
InfoGather: Entity Augmentation and Attribute Discovery
By Holistic Matching with Web Tables

Mohamed Yakout
∗

Purdue University
myakout@cs.purdue.edu

Kris Ganjam
Microsoft Research

krisgan@microsoft.com

Kaushik Chakrabarti
Microsoft Research

kaushik@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT
The Web contains a vast corpus of HTML tables, specifically entity-
attribute tables. We present three core operations, namely entity
augmentation by attribute name, entity augmentation by example
and attribute discovery, that are useful for “information gathering”
tasks (e.g., researching for products or stocks). We propose to use
web table corpus to perform them automatically. We require the
operations to have high precision and coverage, have fast (ideally
interactive) response times and be applicable to any arbitrary do-
main of entities. The naive approach that attempts to directly match
the user input with the web tables suffers from poor precision and
coverage.

Our key insight is that we can achieve much higher precision and
coverage by considering indirectly matching tables in addition to
the directly matching ones. The challenge is to be robust to spuri-
ously matched tables: we address it by developing a holistic match-
ing framework based on topic sensitive pagerank and an augmenta-
tion framework that aggregates predictions from multiple matched
tables. We propose a novel architecture that leverages preprocess-
ing in MapReduce to achieve extremely fast response times at query
time. Our experiments on real-life datasets and 573M web tables
show that our approach has (i) significantly higher precision and
coverage and (ii) four orders of magnitude faster response times
compared with the state-of-the-art approach.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line Information
Services

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
The Web contains a vast corpus of HTML tables. In this pa-

per, we focus on one class of HTML tables: entity-attribute tables
(also referred to as relational tables [5, 4] and 2-dimensional tables

∗Work done while visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

Model Brand

S80

A10

GX-1S

T1460

Model Brand

S80 Nikon

A10 Canon

GX-1S Samsung

T1460 Benq

S80 Nikon

A10 Canon

GX-1S

T1460

S80 Nikon

A10 Canon

GX-1S Samsung

T1460 Benq

S80

A10

GX-1S

T1460

Input

(Query)

Table

Output

Table

(a) Augmentation By

Attribute Name

(b) Augmentation

By Example

(c) Attribute

Discovery

brand | make |

manufacturer | mfr

resolution | mp |

megapixel | res

price | retail price |

offer

zoom | optical

zoom

Figure 1: APIs of the 3 core operations

[20]). Such a table contains values of multiple entities on multiple
attributes, each row corresponding to an entity and each column
corresponding to an attribute. Cafarella et. al. reported 154M such
tables from a snapshot of Google’s crawl in 2008; we extracted
573M such tables from a recent crawl of Microsoft Bing search
engine. Henceforth, we refer to such tables as simply web tables.

Consider a user researching for products or stocks or an analyst
performing competitor analysis. One of the most labor-intensive
subtasks of such tasks is gathering information about the “entities”
of interest. We identify two such subtasks: finding the values of
attributes of one or more entities and finding the relevant attributes
of an entity type. We propose to automate them using the extracted
web tables. We formalize these subtasks using the following three
core operations:
• Augmentation By Attribute Name (ABA): Consider a user re-
searching digital cameras. She collects the names of models she is
interested in into a spreadsheet (e.g., Excel). She would like to find
their values on various attributes such as brand, resolution, price
and optical zoom based on which she can decide which one to buy.
Here the entities which the user wants to gather information for are
the camera models; we henceforth refer to them simply as entities.
We refer to this operation as augmentation by attribute name and
these attributes as augmenting attributes. This was originally pro-
posed as an operator, called EXTEND, in [4]. Figure 1(a) shows ex-
ample input and output for this operation applied to camera model
entities with one augmenting attribute (brand). Such augmentation
would be difficult to perform using an enterprise database or an
ontology because the entities can be from any arbitrary domain.
Today, users try to manually find the web sources containing this
information and assemble the values. Assuming that this informa-

Model Brand

S80

A10

GX-1S

T1460

Query
Table

Model Brand

S80 Nikon

Easyshare CD44 Kodak

DSC W570 Sony

Optio E60 Pentax

Part No Mfg

DSC W570 Sony

T1460 Benq

Optio E60 Pentax

S8100 Nikon

Model Brand

S80 Benq

A10 Innostream

A460 Samsung

S710 HTC

0.25

0.5

Model Brand

SP 600UZ Olympus

DSC W570 Sony

GX-1S Samsung

A10 Canon

0.5

���

0.5 0.25

T1

T2

T3

T4

Model Make

… …

No Vendor

… …

Model Res.

… …

T5

T6

T7

T8
Model Resolution

… …

0.3

0.7

0.4

0.2

Figure 2: ABA operation using web tables

tion is available, albeit scattered, in various web tables, we can save
a lot of time and effort if we can perform this operation automati-
cally.
• Augmentation by Example (ABE): A variant of ABA is to pro-
vide the values on the augmenting attribute(s) for a few entities
instead of providing the name of the augmenting attribute(s). We
refer to this operation as augmentation by example. Figure 1(b)
shows example input and output for this operation applied to cam-
era model entities and one augmenting attribute (brand).
• Discovery Of Important Attributes (AD): Often, the user may
not know enough about the domain; in such cases, she would like
to know the most important attributes for the given set of entities.
She can then select the ones that matter the most to her and request
augmentation for those. Figure 1(c) shows example input and out-
put for this operation applied to camera model entities. If we can
use the web tables to discover the relevant attributes automatically,
we can save the user’s time and effort in trying to discover them
manually.
The requirements for these core operations are: (i) high precision
(#corraug

#aug
) and high coverage (#aug

#entity
) where #corraug, #aug

and #entity denote the number of entities correctly augmented,
the number of entities augmented and the number of entities, re-
spectively. (ii) fast (ideally interactive) response times and (iii) ap-
plicability to entities of any arbitrary domain. The focus of the
paper is to perform these operations using web tables such that the
above requirements are satisfied.
Baseline Technique: We present the baseline technique and our
insights in the context of the ABA operation; they apply to all
the core operations as discussed in Section 5. For simplicity, we
consider only one augmenting attribute. As shown in Figure 1(a),
the input can be viewed as a binary relation with the first column
corresponding to the entity name and the second corresponding
to the augmenting attribute. The first column is populated with
the names of entities to be augmented while the second column
is empty. We refer to this table as the query table (or simply the
query). The baseline technique first identifies web tables that se-
mantically “matches” with the query table using schema matching
techniques (we consider simple 1:1 mappings only) [2]. Subse-
quently, we look each entity up in those web tables to obtain its
value on the augmenting attribute. The state-of-the-art entity aug-
mentation technique, namely Octopus, implements a variant of this
technique using the search engine API [4].

EXAMPLE 1. Consider the query table Q in Figure 2. For sim-
plicity, assume that, like the query table, all the web tables are
entity-attribute binary (EAB) relations with the first column corre-
sponding to the entity name and the second to an attribute of the
entity. Note that for both the query table and web table the first
column is approximately the key column. Using traditional schema
matching techniques, a web table matches Q iff (i) data values in
its first column overlaps with those in the first column of Q and (ii)
name of its second column is identical to that of the augmenting
attribute. We refer to such matches as “direct matches” and the
approach as “direct match approach” (DMA). In Figure 2, only
web tables T1, T2 and T3 directly matches with Q (shown using
solid arrows). A score can be associated with each direct match
based on the degree of value overlap and degree of column name
match; such scores are shown in Figure 2. We then look the entities
up in T1, T2 and T3. For S80, both T1 and T3 contain it but the
values are different (Nikon and Benq respectively). We can either
choose arbitrarily or choose the value from the web table with the
higher score, i.e., Benq from T3. For A10, we can choose either
Canon from T2 or Innostream from T3 (they have equal scores).
For GX−1S, we get Samsung. We fail to augment T1460 as none
of the matched tables contains that entity.

DMA suffers from two problems:
(i) Low precision: In the above example, T3 contains models and
brands of cell phones, not cameras. The names of some of the cell
phone models in T3 are identical to those of the camera models in
the query table, hence, T3 get a high score. This results in 2 (out
of 3) wrong augmentations: S80 and A10 (assuming we choose
Innostream from T3 for A10). Hence, the precision is 33%. Such
ambiguity of entity names exist in all domains as validated by our
experiments. Note that this can mitigated by raising the “matching
threshold” but this leads to poor coverage.
(ii) Low coverage: In the above example, we fail to augment
T1460. Hence, the coverage is 75%. This number is much lower
in practice, especially for tail domains. For example, the Octopus
system (which implements a variant of DMA) reports a coverage
of 33%. This primarily happens because tables that can provide
the desired values either do not have column names or use differ-
ent column name as the augmenting attribute name provided by the
user.

