the workload per volunteer remains relatively low.

“Payment”: In addition to volunteers, we propose that the

builder also obtain user participation via “payment” schemes,

whenever appropriate. The basic idea is to ask users to “pay”

for certain services by answering questions, then use the

answers to help the builder.

For example, suppose the builder has built an integration

system A over three data sources. Then when a user poses a

query to A, A can ask the user to answer a question before

displaying the query result. The builder then uses such answers

to help improve A (e.g., by adding a fourth source).

In a slightly more complex scheme, suppose there exists

another system B that has “agreed” to help A. Then the

users of B can also be asked to “pay” for using B by

answering questions. The answers can then be used to maintain

and expand A. We call such system B a helper application.

Section VIII-D describes our experiments that used a database

course homepage as a helper application.

To make the “payment” scheme work, we impose four

requirements. First, the helper application must either be a

monopoly (i.e., not offered anywhere else) or have better

quality than the competitors. This way the users either have to

“pay” or are willing to tolerate question answering. Second,

the workload of each user must not exceed a certain threshold

(e.g., three questions per day). Third, the questions must be

asked at a predictable time (preferably only at the start of

a user session). Finally, each user must have the ability to

defer question answering to a more appropriate time (in effect

owing the system the answers). Our experiments (Section VIII)

suggest the feasibility of “payment” schemes with these re-

quirements in practice.

VII. PUTTING IT ALL TOGETHER: THE OVERALL SYSTEM

We now briefly describe the overall system, which combines

the technologies discussed earlier, and consist of three main



TABLE I: MATCHING TASKS FOR OUR EXPERIMENTS.

Task Types Domains Description

1-1 schema 

matching

Book query interfaces 10 interfaces,    total 65 attributes

Real estate I 2 schemas,        with 55-44 attributes

Company listings 2 taxonomies,   with 330-115 attributes

Complex 

matching

Real estate II 2 schemas,        with 19-32 attributes

Inventory 2 schemas,        with 34-49 attrs

modules: question manager, answer solicitor, and user manager

(see [28] for a detailed description).

During the matching process, tool M generates questions

(as described in Section IV), and sends them to the question

manager. This module interacts with the answer solicitor and

the user manager to decide which users to ask which questions.

The module also monitors the answers that each question Q
has received. As soon as the answers for Q have converged to

a final answer (see Section V), the question manager sends that

final answer back to M . Once M has received the answers to

all questions it poses, and have finished matching the schemas,

the builder verifies and corrects the predicted matches, to

obtain the final correct matches.

The answer solicitor monitors the users in the environment.

Whenever there is an opportunity to ask a user U a question

(e.g., through voluntary participation or “payment” scheme,

as described in Section VI), it contacts the user manager,

which keeps track of users’ workload, question answering

history, and trust/untrusted status. If the workload quota of

user U has been reached (e.g., U has answered three questions,

the maximum allowed per day), then the user manager does

nothing. Otherwise, it checks to see if user U can be trusted. If

yes then it notifies the question manager to ask U a question;

otherwise it evaluates U further, by sending U an evaluation

question (i.e., one with known answer), to see if U answers

that question correctly.

VIII. EMPIRICAL EVALUATION

We now empirically show that the above Web 2.0 approach

can leverage minimal workload per user to improve matching

accuracy, thereby significantly reducing the workload of the

builder. We show that even when users cannot answer ques-

tions perfectly, their answers still contribute toward reducing

this workload. We demonstrate that our solution scales up

to large and diverse populations. Finally, we describe our

experience of building a real-world data integration system

over 10 online book stores, using a population of 132 users.

Data Sets, Matching Tasks, and Automatic Tools: Table I

describes five schema-matching tasks and associated data sets.

Book Query Interfaces finds 1-1 matches between 10 query

interfaces and a given global schema (having five attributes)

of a data integration system. Real Estate I finds 1-1 matches

between two schemas for house listings. Company Listing

finds 1-1 matches between two very large taxonomies, with

115-330 attributes. Finally, Real Estate II and Inventory find

complex matches between pairs of schemas. We obtained data

from invisibleweb.com and from the experiments described

in [30], [31], [29], [32]. We match the schemas using variants

of recently published 1-1 and complex matching systems (see

Column “Automatic Tools” of Table II) [30], [31], [32], [29].

Measuring Accuracy and Workloads: Following [31], [29],

we compute the accuracy on each task as the fraction of top

matches that are correct.

To examine how much our solution reduces the builder

workload, we first develop a workload model for the builder.

We develop this model based on observing how volunteer

builders matched several schemas in Table II, on our own

schema matching experience, and on current practice at en-

terprises [33].

