
Muse: Mapping Understanding and deSign
by Example

Bogdan Alexe #1, Laura Chiticariu #2, Renée J. Miller ∗3, Wang-Chiew Tan #4

#University of California, Santa Cruz
1abogdan@cs.ucsc.edu

2laura@cs.ucsc.edu
4wctan@cs.ucsc.edu
∗University of Toronto

3miller@cs.toronto.edu

Abstract— A fundamental problem in information integration
is that of designing the relationships, called schema mappings,
between two schemas. The specification of a semantically correct
schema mapping is typically a complex task. Automated tools
can suggest potential mappings, but few tools are available for
helping a designer understand mappings and design alternative
mappings.

We describe Muse, a mapping design wizard that uses data
examples to assist designers in understanding and refining a
schema mapping towards the desired specification. We present
novel algorithms behind Muse and show how Muse systematically
guides the designer on two important components of a mapping
design: the specification of the desired grouping semantics for
sets of data and the choice among alternative interpretations for
semantically ambiguous mappings. In every component, Muse
infers the desired semantics based on the designer’s actions on
a short sequence of small examples. Whenever possible, Muse
draws examples from a familiar database, thus facilitating the
design process even further. We report our experience with
Muse on some publicly available schemas.

I. INTRODUCTION

A fundamental problem in information integration is the
specification of the relationships between a source schema and
a target schema [1]. Such a specification is called schema
mappings. In some systems such as Map Force1, Stylus
Studio2 schema mappings are specified with transformation
code (e.g., XSLT or Java code). In other systems, including
Clio [2], [3], HePToX [4], Microsoft’s mapping composer
[5], and IBM’s Rational Data Architect3 schema mappings
are specified using a declarative language based on a logical
formalism. A benefit of such languages is that they facilitate
the reuse of mappings for different integration tasks: they
can be used to generate executable transformation code for
data exchange [2], for query translation (reformulation) in
data integration [6], [7], [8], to compose mappings in a peer
network environment [5], [9], [10], [11], and numerous other
model management tasks.

Tools, such as Clio and HePToX, for semi-automatically
creating mappings make the use of declarative mappings viable
by automating a large amount of the mapping design task.

1http://www.altova.com
2http://www.stylusstudio.com/
3http://www.ibm.com/software/data/integration/rda

The well-known 80-20 rule applies in mapping design. Map-
ping creation tools can automate 80% of the work, covering
common cases and creating a mapping that is close to cor-
rect. However, ensuring complete correctness can still require
intricate manual work to perfect portions of the mapping.
Previous research on mapping understanding and refinement
[12] and anecdotal evidence from mapping designers suggest
that this perfection process can be facilitated by using data
examples to explain the mapping and alternative mappings.
Mapping designers usually understand their data better than
they understand mapping specifications and could therefore,
leverage familiar data examples to illustrate nuances of how a
small change to a mapping specification changes its semantics.
The work of Yan et al. [12] is based on this observation. A
designer can understand and refine a mapping specification,
given by SQL queries, between two relational schemas by
walking through examples of source data, and seeing how this
data would be transformed by different choices of mapping
specifications. As part of this work, they studied alternative in-
terpretations of a semantically ambiguous mapping. Intuitively,
a schema mapping is ambiguous if it specifies, in more than
one way, how an atomic target schema element (or attribute)
is to be obtained. For example, a schema mapping could be
ambiguous because it asserts that a project supervisor is a
project manager or a project tech-lead at the same time. In
other words, it is not clear whether to extract the manager’s
name or the tech-lead’s name (or both) from a source database
as the supervisor of a project in the target database since there
are two alternative interpretations to this ambiguous mapping.

Our work is largely inspired by Yan et al. [12]. As in
their work, Muse uses examples to differentiate between alter-
native mapping specifications and infer the desired mapping
semantics based on the designer’s actions. However, we go
significantly beyond the techniques and space of alternative
mappings supported by [12].

First, Muse is capable of helping a designer derive the
desired grouping semantics for a mapping specification using
examples. For example, to infer whether a designer wishes
to group projects by a a company’s name and location or
only by a company’s name, Muse automatically constructs
a small number of, essentially, yes-or-no questions using

small examples. The designer’s answers to these questions
will allow Muse to infer the desired grouping semantics.
For schemas without keys or functional dependencies, the
number of questions we pose to the designer is the number of
schema elements that the designer could use for designing the
grouping semantics. The size of an example typically consists
of at most two tuples in each (nested) relation. Furthermore,
Muse exploits keys in the source schema (or more general
functional dependencies when available) to reduce the number
of questions a designer must consider.

Second, as in [12], Muse helps a designer choose among
alternative interpretations of an ambiguous mapping. Muse
constructs a small example that would illustrate, and differ-
entiate, all interpretations. The example is at most as big as
the size of the specification of the ambiguous mapping. Each
(nested) relation in the source typically contains only a few
tuples. In [12], the designer is asked to select among the
target instances generated by the source example through each
alternative interpretation of the mapping. There are as many
target instances as the number of alternative interpretations,
which can be overwhelming. In Muse, we show the designer
one partial target instance and the designer is asked to select
among a small set of data choices. Each choice is in fact a list
of possible values for a target schema element, corresponding
to all alternative interpretations. There are as many choices as
the number of schema elements with more than one alternative
interpretation, and this number is much smaller than the
total number of alternative interpretations for the ambiguous
mapping. The designer’s actions on these choices translate into
a unique interpretation of the ambiguous mapping.

Finally, unlike previous work which relies exclusively on
a source instance to illustrate mappings, Muse can “fall
back” to its own constructed example whenever a meaningful
example cannot be drawn from the actual source instance.
For the current source instance, two mappings may produce
indistinguishable results. However, for mapping design it is
important for a designer to understand the difference in the
mappings over the space of possible source instances. Muse
is able to automatically detect when an actual source instance
is incapable of illustrating all design alternatives and if so, it
is able to construct synthetic examples to illustrate differences
in all design alternatives. We show experimentally that this
feature of Muse is necessary to help design mappings for some
real mapping settings and instances.

The design components of Muse have been shown to be im-
portant mapping design parameters. Grouping has been shown
to be important in mappings for not only nested data, including
XML, but also in designing mappings for such common tasks
as schema evolution [3]. Furthermore, as described in [12],
ambiguous mappings frequently arise in real schemas.