One way to address the coverage issue is to use synonyms of
the augmenting attribute [18, 16]. Traditionally, schema-matchers
have used hand-crafted synonyms; this is not feasible in our setting
where the entities can be from any arbitrary domain. Automatically
generating attribute synonyms for arbitrary domains, as proposed
in [5], typically result in poor quality synonyms. Our experiments
show that these are unusable without manual intervention.
Main Insights and Contributions: Our key insight is that many
tables indirectly match the query table, i.e., via other web tables.
These tables, in conjunction with the directly matching ones, can
improve both coverage and precision. We first consider coverage.
Observe that in Figure 2, table T4 contains the desired attribute
value of T1460 (Benq) but we cannot “reach” it using direct match.
Using schema matching techniques, we can find that T4 matches
with T1 (i.e., there is 1:1 mapping between the two attributes of the
two relations) as well as T2 (as it has 2 records in common with T1

and 1 in common with T2). Such schema matches among web ta-
bles are denoted by dashed arrows; each such match has a score rep-
resenting the degree of match. Since T1 and/or T2 (approximately)
matches with Q (using DMA) and T4 (approximately) matches
with T1 and T2 (using schema matching among web tables), we
can conclude T4 (approximately) matches with Q. We refer to T4

as an indirectly matching table; using it, we can correctly augment
T1460. This improves coverage from 75% to 100%.

Many of the indirectly matching tables are spurious matches; us-
ing these tables to predict values would result in wrong predictions.
The challenge is to be robust to such spurious matches. We address
this challenge in two ways. First, we perform holistic matching.
We observe that truly matching tables match with each other and
with the directly matching tables, either directly or indirectly while
spurious ones do not. For example, T1, T2 and T4 match directly
with each other while T4 only matches weakly with T2. If we com-
pute the overall matching score of a table by aggregating the direct
match as well as all indirect matches, the true matching tables will
get higher scores; we refer to this as holistic matching1. In the
above example, T1, T2 and T4 will get higher score compared with
T3; this leads to correct augmentations for S80 and A10 resulting
in a precision of 100% (up from 33%). Second, for each entity, we
obtain predictions from multiple matched tables and “aggregate”
them; we then select the “top” one (or k) value(s) as the final pre-
dicted value(s).

This gives rise to additional technical challenges: (i) We need to
compute schema matches between pairs of web tables; we refer to
this as the schema matching among web tables (SMW) graph . How
do we build an accurate SMW graph over 573M × 573M pairs of
tables? (ii) How do we model the holistic matching? The model
should take into account the scores associated with the edges in the
SMW graph as well as those associated with the direct matches.
(iii) How do we augment the entities efficiently at query time?

We have built the INFOGATHER system based on the above in-
sights. Our contributions can be summarized as follows:
• We develop a novel holistic matching framework based on topic
sensitive pagerank (TSP) over the SMW graph (Section 2). We ar-
gue that by considering the query table as a topic and web tables as
documents, we can efficiently model the holistic matching as TSP
(details are in Section 2.4). To the best of our knowledge, this is
the first paper to propose holistic matching with web tables.
• We present a novel architecture for the INFOGATHER system
that leverages preprocessing in MapReduce to achieve extremely
fast (interactive) response times at query time. Our architecture
overcomes the limitations of the prior architecture (viz., Octopus)
that uses the search API: its inability to perform indirect/holistic
matches and its high response times (Section 3).
• We present a machine learning-based technique for building the
SMW graph. Our key insight is that the text surrounding the web
tables is important in determining whether two web tables match or
not. We propose a novel set of features that leverage this insight.
Furthermore, we develop MapReduce techniques to compute these
(pairwise) features that scales to 573M tables. Finally, we propose
a novel approach to automatically generate training data for this
learning task; this liberates the system designer for manually pro-
ducing labeled data (Section 4).
• We describe how our holistic matching framework can benefit
the other core operations, namely augmentation-by-example and
attribute-discovery (Section 5).
• We perform extensive experiments on six real-life query datasets
and 573M web tables (Section 7). Our experiments show that our
holistic matching framework has significantly higher precision and
coverage compared with both direct matching approach as well as
the state-of-the-art entity augmentation technique, Octopus. Fur-
thermore, our technique have four orders of magnitude faster re-
sponse times compared with Octopus.

1 This is different from holistic matching proposed in [12] as discussed in
Section 8.

2. HOLISTIC MATCHING FRAMEWORK
We present the data model, the general augmentation framework

and its two specializations: direct matching and holistic matching
frameworks. We present them in the context of ABA operation.
How we leverage these frameworks for the other core operations
(ABE and AD) are discussed in Section 5.

2.1 Data Model
For the purpose of exposition, we assume that the query table

is an entity-attribute binary (EAB) relation, i.e., a query table Q is
of the form Q(K,A), where K denotes the entity name attribute
and A is the augmenting attribute. Since Q.K is approximately the
key attribute, we refer to it as the query table key attribute and the
entities as keys. The key column is populated while the augmenting
attribute column is empty. An example of the query table satisfying
the above properties is shown in Figure 2.

We assume that all web tables are EAB relations as well. For
each web table T ∈ T , we have the following: (1) the EAB rela-
tion TR(K,B) where K denotes the entity name attribute and B
is an attribute of the entity; as in the query table, since T.K is ap-
proximately the key attribute, we refer to it as the web table key
attribute, (2) the url TU of the web page from which it was ex-
tracted, and (3) its context TC (i.e., the text surrounding the table)
in the web page from which it was extracted. For simplicity, we
denote TR(K,B) as T (K,B) when it is clear from the context.
Figure 2 shows four web tables (T1,T2,T3,T4) satisfying the EAB
property.

The ABA problem can be stated as follows.

DEFINITION 1. Augmentation By Attribute Name (ABA):
Given a query table Q(K,A) and a set of web tables
⟨T (K,B), TU , TC⟩ ∈ T , predict the value of each query record
q ∈ Q on attribute A.

In practice, not all web tables are EAB relations; we show how
our framework can be used for general, n-ary web tables in Section
6. Furthermore, the query table can have more than one augment-
ing attribute; we assume that those attributes are independent and
perform predictions for one attribute at a time.

2.2 General Augmentation Framework
Our augmentation framework consists of two main steps: First,

identify web tables that “match” with the query table. Second, use
each matched web table to provide value predictions for the par-
ticular keys that happen to overlap between the query and the web
table; then aggregate these predictions and pick the top value as the
final predicted value. We describe the two steps in further detail.
• Identify Matching Tables: Intuitively, a web table T (K,B)
matches the query table Q(K,A) if Q.K and T.K refer to the
same type of entities and Q.A and Q.B refers to the same attribute
of the entities. In this paper, we consider simple 1:1 mappings
only. Each web table T will be assigned a score S(Q,T) repre-
senting the matching score to the query table Q. Since Q is fixed,
we omit Q from the notation and simply denote it as S(T). There
are many ways to obtain the matching scores between the query
table and web tables; we consider two such ways in the next two
subsections.
• Predict Values: For each record q ∈ Q, we predict the value
q[Q.A] of record q on attribute Q.A from the matching web tables.
This is done by joining the query table Q(K,A) with each matched
web table T (K,B) on the key attribute K. If there exists a record
t ∈ T such that q[Q.K] ≈ t[T.K] (where ≈ denotes either exact or
approximately equality of values), then we say that the web table T

predicted the value v = t[T.B] for q[Q.A] with a prediction score
ST (v) = S(T) and return (v, ST (v)).

After processing all the matched tables, we end up with a set
Pq = {(x1, ST1(x1)), (x2, ST2(x2)), . . . } of predicted values
for q[Q.A] along with their corresponding prediction scores. We
then perform fuzzy grouping [7] on the xi’s to get the groups
Gq = {g1, g2, . . . }, such that, ∀xi ∈ gk, xi ≈ vk, where vk is
the centroid or the representative of group gk. We compute the fi-
nal prediction score for each group representative v by aggregating
the predictions scores of the group’s members as follows:

S(v) = F
(xi,STi

(xi))∈Pq|xi≈v
STi(xi) (1)

where F is an aggregation function. Any aggregation function such
as sum or max can be used in this framework.

The final predicted value for q[Q.A] is the one with the highest
final prediction score:

q[Q.A] = argmax
v

S(v) (2)

If the goal is to augment k values for an entity on an attribute (e.g.,
the entity is a musical band and the goal is to augment it with all
its albums), we simply pick the k with the highest final prediction
score.

EXAMPLE 2. Consider the example in Figure 2. Using the
table matching scores shown, for the query record S80, Pq =
{(Nikon, 0.25), (Benq, 0.5)} (predicted by tables T1 and T3 re-
spectively). The final predicted values are Nikon and Benq with
scores 0.25 and 0.5 respectively, so the predicted value is Benq.

