
Model-Independent Schema and Data
Translation

Paolo Atzeni1, Paolo Cappellari1, Philip A. Bernstein2

1 Università Roma Tre, Italy
atzeni@dia.uniroma3.it, cappellari@dia.uniroma3.it

2 Microsoft Research, Redmond,WA, USA
philbe@microsoft.com

Abstract. We describe MIDST, an implementation of the model man-
agement operator ModelGen, which translates schemas from one model
to another, for example from OO to SQL or from SQL to XSD. It ex-
tends past approaches by translating database instances, not just their
schemas. The operator can be used to generate database wrappers (e.g.
OO or XML to relational), default user interfaces (e.g. relational to
forms), or default database schemas from other representations. The ap-
proach translates both schemas and data: given a source instance I of a
schema S expressed in a source model, and a target model TM, it gen-
erates a schema S′ expressed in TM that is “equivalent” to S and an
instance I ′ of S′ “equivalent” to I. A wide family of models is handled
by using a metamodel in which models can be succinctly and precisely
described. The approach expresses the translation as Datalog rules and
exposes the source and target of the translation in a generic relational
dictionary. This makes the translation transparent, easy to customize
and model-independent.

1 Introduction

1.1 The problem

To manage heterogeneous data, many applications need to translate data and
their descriptions from one model (i.e. data model) to another. Even small vari-
ations of models are often enough to create difficulties. For example, while most
database systems are now object-relational (OR), the actual features offered by
different systems rarely coincide, so data migration requires a conversion. Every
new database technology introduces more heterogeneity and thus more need for
translations. For example, the growth of XML has led to such issues, includ-
ing (i) the need to have object-oriented (OO) wrappers for XML data, (ii) the
translation from nested XML documents into flat relational databases and vice
versa, (iii) the conversion from one company standard to another, such as using
attributes for simple values and sub-elements for nesting vs. representing all data
in sub-elements. Other popular models lead to similar issues, such as Web site
descriptions, data warehouses, and forms. In all these settings, there is the need



to translate both schemas and data from one model to another. A requirement
of an even larger set of contexts is to be able to translate schemas only. This is
called the ModelGen operator in [7].

Given two models M1 and M2 and a schema S1 of M1, ModelGen translates
S1 into a schema S2 of M2 that properly represents S1. If data is of interest,
it should translate that as well. Given a database instance I1 of S1 we want to
produce an instance I2 of S2 that has the same information content as I1.

As there are many different models, what we need is an approach that is
generic across models, and can handle the idiosyncrasies of each model. Ide-
ally, one implementation should work for a wide range of models, rather than
implementing a custom solution for each pair of models.

We illustrate the problem with some of its major features by means of a short
example (additional ones appear in Sec. 5). Consider a simple OR model whose
tables have system-managed identifiers and tuples contain domain values as well
as identifier-based references to other tables. Fig. 1 shows a database for this
model with information about employees and departments: values for attribute
Dept in relation Employees contain a system managed identifier that refers to
tuples of Departments. For example, E#1 in Employees refers to D#1 in
Departments.

Employees
EmpNo Name Dept

E#1 134 Smith D#1
E#2 201 Jones D#2
E#3 255 Black D#1
E#4 302 Brown null

Departments
Name Address

D#1 A 5, Pine St
D#2 B 10, Walnut St

Fig. 1. A simple object-relational database

To translate OR databases into the relational model, we can follow the well
known technique that replaces explicit references by values. However, some de-
tails of this transformation depend upon the specific features in the source and
target model. For example, in the object world, keys (or visible identifiers) are
sometimes ignored; in the figure: can we be sure that employee numbers identify
employees and names identify departments? It depends on whether the model
allows for keys and on whether keys have actually been specified. If keys have
been specified on both object tables, then Fig. 2 is a plausible result. Its schema
has tables that closely correspond to the object tables in the source database.
In Fig. 2 keys are underlined and there is a referential integrity constraint from
the Dept attribute in Employees to (the key of) Departments.

If instead the OR model does not allow the specification of keys or allows
them to be omitted, then the translation has to be different: we use an additional
attribute for each table as an identifier, as shown in Fig. 3. This attribute is
visible, as opposed to the system managed ones of the OR model. We still have



the referential integrity constraint from the Dept attribute in Employees to
Departments, but it is expressed using the new attribute as a unique identifier.

Employees

EmpNo Name Dept

134 Smith A
201 Jones B
255 Black A
302 Brown null

Departments

Name Address

A 5, Pine St
B 10, Walnut St

Fig. 2. A translation into the relational model

Employees

EmpID EmpNo Name Dept

1 134 Smith 1
2 201 Jones 2
3 255 Black 1
4 302 Brown null

Departments

DeptID Name Address

1 A 5, Pine St
2 B 10, Walnut St

Fig. 3. A translation with new key attributes

The example shows that we need to be able to deal with the specific aspects
of models, and that translations need to take them into account: we have shown
two versions of the OR model, one that has visible keys (besides the system-
managed identifiers) and one that does not. Different techniques are needed to
translate these versions into the relational model. In the second version, a specific
feature was the need for generating new values for the new key attributes.

