
Metamodel Matching for Automatic Model
Transformation Generation?

J.-R. Falleri1, M. Huchard1, M. Lafourcade1, and C. Nebut1

LIRMM, CNRS and Université de Montpellier 2,
161, rue Ada, 34392 Montpellier cedex 5, France

{falleri, huchard, lafourcade, nebut}@lirmm.fr

Abstract. Applying Model-Driven Engineering (MDE) leads to the cre-
ation of a large number of metamodels, since MDE recommends an in-
tensive use of models defined by metamodels. Metamodels with similar
objectives are then inescapably created. A recurrent issue is thus to turn
compatible models conforming to similar metamodels, for example to use
them in the same tool. The issue is classically solved developing ad hoc
model transformations. In this paper, we propose an approach that au-
tomatically detects mappings between two metamodels and uses them to
generate an alignment between those metamodels. This alignment needs
to be manually checked and can then be used to generate a model trans-
formation. Our approach is built on the Similarity Flooding algorithm
used in the fields of schema matching and ontology alignment. Experi-
mental results comparing the effectiveness of the application of various
implementations of this approach on real-world metamodels are given.

1 Introduction

The large success of Model-Driven Engineering leads to a relative abundance of
metamodels, for various domains. Tools are developped to handle models con-
forming to the metamodels : code generators, model transformations and graphi-
cal editors. Inescapably, several metamodels for the same kind of applications are
independently created. It is then quite natural to wish to use a tool-set adapted
to a given metamodel for models conforming to another metamodel with the
same purpose. For example, several metamodels exist to represent class models,
and several tools exist to automatically refactor class models. The problem is to
use a tool dedicated to a metamodel with a class model conforming to another
metamodel allowing to express the same kind of class models. Even for the same
application domain, various versions of the same metamodels usually exist, and
the compatibility between the models conforming to the different versions has
to be ensured. Usually, this problem is solved using manually written, ad hoc
model transformations. Such model transformations are not difficult to write, but
are numerous, and thus represent a large work load. In this paper, we propose
to generate automatically an alignment between two similar metamodels. This

? France Télécom R&D has supported this work (CPRE 5326).

alignment represents the correspondences between the elements of the source
metamodel and those of the target metamodel. This alignment can then be used
to generate the code of a model transformation.

The match operation is well-known in many application domains, such as
semantic web, schema and ontology integration, data warehouses, e-commerce
[1,2]. It takes as input two schemas and produces as output a set of relations (e.g.,
equivalence and subsumption) between the entities of the two input schemas.
Such an output is often called an alignment of two schemas. The notion of
schema can appear as unclear since it highly depends on the concerned domain.
Concretely, a schema can be an XML Schema, an ontology, a database schema
or an object-oriented class model. Despite the variation between those formats,
the mechanisms involved to perform the match operation are highly similar.

In this paper, we report experiments which evaluate and adapt the Similarity
Flooding algorithm [3] to compute metamodel alignments. The context of our
approach is the automated generation of model transformations. The input of
the Similarity Flooding algorithm being two labeled directed graphs, part of our
contribution is the proposal and assessment of several ways of encoding a given
metamodel into a labeled directed graph (Section 3). In order to ensure the
reproducibility of our experiments by readers of this paper, we present in detail
the implementation choices we have taken for the Similarity Flooding algorithm
(Section 4). Finally, the output is filtered and transformed into a metamodel
alignment (Section 5).

2 Overview of the approach

In this paper, we aim at generating a model transformation from an input model
conforming to a metamodel MMsource to an output model conforming to a
metamodel MMtarget, aligning MMsource on MMtarget. Such a transformation
can be obtained using a schema matching approach.

The Similarity Flooding algorithm Several surveys [1,2] describe the existing ap-
proaches concerning the matching problem. Those approaches could roughly be
classified in two categories: schema level approaches that produce alignments
using the schemas (e.g. an XML Schema), and instance level approaches that
produce alignments using instances of the schemas (e.g. an XML document con-
forming to a given Schema). Our objective being to generate model transfor-
mations based on the metamodels, we focused on the first category. Among the
many such approaches found in the literature, we chose to use the Similarity
Flooding algorithm [3], for two main reasons. First, it takes as input directed
labeled graphs representing the schemas to match, and converting metamodels
to directed labeled graphs is an easy operation. Second, its generic design allows
easy tuning in order to produce better results using information specific to the
input format. The similarity algorithm works on directed labeled graphs. Those
graphs are used in a fix-point computation process whose result tells us what
nodes in one graph are similar to nodes in the second graph. This process is