2.3 Direct Match Approach
One way to compute the matching web tables and their scores is

the direct match approach (DMA) discussed in Section 1. The pre-
diction step is identical to that in the general augmentation frame-
work. Using traditional schema matching techniques, DMA con-
siders a web table T to match with the query table Q iff (i) data
values in T.K overlaps with those Q.K and (ii) the attribute name
T.B matches Q.A (denoted by T.B ≈ Q.A). DMA computes the
matching score S(T) between Q and T , denoted as SDMA(T), as
follows:

SDMA(T) =

{ |T∩KQ|
min(|Q|,|T |) if Q.A ≈ T.B

0 otherwise.
(3)

where |T ∩K Q| = |{t | t ∈ T & ∃ q ∈ Q s.t. t[T.K] ≈
q[Q.K]}|. For example, in Figure 2, the scores for T1, T2 and T3

are 1
4

, 2
4

and 2
4

respectively as they have 1, 2 and 2 matching keys
respectively, min(|Q|, |T |) = 4 and Q.A ≈ T.B; the score for T4

is 0 because Q.A ̸≈ T.B.

2.4 Holistic Match Approach
To overcome the limitations of the DMA approach as outlined

in Section 1, we study the holistic approach to compute matching
tables and their scores. The prediction step remains the same as
above. We model the holistic matching using TSP. We start by
reviewing the definitions of personalized pagerank (PPR) and TSP;
and then make the link to our problem in Section 2.4.2.

2.4.1 Preliminaries: Personalized and Topic Sensi-
tive Pagerank

Consider a weighted, directed graph G(V,E). We denote the
weight on an edge (u, v) ∈ E with αu,v . Pagerank is the sta-
tionary distribution of a random walk on G that at each step, with
a probability ϵ, usually called the teleport probability, jumps to a

random node, and with probability (1 − ϵ) follows a random out-
going edge from the current node. Personalized Pagerank (PPR) is
the same as Pagerank, except all the random jumps are done back
to the same node, denoted as the “source” node, for which we are
personalizing the Pagerank.

Formally, the PPR of a node v, with respect to the source node
u, denoted by πu(v), is defined as the solution of the following
equation:

πu(v) = ϵδu(v) + (1− ϵ)
∑

{w|(w,v)∈E}

πu(w)αw,v (4)

where δu(v) = 1 iff u = v, and 0 otherwise. The PPR values
πu(v) of all nodes v ∈ V with respect to u is referred to as the
PPR vector of u.

A “topic” is defined as a preference vector β⃗ inducing a proba-
bility distribution over V . We denote the value of β⃗ for node v ∈ V
as βv . Topic sensitive pagerank (TSP) is the same as Pagerank, ex-
cept all the random jumps are done back to one of the nodes u with
βu > 0, chosen with probability βu. Formally, the TSP of a node
v for a topic β⃗ is defined as the solution of the following equation
[11]:

πβ⃗(v) = ϵβ⃗ + (1− ϵ)
∑

{w|(w,v)∈E}

πβ⃗(w)αw,v (5)

2.4.2 Modeling Holistic Matching using TSP
First, we draw the connection between the PPR of a node with

respect to a source node and the holistic match between two web
tables. Then, we show how the holistic matching between the query
table and a web table can be modeled with TSP.

Consider two nodes u and v of any weighted, directed graph
G(V,E). The PPR πu(v) of v with respect to u represents the
holistic relationship of v to u where E represents the direct, pair-
wise relationships, i.e., it considers all the paths, direct as well as
indirect, from u to v and “aggregates” their scores to compute the
overall score. PPR has been applied to different types of relation-
ships. When the direct, pairwise relationships are hyperlinks be-
tween web pages, πu(v) is the holistic importance conferral (via
hyperlinking) of v from u; when the direct, pairwise relationships
are direct friendships in a social network, πu(v) is the holistic
friendship of v from u.

In this paper, we propose to use PPR to compute the holistic se-
mantic match between two web tables. Therefore, we build the
weighted graph G(V,E), where each node v ∈ V corresponds to
a web table and each edge (u, v) ∈ E represents the direct pair-
wise match (using schema matching) between the web tables cor-
responding to u and v. Each edge (u, v) ∈ E has a weight αu,v

which represents the degree of match between the web tables u and
v (provided by the schema matching technique). We discuss build-
ing this graph and computing the weights in detail in Section 4.1.
We refer to this graph as the schema matching graph among web
tables (SMW graph). Thus, the PPR of πu(v) of v with respect to
u over the SMW graph models the holistic semantic match of v to
u.

Suppose the query table Q is identical to a web table correspond-
ing to the node u, then the holistic match score SHol(T) between
Q and the web table T is πu(v), where v is the node correspond-
ing to T . However, the query table Q is typically not identical to
a web table. In this case, how can we model the holistic match of
a web table T to Q? Our key insight is to consider Q as a “topic”
and model the match as the TSP of the node v corresponding to T
to the topic. In the web context where the relationship is that of
importance conferral, the most important pages on a topic are used

to model the topic (the ones included under that topic in Open Di-
rectory Project); in our context where the relationship is semantic
match, the top matching tables should be used to model the topic of
Q. We use the set of web tables S (referred to as seed tables) that
directly matches with Q, i.e., S = {T |SDMA(T) > 0} to model it.
Furthermore, we use the direct matching scores SDMA(T)|T ∈ S
as the preference values β⃗:

βv =

{
SDMA(T)∑

T∈S SDMA(T)
if T ∈ S

0 otherwise
(6)

where v corresponds to T . For example, βv are 0.25
1.25

, 0.5
1.25

and 0.5
1.25

for T1, T2 and T3 respectively and 0 for all other tables. Just like
the TSP score of web page representing the holistically computed
importance of a page to the topic, πβ⃗(v) over the SMW graph mod-
els the holistic semantic match of v to Q. Thus, we propose to use
SHol(T) = πβ⃗(v) where v corresponds to T .

3. SYSTEM ARCHITECTURE
Suppose the SMW graph G has been built upfront. The naive

way to compute the holistic matching score SHol(T) for each web
table is to run the TSP computation algorithm over G at augmen-
tation time. This results in prohibitively high response times. We
leverage the following result to overcome this problem:

THEOREM 1. (Linearity [11]) For any preference vector β⃗, the
following equality holds:

πβ⃗(v) =
∑
u∈V

βu × πu(v) (7)

If we can precompute the PPR πu(v) of every node v with re-
spect to every other node u (referred to as Full Personalize Pager-
ank (FPPR) computation) in the SMW graph, we can compute the
holistic matching score for any query table πβ⃗(v) efficiently using
Eq. 7. This leads to very fast response times at query time.

INFOGATHER architecture has two components as shown in Fig-
ure 3. The first component performs offline preprocessing for the
web crawl to extract the web tables, build the SMW graph and com-
pute the FPPR. For all these offline steps, our techniques need to
scale to hundreds of millions of tables. We propose to leverage
the MapReduce framework for this purpose. The second compo-
nent concerns the query time processing, where we compute the
TSP scores for the web tables and aggregate the predictions from
the web tables. In the following, we give more details about each
component:

Preprocessing: There are five main processing steps in this com-
ponent:
• P1: Extract the HTML web tables from the web crawl and use
a classifier to distinguish the entity attribute tables from the other
types of web tables, (e.g., formatting tables, attribute value tables,
etc.). Our approach is similar to the one proposed in [6]; we do not
discuss this step further as it is not the focus of the paper.
• P2: Index the web tables to facilitate faster identification of the
seed tables. We use three indexes: (i) An index on the web tables’
key attribute values (WIK). Given a query table Q, WIK(Q) returns
the set of web tables that overlaps with Q on at least one of the keys.
(ii) An index for the web tables complete records (that is key and
value combined) (WIKV). WIKV(Q) returns the set of web tables
that contain at least one record from Q. (iii) An index on the web
tables attributes names (WIA), such that, WIA(Q) returns the set
of web tables {T |T.B ≈ Q.A}
• P3: Build the SMW graph based on schema matching techniques
as we describe in Section 4.1.
• P4: Compute the FPPR and store the PPR vector for each web

Query Time

Processing
Pre-processing

Web tables Indexes

T2Syn
Synonym

discovery

WIK, WIKV

WIA

Web Crawl

Extract & identify

relational web

tables

Build web

tables Graph

FPPR

Query

Table

PredictionsTSP

T2PPV

Figure 3: INFOGATHER System Architecture

table (we store only the non-zero entries). We refer to this as the
T2PPV index. For any web table T , T2PPV(T) returns the PPR
vector of T . We discuss the technique we use to compute the FPPR
in Section 4.2.
• P5: Discover the synonyms of attribute B for each web table
T (K,B). We give the details of this step while discussing the at-
tribute discovery operation in Section 5.3. We refer to this as the
T2Syn index. For any web table T , T2Syn(T) returns the synonyms
of attribute B of table T .
The indexes (WIK, WIKV, WIA, T2PPV and T2Syn) may either
be disk-resident or reside in memory for faster access.