More generally, we are interested in the problem of developing a platform that
allows the specification of the source and target models of interest (including OO,
OR, ER, UML, XSD, and so on), with all relevant details, and to generate the
translation of their schemas and instances.

1.2 The MDM approach

Given the difficulty of this problem, there is no complete general approach avail-
able to its solution, but there have been a few partial efforts (see Sec. 6). We
use as a starting point the MDM proposal [3]. In that work a metamodel is a
set of constructs that can be used to define models, which are instances of the
metamodel. The approach is based on Hull and King’s observation [18] that
the constructs used in most known models can be expressed by a limited set of
generic (i.e. model-independent) metaconstructs: lexical, abstract, aggregation,
generalization, function. In MDM, a metamodel is defined by these generic meta-
constructs. Each model is defined by its constructs and the metaconstructs they
refer to. The models in the examples in Sec. 1.1 could be defined as follows:
– the relational model involves (i) aggregations of lexicals (the tables), with

the indication, for each component (a column), of whether it is part of the



key or whether nulls are allowed; (ii) foreign keys defined over components
of aggregations;

– a simplified OR model has (i) abstracts (tables with system-managed iden-
tifiers); (ii) lexical attributes of abstracts (for example Name and Address),
each of which can be specified as part of the key; (iii) reference attributes
for abstracts, which are essentially functions from abstracts to abstracts (in
the example, the Dept attribute in table Employees).

A major concept in the MDM approach is the supermodel, a model that has
constructs corresponding to all the metaconstructs known to the system. Thus,
each model is a specialization of the supermodel and a schema in any model
is also a schema in the supermodel, apart from the specific names used for
constructs. The translation of a schema from one model to another is defined in
terms of translations over the metaconstructs. The supermodel acts as a “pivot”
model, so that it is sufficient to have translations from each model to and from the
supermodel, rather than translations for every pair of models. Thus, a linear and
not a quadratic number of translations is needed. Moreover, since every schema
in any model is an instance of the supermodel, the only needed translations
are those within the supermodel with the target model in mind; a translation
is performed by eliminating constructs not allowed in the target model, and
possibly introducing new constructs that are allowed.

Each translation in MDM is built from elementary transformations, which
are essentially elimination steps. So, a possible translation from the OR model
to the relational one is to have two elementary transformations (i) one that
eliminates references to abstracts by adding aggregations of abstracts (i.e., re-
placing functions with relationships), and (ii) a second that replaces abstracts
and aggregations of abstracts with aggregations of lexicals and foreign keys (the
traditional steps in translating from the ER to the relational model). Essen-
tially, MDM handles a library of elementary transformations and uses them to
implement complex transformations.

The major limitation of MDM with respect to our problem is that it considers
schema translations only and it does not address data translation at all.

1.3 Contribution

This paper proposes MIDST (Model Independent Data and Schema Translation)
a framework for the development of an effective implementation of a generic (i.e.,
model independent) platform for schema and data translation. It is among the
first approaches that include the latter. (Sec. 6 describes concurrent efforts.)
MIDST is based on the following novel ideas:

– a visible dictionary that includes three parts (i) the meta-level that contains
the description of models, (ii) the schema-level that contains the description
of schemas; (iii) the data-level that contains data for the various schemas.
The first two levels are described in detail in Atzeni et al. [2]. Instead, the
focus and the novelty here are in the relationship between the second and
third levels and in the role of the dictionary in the translation process;



– the elementary translations are also visible and independent of the engine
that executes them. They are implemented by rules in a Datalog variant
with Skolem functions for the invention of identifiers; this enables one to
easily modify and personalize rules and reason about their correctness;

– the translations at the data level are also written in Datalog and, more
importantly, are generated almost automatically from the rules for schema
translation. This is made possible by the close correspondence between the
schema-level and the data-level in the dictionary;

– mappings between source and target schemas and data are generated as a
by-product, by the materialization of Skolem functions in the dictionary.

A demo description of a preliminary version of the tool considering only the
schema level is in Atzeni et al. [1].

1.4 Structure of the paper

The rest of the paper is organized as follows. Sec. 2 explains the schema level of
our approach. It describes the dictionary and the Datalog rules we use for the
translation. Sec. 3 covers the major contribution: the automatic generation of the
rules for the data level translation. Sec. 4 discusses correctness at both schema
and data level. Sec. 5 presents experiments and more examples of translations.
Sec. 6 discusses related work. Sec. 7 is the conclusion.

2 Translation of schemas

In this section we illustrate our approach to schema translation. We first explain
how schemas are described in our dictionary using a relational approach. We
then show how translations are specified by Datalog rules, which leverage the
relational organization of the dictionary. Two major features of the approach are
the unified treatment of schemas within the supermodel and the use of Skolem
functors for generating new identifiers in the dictionary. We will comment on
each of them while discussing the approach.