We describe our Muse wizard based on the schema mapping
language [2] for relational and nested relational schemas that
has been proposed for data exchange (Sec. II). This language
is a generalization of commonly used mapping languages in-
cluding source-to-target tuple generating dependencies [13], a
common form of global-and-local-as-view (GLAV) mappings

CompDB: Rcd
Companies: Set of

Company: Rcd
cid
cname
location

Projects: Set of
Project: Rcd

pid
pname
cid
manager

Employees: Set of
Employee: Rcd

eid
ename

OrgDB: Rcd
Orgs: Set of

Org: Rcd
oname
Projects: Set of

Project: Rcd
pname
manager

Employees: Set of
Employee: Rcd

eid
ename

f1

f2

ename
contact

m1: for c in CompDB.Companies exists o in OrgDB.Orgs
where c.cname=o.oname and o.Projects = SKProjs(c.cid,c.cname,c.location)

m2: for c in CompDB.Companies, p in CompDB.Projects, e in CompDB.Employees
satisfy p.cid=c.cid and e.eid=p.manager

exists o in OrgDB.Orgs, p1 in o.Projects, e1 in OrgDB.Employees
satisfy p1.manager=e1.eid

where c.cname=o.oname and e.eid=e1.eid and e.ename=e1.ename
and p.pname=p1.pname and
o.Projects = SKProjs(<…all attributes of c, p and e …>)

m3: for e in CompDB.Employees exists e1 in OrgDB.Employees
where e.eid = e1.eid and e.ename=e1.ename

Fig. 1. A mapping scenario.

[7]. The mapping generation algorithms of mapping discovery
tools [2], [3], [4] and some model management tools [14] make
default decisions in creating mappings, which may not always
be the desired ones. In the subsequent sections, we illustrate
how Muse allows a designer to refine, understand, debug, and
modify a mapping, using data examples, to create a mapping
that corresponds to the designer’s intended semantics.

II. BACKGROUND ON MAPPINGS

Nested Relational Model. Fig. 1 shows a mapping scenario
between two schemas, CompDB and OrgDB respectively,
written in the nested relational (NR) representation of [2],
[3]. The NR model generalizes the relational model where
tuples and relations are modeled as records and respectively,
sets of records. In the NR model however, an element, such
as a set of records, may be nested inside another element,
such as a record, to form hierarchies. In the source schema,
Companies is a set of Comp records where each record has
three atomic elements: cid (company id), cname (company
name) and location. Similarly, Projects and Employees are
sets of Proj and respectively, Emp records. The two referential
constraints f1 and f2 specify that for every Proj tuple p, there
must exist a Comp tuple c and an Emp tuple e such that
p.cid = c.cid and p.manager = e.eid. The target schema is
a slight reorganization of the source.

An NR schema is formally a set of labels {R1,...,Rk}, called
roots, where each root is associated with a type τ , defined by
the following grammar: τ ::= String | Int | SetOf τ |
Rcd[l1 : τ1, ..., ln : τn] | Choice[l1 : τ1, ..., ln : τn]. The types
String and Int are atomic types and Rcd and Choice are
complex types. (The atomic types are not shown in Fig. 1.)

Source instance:
Companies

111 IBM Almaden
112 SBC NY

Projects
p1 DBSearch 111 e14
p2 WebSearch 111 e15

Employees
e14 Smith x2292
e15 Anna x2283
e16 Brown x2567

Target instance:
Orgs:

IBM
Projects: SKProjs(111,IBM,Almaden)
SBC
Projects: SKProjs(112,SBC,NY)
IBM
Projects: SKProjs(111,IBM,Almaden,p1,…,e14,…)

DBSearch e14
IBM
Projects: SKProjs(111,IBM,Almaden,p2,…,e15,…)

WebSearch e15

Employees:
e14 Smith
e15 Anna

{m1,m2,m3} Org
records

e16 Brown

Fig. 2. The result of chasing the source with {m1,m2,m3}.

A (record) value of type Rcd[l1 : τ1, ..., ln : τn] is a set of
label-value pairs [l1 : a1, ..., ln : an], where a1, ..., an are
of types τ1, ..., τn, respectively. A value of type Choice[l1 :
τ1, ..., ln : τn] is a single label-value pair [lk : ak], where ak

is of type τk and 1 ≤ k ≤ n. The set type SetOf τ (where
τ is a complex type) is used to model repeatable elements.
Order is not considered, hence SetOf represents unordered
sets. A value of type SetOf τ is represented by a SetID and an
associated (possibly empty) set of values {v1, ..., vm}, where
each vi is of type τ . Every type is associated with a path
from the root to that type, and whenever we refer to a type,
we assume that this path is implicit and uniquely determined
(i.e., we cannot have two distinct types with the same path).
We use the terms set types and nested sets interchangeably.
For example, Orgs, Projects, Employees are all nested sets (or
set types) in the target schema. We frequently use the term
tuple to refer to a value of type record.

To simplify our discussions, we assume that XML schemas
are modeled using a single schema root of record type whose
elements are all of type SetOf. We also assume strict alterna-
tion of set and record types. In our implementation, however,
we handle the NR model in its full generality.
Mappings. A schema mapping is a triple (S, T, Σ), where
Σ is a set of mappings specified using the language of [3].
For ease of exposition, we use the mapping language of [2],
which is a special sublanguage of [3], in this paper. Our
implementation of Muse in fact handles the full generality
of the language of [3] (see [15]). As an example, let S and
T be the source and target schemas of Fig. 1. Then, (S,
T, {m1, m2, m3}) is a schema mapping, where m1 to m3

are shown in the figure. Intuitively, m1 is a specification
that maps Comp names to Org names. More precisely, it
states that whenever a Comp tuple c exists in the source,
there must be an Org tuple o in the set OrgDB.Orgs in the
target such that o.oname = c.cname. The value of o.Projects
is the SetID (also called grouping function or Skolem func-
tion) SKProjs(c.cid,c.cname,c.location). By convention, we
use SKN to denote the SetID name of a nested set N in
the target schema. For example, the SetID name of the nested
set Projects is SKProjects, which we write SKProjs for short
(or SK when there is no ambiguity). We sometimes refer to a

nested set N simply as SKN . We assume that every nested set
in the target schema has a different SetID name. The mapping
m2 states that for every Comp tuple c, Proj tuple p and Emp
tuple e such that c, p and e satisfy the referential constraints
f1 and f2, then there must be corresponding Org, Proj and
Emp tuples (o, p1 and e1 respectively) in the target with the
appropriate values extracted from c, p and e. The mapping m3

migrates employee information to the target, independently of
whether the employee is a manager of some project.