2

Ecore
Alignment

Metamodel
source

Digraph
source

Metamodel
target

Digraph
target

Graph
Alignment

Metamodel
to

Graph

Metamodel
to

Graph

Similarity
Flooding

Ecore
Alignment
encoder

Fig. 1. Overview of the approach

based on the following intuition: if a node is similar to another node, the neigh-
bours of this node may be similar to the neighbours of the other node. We have
the same intuition concerning metamodel alignment.

Overall approach The approach we propose to compute a metamodel alignment
between two metamodels MMsource and MMtarget is three-phased (see Fig. 1):

1. Transformation of MMsource and MMtarget to the directed labeled graphs
Gsource and Gtarget. There are several strategies to encode a metamodel into
such a graph, and thus several graphs can be generated in a deterministic
way from the same metamodel, depending on the chosen strategy. This step
will be detailed in Section 3.

2. Application of the Similarity Flooding algorithm. To keep this paper self-
contained, we explain this algorithm in Section 4.

3. Generation of an alignment between MMsource and MMtarget. This step is
described in Section 5.

We illustrate these three steps using the two metamodels exMMsource and
exMMtarget shown in Fig. 2. These two metamodels are both used to express
class models, but the names of the elements and their structure are slightly
different (one is UML-like and the other is Java-like).

Operation

+ /qualifiedName: EString

Class

NamedElement

+ name: EString

+ type

1..1

JElement

+ name: String

JTypedElement

JMethod

JClass + type

1..1

+ methods 0..*

exMMsource
exMMtarget

<<datatype>>
 String

+ operations

0..*

Fig. 2. Example exMMsource (left) and exMMtarget (right) metamodels

3

NamedElement

name
own

EString

datatype

Operation

supertype

type

ref

Class

type

supertype

operations

ref

type

JElement

name own

String

datatype

JTypedElement

supertype

type

ref

JClass

type

supertype

methods

ref

JMethod

type

supertype

exGsource exGtarget

Fig. 3. Graphs generated using the example metamodels and the Minimal configuration

3 From metamodels to directed labeled graphs

In this section, we explain how to transform a metamodel into a directed la-
beled graph that can be exploited by the Similarity Flooding algorithm. This
transformation has a crucial importance: it is in charge of extracting from the
metamodels the information that will be used to compute the mappings between
the metamodel elements. It also structures this chosen information: the structure
of the graph is important since the Similarity Flooding algorithm computes the
alignment based on the structure of the input graphs. In the following, we refer
to the choice of the elements in the metamodel and the way to structure them
in a directed labeled graph as a configuration.

To determine the most adequate configuration, we designed six possible con-
figurations that explore the effects of derived elements (that may introduce re-
dundancy and increases the complexity of the Similarity Flooding algorithm),
of abstract classes, and of transitive closure on relations based on the inheri-
tance relation. We describe below those six configurations, and how they impact
the resulting alignment in the case study presented in Section 6. Our approach
uses Ecore [4] as the meta-metamodel, thus the configurations refer to Ecore
elements (e.g., EClass, EReference).

The first configuration is called Minimal: it is the simplest and most in-
tuitive one. It uses a small subset of elements included in the metamodel: it
does not use any meta-attribute of the meta-classes. One labeled node is created
for each EClass, each non-derived EAttribute, each non-derived EReference,
each EDataType, each EEnum and each EEnumLiteral contained in the meta-
model. The labels of those nodes are the names of the corresponding elements.
A directed arc labeled supertype is created between two nodes that represent an
EClass whenever those two EClasses are in an inheritance relationship. An own
arc is created when an EClass owns an EAttribute. A ref arc is created when
an EClass owns an EReference. A type arc is created when an EReference is

4

typed by an EClass. A datatype arc is created when an EAttribute is typed
by an EDataType or an EEnum. A literal arc is created when an EEnum owns an
EEnumLiteral. Fig. 3 shows the graphs exGsource and exGtarget, corresponding
respectively to exMMsource and exMMtarget metamodels, generated with this
configuration.