2.1 Description of schemas in the dictionary

A schema is described in the dictionary as a set of schema elements, with refer-
ences to both its specific model and the supermodel [2]. For example, an entity
of an ER schema is described both in a table, say ER Entity, referring to the
ER model and in a supermodel table SM Abstract, corresponding to the ab-
stract metaconstruct to which the entity construct refers. Similarly, a class of a
UML diagram gives rise to a tuple in a specific table UML Class and to one
in SM Abstract again, because classes also correspond to abstracts. As we
will see in Sec. 2.2, our translation process includes steps (“copy rules”) that
guarantee the alignment of the two representations.



SM Abstracts

OID sOID Name

101 1 Employees
102 1 Departments
... ... ...

SM AttributeOfAbstract

OID sOID Name IsKey IsNullable AbsOID Type

201 1 EmpNo T F 101 Integer
202 1 Name F F 101 String
203 1 Name T F 102 String
204 1 Address F F 102 String
... ... ... ... ... ... ...

SM RefAttributeOfAbstract

OID sOID Name IsNullable AbsOID AbsToOID

301 1 Dept T 101 102
... ... ... ... ... ...

Fig. 4. An object-relational schema represented in the dictionary

The supermodel’s structure is relatively compact. In our relational implemen-
tation, it has a table for each construct. We currently have a dozen constructs,
which are sufficient to describe a large variety of models. Translation rules are
expressed using supermodel constructs. Therefore, they can translate any con-
struct that corresponds to the same metaconstruct, without having to rewrite
rules for each construct of a specific model. Therefore, we concentrate here on
the portion of the dictionary that corresponds to the supermodel, as it is the
only one really relevant for translations.

In the dictionary, each schema element has (i) a unique identifier (OID), (ii) a
reference to the schema it belongs to (sOID), (iii) values of its properties and (iv)
references to other elements of the same schema. Each schema element belongs
to only one schema.

In the schema of Fig. 1 both Employees and Departments are object-
tables with identifiers and therefore correspond to the abstract metaconstruct.
Dept is a reference attribute (its values are system-managed identifiers) and in
our terminology corresponds to reference attribute of abstract. The other at-
tributes are value based and therefore correspond to the metaconstruct attribute
of abstract. Fig. 4 shows how the description of the schema in Fig. 1 is organized
in the dictionary of MIDST. To illustrate the main points, consider the table
SM RefAttributeOfAbstract. The tuple with OID 301 belongs to schema
1. It has two properties: Name, with value “Dept” and IsNullable with value true
(it says that nulls are allowed in the database for this attribute). Finally, it has
two references AbsOID and AbsToOID, which denote the element this attribute
belongs to and the element it refers to, respectively: this attribute belongs to
Employees (the abstract with OID 101) and points to Departments (the ab-
stract with OID 102).

2.2 Rules for schema translation

As in the MDM approach, translations are built by combining elementary trans-
lations. The novelty here is that each elementary translation is specified by



means of a set of rules written in a Datalog variant with Skolem functors for
the generation of new identifiers. Elementary translations can be easily reused
because they refer to the constructs in supermodel terms, and so each of them
can be applied to all constructs that correspond to the same metaconstruct. The
actual translation process includes an initial step for “copying” schemas from
the specific source model to the supermodel and a final one for going back from
the supermodel to the target model of interest. For the sake of space we omit
the discussion of these two steps, as they are straightforward.

We illustrate the major features of our rules by means of an example, which
refers to the translation from the OR to the relational models, specifically, map-
ping the database of Fig.1 to that of Fig.2. The following rule translates object
references (attribute Dept in relation Employees) into value based references:

SM AttributeOfAggregationOfLexicals(
OID:#attribute 4(refAttOid, attOid), sOID:target, Name:refAttName,
IsKey: “false”, IsNullable:isN, AggOID:#aggregation 2(absOid))

← SM RefAttributeOfAbstract(
OID:refAttOid, sOID:source, Name:refAttName, IsNullable:isN,
AbsOID:absOid, AbsToOID:absToOid),

SM AttributeOfAbstract(
OID:attOid, sOID:source, Name:attName,
IsKey:“true”, AbsOID:absToOid)

The rule replaces each reference (SM RefAttributeOfAbstract) with one
column (SM AttributeOfAggregationOfLexicals) for each key attribute
of the referenced table. The body unifies with a reference attribute and a key
attribute (note the constant true for IsKey in the body) of the abstract that is
the target of the reference (note the variable absToOid that appears twice in the
body). In our example, as Departments has only one key attribute (Name),
the rule would generate exactly one new column for the reference.

Skolem functors are used to create new OIDs for the elements the rule pro-
duces in the target schema.3 The head of the rule above has two functors: #at-
tribute 4 for the OID field and #aggregation 2 for the AggOID field. The two
play different roles. The former generates a new value, which is distinct for each
different tuple of arguments, as the function associated with the functor is in-
jective. This is the case for all the functors appearing in the OID field of the
head of a rule. The second functor correlates the element being created with an
element created by another rule, namely the rule that generates an aggregation
of lexicals (that is, a relation) for each abstract (that is, an object table). The
new SM AttributeOfAggregationOfLexicals being generated indeed be-
longs to the SM AggregationOfLexicals generated for the SM Abstract
denoted by variable absOid.