These mappings are expressed in the “query-like” notation
of [2], [3] where each variable in the for and exists clauses
binds to tuples in a source and respectively, a target nested
set. The type of each variable is, hence, a record. The corre-
spondences between atomic schema elements (e.g., cname to
oname), which are shown in Fig. 1 as arrows, are expressed as
equalities (e.g., c.cname = o.oname) in the where clause of
the mapping. In addition, the satisfy clauses following the for
and respectively, the exists clause may contain equalities to
express source and respectively, target referential constraints.
In Muse, we will be constructing source and target instances
that satisfy proposed mappings and any constraints on the
schemas. Hence, to simplify our discussion in this paper, we
assume that mappings are closed under source and target
referential constraints. For example, m1, m2 and m3 in Fig. 1
are mappings that are closed under the source and target
referential constraints. However, the following mapping m
does not satisfy the source referential constraint f1 because
“c in CompDB.Companies” and “p.cid = c.cid” are missing
from the for and corresponding satisfy clauses respectively.

for p in CompDB.Projects, e in CompDB.Employees
satisfy e.eid = p.manager

exists e1 in OrgDB.Employees
where e.eid = e1.eid and e.ename = e1.ename

A mapping that is not closed under referential constraints can
always be transformed into an equivalent one that is closed
under referential constraints by chasing [16]. Mappings that
are generated by tools such as Clio are always closed under
acyclic referential constraints. The acyclicity condition can in
fact be weakened in ways that have been studied by others.
Solutions, chase and homomorphisms. Fig. 2 shows a source
instance I and a solution for I with the schema mapping in
Fig. 1. A target instance J is a solution for I under the schema
mapping if I and J together satisfy Σ.

The chase procedure has been used to generate solutions
in data exchange [13]. The target instance in Fig. 2 is in fact
the the result of chasing the source instance I with Σ = {m1,
m2, m3}. We describe intuitively the chase process and refer
the interested reader to [2], [3], [13] for details of the chase
procedure. The instance I is chased with each member of Σ.
Suppose I is first chased with m1. Due to m1 and the two
Comp records in I , two Org records are constructed in the
target: Org(IBM, SKProjs(111,IBM,Almaden)) and Org(SBC,
SKProjs(112,SBC,NY)). Due to m2, the first Comp record
and the two Proj records, along with their corresponding
managers in I , two more Comp records, two Proj records (i.e.,

(DBSearch,e14) and (WebSearch,e15)) and their correspond-
ing Employee records (i.e., Emp(e14,Smith) and Emp(e15,
Anna)) are constructed in the target. The two Proj records
that are constructed belong to distinct Projects sets whose
SetIDs are SKProjs(111,IBM,Almaden,p1,...) and respectively,
SKProjs(111,IBM,Almaden,p2,...). Next, I is chased with m3

and three Employee tuples are constructed in the target, two
of which (Smith and Anna) have already been generated by
m2. The result of chasing I with Σ is formed by taking the set
union of all tuples that have been constructed. Special values,
called labeled nulls, may be created during the chase. For
example, suppose there is an extra attribute address in Org
record, which does not correspond to any element in the source
schema. The chase of I with m1 will generate two Org tuples:
(IBM, N1) and (SBC, N2), where N1 and N2 are labeled nulls
used to represent, possible different, unknown address values.

In general, there are many possible solutions for a source
instance I under a schema mapping M = {S,T, Σ}. The
space of all solutions for I under M is denoted as Sol(M, I),
or Sol(Σ, I) when S and T are understood from the context. It
was shown in [13] that chasing I with Σ produces a universal
solution for I under M. Intuitively, a universal solution J for I
under M is a most general solution in the space of all solutions
for I in that there is a homomorphism from J to every solution
for I under M. We say that h is a homomorphism from an
instance J to an instance J ′, denoted as h : J → J ′, if for
every tuple R(c1, ..., cn) in J , where R is a relation symbol,
we have that R(h(c1), ..., h(cn)) is a tuple in J ′, and for
every tuple D(c1, ..., cn) in J , where D is a SetID, we have
h(D)(h(c1), ..., h(cn)) is a tuple in J ′. Furthermore, h has
the following properties: (i) h(c) = c if c is a constant, (ii)
h(D) = D′ if D is a SetID and D′ has the same set type as D,
and (iii) h(N) is a constant or labeled null if N is a labeled
null. In other words, h is the identity on constants but not
necessarily on SetIDs or labeled nulls. We say that J and J ′

are homomorphically equivalent if there is a homomorphism
from J to J ′ and a homomorphism from J ′ to J . We say that J
and J ′ are isomorphic if there is a one-to-one homomorphism
from J to J ′ and vice versa.

III. DESIGNING GROUPING FUNCTIONS

Grouping or combining related data together is an essential
functionality of many integration systems. In this section, we
describe the grouping design wizard of Muse, called Muse-
G. We show how Muse-G infers a desired grouping function
through the actions taken by the designer on a short sequence
of small data examples (or questions).

The mappings generated by mapping generation tools
[2], [3], [4] and some model management tools [14]
define a default grouping function for every nested
set in the target schema. The grouping functions are
a restricted form of Skolem functions, where the ar-
guments consist of only atomic attributes. For exam-
ple, in [3], the default grouping function for Projects
in m2 is SKProjs(c.cid,c.cname,c.location,p.pid,p.pname,
p.cid,p.manager,e.eid,e.ename,e.contact). In other words, Proj

records are grouped according to the values of all attributes
of the Comp, Proj and Emp records. If SKProjs(cname)
is the grouping function instead, then Proj records are
grouped according to cname of Comp records (i.e., oname
of Org records). (We write SKProjs(cname) instead of
SKProjs(c.cname) when there is no ambiguity.) By default,
there are no grouping functions for topmost-level sets. Hence,
in Fig. 1, there are no grouping functions for Orgs and
Employees in the target. Most tools (Mapforce, Stylus Studio
and [2], [3], [4]) only support the manual specification or
modification of grouping functions, where the arguments of
the grouping function have to be explicitly specified. This can
prove to be a difficult task if the schemas are large or the
number of possible arguments for a grouping function is large.
Indeed, if there are n possible attributes to group by, then there
are in fact 2n choices of grouping functions. Furthermore, it
may not be obvious to a designer, what the n possible grouping
attributes are (see [2], [3]).

The Muse-G wizard is always able to infer a grouping
function that has the same grouping semantics as the actual
grouping function that the designer has in mind. As the exam-
ples illustrate the different possibilities of grouping, Muse-G
can also be very useful when the designer only has a partial
understanding of the desired grouping semantics. Naturally, an
advanced designer can always choose to specify the desired
grouping function explicitly without using Muse-G.