The second configuration, called Basic, differs from the Minimal configu-
ration by the way it represents the names of the elements. With the Minimal
configuration, an element E (for example an Eclass) with name n is represented
by a node N with label n, while with the Basic configuration, E is represented
by a node N labeled by a unique identifier #ID, and linked to a node labeled
n with an arc label. Fig. 4 shows the graph exGsource generated with this con-
figuration. Such a configuration allows us to directly have the information on
the frequence a name is used (we just have to count the number of arcs label
entering a given node). This frequence can then be exploited by the Similarity
Flooding algorithm.

The third configuration, Standard, extends the Basic configuration to obtain
similarities not only inspecting the names of the elements, but also their types,
and main attributes (abstract for the EClass, lowerBound and upperBound
from EAttribute and EReference, and containment from EReference). In that
purpose, a node representing an element E is linked by an arc labeled kind to
a node N representing the type of the element E. N is labeled according to the
type of the element E, removing the prefix “E” for all the elements of Ecore, and
adding the suffix “Element” (e.g. EClass is turned into ClassElement). To deal
with the main attributes, when an element E has for type a meta-class with an
attribute A, then the node corresponding to E is linked with an arc labeled A to
a node whose label is the value of the attribute A for E. For example, to represent
an abstract EClass myEClass, the node representing myEClass is linked with an
arc labeled abstract to a node labeled true. The left side of Fig. 5 shows an excerpt
of the graph exGsource generated using the Standard configuration. The Full
configuration extends the Standard configuration taking into account the derived
EAttributes and EReferences. All the nodes representing an EAttribute or

#16316379

NamedElement

label

#22566565 own

name

label

#24166053

datatype

EString

label

#10519800

supertype

Operation

label

#7990655

ref

type

label

#14105722

type

supertype

Class

label

#12818976

ref

type

operations

label

Fig. 4. Graph exGsource corresponding to exMMsource using the Basic configuration
(the name of the elements are in a dedicated node)

5

true

false

0 n ReferenceElement

ClassElement

#23191477

abstract kind

Class
label

#10884088

ref

containment
lower

upper kind

operations

label

ClassElement

AttributeElement

ReferenceElement

true

false 01

#12621140

kind

abstract

Operation

label

#25948274

ref

#4677928
own

kind

containment

derived

lower

upper

type

label

kind

derived

lower

upper

qualifiedName

label

Standard Full

Fig. 5. Extracts of graph exGsource generated with the Standard and Full configura-
tions

an EReference are added an arc labeled derived and leading to a node labeled
true or false depending whether the element is derived. The right side of Fig. 5
shows an extract of the graph exGsource generated using this configuration.

The Flattened configuration is based on the Standard one, but with flat-
tened inheritance. The nodes representing abstract EClasses and the arcs la-
beled supertype are deleted. Instead, arcs labeled own (resp. ref) connect nodes
representing an EClass Ecl to nodes representing the EAttribute (resp. ERef-
erence) defined by Ecl and all its superclasses. Moreover, when an EReference
Eref is typed by an abstract EClass Ecl, a type arc is created from the node
corresponding to Eref to each non-abstract sub-class of Ecl.

The last configuration is called Saturated and is still based on the Standard
one. Here, the transitive relations are saturated, like in [5]. EClass nodes are
now connected by a supertype arc to the nodes representing all the super-classes
of this EClass. EClass nodes are also connected by own (resp. ref) arcs to the
nodes representing the EAttribute (resp. EReference) introduced and inherited
by the EClass. Finally, for a node representing an EReference, type arcs are
created to the node representing the EClass that types the EReference as well
as all the nodes representing the super-classes of the EClass.

4 The Similarity Flooding algorithm

This section describes the steps performed by the Similarity Flooding algorithm
[3] to compute an alignment between two graphs Gsource and Gtarget.

Step 1 The first step of this algorithm is the computation of a compatibility
graph (called pairwise connectivity graph in [3]) between Gsource and Gtarget.