First we describe the workload model for 1-1 schema

matching. Suppose for attribute A, matching tool M has

produced a ranked list of matches m1,m2, . . . ,mk. We model

the builder B’s effort to find a correct match for A in three

stages. First, B sequentially scans the ranked list m1,m2, . . .
until either a plausible match has been found, or a pre-specified

number p of matches has been examined.

Second, if a plausible match has not been found, B con-

structs one, using all available resources (e.g., the ranked list,

the schemas, data instances, documents, etc.). In the third,

and final, stage, given a plausible match (either found on

the ranked list or constructed manually), B performs a quick

“sanity check”, by scanning the next q matches in the ranked

list, to either convince himself or herself that there is no better

match, or modify the current plausible match slightly, taking

into account the scanned matches. Thus, the total workload of

the builder B is

Wb = u ∗ cost1 + v ∗ cost2 + q ∗ cost3,

where u is the number of matches actually examined in Stage

1, and v is 1 if a plausible match must be constructed in Stage

2, and 0 otherwise. cost1 and cost3 are the workload incurred

examining a single match in Stages 1 and 3 (respectively), and

cost2 is the cost of constructing a plausible match.

After measuring the actual time the volunteer builders spent

on several 1-1 matching tasks in Table II, we set p = 10, q = 5,

cost1 = 4, cost2 = 8, and cost3 = 1. Intuitively, each sanity

check imposes the smallest cost (cost3), since B typically only

glances at the proposed match. A “plausibility check”, on the

other hand, requires significantly more work (cost1) as B must

retrieve raw data, materialize a few instances of the match,

and determine the correctness of the results. Constructing a

plausible match is the most expensive operation (cost2) as B
must create the match, as well as verify its plausibility.

We model the user workload by assuming the cognitive

demand of answering a question is equivalent to the smallest

unit of work in the builder model, a single sanity check (cost3).

Our treatment of workload for complex matching is similar,

though tailored to fit the nature of that task (e.g., sanity

checking a complex match is dependent upon the complexity

of the match formula), and is omitted for space reasons. While

our model is only approximate, we found that it correlates well

with builder and user workloads as actually measured on tasks

in Table II. Recent work has also proposed workload models



TABLE II: EXPERIMENTAL SETTINGS, IMPROVEMENTS IN ACCURACY, AND REDUCTIONS IN LABOR WHEN EMPLOYING OUR SOLUTION.

Task 

Types

Domains Automatic Tools Users Tool 

Accuracy

Tool + Users 

Accuracy

User 

Workload

Builder Workload 

(before <  after)

Builder 

Savings

1-1 

schema 

matching

Book query interfaces COMA 132 undergrad students, payment 0.63 0.97 12.5 781 < 277 65%

Real estate I LSD 3 volunteers 0.67 0.96 84.3 1062 < 490 54%

Company listings GLUE 6 volunteers 0.35 0.44 1473 17685 < 10529 40%

Complex 

matching

Real estate II iMAP 5 volunteers 0.58 0.67 38 838 < 512 39%

Inventory iMAP 12 volunteers 0.33 0.89 52 1245 < 829 33%

[30], [34], but made the restrictive assumption that the builder

only examines the top ranked match of each attribute.

Soliciting User Participation: To recruit users, for the

first task (Book Query Interfaces), we employed a “payment”

scheme (see Section VIII-D), and for the rest of tasks we asked

for volunteers. Our user populations for the tasks range from

3 to 132, and consist of students at a large university.

A. Accuracy and Workload

We begin by examining how much we can improve accuracy

over automatic tools. Columns “Tool Accuracy” and “Tool +

Users Accuracy” of Table II show the accuracy of the tools

alone and the tools with user help, respectively. The results

show that our solution significantly improves accuracy across

all five matching tasks, by 9-56%, to reach accuracy of 44-

97%.

Next we examine the workload of the users, as well as the

reduction in workload for the system builder due to the above

accuracy improvement. Column “User Workload” shows the

average effort that each user spent on the tasks. In terms of

actual time, these efforts range from 5 to 15 minutes per task

per user. The exception is Company Listing, where we allotted

one hour to each user, and they all used up the hour.

Column “Builder Workload” shows the workload reduction

for the builder. For example, the first row “781 → 277” states

that the builder workload using only an automatic tool is 781,

and that the workload using the tool plus users is 277, just

277/781 = 35% of the original workload. This is a savings of

65%, as shown in the “Builder Savings” column. The result

shows that we can significantly reduce builder workload across

all tasks, by 33-65%.

Thus, Table II suggests that a Web 2.0 style matching

approach can significantly improve matching accuracy, at a

minimal user workload, thereby significantly reducing the

workload of the application builder. This result is achieved

with a negligible overhead, which caused no noticeable delay

in our experiments.