Query Time Processing: The query time processing can be ab-
stracted in three main steps. The details of each step depends on the
operation. We provide those details for each operation in Section 5.
• Q1: Identify the seed tables: We leverage the WIK, WIKV and
WIA indexes to identify the seed tables and compute their DMA
scores.
• Q2: Compute the TSP scores: We compute the preference vector
β⃗ by plugging the DMA matching scores in Eq. 6. According to
Theorem 1, we can use β⃗ and the stored PPR vectors of each table
to compute the TSP score for each web table. Note that only the
seed tables have non-zero entries in β⃗. Accordingly, we need to
retrieve the PPR vectors of only the seed tables using the T2PPV
index. Furthermore, we do not need to compute TSP scores for all
web tables in the retrieved PPR vectors. We need to compute it
only for the tables that could be used in the aggregation step: the
one that have at least one key overlapping with the query table. We
refer to them as relevant tables. These can be identified efficiently
by invoking WIK(Q). These two optimizations are important to
compute the TSP scores efficiently.
• Q3: Aggregate and select values: In this step, we collect the
predictions provided by the relevant web tables T along with the
scores SHol(T). The predictions are then processed, the scores are
aggregated and the final predictions are selected according to the
operation.

4. BUILDING THE SMW GRAPH AND
COMPUTING FPPR

This section discusses the major preprocessing steps of the web
tables, namely, building the SMW graph (P3) and computing the
FPPR (P4). The preprocessing step (P5) is discussed in Section 5
while discussing the AD operation.

4.1 Building the SMW Graph
First, we give details on how we match a pair of web tables and

then address the scalability challenges in building the SMW graph.

4.1.1 Matching Web Tables
In the SMW graph, there is an edge between a pair (T (K,B),

T ′(K′, B′)) of web tables if T matches with T ′, i.e., T.K and

T.K′ refer to the same type of entities and T.B and T ′.B′ refers
to the same attribute of those entities. Our problem can be formally
stated as follows:

DEFINITION 2. Pairwise web tables matching problem: Given
two web tables ⟨T (K,B), TU , TC⟩ and ⟨T ′(K′, B′), T ′

U , T
′
C⟩, de-

termine whether T matches with T ′ and compute the score of the
mapping T.K → T ′.K′, T.B → T ′.B′.

In schema matching [18, 2], the problem of matching two
schemas S and S′ is normally framed as follows: Given the two
schemas, for each attribute A of S, find the best corresponding at-
tribute A′ of S′, possibly with an associated matching score.

The problems are similar enough so that the techniques used in
standard schema matching problem can be used for ours as well.
Schema matching techniques first identify information about each
element of each schema that is relevant to discovering matches.
For each pair of elements, one from each schema, they compute a
set of “feature scores” where each feature score represent a match
between the pair on a different aspect. Finally, they combine
those feature scores into a single score based on which they decide
whether the element pair matches or not. The combination module
can either use machine learning-based techniques or non-learning
methods [15, 8]; we use machine learning-based techniques in this
paper.

Traditionally, the focus is on schema level features (e.g., attribute
names matching) and instance level features (e.g., attribute data val-
ues matching). Specifically for web tables, [4] suggested to use two
specific features: (i) the average columns width similarity and (ii)
the similarity of the text of the table content without considering
the columns and rows structure.

But for web tables it may not be sufficient to rely only on these
traditional schema and instance level information. For example,
consider tables T2 and T3 in Figure 2. At the schema level, they
both share the same column names, and moreover, at the instance
level both share the Model A10 and share the Brand Samsung.
Despite all these similarities, these web tables are not a match, be-
cause T2 is about cameras and T3 is about cell phones. On the other
hand, consider web tables T2 and T4. They neither share schema
level nor instance level similarities. However, both T2 and T4 con-
tain digital camera models with their brands and should have high
matching score. Furthermore, many web tables do not have column
names [19]; this further exacerbates the problem.

Our main insight is that there is additional information about the
web tables that can be leveraged to overcome the above limitations.
We propose 4 novel feature scores based on this insight:
• Context similarity: The context or the text around the web ta-
ble in the web page provides valuable information about the table.
Suppose, the context for T3 is “Mobile phones or cell phones, rang-
ing from . . . ”, while that for T2 and T4 are “Ready made correc-
tion data for cameras and lenses” and “Camera Bags Compatibility
List” respectively. This indicates that T2 and T4 are probably about
cameras while T3 about phones. Clearly, sharing the term ‘cam-
eras’ indicates that similarity between T2 and T4. We capture this
intuition using a context similarity feature which is computed using
the tf-idf cosine similarity of the text around the table.
• Table-to-Context similarity: The context of a table may con-
tain keywords that overlap with values inside another web table.
This provides evidence that the web pages containing the tables are
about similar subjects, and hence, the tables may be about similar
subjects as well. We capture this intuition using table-to-context
similarity feature, which is computed using the tf-idf cosine simi-
larity of the text around the first table and the text inside the second
table.

Table 1: Web tables matching features as documents.

Feature name Document
Context Terms in the text around the web table with idf

weights
Table-to-Context The table content as text and context text with idf

weights
URL The terms in the URL with idf weight computed

from all URL set
Tuples All the distinct table rows (or key-value pairs)

form terms of a document with equal weights
Attributes name The terms mentioned in the column names with

equal weights
Column values All the distinct values in a column form terms of

a document with equal weights
Table-to-Table The table content as text with idf weights

• URL similarity: The URL of the web page containing the table
can help in matching with another table. Sometimes, a web site
lists the records from the same original large table in several web
pages. For example a web site may list the movies in several web
pages by year, by first letter, etc. In this case, matching the URLs
of the web pages is a good signal in the matching of the web tables.
We capture this intuition using a URL similarity feature, computed
using cosine similarity of the URL terms.
• Tuples similarity: The web tables that we consider are EAB
relations and the correspondences between the attributes are frozen
(T.K → T ′.K′ and T.B → T ′.B′); we just need to determine
the strength of the correspondence. Hence, the number of tuples
that overlaps between the two tables will be a strong evidence to
decide upon the tables matching. Note that this is different from
the instance level feature, which consider the data values of each
attribute individually.

We use the above similarities as features in a classification
model. Given the features, the model predicts the match between
two tables with a probability, which is used as the weight on the
edge between them. The set of features include the newly proposed
features, namely, (1) Context similarity, (2) Table-to-Context simi-
larity, (3) URL similarity, and (4) Tuples similarity; in addition to
the traditional schema and instance level features, namely, (5) at-
tribute names similarity, (6) column values similarity, (7) Table-to-
Table similarity as a bag of words, (8) columns widths similarity.

There are two major challenges in building the SMW graph: (i)
computing the pairwise features that scales to hundreds of millions
of tables and, (ii) getting labeled pairs of web tables to train a classi-
fier. We address these challenges in the following two subsections.

4.1.2 Scalable Computation of Pairwise Features
Note that we are computing these features for 573M × 573M

web table pairs and, obviously, we cannot do the cross product
computation. Our key insight here is that, for each of the mentioned
features, the web table can be considered as a bag of words (or a
document). We can then leverage scalable techniques for comput-
ing pairwise document similarities over a large document collec-
tion. Table 1 describes the mapping of a web table to a document
for each feature.

We leverage the technique described in [9] to compute the doc-
ument similarity matrix of a large document set using MapRe-
duce. The technique can be summarized as follows: Each docu-
ment d contains a set of terms and can be represented as a vec-
tor Wd of term weights wt,d. The similarity between two docu-
ments is the inner product of the term weights as sim(d1, d2) =∑

t∈d1∪d2
wt,d1 · ww,d2 . The key observation here is that a term t

will contribute to the similarity of two documents d1, d2 iff t ∈ d1

and t ∈ d2. If we have an inverted index I , we can easily get the
documents I(t) that contain a particular term t. For each pair of
document ⟨di, dj⟩ ∈ I(t) × I(t), sim(di, dj) is incremented by
(wt,di · wt,dj). By processing all the terms we have computed the
entire similarity matrix without the expensive cross-product com-
putations.

This can be implemented directly as two MapReduce tasks: (1)
Indexing: The mapper processes each document d and emits for
each term t ∈ d (key = t, value = (d,wt,d)). The reducer out-
puts the term as the key and the list of documents containing that
key (key = t, value =I(t)). (2) Similarity computation: The map-
per processes each term with its list of documents, (t, I(t)), and
emits for each pair of documents ⟨di, dj⟩ ∈ I(t) × I(t) and
i < j (key = ⟨di, dj⟩, value = wt,di · wt,dj). Finally, the re-
ducer does the summation to output the sim(di, dj) (key= ⟨di, dj⟩,
value=sim(di, dj) =

∑
t∈(di∩dj)

wt,di · wt,dj). For more effi-
ciency, a df-cut notion is used to eliminate terms with high docu-
ment frequency [9].

4.1.3 Getting labeled pairs of web tables:
We mentioned earlier that we rely on a classification model to

get the matching score of two tables given their similarity features
vector. The challenge here is to obtain labeled examples to train the
classifier. One way is to use a human to manually label a random
set of pairs of web tables. However, this is going to be painful and
time consuming. We propose an automatic way to obtain labeled
pairs of web tables.