6

(NamedElement,JElement)

(name,name)

own
(EString,String) datatype

(NamedElement,JTypedElement)

(Operation,JTypedElement)

supertype

(type,type)

ref

(Class,JTypedElement)

supertype

(operations,type)
ref

(Class,JClass)
type

(Operation,JClass)

type

supertype

(type,methods)
ref

supertype

(operations,methods)

ref

(Class,JMethod) type(Operation,JMethod)

type

supertype supertype

exCG

Fig. 6. The compatibility graph exCG between exGsource and exGtarget

A graph Gi is here a set of triples (x, r, y) with x and y two labeled nodes and
r a labeled arc. The compatibility graph CG between two graphs Gsource and
Gtarget is built this way: ((x1, x2), r, (y1, y2)) ∈ CG iff (x1, r, y1) ∈ Gsource and
(x2, r, y2) ∈ Gtarget. Therefore, a compatibility graph is a set of triples (s, r, t)
such as s = (x1, y1) and t = (x2, y2) with x1 and x2 labeled nodes of Gsource,
y1 and y2 labeled nodes of Gtarget, and r a labeled arc. Nodes s and t are called
compatibility nodes. Fig. 6 shows the compatibility graph built using the two
sample graphs of Fig. 3.

Step 2 In this step, we compute a propagation graph using this compatibility
graph. The labeled arcs of the compatibility graph created during the previ-
ous step are replaced by several weighted arcs. Different ways of computing the
weights are compared in [3]. Here, we have chosen to use one that has proved to
give good results. First, for each arc (s, r, t) of the compatibility graph, a reverse
arc (t, r, s) is also created. Then, for each compatibility node n we compute On

l

the number of arcs that start from n and are labeled by l. For instance, in Fig. 6,
O

(NamedElement,JElement)
supertype = 4 and O

(NamedElement,JElement)
own = 1. For each triple

(s, r, t) of the compatibility graph, a (s, v, t) triple is created in the propagation
graph with v = 1/Os

r . In Fig. 6 we can see that (n1, supertype, n2) is replaced by
(n1, 0.25, n2) because On1

supertype = 4, with n1 = (NamedElement, JElement)
and n2 = (Class, JClass). Similarly, (n1, own, n3) is replaced by (n1, 1, n3) be-
cause On1

own = 1, with n3 = (name, name). Fig. 7 shows the propagation graph
computed using the compatibility graph of Fig. 6.

Step 3 We dispose now of a propagation graph that indicates how the similarity
values of the nodes will propagate through the graph. Before starting the fix-
point computation process, it is necessary to assign an initial similarity value to
each node of the propagation graph. We chose to assign the initial value s0

n of a
compatibility node n = (x, y) with the following formula, similar to the one used

7

(NamedElement,JElement)

(name,name)

(Operation,JTypedElement)

0.25

(Class,JTypedElement)

0.25

(Operation,JClass)

0.25(Class,JClass)
0.25

(EString,String)

(NamedElement,JTypedElement)

(Operation,JMethod)

0.5

(Class,JMethod)

0.5

1.0

(type,type)
1.0

1.0

(operations,type)
1.01.0

1.0

1.0

1.0
1.0

1.0

(type,methods)

1.0

1.0

(operations,methods)

1.0

1.0

1.0

1.0

exPCG

1.01.0

1.0

1.0 1.0 1.0

1.01.0

1.0 1.0

Fig. 7. The propagation graph exPCG

in [3]: if x or y is an identifier s0
n = 0, else s0

n = 1−lev(x, y)/max(len(x), len(y)),
with len(x) the length of label x and lev(x, y) the Levenshtein distance [6] be-
tween labels x and y. The Levenshtein distance between two labels is given
by the minimum number of operations needed to transform one label into the
other, where an operation is an insertion, deletion, or substitution of a single
character. Table 1 shows the initial similarity value computed for each node of
the propagation graph shown in Fig. 7. An iterative fix-point computation pro-
cess will propagate these initial similarity values through the propagation graph.
There are again many ways to propagate those similarity values. We chose the
fix-point formula that has proved to give the best result and has the best con-
vergence properties in [3]. This formula has the following definition. Let n be a
compatibility node and In be the set of compatibility nodes that are connected
to n by a weighted arc that ends at n, and let w(s, t) be the weight of the arc
between s and t. The similarity value si+1

n of node n at step i + 1 is computed

according to the following formula: si+1
n = si

n + s0
n +

∑
m∈In

w(m, n)× (s0
m + si

m).