3 A brief comment on notation: functors are denoted by the # sign, include the name
of the construct whose OIDs they generate (here often abbreviated for convenience),
and have a suffix that distinguishes the various functors associated with a construct.



SM InstOfAbstract

OID dOID AbsOID

1001 1 101
1002 1 101
1003 1 101
1004 1 101
1005 1 102
1006 1 102
... ... ...

SM InstOfAttributeOfAbstract

OID dOID AttOID i-AbsOID Value

2001 1 201 1001 134
2002 1 202 1001 Smith
2003 1 201 1002 201
... ... ... ... ...

2011 1 203 1005 A
2012 1 204 1005 5, Pine St
2013 1 203 1006 B
... ... ... ... ...

SM InstOfRefAttributeOfAbstract

OID dOID RefAttOID i-AbsOID i-AbsToOID

3001 1 301 1001 1005
3002 1 301 1002 1006
... ... ... ... ...

Fig. 5. Representation of an object relational instance

As another example, consider the rule that, in the second translation men-
tioned in the Introduction (Fig. 3), produces new key attributes when keys are
not defined in the OR-tables in the source schema.

SM AttributeOfAggregationOfLexicals(
OID:#attribute 5(absOid), sOID:target, Name:name+’ID’,
IsNullable:“false”, IsKey:“true”, AggOID:#aggregation 2(absOid))

← SM Abstract(
OID:absOid, sOID:source, Name:name)

The new attribute’s name is obtained by concatenating the name of the instance
of SM Abstract with the suffix ‘ID’. We obtain EmpID and DeptID as in Fig. 3.

3 Data translation

The main contribution of MIDST is the management of translations of actual
data, derived from the translations of schemas. This is made possible by the use
of a dictionary for the data level, built in close correspondence with the schema
level one. Therefore, we first describe the dictionary and then the rules.

3.1 Description of data

Data are described in a portion of the dictionary whose structure is automatically
generated and is similar to the schema portion. The basic idea is that all data
elements are represented by means of internal identifiers and also have a value,
when appropriate. A portion of the representation of the instance in Fig. 1 is
shown in Fig. 5. Let us comment the main points:



– Each table has a dOID (for database OID) attribute, instead of the sOID
attribute we had at the schema level. Our dictionary can handle various
schemas for a model and various instances (or databases) for each schema.
In the example, we show only one database, with 1 as the dOID.

– Each data element has a reference to the schema element it instantiates. For
example, the first table in Fig. 5 has an AbsOID column, whose values are
identifiers for the abstracts in the schema. The first four rows have a value
101 for it, which is, in Fig. 4, the identifier of object-table Employees; in
fact, the database (see Fig. 1) has four elements in Employees.

– “Properties” of schema elements (such as IsKey and IsNullable) do not have
a counterpart at the data level: they only are needed as schema information.

– All identifiers appearing at the schema level are replaced by identifiers at the
data level. They include both the OID and the references to the OIDs of other
tables. In the example, table SM RefAttributeOfAbstract in Fig. 4 has
columns (i) OID, the identifier of the row, (ii) AbsOID, the identifier of the
abstract to which the attributes belong, and (iii) AbsToOID, the identifier
of the abstract to which the attributes “point”. In Fig. 5 each of them is
taken one level down: (i) each row is still identified by an OID column, but
this is the identifier of the data element; (ii) each value of i-AbsOID indicates
the instance of the abstract the attribute is associated with (1001 in the
first tuple of SM InstOfRefAttributeOfAbstract in Fig. 5 identifies
employee Smith); (iii) i-AbsToOID indicates the instance of the abstract the
attribute refers to (in the same tuple, 1005 identifies department A);

– If the construct is lexical (that is, has an associated value [18]), then the table
has a Value column. In Fig. 5, SM InstanceOfAttributeOfAbstract
is the only lexical construct, and Value contains all the values for all the
attributes of all the abstracts. Differences in type are not an issue, as we
assume the availability of serialization functions that transform values of
any type into values of a common one (for example strings).

The above representation for instances is clearly an “internal” one, into which
or from which actual database instances or documents have to be transformed.
We have developed import/export features that can upload/download instances
and schemas of a given model. This representation is somewhat onerous in terms
of space, so we are working on a compact version of it that still maintains the
close correspondence with the schema level, which is its main advantage.

3.2 Rules for data translation

The close correspondence between the schema and data levels in the dictionary
allows us to automatically generate rules for translating data, with minor re-
finements in some cases. The technique is based on the Down function, which
transforms schema translation rules “down to instances.” It is defined both on
Datalog rules and on literals. If r is a schema level rule with k literals in the
body, Down(r) is a rule r′, where:



– the head of r′ is obtained by applying the Down function to the head of r
(see below for the definition of Down on literals)

– the body of r′ has two parts, each with k literals:
1. literals each obtained by applying Down to a literal in the body of r;
2. a copy of the body of r.