To label a pair of web tables (T , T ′) as a positive example, our
hypothesis is that T and T ′ may not have records in common, but
a third web table T ′′ have some records in common with T and
T ′ individually (we call it a labeling web table). For example,
consider tables T2 and T4 in Figure 2. T1 is found to be a la-
beling web table for them. T1 overlaps with T2 on one record
(DSC W570, Sony), as well as, it overlaps with T4 on one record
(Optio E60, Pentax).

We formalize our hypothesis as follows: A pair of tables
Ti(Ki, Bi) and Tj(Kj , Bj) is a true example pair, if ∃ a web
table TL(KL, BL) (labeling web table) such that (i) the set of
overlapping records |TL ∩ Ti| ≥ θ and |TL ∩ Tj | ≥ θ, and
(ii) for each record tL ∈ TL and ∃ record ti ∈ Ti(tj ∈ Tj),
s. t., if tL[KL] = ti[Ki](tL[KL] = tj [Kj]), then tL[BL] =
ti[Bi](tL[BL] = tj [Bj]). The second condition guarantees that if
Ti shares a key with TL then, the value of the other attribute must
match. If we do not find such labeling web table, then the web table
pair is considered as a negative example.

It may come to mind that the web table labeling approach can
be used to generate all the pairwise semantic matches to build the
SMW graph, but this is too expensive to be done for 573M × 573M
pairs of web tables. However, using the labeling web table ap-
proach to generate a few thousand examples to train a classifier is
feasible.

4.2 Computing FPPR on SMW Graph
Once the SMW graph is constructed, we compute the full person-

alized pagerank matrix. There are two broad approaches to com-
pute personalized pagerank. The first approach is to use linear alge-
braic techniques, such as Power Iteration [17]. The other approach
is Monte Carlo, where the basic idea is to approximate Personalized
Pagerank by directly simulating the corresponding random walks
and then estimating the stationary distributions with the empirical
distributions of the performed walks.

We use the recently proposed MapReduce algorithm to compute
the FPPR [1]. It is based on the Monte Carlo approach. The basic

Algorithm 1 ABA(Query table Q(K,A))
1: ∀ q ∈ Q , Pq = {}
2: R = WIK(Q).
3: R = R∩WIA(Q) {Relevant web tables.}
4: for all T ∈ R do
5: for all q ∈ Q and t ∈ T , s.t., q[Q.K] ≈ t[T.K] do
6: Pq = Pq ∪ {(v = t[T.B] , ST (v) = S(T))}
7: ∀ q ∈ Q, Fuzzy group Pq to get Gq

8: for all q ∈ Q do
9: ∀ g ∈ Gq , s.t., v =centroid(g),

S(v) = F(xi,STi
(xi))∈Pq|xi≈v STi

(xi)

10: ∀ q ∈ Q, q[Q.A] = argmaxv S(v)

idea is to very efficiently compute single random walks of a given
length starting at each node in the graph. Then these random walks
are used to efficiently compute the PPR vector for each node.

5. SUPPORTING CORE OPERATIONS
We discuss how we support the core operations using our holistic

matching framework. Note that for each operation, we re-define the
DMA score.

5.1 Augmentation-By-Attribute (ABA)
We have discussed the ABA operation already in Section 2.

Here, we mention the details of the 3 query time steps abstracted
in Section 3. We present the pseudo code for the ABA operation in
Algorithm 1.
• Q1: Identifying the seed table: The seed tables for Q(K,A)
are identified using the WIK and WIA indexes such that a web
table T (K,B) is considered if there is at least one key overlap and
Q.A ≈ T.B. The DMA scores are computed using Eq. 3.
• Q2: Computing the tables TSP scores: is identical to Step 2 in
Section 3.
• Q3: Aggregating and processing values: This step is identical to
the predict values step in the augmentation framework discussed in
Section 2.

5.2 Augmentation-By-Example (ABE)
This is a variation of ABA operation. Instead of providing the

augmenting attribute name, the user provides the query table with
some complete records as examples, i.e., for some of the keys, she
provides the values on the augmenting attribute (e.g., Figure 1(b)).

DEFINITION 3. Augmenting-By-Example (ABE): Given query
table Q(K,A) = Qc ∪ Qe, where Qc denotes the set of records
{qc ∈ Q | qc[A] ̸= null} (referred as example complete records)
and Qe denotes the set of records {qe ∈ Q | qe[A] = null} (re-
ferred as incomplete records), predict the value of each incomplete
record qe ∈ Qe on attribute A.

The 3 query time steps for the ABE operation is identical to those
of ABA operation, except for the way we identify the seed tables
and compute the DMA scores. DMA considers a web table T to
match the query table Q iff the records Qc overlaps with those in
T . For example, in Figure 2, table T1 is considered a seed table
for the query table illustrated in Figure 1(b), because they overlap
on the record (S80, Nikon). Given the query table, we use the
WIKV index to get the seed tables efficiently.

Intuitively, a web table T should be assigned a high DMA score
if, for each shared key between T and Qc, the two tables agree
on the value of the augmenting attribute as well. Accordingly, we

T1 (Brand, 1.5) (Mfg, 0.5) T1 (Brand, 0.45) (Mfg, 0.25) (Make, 0.1) (Vendor, 0.2)

T2 (Brand, 1.5) (Mfg, 0.25) (Vendor, 0.3) T2 (Brand, 0.45) (Mfg, 0.25) (Make, 0.1) (Vendor, 0.2)

T3 (Brand, 1.2) T3 (Brand, 0.5) (Mfg, 0.2) (Make, 0.1) (Vendor, 0.2)

T4 (Mfg, 1) (Brand, 0.75) T4 (Brand, 0.3) (Mfg, 0.4) (Make, 0.15) (Vendor, 0.15)

T5 (Make, 1) (Vendor, 0.4) T5 (Brand, 0.2) (Mfg, 0.1) (Make, 0.4) (Vendor, 0.3)

T6 (Brand, 0.3) (Make, 0.4) (Vendor, 1) T6 (Brand, 0.25) (Mfg, 0.1) (Make, 0.25) (Vendor, 0.4)

T7 (Res., 1) (Resolution, 0.7) T7 (Res., 0.7) (Resolution, 0.3)

T8 (Res., 0.7) (Resolution, 1) T8 (Res., 0.3) (Resolution, 0.7)

 Cluster Cluster

{Brand, Mfg} {Brand, Make, Mfg, Vendor}

{Brand, Make, Vendor} {Res., Resolution}

{Res., Resolution}

(a) (b)

T2Syn using Direct Synonyms approach T2Syn using Holistic Synonyms approach

Figure 4: Example of web tables synonyms discovery using DMA and
Holistic approaches

redefine the DMA matching score as the fraction of the shared keys
that agree on the value of the augmenting attribute;

SDMA(T) =
|Qc ∩KV T |
|Qc ∩K T | (8)

where |Qc ∩KV T | denotes the number of overlapping records be-
tween the complete records of the query table Q and the web table
T . Recall that |Qc ∩K T | denotes the number of shared keys.

5.3 Attributes Discovering (AD)
Another operation of our framework is to discover important at-

tributes of a given set of entities (e.g., Figure 1(c)). Here, we are
given a query table with a list of keys (i.e., entities names) and we
predict attributes for the query table that can be populated from the
web tables. We also provide synonyms for each of the discovered
attributes.

DEFINITION 4. Attributes Discovery (AD): Given the keys of a
query table Q, find a set of attribute names, with their synonyms,
that can be augmented using the web tables.

A naïve approach is to simply take the union of the attribute
names T.B from the relevant web tables T (K,B). Recall that rel-
evant web tables are the ones that overlap with the query table on
the keys. For example in Figure 2, tables T1 . . . T8 overlap with
the query table on the keys. In this case, the list of discovered at-
tributes is {Brand, Mfg, Make, Vendor, Resolution, Res.}. These
represent two distinct attributes with their synonyms, but there is no
way to distinguish between the distinct attributes names and their
synonyms.

Our main insight is that if we have the synonyms for T.B of each
web table T (presumably pre-computed), we can perform cluster-
ing based on the notion of set overlap of these synonyms, and thus,
make the distinction between the distinct attributes and their syn-
onyms. For example, in Figure 4(b), if these are the synonyms
for each table, then using the set overlap we can cluster these syn-
onyms to get two clusters representing the Brand and Resolution
attributes. We start by discussing how we pre-compute synonyms
for web tables attributes and then we show the details of the query
time processing steps for the AD operation.