If there is at most one key per nested set in the source
schema (a very common case) and there are n attributes that a
designer can group by, then Muse-G asks at most n questions
to infer the desired grouping function. All source schemas we
have encountered in Sec. VI fall into this category. Moreover,
each question makes use of a small (hence amenable) example,
where each nested set in the source typically has two tuples.
Our experimental results justify that for these schemas, the
number of questions posed remains small for a natural class
of desired grouping functions. In the following, we keep the
discussion informal and illustrate the ideas behind Muse-G
with examples. All algorithms and proofs of our technical
results can be found in [15].

A. The Basic Algorithm behind Muse-G

We first describe the algorithm behind Muse-G when there
are no functional dependencies (FDs) in the source schema.
Extensions to handle keys (and FDs in general) in the source
schema are described in Sec. III-B (and [15] respectively).

Muse-G takes as input a schema mapping (S, T, Σ). The
designer can choose to design any grouping function that
occurs in Σ. We assume that there is a real source instance
I from which Muse-G can draw real data examples whenever
possible, and show how Muse-G constructs its own examples
otherwise. To illustrate our algorithm, we use the schema
mapping (S, T, {m2}), where S, T and m2 are the source
and target schemas and respectively, mapping, of Fig. 1.
Step 1. The first step is to determine an order to the set of
grouping functions that the designer wishes to (re)design in
a mapping in Σ by performing a breadth-first traversal of T

starting from the root. This yields, for our example, the order
Org, Emp, and Proj. Since SKOrgs and SKEmps are top-level
sets without grouping functions, Muse-G will only design the
grouping function for Projects (i.e., SKProjs) in m2. If there
were another nested set Grants under Projects in T and m2

would be a mapping that maps to both Projects and Grants
in the target, then Muse-G would design SKProjs before
SKGrants. When designing SKGrants, Muse-G will make use
of the grouping function already designed for SKProjs.
Step 2. Next, we determine the set poss(m2, SKProjs)
of all possible arguments for SKProjs according to m2.
According to the schema of OrgDB, a Projects SetID is
nested inside an Org tuple in Orgs. According to the for
clause of m2, the existence of an Org tuple is dependent
on the existence of a Comp tuple in CompDB.Companies,
an Emp tuple in CompDB.Employees and a Proj tuple in
CompDB.Projects which agrees with the Comp and Emp
tuples on the values of pid and manager, respectively. This
means that poss(m2,SKProjs) consists of the set of at-
tributes in the Comp, Proj and Emp records. However, to
simplify our subsequent discussion, we shall assume that
poss(m2,SKProjs)={cid,cname,location}.
Step 3. Suppose the designer has SKProjs(Z) in mind, where
Z ⊆ poss(m2, SKProjs). Muse-G now proceeds to probe and
construct examples to infer the desired grouping function.
Probe and construct examples. Muse-G probes every
attribute in the set poss(m2,SKProjs)={cid,cname,location}.
The goal of each probe is to carefully construct a small
example source instance Ie, from which two differentiating
target instances are obtained: one is the result of including the
probed attribute as part of SKProjs in m2, and the other omits
it. Suppose we probe on cid first. Muse-G first constructs its
own example instance Ie, as shown below.

Ie:{Comp(c1, n1, l1), Proj(p1, pn1, c1, e1), Emp(e1, en1, cn1),
Comp(c2, n1, l1), Proj(p2, pn2, c2, e2), Emp(e2, en2, cn2)}

Observe that each relation in Ie has two tuples. Furthermore,
every attribute value of every tuple is distinct, except for cname
and location values of Comp tuples. The reason for this is so
that the target instances generated by m2 with SKProjs(cid,y),
where y ⊆ {cname,location}, versus m2 with SKProj(y) will
be non-isomorphic. Indeed, the former target instance will
contain two distinct Proj sets, while the latter consists of
only one Proj set. Next, Muse-G executes the following query
against the actual source instance I in order to retrieve real
tuples for the example instance Ie.

QIe : Comp(c1, n1, l1) ∧ Comp(c2, n1, l1)∧
Proj(p1, pn1, c1, e1) ∧ Proj(p2, pn2, c2, e2)∧
Emp(e1, en1, cn1) ∧ Emp(e2, en2, cn2) ∧ c1 �= c2

All variables of QIe are universally-quantified. The two
Company tuples must disagree on cid (the probed attribute)
and agree on cname and location as explained earlier.

If QIe(I) returns an empty result, Muse-G will present the
designer with the synthetic instance Ie, shown earlier. Alter-
natively, a “semi-real” Ie may also be constructed by putting

together various real values drawn from I . However, this may
lead to combinations that are misleading to the designer. If
QIe(I) returns a non-empty result, Muse-G constructs a real
example based on the returned values. A possible real example
constructed in this way is shown in Fig. 3(a), where each tuple
in Companies, Projects and Employees exists in I .

Next, Muse-G obtains two differentiating target instances
shown in Scenarios 1 and 2 in Fig. 3(a), by chasing Ie

with mappings d1 and respectively, d2. Here, d1 and d2 are
identical to m2 except they have SKProjs(cid) and respectively,
SKProjs() as grouping functions for Projects. Now, Muse-G
asks the designer “which target instance looks correct”?

Note that the instance Ie has been carefully crafted so that
the chase of Ie with d1 is isomorphic to the chase of Ie with d′1,
where d′1 is a mapping obtained from m2 by replacing SKProjs
with SKProjs({cid} ∪ Y), where Y ⊆ {cname, location}.
Since cname and location values are identical for the two
Comp tuples in Ie, the mapping d1 has the same effect as
d′1 on Ie. Similarly, d2 has the same effect as d′2 on Ie,
where d′2 is obtained from d2 by replacing SKProjs with
SKProjs(Y). Hence, based on the designer’s choice of Scenario
1 or 2, Muse-G correctly determines whether cid is part
of the designer’s desired grouping function. So with one
question, we either eliminate all mappings using cid (not only
SKProjs(cid), but SKProjs(cid, cname), SKProjs(cid, location),
and SKProjs(cid, cname, location)), or we eliminate all map-
pings that do not use cid in the skolem function for Projects.

Continuing with our example, suppose the designer has the
grouping function SKProjs(cname) in mind. She would select
Scenario 2 in Fig. 3(a). We now repeat the process for the other
attributes cname and location. Fig. 3(b) shows the example
source instance and the two scenarios obtained by probing on
cname. The two source Comp tuples must differ on the values
of cname and agree on the values of location. Note that the cid
values of the two Comp tuples are not required to be identical,
since cid is not an argument of SKProjs. The designer will
pick Scenario 1 in Fig. 3(b), since she wants to group Projects
by cname, and Muse-G infers that cname is an argument to
SKProjs. Fig. 3(c) shows the result of probing on location,
where the designer will pick Scenario 2. Since cname is part of
the grouping, the Comp tuples must agree on the cname values,
otherwise, Muse-G would not be able to infer whether location
is part of the groping from the designer’s choice in Fig. 3(c).
At this point, Muse-G concludes and returns SKProjs(cname).