Let us now define Down on literals. A literal is a possibly negated atom. An
atom has the form P (n1 : a1, . . . , nh : ah), where P , the predicate, is the name of
the table for a supermodel construct (therefore beginning with the prefix SM ),
each ni (a name) is a column (property or reference) of P and each ai is an
argument, which can be a constant, a variable,4 or a Skolem functor. In turn, a
Skolem functor has the form F (p1, . . . , pm), where F is the name of a Skolem
function and each pj is a constant or a variable.

Given a schema level atom lS = P (n1 : a1, . . . , nh : ah), Down produces a
data level literal with a predicate name obtained from P by replacing SM with
SM InstanceOf5 and arguments as follows.

– Two pairs are built from the OID argument (OID: a) of lS :
• (OID: a′) where a′ is obtained from a as follows, depending on the form

of a: if a is a variable, then a′ is obtained by prefixing i- to its name; if
instead it is a Skolem functor, both the function name and its variable
parameters are prefixed with i-;

• (P -OID: a), where P -OID is the reference to the schema element in the
dictionary (built as the concatenation of the name of P and the string
OID.

– For each pair (n:a) in lS where n is a reference column in table P in the
dictionary (that is, one whose values are OIDs), Down(lS) contains a pair
of the form (n′:a′), where n′ is obtained from n by adding a “i-” prefix and
a′ is obtained from a as above with the additional case that if it is a constant
then it is left unchanged.

– If the construct associated with P is lexical (that is, its occurrences at the
data level have values), then an additional pair of the form (Value:e) is added,
where e is an expression that in most cases is just a variable v (we comment
on this issue at the end of this section).

Let us consider the first rule presented in Sec. 2.2. At the data level it is as
follows:

SM InstanceOfAttributeOfAggregationOfLexicals(
OID:#i-attribute 4(i-refAttOid, i-attOid),
AttOfAggOfLexOID:#attribute 4(refAttOid, attOid), dOID:i-target,
i-AggOID:#i-aggregation 2(i-absOid), Value:v)

← SM InstanceOfRefAttributeOfAbstract(

4 In general, an argument could also be an expression (for example a string concate-
nation over constants and variables), but this is not relevant here.

5 In figures and examples we abbreviate names when needed.



OID:i-refAttOid, RefAttOfAbsOID:refAttOid, dOID:i-source,
i-AbsOID:i-absOid, i-AbsToOID:i-absToOid),

SM InstanceOfAttributeOfAbstract(
OID:i-attOid, AttOfAbsOID:attOid, dOID:i-source, i-AbsOID:i-absToOid,
Value:v),

SM RefAttributeOfAbstract(
OID:refAttOid, sOID:i-source, Name:refAttName, IsNullable:isN,
AbsOID:absOid, AbsToOID:absToOid),

SM AttributeOfAbstract(
OID:attOid, sOID:source, Name:attName,
IsKey:“true”, AbsOID:absToOid)

Let us comment on some of the main features of the rules generation.

1. schema level identifiers become data level identifiers: OID element;
2. data elements refer to the schema elements they instantiate;
3. references to schemas become references to databases, that is, instances of

schemas: both in the head and in the second literal in the body, we have a
dOID column instead of the sOID;

4. Skolem functors are replaced by “homologous” functors at the data level, by
transforming both the name and the arguments; in this way, they generate
new data elements, instead of schema elements;

5. “properties” do not appear in data level literals; they are present in the
schema level literals in order to maintain the same selection condition (on
schema elements) declared in the body of the schema level translation;

6. lexical constructs have a Value attribute.

The copy of the body of the schema-level rule is needed to maintain the
selection condition specified at the schema level. In this way the rule translates
only instances of the schema element selected within the schema level rule.

In the rule we just saw, all values in the target instance come from the
source. So we only need to copy them, by using a pair (Value:v) both in the
body and the head. Instead, in the second rule in Sec. 2.2, the values for the new
attribute should also be new, and a different value should be generated for each
abstract instance. To cover all cases, MIDST allows functions to be associated
with the Value field. In most cases, this is just the identity function over values
in the source instance (as in the previous rule). In others, the rule designer has
to complete the rule by specifying the function. In the example, the rule is as
follows:

SM InstanceOfAttributeOfAggregationOfLexicals(
OID:#i-attribute 5(i-absOid), AttOfAggOfLex:#attribute 5(absOid),
dOID:i-target, Value:valueGen(i-absOid),
i-AggOID:#i-aggregation 2(i-absOid) )

← SM InstanceOfAbstract(
OID:i-absOid, AbsOID:absOid, dOID:i-source),

SM Abstract(
OID:absOid, sOID:source, Name:name)



4 Correctness

In data translation (and integration) frameworks, correctness is usually modelled
in terms of information-capacity dominance and equivalence (see Hull [16, 17]
for the fundamental notions and results and Miller et al. [19, 20] for their role
in schema integration and translation). In this context, it turns out that various
problems are undecidable if they refer to models that are sufficiently general (see
Hull [17, p.53], Miller [20, p.11-13]). Also, a lot of work has been devoted over the
years to the correctness of specific translations, with efforts still going on with
respect to recently introduced models: see for example the recent contributions
by Barbosa et al. [5, 6] on XML-to-relational mappings and by Bohannon et
al. [11] on transformations within the XML world. Undecidability results have
emerged even in discussions on translations from one specific model to another
specific one [5, 11].