Total Workload: While our solution reduces the workload

of the builder B (the key goal of this paper), it would be

interesting to know how it affects the total workload. Let C
be the workload of B in the traditional context (when no user

is involved), and D be the workload of B plus that of all users

in our solution context. Then we observed that in certain cases

D is higher than C. Intuitively, this is due to the “built-in”

redundancy that is necessary to handle noisy user answers.

However, in certain other cases, we observed that D is much

lower than C (e.g., only 70-84% of C, for Real Estate I &

II in Table II), resulting in an overall workload reduction.

These cases occur when we ask questions for which the users

can quickly converge on the correct answers, and then those

answers greatly help the matching tool improve its accuracy.

B. User Performance

Question Answering: First, we consider the variability of

user answers. For simple questions, such as “Is attribute date-

posted of type DATE?”, most users answered correctly and

quickly, as expected.

For many questions, however, we found that user answers

were “scattered”, for three reasons. First, some users were

simply “too quick” on some questions, and gave wrong

answers. Second, for certain questions, the context provided

(in the questions) was insufficient for some users to answer

correctly. Third, certain questions are inherently subjective,

with no objective answer. For example, can “Advertising”

match “TV Broadcasting” in Company Listing? Some users

said “yes” and some said “no”. This third reason accounts for

the vast majority of “scattered answers”.

Fortunately, we found that even when a question is subjec-

tive, users still tend to converge on the few plausible answers.

As a result, these answers usually “bubble” to the top of the

returned ranked list, albeit in some unpredictable order. Since

the correct results are still close to the top, we found that even

when hammered by the subjectivity of questions, user answers

still helped improve accuracy and helped the system builder

quickly find the correct result.

“Payment” Schemes: We have employed helper applications

such as course homepages as the “payment” schemes in some

of our experiments (see Section VI). Our experience suggests

that as long as the “payment” per day is kept to the minimum

(e.g., 2-3 answers), users felt comfortable. Users also preferred

answering the questions right at the start of using the helper

application. This way, they were not interrupted during the

day (analogous to paying for a service at the beginning or at

the end).

C. Sensitivity Analysis

We also examine how our solution handles a broad range of

user populations that we expect to commonly occur in practice,

as well as populations of size up to 10,000. Since it is difficult

to recruit such a large number of users, we consider simulation

experiments.

Simulated User Populations: We generated ten synthetic

user populations, as described in Figure 8.a. Each population

has 500 users and each user has a single reliability score. A



P1 – Uniform      

over [0,1]

P2 – Uniform 

over [.3,.7]

P3 – Uniform 

over [.5,.9]

P4 – Bell    

over [0,1]

P5 – Bell 

over [.3,.7]

P6 – Bell 

over [.5,.9]

P7 – 50% at .2 and 50% at .8

P8   – 90% uniform over [0,.4] and 10% at .8

P9   – 10% at .1, 50% uniform over [.5,.7],

and 40% uniform over [.8,1]

P10 – 10% at .3 and 90% uniform over [.7,1]
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Fig. 8. Populations and results of simulation experiments.

reliability score of 0.6 means that on average the user answers

6 questions correctly out of 10. The ten user populations

P1 − P10 have their reliability scores generated according to

uniform, bell, bimodal, and mixed distributions. For example,

population P1 with “Uniform over [0,1]” means that user

reliability scores are distributed uniformly over the interval

[0,1]. The populations model “good”, “average”, and “bad”

populations, based on the fraction of users with high reliability

score (e.g., over 0.65) that they contain.

Accuracy and Workload: Figure 8.b shows the accuracy

of our solution on the first task in Table I, i.e., Book Query

Interfaces. (The results on other tasks are similar.) The first

bar shows the accuracy of the automatic tool, duplicated from

Table II, for comparison purposes. The next ten bars show the

accuracy for user populations P1 − P10, respectively.

The results show that we can significantly improve auto-

matic tools and reach the high accuracy of 98-100% for all

populations except P2 and P5, where the accuracy is 79-

89%. The populations P2 and P5 are the “worst” among the

ten, in that they contain very few “good” users and that the

highest reliability of these users is 0.7. Hence, the convergence

criterion used for the experiments in Figure 8 is sufficient for

the other eight “more reliable” populations but is inadequate

for P2 and P5 (to achieve the maximum accuracy).

We also ran our system with different convergence criteria

on four populations P2, P5, P8, and P10. The results show that

applying a more conservative convergence criterion (which

increases the number of evaluation questions, the gap size,

and the stopping threshold) improves the accuracy on these

populations to near perfect, at the cost of a slight increase of

1.8 in average user workload. The results thus demonstrate

that we can achieve high accuracy across a broad range

of populations. We also found that for these experiments

the average user workload remains quite low at 1.8-6.5 per

matching a query interface.