For simplicity, we have assumed above that poss(m2,
SKProjs) is {cid,cname,location}, when in fact it consists of
all attributes of Comp, Proj and Emp records. In this case,
Muse-G concludes only after subsequently probing all the
attributes of Proj and Emp records (the designer will choose
Scenario 2 in each case).

Note that it is conceivable for Muse-G to generate homo-
morphically equivalent target instances for Scenarios 1 and 2
(e.g., Fig. 3(b)). However, it is always possible to distinguish
between such instances, as they are non-isomorphic.
Properties of Basic Muse-G. There are 2n different grouping
functions for each nested set SK in a mapping m, where n

Example source:
Companies

11 IBM NY
12 IBM NY

Projects
P1 DB 11 e4
P2 Web 12 e5

Employees
e4 Jon x234
e5 Anna x888

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(11,y)

DB e4
IBM
Projects:SK(12,y)

Web e5
Employees

e4 Jon
e5 Anna

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(y)

DB e4
Web e5

Employees
e4 Jon
e5 Anna

(a)
Note:

y ⊆ {IBM NY}y ⊆ {IBM,NY}

Example source:
Companies

11 IBM NY
14 SBC NY

Projects
P1 DB 11 e4
P4 WiFi 14 e6

Employees
e4 Jon x234
e6 Kat x331

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(IBM,y)

DB e4
SBC
Projects:SK(SBC,y)

WiFi e6
Employees

e4 Jon
e6 Kat

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(y)

DB e4
WiFi e6

SBC
Projects:SK(y)

DB e4
WiFi e6

Employees
e4 Jon
e6 Kat

(b)
Note:

y ⊆ {NY} e6 Katy ⊆ {NY}

Example source:
Companies

11 IBM NY
13 IBM SF

Projects
P1 DB 11 e4
P2 Web 13 e5

Employees
e4 Jon x234
e5 Anna x888

Target instances:
Scenario 1:
OrgDB

Orgs
IBM
Projects:SK(IBM,NY)

DB e4
IBM
Projects:SK(IBM,SF)

Web e5
Employees

e4 Jon
e5 Anna

Scenario 2:
OrgDB

Orgs
IBM
Projects:SK(IBM)

DB e4
Web e5

Employees
e4 Jon
e5 Anna

(c)

Fig. 3. Probing on (a) cid, (b) cname, and (c) location when the designer has SKProjs(cname) in mind.

= |poss(m, SK)|. However, Muse-G determines the desired
grouping function by asking the designer only |poss(m, SK)|
questions. Furthermore, Muse-G constructs a small source
example at each probe. The size of the source example is
twice the number of “x ∈ X” clauses in for clauses of m.
This typically means there are at most two tuples in each
nested set.

Next, we describe how we have extended the basic algo-
rithm to potentially reduce the number of questions posed to
the designer when keys are present in the source.

B. Muse-G with Keys

In this section, we assume that key constraints may be spec-
ified on nested sets in the source schema. A key of a nested
set N is a minimal set of attributes in N that functionally
determines all attributes of N . We say that an instance I is
a valid instance for a set F of keys if I satisfies every key
in F . In the presence of keys, the example Ie constructed
when probing an attribute may not be valid with respect to
the keys. To see this, suppose cid is the key for Companies.
Consider SKProjs in m2 and suppose we probe on cname first.
Two Comp tuples (c1,n1,l1) and (c1,n2,l1) are created, which
clearly do not satisfy the key. Even if we had probed on cid
before cname, we may still construct an instance that does not
satisfy the key. For example, assume the designer’s desired
grouping function is SKProjs(cid,cname) and Muse-G first
probes on cid. The source instance and two scenarios that are
constructed are as shown in Fig. 3(a). Since the designer has
SKProjs(cid,cname) in mind, she picks Scenario 1, and hence
Muse-G infers that cid is part of SKProjs. Subsequently, when
probing on cname, two Comp tuples, (c1,n1,l1) and (c1,n2,l1),
are constructed. Clearly, they do not satisfy the key.

It turns out that if F is such that every nested set has at most
one key (of any arity), then there is a natural order of attributes
to probe such that a valid instance for F is always constructed
by Muse-G. The procedure for computing this natural order
is based on the following result which implies that if K is
a key of poss(m,SK), then the inclusion of K as arguments
of SK makes the inclusion of other attributes of poss(m,SK)
as arguments of SK inconsequential (Thm 3.2). For example,
if cid is the key for Companies, then m2 with SKProjs(cid)
has the same effect as m2 with SKProjs(cid,cname) or

SKProjs(cid,location) or SKProjs(cid,cname,location), for all
instances.

Definition 3.1: Let m1 and m2 be two mappings between
a source schema S and a target schema T. We say that m1

has the same effect as m2 if for every instance I over S we
have that Sol({m1}, I) = Sol({m2}, I).

This relation “has the same effect” is reflexive, symmetric
and transitive. Note that two mappings have the same space of
solutions if an only if their corresponding universal solutions
are homomorphically equivalent [13]. We already took advan-
tage of a weaker form of this property in Sec. 3.1 where we
constructed instances Ie on which a set of mappings would
produce isomorphic results. But the property above is much
stronger in that it must hold for all instances. In this paper, we
are interested in comparing m1 and m2 when they differ only
in one grouping function (e.g., SKProjs(X1) vs. SKProjs(X2)
with X1 �= X2)).

Theorem 3.2: Let m be a mapping and SK be a grouping
function that is defined in m. Let K be a key of poss(m,SK),
and let W be a set of attributes in poss(m,SK). Then m with
SK(K) has the same effect as m with SK(K ∪ W).

Given this result, a potentially rewarding order of attributes
to probe in the presence of a key K would be K first, followed
by the rest of attributes in poss(m,SK) if necessary (i.e., only
if K is not chosen).

Continuing with our example, where cid is the key for
Companies, suppose Muse-G is in the process of determining
SKProjs by first probing on cid. If the designer picks Sce-
nario 1 in Fig. 3(a), then Muse-G can immediately conclude
SKProjs(cid), since any combination of grouping attributes
that includes cid will have the same effect. Hence, Muse-G has
avoided two probes on cname and location and consequently,
avoided two unnecessary questions.

A technical difficulty that arises in the presence of multiple
keys is that the technique used to construct the illustrative
example Ie, described in the previous section, may not always
be valid with respect to the keys. For example, if both cid
and cname are keys for Companies, then probing on cid will
construct the instance Ie from Sec. III-A. Clearly, this instance
does not satisfy the key cname for Companies. However, if cid

is the only key, then probing on cid first does not result in an
invalid instance.