Therefore, given the genericity of our approach, it seems hopeless to aim at
showing correctness in general. However, this is only a partial limitation, as we
are developing a platform to support translations, and some responsibilities can
be left to its users (specifically, rule designers, who are expert users), with system
support. We briefly elaborate on this issue.

We follow the initial method of Atzeni and Torlone [3] for schema level trans-
lations, which uses an “axiomatic” approach. It assumes the basic translations
to be correct, a reasonable assumption as they refer to well-known elementary
steps developed over the years. It is the responsibility of the rule’s designer to
specify basic translations that are indeed correct. So given a suitable description
of models and rules in terms of the involved constructs, complex translations
can be proven correct by induction.

In MIDST, we have the additional benefit of having schema level transfor-
mations expressed at a high-level, as Datalog rules. Rather than taking on faith
the correctness of the signature of each basic transformation as in [3], we can
automatically detect which constructs are used in the body and generated in the
head of a Datalog rule and then derive the signature. Since models and rules are
expressed in terms of the supermodel’s metaconstructs, by induction, the same
can be done for the model obtained by applying a complex transformation.

For correctness at the data level, we can reason in a similar way. The main
issue is the correctness of the basic transformations, as that of complex ones
would follow by induction. Again, it is the responsibility of the designer to verify
the correctness of the rules: he/she specifies rules at the schema level, the sys-
tem generates the corresponding data-level rules, and the designer tunes them
if needed and verifies their correctness. It can be seen that our data-level rules
generate syntactically correct instances (for example, with only one value for
single-valued attributes) if the corresponding schema-level rules generate syn-
tactically correct schemas.

The validity of the approach, given the unavailability of formal results has
been evaluated by means of an extensive set of test cases, which have produced
positive results. We comment on them in the next section.



5 Experimentation

The current MIDST prototype handles a metamodel with a dozen different meta-
constructs, each with a number of properties. For example, attributes with nulls
and without nulls are just variants of the same construct. These metaconstructs,
with their variants, allow for the definition of a huge number of different models
(all the major models and many variations of each). For our experiments, we
defined a set of significant models, extended-ER, XSD, UML class diagrams,
object-relational, object-oriented and relational, each in various versions (with
and without nested attributes and generalization hierarchies).

We defined the basic translations needed to handle the set of test models.
There are more than twenty of them, the most significant being those for elimi-
nating n-ary aggregations of abstracts, eliminating many-to-many aggregations,
eliminating attributes from aggregations of abstracts, introducing an attribute
(for example to have a key for an abstract or aggregation of lexicals), replacing
aggregations of lexicals with abstracts and vice versa (and introducing or remov-
ing foreign keys as needed), unnesting attributes and eliminating generalizations.
Each basic transformation required from five to ten Datalog rules.

These basic transformations allow for the definition of translations between
each pair of test models. Each of them produced the expected target schemas,
according to known standard translations used in database literature and prac-
tice.

At the data level, we experimented with the models that handle data, hence
object-oriented, object-relational, and nested and flat relational, and families of
XML documents. Here we could verify the correctness of the Down function,
the simplicity of managing the rules at the instance level and the correctness of
data translation, which produced the expected results.

In the remainder of this section we illustrate some major points related to
two interesting translations. We first show a translation of XML documents
between different company standards and then an unnesting case, from XML to
the relational model.

For the first example, consider two companies that exchange data as XML
documents. Suppose the target company doesn’t allow attributes on elements:
then, there is the need to translate the source XML conforming a source XSD
into another one conforming the target company XSD. Fig. 6 shows a source
and a target XML document.

Let us briefly comment on how the XSD model is described by means of our
metamodel. XSD-elements are represented with two metaconstructs: abstract
for elements declared as complex type and attribute of aggregation of lexicals
and abstracts for the others (simple type). XSD-groups are represented by ag-
gregation of lexicals and abstracts and XSD-attributes by attribute of abstract.
Abstract also represents XSD-Type.

The translation we are interested in has to generate: (i) a new group (specifi-
cally, a sequence group) for each complex-type with attributes, and (ii) a simple-
element belonging to such a group for each attribute of the complex-type. Let’s



Fig. 6. A translation within XML: source and target

see the rule for the second step (with some properties and references omitted in
the predicates for the sake of space):

SM AttributeOfAggregationOfLexAndAbs(
OID:#attAggLexAbs 6(attOid), sOID:target, Name:attName,
aggLexAbsOID:#aggLexAbs 8(abstractOid))

← SM AttributeOfAbstact(
OID:attOid, sOID:source, Name:attName, abstractOID:abstractOid)

Each new element is associated with the group generated by the Skolem
functor #aggLexAbs 8(abstractOid). The same functor is used in the first step
of the translation and so here it is used to insert, as reference, OIDs generated in
the first step. The data level rule for this step has essentially the same features
as the rule we showed in Sec. 3.2: both constructs are lexical, so a Value field
is included in both the body and the head. The final result is that values are
copied.