Synonyms discovery for each web table: This is the prepro-
cessing step (P5) discussed in Section 3. To discover synonyms
of T.B of a web table T (K,B), we propose to first find all tables
T ′(K,B′) that match T with their matching score S(T, T ′) (using
schema matching techniques). Then, each web table T ′ predicts
B′ as a synonym for B with the corresponding score S(T, T ′)
and returns (B′, S(T, T ′)). We end up with a set of predictions
PT = {(B1, S(T, T1)), (B2, S(T, T2)), . . . }. Finally, we aggre-
gate the scores similar to Eq. 1 and insert the top d synonyms into

Algorithm 2 AD(Query table Q, Web tables)
1: R =WIK(Q) {Relevant tables using the inverted index}
2: AllSynSet = {}
3: for all T ∈ R do
4: AllSynSet = AllSynSet ∪ (T2Syn(T), SHol(T))
5: return Cluster(AllSynSet)

the synonyms index T2Syn(T) as synonyms of T (we use d = 20
in our evaluations).

A simple way to find the matching tables T ′ is to use the direct
neighbors of T in the SMW graph. We call this approach as the
direct synonyms approach. In our example, the discovered direct
synonyms for each web table are shown in Figure 4(a). Note that
for T1, direct synonyms approach misses “Make” and “Vendor” as
synonyms from tables T5, T6, because they are not direct neigh-
bors to T1. This results in bad quality AD. For example, when we
cluster the discovered direct synonyms, we end up with 3 clusters
(as shown in Figure 4(a)), 2 of them represent the same attribute
“Brand”, which is an undesirable output of AD.

On the other hand, if we use our holistic approach to get the
matching tables, we obtain more complete synonym set for each
web table (holistic synonyms approach). Continuing with our ex-
ample, in Figure 4(b), T5 and T6 are reachable from T1 and hence
the PPR scores for T5 and T6 w.r.t to T1 will be non-zero, and both
T5 and T6 will contribute to the synonym set of T1. The discovered
holistic synonyms for each web table are shown in Figure 4(b). The
more complete synonym set results in better quality AD. In this
case, if we cluster the holistic synonyms, there will be two clus-
ters (or synonym sets) representing the “Brand” and “Resolution”
attributes, which is accurate and meaningful.

AD query time steps: We describe here the 3 query time pro-
cessing steps for the AD operation. We present the pseudo code of
this operation in Algorithm 2.
• Q1: Identifying the seed tables: Here we are provided only with
the keys of the query table, and therefore, DMA identifies the rele-
vant tables as the seed tables (those that overlap with the query table
on the key attribute). Accordingly, we redefine the DMA matching
score of Q and T as the fraction of the overlapping keys;

SDMA(T) =
|Q ∩K T |

min {|Q|, |T |} (9)

For example, in Figure 2, table T1 is a seed table as it overlaps with
the query table on the key S80. SDMA(T1) =

1
4

. We use the WIK
index to get the seed tables efficiently.
• Q2: Computing the TSP scores: is identical to Step 2 in Section 3.
• Q3: Aggregation and processing values: Each web table T
outputted by Step 2 predicts a set of synonyms T2Syn(T) with
SHol(T) as the score and returns (T2Syn(T), SHol(T)). After pro-
cessing all matched tables, we end up with a set of synonym sets
along with their corresponding prediction scores. The sets of syn-
onyms are then clustered and the prediction scores are aggregated
for each cluster. Finally, we return a sorted list of clusters—each
cluster represents a discovered attribute with its synonyms.

For the clustering, we follow the standard agglomerative cluster-
ing steps. Initially, each synonym set T2Syn(T) is a cluster. There
is a score associated with each cluster; initially, it is SHol(T).
Within each synonym set, the elements are stored with their score
(as shown in Figure 4), and therefore, we use the cosine similarity
to compute the similarity between two clusters. When we merge
two clusters, (i) we compute the resulting cluster score by aggre-
gating their individual cluster scores, and (ii) we follow a standard
document clustering paradigm by constructing a new cluster con-

0

50

100

150

200

250

300

2 4 6 8 10

#
 o

f
W

e
b

 T
a

b
le

s
M

Number of Columns

(a) columns # dist.

of web tables 573M

Avg. # columns 3.09

Avg. # rows 26.54

(b) Statistics

Figure 5: The distribution of the number of columns per web
table and statistics about the relational web tables and
taining the union of the elements in both original clusters, while ag-
gregating the elements’ scores (i.e., adding the elements’ weights if
the element is shared between the two clusters) and then normalize
the scores within the new cluster. Finally, at the end, we return a
ranked list of clusters.

6. HANDLING N-ARY WEB TABLES
Throughout our discussion, we assume that the web tables are

entity-attribute binary (EAB) relations. The result is working with a
simpler graph with a single score among the nodes, and this enables
us to model the problem as a TSP problem. If we consider n-ary
web tables and use a single score among the nodes, a matching
score between the query table and a web table will not say which
column of the web table is the desired augmenting attribute.

In practice, not all the tables on the web are binary relations.
Fortunately, relational tables on the web are meant for human con-
sumption and usually it has a subject column [5, 19]. According
to [5], there are effective heuristics to identify web table’s subject.
For example, using the web search log where the subject column
name will have high search query hits (i.e., the subject column
name appears in the search query that hits the web page containing
the web table), and also usually the subject column appears in the
left most column. If the subject column can be identified, then we
split the table into several EAB relations, i.e., the subject column
with each of the other columns comprise a set of EAB relations.
The main assumption that we make on the web table is that the
subject appears in a single column and we do not consider multiple
columns as subjects.

In this paper, we do not assume anything and in this case, we
split an n-ary web table into (n− 1)2 EAB relations—all possible
pairs of columns are considered EAB relations. Our study shows
the feasibility of doing that. Figure 5(a) shows the distribution of
the number of columns per a relational web table. The average is
3.1 and about 54% are binary tables and 70% are either binary or
ternary relations.

7. EXPERIMENTAL EVALUATION
We present an experimental evaluation of the techniques pro-

posed in the paper for the three core operations. The goals of the
study are:
• To compare holistic matching approach with DMA, DMA with
attribute synonyms and the state-of-the-art approach, Octopus [4],
in terms of precision and coverage for the ABA operation
• To compare holistic matching approach with DMA in terms of
precision and coverage for the ABE operation
• To study the sensitivity of quality (precision and coverage) of the
approaches to “head” vs “tail” query entities
• To study the sensitivity of quality to the number of example
complete records for ABE operation
• To evaluate the quality of the attribute discovery algorithm based
on holistic approach
• To evaluate the (direct) impact of our novel features (context,

Table 2: Query entity domains and Augmenting Attributes

Dataset name Entity (Key attribute) Augmenting attribute
Cameras Camera model Brand
Movies Movie Director
baseball Baseball team Player
albums Musical band Album
uk-pm UK parliament party Member of parliament
us-gov US state Governor

table-to-context, URL, tuples similarities) on the quality of the
SMW graph as well as its (indirect) impact on the quality of ABA
operation
• To evaluate the holistic approach in terms of query response
times and compare with Octopus

7.1 Experimental Setting
Implementation: We implemented the INFOGATHER system de-
scribed in Figure 3. In the offline preprocessing step, we extracted
573M entity-attribute HTML tables from a recent snapshot (July,
2011) of Microsoft Bing search engine; such snapshots are avail-
able in the internal MapReduce clusters within Microsoft. We then
built the WIK, WIKV and WIA indexes, built the SMW graph,
computed T2PPV index and the T2Syn index. We performed all
these steps in our MapReduce clusters as discussed in Section 3.
To build the SMW graph, we use the solution described in [9] and
used a df-cut of 99.9%. We stored the indexes (WIK, WIKV, WIA,
T2PPV and T2Syn) on a single machine for query processing. We
used an Intel x64 machine with 8 2.66GHz Intel Xeon processors
and 32GB RAM, running Windows 2008 Server for this purpose.
Datasets: We conducted experiments on 6 datasets shown in Table
2. For example, for the cameras dataset: the ABA operation aug-
ments the brand given a set of camera model names and the string
“brand”, the ABE operation augments the brands of a set of camera
model names given a set of (model, brand) pairs and the AD oper-
ation discovers attributes given a set of camera model names. Toy
examples of inputs and outputs for this dataset is shown in Figure 1.

We chose 4 datasets (baseball, albums, uk-pm, us-gov) that were
also used to evaluate Octopus. We compiled the complete ground
truth for these datasets by manually identifying a knowledgebase
and extracting the desired information from it. For example, for
baseball, we got the “all-time roster” for a randomly chosen set of
12 baseball teams from Wikipedia; for albums, we got all the al-
bums for a randomly chosen set of 14 bands from Freebase. We
chose two additional datasets (cameras, movies) for which we had
complete ground truth (from Microsoft Bing Shopping product cat-
alog and IMDB database, respectively). One distinguishing char-
acteristic of these two datasets are that the augmenting attribute
has 1:1 relationship with the key (as opposed to 1:n in the above
4 datasets). We generate a query table by randomly selecting keys
from the ground truth. For the movies we use a query table of 6,000
and for the cameras 1,000. All our results are averaged over 5 such
query tables. We use F = sum in Eq. 1 for all our experiments.
Measures: Since some of the datasets have 1:n relationships be-
tween the key and augmenting attribute, we generalize the preci-
sion and coverage measures defined in Section 1 as follows. We
first compute the precision and coverage for each key as follows:
precision = #values_correctly_predicted

#values_predicted

coverage = #values_predicted
#values_in_ground_truth

We average over all the keys in the query table Q to obtain the
precision and coverage for Q. Recall that if the ground truth has
k values for a key on the augmenting attribute, the augmentation
framework selects the top-k values for that key.