Based on the observations above, we have extended the
algorithm behind Muse-G to handle the case when the source
schema has key constraints. Whenever there is only a single
key, Muse-G avoids creating invalid instances by first probing
attributes that belong to the key. In this case, Muse-G asks
k questions, where k is the number of attributes in the key,
before deciding on which attributes to probe next. In fact, if
every nested set in the source schema has at most one key,
we show that the number of questions asked by Muse-G is at
most |poss(m, SK)|. This is the case for all real schemas that
we have encountered in Sec. VI.

Corollary 3.3: Let m be a mapping between a source
schema S and a target schema. Let SK be a grouping function
defined in m. If every nested set in S has at most one key,
then Muse-G on SK asks the designer at most |poss(m, SK)|
questions.

If there are multiple keys per nested set in the source
schema, Muse-G takes a different approach to infer the desired
grouping function in order to avoid creating invalid instances.
If the designer intends to group by only one of the keys, then
Muse-G determines the desired grouping function by asking
only one question. This is possible through exploiting the fact
that grouping by one key has the same effect as grouping
by any superset of the key (including all keys). Otherwise,
Muse-G will attempt to understand which subset of non-key
attributes is the designer’s desired grouping function. The
complete details of this part of Muse-G can be found in full
version of our paper [15].

C. Extensions to Muse-G

We briefly mention other extensions to Muse-G given
in [15].
Muse-G with Functional Dependencies. In [15], we detail
how Muse-G constructs examples in the presence of FDs. We
give a generalization of Theorem 3.2 for FDs. We show that
if P → Q holds in poss(m,SK), then the inclusion of P as
arguments of SK makes the inclusion of Q as arguments of
SK inconsequential. We also give a necessary and sufficient
condition that characterizes when a set of FDs F is single-
keyed. This allows us to generalize the Muse-G algorithm
outlined in Sec. III-B to arbitrary functional dependencies.
Incremental Muse-G. Even after all grouping functions for
a mapping m have been designed, a designer may wish to
return to refine her design sometime later. Incremental Muse-
G helps a designer refine an existing grouping function SK
of m, without restarting the Muse-G algorithm from scratch,
by choosing to “group more” (i.e., merge multiple nested sets
into a bigger nested set) or “group less” (i.e., split a nested
set into multiple smaller nested sets) on SK.
Designing grouping functions only for the instance I .
Muse-G correctly designs grouping functions for a mapping
m so that m produces the desired grouping effect on any
source instance. If the designer is only interested in designing

mappings for a specific source instance I , we have modified
Muse-G to first identify attributes whose inclusion or exclusion
as arguments of SKN is inconsequential for the grouping
semantics of N records for the instance I . Muse-G will avoid
some questions to the designer by not probing these attributes.

IV. DISAMBIGUATING MAPPINGS

We use the scenario in Fig. 4(a) to illustrate Muse-D,
the component wizard of Muse that disambiguates mappings.
Observe that atomic elements from two different record types
Proj and Emp in the source are associated together in the same
Proj record in the target. Moreover, there are two referential
constraints in the source, from Proj to Emp.

The mapping scenario can be interpreted in several ways,
four of which we have condensed into the mapping ma shown
in Fig. 4(a), which has been extended with or predicates
to illustrate alternative interpretations. The non-bold parts
are common to all four interpretations that we have, while
each of the bold conjuncts represents two alternative ways
of associating a supervisor (and email, respectively) with
a Proj.pname. For example, the first set of or conditions
specifies that one can extract either the manager’s name or
the tech-lead’s name as the supervisor of a project.

We say that a mapping m is ambiguous if there exists at
least one or predicate in its where clause. We assume that
every group G of or conditions in an ambiguous mapping
m are alternatives for an atomic target element A and is
of the form (s1.A1 = A or ... or sn.An = A). We say
m is ambiguous for A and there are n alternatives for A
according to m.

A. The Muse-D Algorithm

The Muse-D algorithm takes as input a schema mapping
(S, T, Σ), where Σ is a set of possibly ambiguous mappings,
and a real source instance I , if available. For each ambiguous
mapping m ∈ Σ, Muse-D constructs an example source
instance Ie that differentiates among the underlying set of
alternative (unambiguous) mappings that m encodes. In other
words, if m represents l alternative mappings, the chase of
Ie with each of the l unambiguous mappings results in l
target instances that are pairwise different. Each target instance
corresponds to one of the unambiguous mappings that m
encodes. Hence, the designer’s selection of one of these target
instances can be translated into a selection of one of the
underlying mappings. The example source instance that Muse-
D generates for the schema mapping of Fig. 4(a) is shown in
Fig. 4(b). Observe that Muse-D does not display four target
instances. Instead, it compactly represents all target instances
in one “instance” by factoring common parts (corresponding
to chasing the non-bold part of mapping ma in Fig. 4(a)) and
displaying the alternatives for each ambiguous schema element
according to ma. If the designer picks the values Anna for
supervisor and Jon@ibm for email, this means that the desired
mapping is one that uses “e2.ename = p1.supervisor” and
“e1.contact = p1.email” in the where clause of ma.

CompDB: Rcd
Projects: Set of

Project: Rcd
pid
pname
manager
tech-lead

Employees: Set of
Employee: Rcd

eid
ename
contact

OrgDB: Rcd
Projects: Set of

Project: Rcd
pname
supervisor
email

ma : for p in CompDB.Projects,
e1 in CompDB.Employees,
e2 in CompDB.Employees
satisfy e1.eid=p.manager and

e2.eid=p.tech-lead
exists p1 in OrgDB.Projects
where p.pname=p1.pname and

(e1.ename=p1.supervisor
or e2.ename=p1.supervisor)

and
(e1.contact=p1.email

or e2.contact=p1.email)
(a)

Example source Ie:

Projects
P1 DB e4 e5

Employees
e4 Jon jon@ibm
e5 Anna anna@ibm

Target instance:

Orgs:
Projects:

DB Jon jon@ibm
Anna anna@ibm

Choice values for
supervisor and email

(b)

Fig. 4. (a) A mapping scenario and an ambiguous mapping; (b) Muse-D on the schema mapping in (a).