At the end of a step of this iterative process, the similarity value of each compat-
ibility node is normalized; i.e. divided by the greatest similarity value computed
in the step. For instance, in the sample propagation graph shown in Fig. 7,

s1
n4

= s0
n4

+ s0
n4

+ w(n5, n4)× (s0
n5

+ s0
n5

) + w(n6, n4)× (s0
n6

+ s0
n6

)
' 0.10 + 0.10 + 1× (0.11 + 0.11) + 1× (0.08 + 0.08) ' 0.58

with n4 = (operations, type), n5 = (Operation, JClass),
n6 = (Class, JTypedElement).

For this sample propagation graph, the best computed similarity value during
the first step is s1

(NamedElement,JElement) ' 5.67 hence at the end of the first

8

Compatibility node Initial similarity value Final similarity value

(NamedElement,JElement) 0.5833334 1.0

(name,name) 1.0 0.7771561

(EString,String) 0.85714287 0.5186626

(NamedElement,JTypedElement) 0.6923077 0.2985012

(Operation,JTypedElement) 0.23076922 0.44552472

(Class,JTypedElement) 0.07692307 0.13148126

(type,type) 1.0 0.63979846

(operations,type) 0.100000024 0.11389989

(Operation,JClass) 0.111111104 0.1868067

(Class,JClass) 0.8333333 0.7449572

(type,methods) 0.14285713 0.11238139

(operations,methods) 0.39999998 0.52174574

(Operation,JMethod) 0.3333333 0.3444618

(Class,JMethod) 0.0 0.14695258

Table 1. Initial and final similarity value of each compatibility node

step, s1
(operations,type) ' 0, 10 and s1

(NamedElement,JElement) = 1. Let (Si, Si+1)
be a vector of the similarity values computed at two successive steps i and i + 1.
This iterative fix-point computation process ends whenever the euclidean norm
of this vector becomes less than ε for some i > 0. If the computation does not
converge (it means that the euclidean norm of (Si, Si+1) never becomes less than
ε), the process terminates after a maximal number of steps. More information
on the complexity and the convergence properties of this algorithm are given in
[3]. Table 1 shows the final similarity values of the compatibility nodes of the
sample propagation graph shown in Fig. 7, with ε = 0.05. The set of tuples
(n, v) with n a compatibility node and v a similarity value, corresponding to the
columns Compatibility node and Final similarity value of Table 1, is called the
multimapping between Gsource and Gtarget.

Step 4 This last step filters the multimapping to produce a final alignment. We
call R the multimapping and A the final alignment, with A ⊆ R. The method
we use to filter the produced multimapping is called SelectThreshold in [3]. In
the multimapping, a node of the source graph can be associated to several nodes
of the target graph. Fig. 8 shows an extract of the multimapping produced with
the sample graphs. In this extract, we can clearly see that the type node of the
source graph can be associated to the type node or the methods node of the
target graph. The SelectThreshold filter works as follows. For each couple (n, v)
of the multimapping, with n = (x, y), the best match for x (resp y) is looked for
in the multimapping. The best match for x (resp. y) is a couple (m, v) ∈ R such
as m = (x, z) (resp. m = (w, y)) with v the best similarity value for a node like
m. We call smax

x (resp. smax
y) the similarity value for the best match for x (resp.

y). For the previous couple (n, v), we compute sn
x = v/smax

x and sn
y = v/smax

y .
The couple (n, v) ∈ A iff sn

x ≥ threshold and sn
y ≥ threshold, with threshold ∈

9

0.64type

operations

type

methods0.52

0.11 0.11

1.0type

operations

type

methods

1.0

1.0 1.0

0.17 0.17

0.21 0.21

Fig. 8. Extract of the multimapping (left) and of the mutual multimapping (right)

[0, 1]. In the example of Fig. 8, we have smax
operations ' 0.52 and smax

type ' 0.64.

Therefore, s
(operations,type)
operations ' 0.11

0.52 ' 0.21. Similarly, s
(operations,type)
type ' 0.11

0.64 '
0.17. With threshold = 0.2, the couple (operations, type) is discarded while
with threshold = 0.15, it is included in the alignment. The choice of threshold
determines the alignment: a high value of threshold will lead to [0− 1]× [0− 1]
cardinality mappings (one element from the source metamodel corresponds at
most to one element of the target metamodel). On the other hand, a low value of
threshold will create [0− n]× [0− n] cardinality mappings (a set of elements of
the source metamodel corresponds to a set of elements of the target metamodel).
Fig. 9 shows the alignment computed on the example graphs with threshold =
0.95. Each mapping of this alignment is correct, except the mapping between
Operation and JTypedElement.