Effects of Population Size: Finally, we experimented

with population sizes varying from 50 to 10,000 users, over

many population types. The results show that matching ac-

curacy remains stable and that the time it took to manage

the collaboration framework was negligible. Furthermore, as

expected, the workload required per user to complete the

task decreases linearly as the population size increases. This

suggests that our solution can scale up to large populations

in all important performance aspects, and that in a large

population the minimal workload per user will be significantly

reduced further.

D. “Hands-Off” Systems

Finally, to explore the potential of our solution for build-

ing “hands-off”, long-running integration systems where the

builder workload is significantly reduced or removed, we

attempted to build a simple data integration system on the

Web, relying almost exclusively on user effort.

This system integrates online book stores. We created

a simple mediated schema (having five attributes), found

a large set of potential book store query interfaces from

invisibleweb.com, then set up our collaborative solution. To

recruit users, we used a “payment” scheme by leveraging the

homepage of a database course. When a student reached the

course homepage, he or she had to answer a simple question

before gaining further access. However, each student did not

have to answer more than 4 questions per day, and most of

them ended up answering no more than 2. (Note that some

of these questions were also used for evaluating users.) We

used the answers to discover book store query interfaces, then

match them with the mediated schema.

After 12 days, we have built a system over 10 book stores,

with very little workload from each user (1.5 answers per day

on average). Since the system builder did no work, apart from

the initial setup as described earlier, we found the system

slightly buggy (e.g., certain matches were not correct), but

still very useful: one can query it via the mediated schema

and obtain good results from the sources.

IX. CONCLUSION & FUTURE WORK

We have proposed a Web 2.0 style schema matching so-

lution and demonstrated the potential of such solutions for

integrating the data of online communities. Our work raises

several interesting future directions that we plan to pursue:

Exploring More Sophisticated User Models: While our

basic user model (Section V) has appeared to work well, we

want to explore the tradeoffs as we move to more sophisticated

user models. For example, we currently do not evaluate a user

continuously, and hence cannot catch cases where a trusted

user later becomes unreliable (e.g., start answering questions

in a random fashion). Continuous user evaluation can minimize

this problem, but would increase user workload. Is there a

good balance? As another example, a Bayesian network based

model can provide a principled way to exploit all users (not

just trusted ones), but can significantly increase the amount

of training data required (as discussed in Section V). Is there

a way to address this problem? And under which conditions

would such models become optimal?

Exploring Other Application Contexts: Can we apply

such Web 2.0 style solutions to matching enterprise schemas?

One may argue that they are unlikely to work well, because

the cognitive bar would be just too high for layman users

to contribute any useful information, by spending just a few

minutes of their time. For example, if understanding say



pcost and ccost would require a careful reading of some

documentation (e.g., to decide if they are before- or after-

tax costs), then when faced with the question “does pcost

match ccost?”, a layman user is unlikely to be able to answer

correctly.

This is true. However, layman users can already answer

many “obvious” questions correctly, with little cognitive effort.

For example, they can quickly flag “pcost is of type DATE”

and “pcost = sim-id” as incorrect, even without knowing what

these attributes mean. As another example, they can quickly

supply coarse-grained domain integrity constraints, such as

“bdate < 2007”. The important point to note is that, during the

matching process, supplying even such seemingly “obvious”

information can already significantly improve matching accu-

racy. This is because matches produced by today’s matching

systems are often highly interrelated, in that by correcting a

match (or supplying an integrity constraint), that effect may

“cascade” and affect many other seemingly unrelated matches

[12]. This effect can be even more pronounced in complex

matching scenarios.

Thus, it would be interesting to explore to what extent such

Web 2.0 solutions would help enterprise schema matching.

Another interesting problem in this direction is to explore

applying such Web 2.0 solutions to best-effort, approximate

data integration or dataspace systems [35], [36].

Exploring Other Problems: Finally, it would be interesting

to explore if such solutions can work for other problems,

both within data integration (e.g., source discovery, wrapper

construction, and entity matching), and beyond that context

(e.g., matching pictures with researchers, as we have done

in DBLife, a prototype portal for the database research com-

munity [1]). We have conducted some preliminary work in

this direction [28], and observed that for some of these

problems it could take even less cognitive effort for users to

answer questions (compared to the schema matching context).

Examples include deciding if a Web form is indeed the query

form for an online store (as opposed to, say, a subscription

form) in source discovery, and deciding if two products match

by comparing their pictures. Such problems can be especially

amenable to Web 2.0, collaborative style solutions.
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