Next, we briefly illustrate how Muse-D constructs an
example source instance that differentiates among all
alternative mappings of the ambiguous mapping ma in
Fig. 4(a). Muse-D first constructs an example Ie which
consists of a Proj tuple (p1,pn1,e1,e2) and two Emp tuples
(e1,en1,cn1) and (e2,en2,cn2), corresponding to the manager
and respectively, the technical leader of the project p1. The
query below is executed to replace Ie with real tuples from
I:

QIe :Proj(p1, pn1, e1, e2) ∧ Emp(e1, en1, cn1)∧
Emp(e2, en2, cn2) ∧ en1 �= en2 ∧ cn1 �= cn2

All variables of QIe are universally quantified. Since
supervisor and email are ambiguous elements according to
ma, we add the inequalities en1 �= en2 and cn1 �= cn2 to
ensure that one can disambiguate mappings according to the
designer’s selection on these values. A possible real example
constructed from QIe(I) is shown Fig. 4(b). If QIe(I) returns
an empty result, then the synthetic instance Ie shown above
would be presented to the designer instead.

Finally, Muse-D chases Ie to generate the target instance
with “choices” shown in Fig. 4(b). Intuitively, the non-choice
part of the target instance is generated by chasing Ie with the
non-ambiguous part of ma. The choices for an atomic target
element are obtained by taking the union of values extracted
from each alternative. After this, the designer “fills-in-the-
choices” in the target instance. The completed target instance
translates into an underlying mapping that ma encodes.
Properties of Muse-D. For each ambiguous mapping m,
Muse-D presents the designer with a single pair of source and
target instances. The number of tuples in the source instance
is the number of “x ∈ X” clauses in the for clause of m.
The number of choice values the designer has to select in the
target instance is the number of ambiguous elements in m.
More options. A designer may choose a subset of the four
mappings as the desired interpretation in general. Muse-D
allows the selection of multiple mappings by allowing the
designer to select more than one value in each choice.

Note that the for clause of ma in Fig. 4(a) expresses
an inner join between Employees and Projects. Therefore,
only employees that are both managers and technical leads
are exchanged in the target. A designer can choose between
inner or outer joins (e.g., exchange employees that are neither

managers nor tech leads) in Muse-D. Here, we rely on the
technique of Yan et al. [12] for constructing examples to
differentiate between inner and outer joins.
Detecting ambiguities. So far we have assumed that ambigui-
ties are specified as or predicates in the mapping. Techniques
for detecting ambiguities when given a set of mappings
(without or predicates) is an interesting subject for further
investigation. However, we observe that Muse-D could work
directly from mapping tools such as Clio, because ambiguities
can be detected during mapping generation.

V. USING MUSE

So far, we have described the Muse-G and Muse-D com-
ponent wizards of Muse in isolation. These components may
be used independently to refine mappings that are hand-coded
or automatically generated. They may also be put together to
form a complete mapping design wizard that would guide the
designer, with examples, to the desired mapping specification,
starting from mappings generated by tools such as Clio [2]
or HePToX [4]. To exemplify, consider the Clio tool which
helps a designer create a mapping scenario (e.g., those shown
in Figs. 1 and 4(a)). Clio interprets such a mapping scenario
into a set of (possibly ambiguous) mappings. If the default
mappings generated are found to be unsatisfactory, Muse-D
could be used to select the desired interpretation. The output of
Muse-D is a set of unambiguous mappings. Muse-G can then
be used to guide the designer towards the desired grouping
semantics, if the default are unsatisfactory.

VI. EXPERIENCE

To evaluate Muse, we use four pairs of source and target
schemas as input to Clio, from which we design four mapping
scenarios. The input schemas are (1) the relational and DTD
schemas of the Mondial geographical database4 (2) two nested
schemas for the DBLP bibliography obtained from the DBLP
website and respectively, the Clio schemas repository5 (3)
the relational TPCH schema [17] and a nested version of
this schema which we created, and (4) the first relational
schema in the Amalgam data integration benchmark [18] and a
nested schema which we created based on the third Amalgam
schema. As source instances, we used the Mondial database,

4http://www.dbis.informatik.uni-goettingen.de/Mondial/
5http://www.cs.toronto.edu/db/clio/testSchemas.html

Schema Average Number of% timesAverage timeGroup
mapping size of questions found to obtain strat.

poss(m, SK) (average) real Ie Ie (s)

2.6 38% 0.014 G1

Mondial 13.1 8.5 41% 0.187 G2

2.9 40% 0.015 G3

1.5 17% 0.450 G1

DBLP 11 11 11% 0.337 G2

1.5 17% 0.454 G3

1.5 0% 0.785 G1

TPCH 26.7 17 12% 0.893 G2

1.5 0% 0.782 G3

2 29% 0.013 G1

Amalgam 14.1 3 52% 0.043 G2

3 52% 0.030 G3

Fig. 5. Experimental results with Muse-G.

scaled down versions of the DBLP bibliography and the TPCH
database, and data for the first Amalgam schema. All schemas
have key and foreign key constraints. The table below shows
some characteristics of the mapping scenarios we designed.
In the Mondial scenario, for example, the target schema has
8 nested sets with grouping functions. Clio generates 26
mappings of which 7 are ambiguous.

Mapping Size Target sets Number ofAmbiguous
Scenarios of I w/ grouping mappings mappings

Mondial 1MB 8 26 7
DBLP 2.6MB 6 4 0
TPCH 10MB 4 5 1
Amalgam 2MB 2 14 0

Muse-G. We considered three types of grouping functions,
denoted as G1, G2 and G3, respectively. Under G1, every
set is grouped by all possible attributes. Hence, G1 produces
the largest number of possible groups. For our example in
Fig. 1, under G1, SKProjs(〈all attributes of c, p, e〉) is the
grouping function for Projects. Under G2, every set SK is
grouped by all source atomic elements that are exported to
records that appear on the path from the root of the target
schema to SK. For example, under G2, the grouping function
for Projects is SKProjs(c.cname). A slight variation of G2 is
given by G3: Every set SK is grouped by all atomic elements
in poss(m,SK) that are exported to the target schema. Under
G3, the grouping function for Projects is SKProjs(c.cname,
p.pname, p.manager, e.eid, e.ename).

Fig. 5 summarizes our experience with Muse-G. We use
DB2 v9 (with buffer pool size of 10 MB) and respectively,
the Saxon-B implementation of XQuery to retrieve real tuples
from relational and respectively, XML source instances. In all
source schemas, there is at most one key for each nested set.
Fig. 5 shows the average size of poss(m, SK) (i.e., the total
size of poss(m,SK), over all m and SK, divided by the number
of grouping functions in all mappings) and the average number

of questions posed to the designer (i.e., the average number
of attributes probed) over all sets SK. Muse-G was able to
reduce the number of questions posed to the designer in most
cases, in the presence of keys. For example, Muse-G asked,
on average, only 1.5 questions per nested set under G1 and G3

in the DBLP scenario, where the average size of poss(m, SK)
is 11. Recall that all attributes in poss(m, SK) are probed in
the absence of keys. Hence, Muse-G avoided 9.5 questions
per nested set in these cases, on average. However, Muse-
G is unable to reduce the number of questions posed to the
designer when she has G2 in mind because it happens that the
attributes for G2 do not contain the key of poss(m, SK), for
any mapping m and set SK of m in this scenario.