As a second example, suppose the target company stores the data in a re-
lational database. This raises the need to translate schema and data. With the
relational model as the target, the translation has to generate: (a) a table (ag-
gregation of lexicals) for each complex-type defined in the source schema, (b) a
column (attribute of aggregation of lexicals) for each simple-element and (c) a
foreign key for each complex element. In our approach we represent foreign keys
with two metaconstructs: (i) foreign key to handle the relation between the from
table and the to table and (ii) components of foreign keys to describe columns
involved in the foreign key.

Step (i) of the translation can be implemented using the following rule:



SM ForeignKey(
OID:#foreignKey 2(abstractOid), sOID:target,
aggregationToOID:#aggregationOfLexicals 3(abstractTypeOid),
aggregationFromOID:#aggregationOfLexicals 3(abstractTypeParentOid))

← SM Abstract(
OID:abstractTypeOid, sOID:source, isType:“true”),

SM Abstract(
OID:abstractOid, sOID:source, typeAbstractOID:abstractTypeOid,
isType:“false”, isTop:“false”),

SM AbstractComponentOfAggregationOfLexAndAbs(
OID:absCompAggLexAbsOid, sOID:source,
aggregationOID:aggregationOid, abstractOID:abstractOid),

SM AggregationOfLexAndAbs(
OID:aggregationOid, sOID:source, isTop:“false”,
abstractTypeParentOID:abstractTypeParentOid)

In the body of the rule, the first two literals select the non-global complex-
element (isTop=false) and its type (isType=true). The other two literals select
the group the complex-element belongs to and the parent type through the
reference abstractTypeParentOID.

Note that this rule does not involve any lexical construct. As a consequence,
the corresponding data-level rule (not shown) does not involve actual values.
However, it includes references that are used to maintain connections between
values.

Fig. 7 shows the final result of the translation. We assumed that no keys
were defined on the document and therefore the translation introduces a new
key attribute in each table.

Employees

eID EmpName Address Company

E1 Cappellari A1 C1
E2 Russo A2 C1
E3 Santarelli A3 C2

Address

aID Street City

A1 52, Ciclamini St Rome
A2 31, Rose St Rome
A3 21, Margherita St Rome
A4 84, Vasca Navale St Rome

Company

cID CompName Address

C1 University “Roma Tre” A4
C2 Quadrifoglio s.p.a A4

Fig. 7. A relational database for the second document in Fig. 6



6 Related Work

Many proposals exist that address schema and data translation. However, most
of them only consider specific data models. In this section we present related
pieces of work that address the problem of model-independent translations.

The term ModelGen was coined in [7] which, along with [8], argues for the
development of model management systems consisting of generic operators for
solving many schema mapping problems. An example of using ModelGen to help
solve a schema evolution problem appears in [7].

An early approach to ModelGen was proposed by Atzeni and Torlone [3,
4] who developed the MDM tool, which we have discussed in the introduction.
The basic idea behind MDM and the similar approaches (Claypool and Runden-
steiner et al. [13, 14] Song et al. [25], and Bézivin et al [10]) is useful but offers
only a partial solution to our problem. The main limitation is that they refer
only to the schema level. In addition, their representation of the models and
transformations is hidden within the tool’s imperative source code, not exposed
as more declarative, user-comprehensible rules. This leads to several other diffi-
culties. First, only the designers of the tool can extend the models and define the
transformations. Thus, instance level transformations would have to be recoded
in a similar way. Moreover, correctness of the rules has to be accepted by users
as a dogma, since their only expression is in complex imperative code. And any
customization would require changes in the tool’s source code. The above prob-
lems are significant even for a tool that only does schema translation, without
instance translation. All of these problems are overcome by our approach.

There are two concurrent projects to develop ModelGen with instance transla-
tions [9, 22]. The approach of Papotti and Torlone [22] is not rule-based. Rather,
their transformations are imperative programs, which have the weaknesses de-
scribed above. Their instance translation is done by translating the source data
into XML, performing an XML-to-XML translation expressed in XQuery to re-
shape it to be compatible with the target schema, and then translating the XML
into the target model. This is similar to our use of a relational database as the
“pivot” between the source and target databases.

The approach of Bernstein, Melnik, and Mork [9] is rule-based, like ours. How-
ever, unlike ours, it is not driven by a relational dictionary of schemas, models
and translation rules. Instead, they focus on flexible mapping of inheritance hi-
erarchies and the incremental regeneration of mappings after the source schema
is modified. A detailed description of their approach has not yet appeared.