0

0.2

0.4

0.6

0.8

1

Cameras Movies uk-pm baseball albums us-gov

P
r
e
c
is

io
n

Holisitc DMA-HolSyn DMA-ACSDbSyn DMA Octopus

(a) ABA precision

0

0.2

0.4

0.6

0.8

1

Cameras Movies uk-pm baseball albums us-gov

C
o

v
e
ra

g
e

Holisitc DMA-HolSyn DMA-ACSDbSyn DMA Octopus

(b) ABA coverage
Figure 6: Augmenting-By-Attribute (ABA) evaluation

7.2 Experimental Results
Evaluating Augmentation-By-Attribute (ABA) We implemented
five different approaches for ABA:
• Holistic: This is our approach using TSP.
• DMA: This is the direct matching approach.
• DMA with attribute synonyms: This is the DMA approach where
we use a set of synonyms for the augmenting attribute. A web table
T (K,B) will be used for prediction if its keys overlap with those
in the query table and Q.A matches with any of the synonyms of
T.B. We consider two approaches to get the synonyms: (i) The
state of the art technique to get the synonyms using the attribute
correlation statistics database (ACSDb) as described in [5]. The
algorithm requires a context attribute name for each dataset. We
provide the key attribute name as the context. We refer to this ap-
proach as DMA-ACSDbSyn. (ii) In the second approach, the syn-
onyms are obtained using our holistic approach. We take the holis-
tic synonyms T2Syn(T) for each seed table. This represents an
alternate way to using our holistic framework and we refer to it as
DMA-HolSyn. The objective is to demonstrate the impact of using
holistic synonyms (in DMA-HolSyn) in comparison with state-of-
the-art attribute synonyms using web tables.
• Octopus: This is the EXTEND operation using the MultiJoin al-
gorithm introduced in [4]. This is the state of the art to do ABA
using web tables. Given a query table and an attribute name a,
MultiJoin composes a web search query in the form “k a” for each
key k in the query table. Then all the web tables in the resulting
web pages from all the web search queries are obtained. The result-
ing web tables are then clustered according to their schema similar-
ity. Finally, the cluster that best cover the query table is selected to
join each of cluster member with the query table and augment the
values.

Figure 6 reports the precision and coverage. The two approaches
based on the holistic framework, Holistic and DMA-HolSyn signif-
icantly outperform all other approaches both in terms of precision
and coverage. The average precision (over all 6 datasets) of Holis-
tic and DMA-HolSyn are 0.79 and 0.70 respectively compared with
0.65, 0.42 and 0.39 for DMA, DMA-ACSDbSyn and Octopus re-
spectively. The average coverage (over all 6 datasets) of Holistic
and DMA-HolSyn are 0.97 and 0.95 respectively compared with
0.36, 0.59 and 0.38 for DMA, DMA-ACSDbSyn and Octopus re-
spectively. This shows that considering indirect matches and com-
puting the scores holistically improves both precision and coverage.
The holistically discovered synonyms used in DMA-HolSyn are of
high quality as shown later in Figure 9. DMA-HolSyn has slightly
lower precision because it uses the synonyms to “pull in” indirectly
matching tables (we simply choose the top 20 synonyms); Holistic
uses the holistic scores as well.

DMA demonstrates high precision with all the datasets except for
cameras where it was 60%; the main limitation of DMA is coverage
as it does not consider indirectly matching tables.

DMA-ACSDbSyn has lower precision compared to DMA, due to
the quality of the synonyms used. We manually inspected the syn-

onyms we get from the ACSDb; there were almost no meaningful
synonyms in the top 20 for the cameras and movies datasets. This
is because DMA-ACSDbSyn uses only schema-level correlations to
compute synonyms; attribute names are often ambiguous (e.g., the
attribute name “name”) leading to many spurious synonyms. DMA-
HolSyn, on the other hand, uses both instance level and schema
level information and performs holistic match; it discovers much
better quality synonyms as shown in Figure 9.

Octopus demonstrates low precision as well as low coverage for
all the datasets, except for the cameras where the precision was high
and for the us-gov dataset where the coverage was high. On average
the coverage is about 33%, which matches the results reported in
[4]. Octopus uses the web search API to retrieve matching tables;
since web search is not meant for matching tables, in many cases,
the top 1000 returned urls did not provide any matching tables.
Furthermore, Octopus’s architecture does not consider indirectly
matching tables and does not perform holistic matching.
Evaluating Augmentation-By-Example (ABE): We study the
sensitivity to the number of example complete records, as well as,
the sensitivity to the nature of the provided examples in terms of be-
ing famous (head) or rare (tail) examples. Head (tail) examples are
those records that show up in a high (low) number of web tables.

In Figure 7, we report the precision and coverage of the aug-
mented values for the query table using the Holistic and DMA ap-
proaches as we increase the number of example complete records
between 1 and 50. We report the results for the cameras and movies
datasets; for the other datasets, we observe quite similar results.

In Figure 7(a), the reported precision is high for both datasets
using the two approaches. However, in Figure 7(b), the Holistic
significantly outperforms the DMA in coverage when there are very
few example complete records (between 1 and 10). The Holistic
provides values for about 99% and 93% of the incomplete records
for the movies and cameras datasets, respectively, while the DMA
provides coverage in the range between 20% and 75% for up to
10 examples. This shows that even with small number of example
complete records the Holistic can get enough tables to augment the
query table while the DMA does not.

The number of example complete records is not the only factor
impacting the coverage. The frequency of the examples in the web
tables also impacts the performance. We note that the query records
distribution on the web tables follow the power law. Hence, if the
example complete records appear in a lot of web tables (head or
famous query records), then we will directly match a lot of web
tables to increase the coverage. On the other hand, if the examples
are tail records, there will be very few direct matching web tables.

In Figure 8, we do joint sensitivity analysis of both the number of
example complete records and the nature of the records (i.e., being
head, tail or mid—records in the middle). We also report the results
for number of examples of 2, 10, and 50. The precision results were
high and similar for all the datasets. The figure shows the coverage
for the movies dataset; we observed similar behavior for the other
datasets.

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

P
re

c
is

io
n

examples

Holistic-cameras

Holistic-movies

DMA-cameras

DMA-movies

(a) Precision

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
o

v
e

ra
g

e

of examples

Holistic-cameras

Holistic-movies

DMA-cameras

DMA-movies

(b) Coverage

Figure 7: Sensitivity of the precision and coverage to the number of
examples. The Holistic shows high precision and maintains high cover-
age in comparison to DMA.

The DMA is sensitive to both the number of example records and
their nature. The coverage degrades as we decrease the number of
examples; and it degrades further if the examples are tail records.
On the other hand, the Holistic does well and maintains a coverage
of 99% even in the hard situations with small number of example
tail records.
Attributes Discovery Evaluation: In Figure 9, we show a sam-
ple of the discovered attributes with their synonyms for 4 of the
datasets. We found these discovered synonyms to be of much
higher quality than the ones generated by the state-of-the-art tech-
nique (using ACSDb [5]).
Impact of new features for building SMW graph: The objective
of this experiment is to evaluate the usefulness of our proposed set
of features for matching web tables in comparison to other features
used in the literature before. In our evaluation, we compare four
techniques: (1)SMW Graph: This represents all our proposed set of
features, (2)Traditional: This represents the schema and instance
level features. We use the features that represent the similarity be-
tween the attributes names, as well as, the similarity between the
values in each column. (3) WTCluster: This represents the features
that were introduced in [4] for matching web tables, namely, the ta-
ble text similarity and columns widths similarity. (4) Traditional &
WTCluster: This combines both the previous two sets of features.

We first compare the above techniques on the quality of the
SMW graph. In this experiment, we randomly picked 500 web
tables relevant to each of the datasets, and then we computed the
features values and identified labels for each pair of web tables as
being a match or not (using our automatic labeling technique de-
scribed in Section 4.1). We created a balanced set of examples (i.e.,
almost equal negative and positive examples). We trained a classi-
fier using the examples and reported in Figure 10(a) the model’s ac-
curacy per dataset in addition to the overall accuracy. The displayed
results are average of 5 different runs to the above procedure.

In general, the web tables matching accuracy using our set of
features, SMW Graph, shows the best performance. SMW Graph
has about 6% improvement over the Traditional and about 10%
improvement over ClusterWT. SMW graph also outperforms the
combined set of features Traditional & WTCluster by about 3%.
These results prove the importance of the new introduced features
for matching web tables.