5 Computation of the metamodel alignment

In our approach, we consider a model transformation from a source metamodel
MMsource to a target metamodel MMtarget as a procedure that produces objects
conforming to concrete classes of MMtarget by the analysis of objects conform-
ing to concrete classes of MMsource. Data used when analysing an object of the
source model correspond to the non-derived attributes and references, because
Ecore does not allow to express how an operation is computed or a derived fea-
ture. In the MDE technological space, many transformation languages exist. We
did not want our approach to be tied to a particular language. To avoid that,
we chose to build a language-independent alignment metamodel, inspired by the

NamedElement

name

own

JElement

1.0

EString
datatype

name

0.78

String

0.52

Operation supertype

type

ref

JTypedElement

0.45

Classtype

type

0.64

supertype

operations
ref

JClass

0.74

type

methods

0.52

own datatype

supertype
ref

type supertype

ref

JMethod
type

supertype

Fig. 9. Computed alignment between exGsource and exGtarget

10

EcoreAlignment

+ source: EPackage[1..1]
+ target: EPackage[1..1]

ClassMapping

+ source: EClass[1..1]
+ target: EClass[1..1]

AttributeMapping

+ source: EAttribute[1..1]
+ target: EAttribute[1..1]

ReferenceMapping

+ source: EReference[1..1]
+ target: EReference[1..1]

+ attributeMapping 0..* + referenceMappings 0..*

+ classMappings

0..*

DataTypeMapping

+ source: EDataType[1..1]
EnumMapping

+ source: EEnum[1..1]
+ target: EEnum[1..1]

EnumLiteralMapping

+ source: EEnumLiteral[1..1]
+ target: EEnumLiteral[1..1]

+ enumLiteralMappings 0..*

+ enumMappings 0..*
+ dataTypeMappings 0..*

Fig. 10. Ecore alignment metamodel

schema-matching metamodel given in [7]. Models conforming to this metamodel
show how a metamodel is aligned to another metamodel. Such a model is built
by analysing and reorganizing the alignment produced by the Similarity Flood-
ing algorithm. A transformation generator then reads an alignment model and
generates the code of the transformation in a target language. Such an architec-
ture allows to generate transformations in various languages. However, such code
generators are out of the scope of this paper. The alignment metamodel is shown
in Fig. 10. An Ecore alignment is composed of several class mappings, data type
mappings and enumeration mappings. A class mapping is composed of several
attribute and reference mappings. An enumeration mapping is composed of sev-
eral enumeration literal mappings. Because we did not want to tackle complex
element transformations (such as Class to Attribute or Attribute to Class map-
pings) in this paper, our metamodel only allows to express mappings between
elements of the same kind. However, such cross-kind mappings can be found in
the alignment produced by Similarity Flooding. According to our definition of a
model transformation, we add the following constraints on our alignment meta-
model: two mapped EClass are not abstract and two mapped EReference or
EAttribute are not derived. The steps required to build such an Ecore alignment
from a Similarity Flooding (SF) alignment are:

1. Search in the SF alignment all the mappings between two concrete EClass
to buid the ClassMapping elements. Then for each such mapping:
(a) When an EAttribute from the source EClass and its super-classes is

mapped to an EAttribute contained by the target EClass or its super-
classes, add an AttributeMapping element in the ClassMapping;

(b) When an EReference from the source EClass and its super-classes is
mapped to an EReference contained by the target EClass or its super-
classes, add a ReferenceMapping element in the ClassMapping;

2. Search in the SF alignment all the mappings from a source EEnum to a tar-
get EEnum to build the EnumMapping elements. For each literal of a map-
ping source EEnum which matches on a literal of the target EEnum, add an
EnumLiteralMapping element.

3. Search in the SF aligment all the mappings from a source EDataType to a
target EDataType to build the DataTypeMapping elements.