Bowers and Delcambre [12] present Uni-Level Description (UDL) as a meta-
model in which models and translations can be described and managed, with
a uniform treatment of models, schemas, and instances. They use it to express
specific model-to-model translations of both schemas and instances. Like our
approach, their rules are expressed in Datalog. Unlike ours, they are expressed
for particular pairs of models.

Data exchange is a different but related problem, the development of user-
defined custom translations from a given source schema to a given target, not the
automated translation of a source schema to a target model. It is an old database



problem, going back at least to the 1970’s [24]. Some recent approaches are in
Cluet et al. [15], Milo and Zohar [21], and Popa et al. [23].

7 Conclusions

In this paper we showed MIDST, an implementation of the ModelGen operator
that supports model-generic translations of schemas and their instances within
a large family of models. The experiments we conducted confirmed that trans-
lations can be effectively performed with our approach.

There are many areas where we believe additional work would be worthwhile.
First, as we mentioned earlier, there is a need for more compact and efficient
representations of translated instances. Second, despite the obstacles explained in
Sec. 4, it would be valuable to produce a practical way to validate the correctness
of a set of complex transformations. Third, there is a need to support all of the
idiosyncrasies of rich models and exotic models, and to support more complex
mappings, such as the many variations of inheritance hierarchies. Fourth, it
would be helpful for users to be able to customize the mappings.

Acknowledgements

We would like to thank Luca Santarelli for his work in the development of the
tool and Chiara Russo for contributing to the experimentation and for many
helpful discussions.

References

1. P. Atzeni, P. Cappellari, and P. A. Bernstein. Modelgen: Model independent
schema translation. In ICDE, Tokyo, pages 1111–1112. IEEE Computer Society,
2005.

2. P. Atzeni, P. Cappellari, and P. A. Bernstein. A multilevel dictionary for model
management. In ER 2005, LNCS 3716, pages 160–175. Springer, 2005.

3. P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. In EDBT 1996, LNCS 1057, pages 79–95. Springer, 1996.

4. P. Atzeni and R. Torlone. Mdm: a multiple-data-model tool for the management of
heterogeneous database schemes. In SIGMOD, pages 528–531. ACM Press, 1997.

5. D. Barbosa, J. Freire, and A. O. Mendelzon. Information preservation in XML-to-
relational mappings. In XSym 2004, LNCS 3186, pages 66–81. Springer, 2004.

6. D. Barbosa, J. Freire, and A. O. Mendelzon. Designing information-preserving
mapping schemes for XML. In VLDB, pages 109–120, 2005.

7. P. A. Bernstein. Applying model management to classical meta data problems.
CIDR, pages 209–220, 2003.

8. P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision of management of
complex models. SIGMOD Record, 29(4):55–63, 2000.

9. P. A. Bernstein, S. Melnik, and P. Mork. Interactive schema translation with
instance-level mappings. In VLDB, pages 1283–1286, 2005.



10. J. Bézivin, E. Breton, G. Dupé, and P. Valduriez. The ATL transformation-based
model management framework. Research Report Report 03.08, IRIN, Université
de Nantes, 2003.

11. P. Bohannon, W. Fan, M. Flaster, and P. P. S. Narayan. Information preserving
XML schema embedding. In VLDB, pages 85–96, 2005.

12. S. Bowers and L. M. L. Delcambre. The Uni-Level Description: A uniform frame-
work for representing information in multiple data models. In ER 2003, LNCS
2813, pages 45–58, 2003.

13. K. T. Claypool and E. A. Rundensteiner. Gangam: A transformation modeling
framework. In DASFAA, pages 47–54, 2003.

14. K. T. Claypool, E. A. Rundensteiner, X. Zhang, H. Su, H. A. Kuno, W.-C. Lee, and
G. Mitchell. Sangam - a solution to support multiple data models, their mappings
and maintenance. In SIGMOD Conference, 2001.

15. S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conver-
sion! In SIGMOD Conference, pages 177–188, 1998.

16. R. Hull. Relative information capacity of simple relational schemata. SIAM J.
Comput., 15(3):856–886, 1986.

17. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In PODS, Tucson, Arizona, pages 51–61. ACM Press, 1997.

18. R. Hull and R. King. Semantic database modelling: Survey, applications and re-
search issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.

19. R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The use of information capacity
in schema integration and translation. In VLDB, pages 120–133, 1993.

20. R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. Schema equivalence in het-
erogeneous systems: bridging theory and practice. Inf. Syst., 19(1):3–31, 1994.

21. T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data
translation. In VLDB, pages 122–133. Morgan Kaufmann Publishers Inc., 1998.

22. P. Papotti and R. Torlone. Heterogeneous data translation through XML conver-
sion. J. Web Eng., 4(3):189–204, 2005.

23. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Translating
Web data. In VLDB, pages 598–609, 2002.

24. N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum. Express:
A data extraction, processing, amd restructuring system. ACM Trans. Database
Syst., 2(2):134–174, 1977.

25. G. Song, K. Zhang, and R. Wong. Model management though graph transforma-
tions. In IEEE Symposium on Visual Languages and Human Centric Computing,
pages 75–82, 2004.