The SMW graph technique is consistently outperforming the
other techniques, however, the other techniques are not consistently
reliable. For example, in the uk-pm dataset, the Traditional tech-
nique performs better than WT-Cluster. The situation is reversed in
the us-gov dataset.

In Figure 10(b), we evaluate the impact of our features on the
quality of the ABA operation; that is whether the improved quality
of the SMW graph translates in better quality ABA (indirect eval-
uation of the features). Here, we report only the precision as we
obtain the same coverage using each of the features set. Note the

2

10

50
0

0.2

0.4

0.6

0.8

1

C
o

v
e
ra

g
e

Nature of records (head, mid, tail) and number of example complere records

Figure 8: Joint sensitivity analysis to the number of examples and
the head vs. tail records in the web tables. The Holistic is robust in
comparison to the DMA.

similarity between the two figures 10(a) and 10(b). The SMW graph
features get better quality SMW graph, and hence, better precision.
Efficiency evaluation: We evaluate in Figure 10(c) the efficiency
of our approach and architecture in comparison with the Octopus
approach for the ABA operation for the cameras dataset. We ob-
tained similar performance with the other datasets. Our implemen-
tation of Octopus involves using a web search engine API. We re-
port the query response time as we increase the size of the query
table. Our approach takes milliseconds to respond and is 4 orders
of magnitude faster than Octopus. Our fast response time is due
to the fast computations of the TSP scores using the pre-computed
PPR vectors and indexes that we introduce in Section 3. For Octo-
pus, most of the time goes in processing the web search queries as
it is based on SOAP request/response kind of communication. As
mentioned in [4], Octopus can be implemented more efficiently if
web search engines support Octopus-specific operations; however,
current search engines do not support such operations.

In summary, our experiments show that our holistic matching
framework and proposed system architecture can support the three
core operations with high precision, high coverage and interactive
response times.

8. RELATED WORK
Our work is most related to the Octopus system developed by

Cafarella et. al. [4]. The EXTEND operator proposed by Octopus
is identical to our ABA core operation. However, the approach
proposed in this paper is fundamentally different from Octopus
(specifically, the recommended MultiJoin algorithm) both in terms
of matching semantic, as well as, the system architecture. Octopus
uses the web search API to retrieve matching tables; this does not
have any well-defined semantics. On the other hand, INFOGATHER
matches with the extracted tables themselves using schema match-
ing techniques and TSP-based framework; and it has a well-defined
semantics. Since web search is not meant for matching tables, in
many cases, the top 1000 returned urls did not provide any match-
ing tables, let alone indirectly and holistically matching tables. As
a result, INFOGATHER provides significantly better precision and
coverage (Figure 6). Secondly, INFOGATHER performs most of the
“heavy lifting” at preprocessing time and performs only the aggre-
gation at query time; Octopus needs to invoke the search API for
each query record and perform clustering of web tables at query
time. As a result, INFOGATHER is four orders of magnitude faster
than Octopus (Figure 10(c)).

Researchers have developed techniques to annotate web tables
with column names and names of relationships [19, 14]. This is
complementary to our techniques and can help to build a better
SMW graph.

Our work on building the SMW graph is related to the vast body
of work on schema matching [18, 3, 2]. Most modern approaches

cameras movies uk-pm baseball

price | price each | offer starring | character | actor | hero | name member of parliament | mp | elected mp players | player | name | player name
brand | manufacturer | make | vendor director | directed by | regista | director(s) constituency | ward | region | seats position | d | pos | rhp | ac | category

model | product | series | modelo film | english title | title used date | election | year school | hometown/school | drafted from
type | type of product | device type nazione | country | producer(s) | pays | origine % | votes | percentage year | debut | season | contract term
resolution | megapixels | mp | res time | length | playing time | min. | run time salary | $$/year avg | $ per win | avg. salary

estimated msrp | total msrp format | media | formato | muoto | tipo | system organizational ranking | overall ranking
zoom | optical zoom genere | genre | category | type league | lg | mlb | hi lvl | position | flg

ecl or e2 | cleaning fluid | liquido studio/distributor | company | production stadium | ballpark | venue
output | output voltage | ouput attori | cast | cast (subject of documentary) debut | final game | ml debut | year

Figure 9: Example of discovered attributes with their synonyms

���

���

���

���

���

�

	
���� ����� ��
��� ����� �����

�
��
�
��
��
�
	

�
��
�
�
��

�������� �� �!��"��#���$���!��

�� �!��"� ��$���!��

(a) Direct schema matching evaluation using the
proposed features set

���
���
���
���
���
���
��	

������ ������ ���� ������

�
�
�
�
��
��
�

��������� ��� �!��"�#�$����#��!��

��� �!��"�# ���#��!��

(b) The impact of the schema matching quality
on the ABA operation

0.001

0.1

10

1000

0 0.2 0.4 0.6 0.8 1

T
im

e
 (

s
e
c

)

of query records (K)

InfoGather

Octopus

(c) Response time evaluation

Figure 10: Web tables matching accuracy and response time evaluation

uses several base techniques such as linguistic matching of attribute
names and detecting overlap of data instances and combines them
to determine the final matchings; the base techniques as well as
the combiner can either be machine learning-based techniques or
non-learning methods [8, 15]. We adopt machine learning based
techniques in this paper. We propose new features that do not arise
for enterprise tables. Furthermore, we need to consider the scala-
bility challenges that arise in our scenario.

He and Chang proposed holistic matching of schemas associ-
ated with deep web query interfaces [12]. The goal is to inte-
grate n schemas all at once such that all matching elements of
the n schemas are represented only once in the integrated (medi-
ated) schema. While our approach shares the same name as He
and Chang’s approach, it is different from the latter: we still per-
form pairwise matching of web tables but consider other web tables
to perform indirect matches. He and Chang do not consider other
schemas to perform such indirect and holistic matches.

Recently, Yin et. al. developed the FACTO system for answer-
ing “fact lookup queries” in web search engines (e.g., [Barack
Obama date of birth]) using web tables [20]. FACTO considers
only “attribute-value” tables whereas the focus of this paper is on
“entity-attribute” tables.

There exists a rich body of work of leveraging HTML lists for
set expansion and table augmentation [13, 10]. These works differ
from ours in several aspects. First, they consider HTML lists while
we focus on entity-attribute HTML tables. Second, the core opera-
tion is different: to discover more entities rather than augment the
provided entities.

9. CONCLUSION AND FUTURE WORK
In this paper, we present the INFOGATHER system to automate

information gathering tasks, like augmenting entities with attribute
values and discovering attributes, using web tables. Our experi-
ments demonstrate the superiority of our techniques compared to
the state-of-the-art.

Our work can be extended in multiple directions. We considered
three core operations in this paper; there are potentially more op-
erations that can benefit from our framework. Examples include
set expansion and answering “fact lookup” queries in web search
engines (e.g., “who is the director of Titanic?”). Furthermore, we
considered only entity-attribute tables in this paper; other forms of
structured web data include HTML lists, attribute-value tables and

deep web databases. Incorporating these data sources in our frame-
work is also an open challenge.

10. REFERENCES[1] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank
on mapreduce. In SIGMOD, 2011.

[2] Z. Bellahsene, A. Bonifati, and E. Rahm. Schema Matching and
Mapping. Springer, 2011.

[3] P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema
matching, ten years later. In VLDB, pages 695–701, 2011.

[4] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data integration
for the relational web. PVLDB, 2009.

[5] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
Webtables: exploring the power of tables on the web. PVLDB, 2008.

[6] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and E. Wu.
Uncovering the relational web. In WebDB, 2008.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In SIGMOD, 2003.

[8] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of
disparate data sources: a machine-learning approach. In ACM
SIGMOD, pages 509–520, 2001.

[9] T. Elsayed, J. J. Lin, and D. W. Oard. Pairwise document similarity in
large collections with mapreduce. In ACL, 2008.

[10] R. Gupta and S. Sarawagi. Answering table augmentation queries
from unstructured lists on the web. Proc. VLDB Endow., pages
289–300, 2009.

[11] T. H. Haveliwala. Topic-sensitive pagerank. In WWW, 2002.
[12] B. He and K. C.-C. Chang. Statistical schema matching across web

query interfaces. In SIGMOD, 2003.
[13] Y. He and D. Xin. Seisa: set expansion by iterative similarity

aggregation. In WWW, pages 427–436, 2011.
[14] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and

searching web tables using entities, types and relationships. Proc.
VLDB Endow., pages 1338–1347, 2010.

[15] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based
schema matching. In ICDE, 2005.

[16] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. In VLDB, 2001.

[17] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, 1999.

[18] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, pages 334–350, 2001.

[19] P. Venetis et al. Recovering semantics of tables on the web. Proc.
VLDB Endow., pages 528–538, 2011.

[20] X. Yin, W. Tan, and C. Liu. Facto: a fact lookup engine based on web
tables. In WWW, 2011.