11

Precision Recall F_score
0

0,2

0,4

0,6

0,8

1

1,2

Minimal
Basic
Standard
Full
Flattened
Saturated

Precision Recall F_score
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Minimal
Basic
Standard
Full
Flattened
Saturated

Fig. 11. Results of exMMsource ↔ exMMtarget (left) and Ecore↔Minjava (right)

6 Case study

This case study compares the results obtained on various metamodels with the
different configurations proposed in Section 3. The parameters of the similarity
flooding algorithm used in this case study are: ε = 0.05 and threshold = 0.95.
Since many of the real world metamodels are designed to express class models,
we chose to use those metamodels as a benchmark. The chosen alignment scenar-
ios are: exMMsource ↔ exMMtarget, Ecore ↔ Minjava, Ecore ↔ Kermeta
and Ecore ↔ UML. Ecore [4] is the meta-metamodel and hence a metamodel.
Minjava [8] is a simple metamodel for the Java language, that allows to represent
the structure of a Java program. Since Minjava imports the models from Java
bytecode, it does not provide a way to describe how the methods of the different
classes of a program are structured and thus is very similar to Ecore. Kermeta
[9] is an extension of Ecore that allows to give a behavorial description of the
operations and derived properties of a class model in addition to the structural
description. UML [10] is a multi-purpose software modeling language that deals
with class models (including behavioral description), use cases or statecharts.
Since the elements from the metamodel used in the matching process are not the
same for the different configurations of Section 3, we needed a common denomi-
nator between those configurations to compare them. This common denominator
is the Ecore aligment model produced by the Ecore alignment encoder described
in Section 5. This model only shows mappings between non abstract classes, non
derived attributes and references, datatypes and enumerations. Those elements
are included in all the different configurations. We compare the Ecore align-
ment model produced by the alignment encoder to an ideal alignment model
designed by an expert (standard transformations such as Ecore to Kermeta
have been used to build those ideal models). We evaluate our results with com-
mon metrics from the information retrieval field [11]. For each alignment, we
compute precision = #correct found mappings

#total found mappings , recall = #correct found mappings
#total correct mappings

12

Precision Recall F_score
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Minimal
Basic
Standard
Full
Flattened
Saturated

Precision Recall F_score
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Minimal
Basic
Standard
Full
Flattened
Saturated

Fig. 12. Results of Ecore↔ Kermeta (left) and Ecore↔ UML (right)

and f score = 2×recall×precision
recall+precision . We have precision ∈ [0, 1]. The higher is

the precision value, the smaller is the set of wrong mappings. recall ∈ [0, 1].
The higher is the recall value, the smaller is the set of the mappings that
have not been found. f score is the harmonic mean of precision and recall.
f score ∈ [0, 1]. It can be considered as a global measure of the alignment qual-
ity. A high value of f score is obtained when the produced alignment has a good
quality.

The results of our experiments are shown in Fig. 11 and 12. The results
show that the best configuration is generally Saturated. On the other hand, the
Minimal configuration gives very bad results. Full and Standard configurations,
despite using more information from the metamodels, seem to produce slightly
poorer results than the Basic configuration. The metamodels we used to match
on Ecore vary in size. Minjava has more or less the same size as Ecore, Kermeta
is a little bigger, and UML is very large. We can clearly see from the results
that the alignment quality decreases when the size difference between the two
matched metamodels is increasing. This is partly caused by the SelectThreshold
filter that filters the alignment produced by Similarity Flooding. Results on
Ecore ↔ Minjava and Ecore ↔ Kermeta show that good quality alignments
can be produced by our approach.

7 Related work and conclusion

Related Work Automating the discovery of mappings between schemas, ontolo-
gies, documents or (meta)models has been thoroughly investigated [1,2]. In the
context of Model-Driven Engineering, several approaches for semi-automatic gen-
eration of transformations based on mapping have recently been proposed. In
[12], model transformations are generated based on ontological information. The
two metamodels are supposed to have a semantics given using a mapping onto

13

a known ontology. Reasonning on the ontology then allows to generate a model
transformation, adapting a bootstrap transformation that is whether automati-
cally generated or existing. The transformation is written in the paper in QVT
Relational. [13] studies the semi-automatic derivation of graph transformation
rules based on manual set-up of prototype mappings between models. In an-
other Model Transformation By-Example approach [14], users define a mapping
directly on models in concrete syntax (M1 level), then, using a predefined known
mapping between concrete and abstract syntaxes, ATL rules can be generated.
Compared to these two approaches that are based on a given mapping (onto a
pivot ontology or between examples), we focus on automatically determining the
mapping on which is based the transformation generation.

In [7], the matching operation focuses on classes, datatypes and enumerations.
The proposed class matching algorithm iterates until a fix-point is reached on
evaluating if two leaf classes match. Characteristics including attributes, refer-
ences and relationships (based on closure and composition of inheritance, as-
sociation, agregation, type-of, etc.) are then used: if the number of matching
characteristics is greater than a threshold average, the two classes are consid-
ered as similar. The exact computation of characteristic similarity is not much
detailed in [7], but it is said that they used name, type and graph matching
similarity. For datatypes, the possibility of representing a value of a type (e.g.
int) by another type (e.g. float) is used. For enumeration, the numbers of iden-
tical litterals are compared. Experiments on partial UML and Java metamodels
are shown in [15]. In [16], an architecture is proposed for semi-automating the
generation of model transformations. A weaving metamodel describes the kinds
of links generated by the matching engine and current transformation patterns.
Matching is based on element to element and on structural similarities. Struc-
tural similarities computation is inspired by the Similarity Flooding approach. A
configuration metamodel is introduced to tune the matching phase. Several case
studies are conducted in [16]. Here we go deeper into the encoding of metamodels
for applying Similarity Flooding. We detail and compare several configurations
on known, available, full metamodels. These configurations are helpful for fu-
ture case tool constructions. The whole process is detailed enough in order to be
reproducible and compared to future metamodel matching approaches.

Conclusions and perspectives In this paper, we have presented an approach that
produces an alignment between two metamodels in an automated way. This
approach is based on the application on metamodels of a well-known schema
matching algorithm called Similarity Flooding. Our main contribution is the
study on the various ways of encoding a given metamodel into a directed la-
beled graph that can then be exploited by the Similarity Flooding algorithm.
We compared six strategies in a case study in terms of precision and recall of the
computed mappings between metamodels. This case study points out that the
more intuitive encoding strategy (Minimal) leads to poor results, and that the
Saturated strategy is the best-suited in the majority of the cases. The generation
of an Ecore alignement model (conforming to an Ecore alignment metamodel)
from which model transformation code can easily be derived is our second main

14

contribution. Future work will consist in designing code generators both for im-
perative and declarative languages. We also currently follow another perspective:
we study how the Similarity Flooding algorithm can be tuned to our particular
domain (metamodel matching). We are working on the way the initial similar-
ity value of a compatiblity node is computed, and on the way we compute the
weights of the arcs in the propagation graph.

References

1. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001) 334–350

2. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: J.
Data Semantics IV, Volume 3730 of LNCS. (2005) 146–171

3. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: ICDE, Volume
2593 of LNCS. (2002) 117–128

4. Budinsky, F., Brodsky, S., Merks, E.: Eclipse Modeling Framework. Pearson Ed-
ucation (2003)

5. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences.
In: VLDB. (2003) 826–873

6. Levenshtein, V.: Binary codes with correction of deletions, insertions and substi-
tution of symbols. Dokl. Akad. Nank. SSSR 163(4) (1965) 845–848

7. Lopes, D., Hammoudi, S., Abdelouahab, Z.: Schema matching in the context
of model driven engineering: From theory to practice. In: Advances in Systems,
Computing Sciences and Software Eng., Springer Netherlands (2006) 219–227

8. Falleri, J.R.: Minjava. http://code.google.com/p/minjava/ (2008)
9. Triskell: Kermeta. http://www.kermeta.org (2008)

10. Eclipse: UML2 EMF Plugin. http://www.eclipse.org/uml2 (2008)
11. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:

Web, Web-Services, and Database Systems, Volume 2593 of LNCS, Springer (2002)
221–237

12. Roser, S., Bauer, B.: An approach to automatically generated model transforma-
tions using ontology engineering space. In: Proceedings of Workshop on Semantic
Web Enabled Software Engineering (SWESE). (2006)

13. Varró, D.: Model transformation by example. In: Proc. Model Driven Engineering
Languages and Systems (MODELS 2006). Volume 4199 of LNCS., Genova, Italy,
Springer (2006) 410–424

14. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transforma-
tion generation by-example. In: HICSS, IEEE Computer Society (2007) 285

15. Lopes, D., Hammoudi, S., de Souza, J., Bontempo, A.: Metamodel matching:
Experiments and comparison. In: ICSEA, IEEE Computer Society (2006) 2

16. Fabro, M.D.D.: Metadata management using model weaving and model transfor-
mation. PhD thesis, Université de Nantes (2007)

15