Fig. 5 shows that in all scenarios, Muse-G was able to
extract real tuples from the source instance and present the
designer with a “real” example Ie up to 52% of the time.
Note that in all the schema mappings we have used in our ex-
periments, it is not possible to extract real source examples all
the time. Hence, the ability of Muse-G to construct appropriate
examples is important. The average time required to construct
and retrieve Ie from the source instance was subsecond in all
cases. Note that the performance of Muse-G mainly depends
on the performance of queries that extract Ie from the source
instance I . We have implemented various strategies to avoid
having the designer wait a long time for real examples from
Muse-G in cases when I is large. For example, we exploit the
“think time” of the designer on one example to precompute
other examples ahead of time in the background. Muse-G also
falls back to its own artificially constructed example if a real
example was not found after a fixed amount of time.

Muse-D. We used Muse-D to disambiguate among alternative
mappings in the Mondial and TPCH scenarios. (There are no
ambiguous mappings for the DBLP and Amalgam scenarios.)
Below, we show the number of alternative mappings that are
encoded by the ambiguous mappings that Clio generates. For
example, for the Mondial scenario, the 7 ambiguous mappings
encode 208 mapping alternatives in total. The number of pairs
of source and target examples generated in each scenario (i.e.,
the number of questions posed to the designer) is also shown.
This number is equal to the number of ambiguous mappings.
In all cases, we were able to extract real examples from the
actual source instance to illustrate the ambiguities.

Schema Alternatives Num. Size of Ie# Ambiguous vals.
Mapping encoded questions(# tuples) in target inst.

Mondial 208 7 3–4 4–5
TPCH 16 1 9 4

It is important to observe that the sizes of the example source
instances and the number of ambiguous values Muse-D shows
in the target instances are small compared to the number
of mapping alternatives. In Mondial, for example, Muse-D
disambiguates among 208 mapping alternatives by showing
only 7 examples, where each source example consists of 3 to
4 tuples and the corresponding target instances have 4 to 5
ambiguous elements, each with two choice values.

VII. RELATED WORK AND CONCLUSION

Grouping functions (or Skolem functions) have been used
for schema translation and schema augmentation of object-
based data models [19], as well as in many tools for man-
aging and creating schemas and mappings [2], [3], [5], [14],
[20], [21]. In all cases, grouping functions are automatically
generated and may be manually modified. To the best of our
knowledge, Muse-G is the first design wizard for grouping
functions.

Muse-D is inspired by the vision of Yan et al. [12], but
greatly extends its functionality (as described in Section I).
Muse is fundamentally different from previous work on form
filling [22], Query-By-Example (QBE) paradigms (perhaps
the most notable one is [23]), and browsing and querying
paradigms (e.g., [24]). Muse uses data examples to illustrate
nuances in small changes to an existing mapping, while all
the work mentioned above is about assisting a designer to
build a (valid) query. The work of Rowe [22] is similar to
Muse-D in that it requires the user to fill-in some values in
a form with empty fields. A form corresponds to the schema
of a view of the underlying database. Arbitrary values are
allowed in each field, and each entered value translates to a
selection predicate on the underlying query from which more
tuples may be retrieved. In Muse-D, each “blank” in the target
instance contains a list of alternatives (no arbitrary choices are
allowed). A completion of the target instance corresponds to
a selection of a unique underlying mapping.

Examples have been used to illustrate constraints, such
as functional and inclusion dependencies [25]. An example
database (called an Armstrong database [26]) is a database
that satisfies exactly a given set of constraints and their logical
consequences, and no other constraints. Since such databases
illustrate constraints that hold or do not hold, it is useful for
alerting the designer of possible extra or missing constraints.
Muse uses data examples for illustrating the differences in
semantics resulting from small changes to a mapping. It may
not show which mappings are missing.

The work of [27] allows a designer to understand and
debug schema mappings by showing the relationships, called
routes, between selected source or target data. Our work is
complementary to [27]. Their system does not automatically
“guide” the designer, with examples, in creating or refining the
schema mapping. Rather, the designer must manually change
a mapping, once a problem has been identified by analyzing
the routes. Moreover, the design of grouping functions is not
considered in [27].
Conclusion. We have described Muse, a mapping design
wizard that uses data examples to help designers understand,
design, and refine schema mappings. Muse permits a designer
to work with data rather than with complex specifications to
understand a mapping’s semantics. Muse works on two im-
portant components of a mapping specification, corresponding
to the design of desired grouping semantics for mappings
(Muse-G) and the desired interpretation of ambiguous map-
pings (Muse-D). Muse explores a large and comprehensive

design space of alternative mappings to ensure a designer can
efficiently arrive at her desired mapping semantics.
Acknowledgements. Alexe, Chiticariu and Tan are partly supported
by NSF CAREER Award IIS-0347065 and NSF grant IIS-0430994.
Work partially done while Tan was visiting the IBM Almaden
Research Center.

REFERENCES

[1] P. Bernstein and S. Melnik, “Model Management 2.0: Manipulating
Richer Mappings,” in SIGMOD, 2007, pp. 1–12.

[2] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin,
“Translating Web Data,” in VLDB, 2002, pp. 598–609.

[3] A. Fuxman, M. A. Hernández, H. Ho, R. J. Miller, P. Papotti, and
L. Popa, “Nested Mappings: Schema Mapping Reloaded,” in VLDB,
2006, pp. 67–78.

[4] A. Bonifati, E. Q. Chang, T. Ho, and L. V. S. Lakshmanan, “HepToX:
Heterogeneous Peer to Peer XML Databases,” 2005. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0506002

[5] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash, “Implementing
Mapping Composition,” in VLDB, 2006, pp. 55–66.

[6] A. Y. Halevy, “Answering Queries Using Views,” VLDB Journal, vol. 10,
no. 4, pp. 270–294, 2001.

[7] M. Lenzerini, “Data Integration: A Theoretical Perspective,” in PODS,
2002, pp. 233–246.

[8] C. Yu and L. Popa, “Constraint-Based XML Query Rewriting For Data
Integration.” in SIGMOD, 2004, pp. 371–382.

[9] J. Madhavan and A. Y. Halevy, “Composing Mappings Among Data
Sources,” in VLDB, 2003, pp. 572–583.

[10] R. Fagin, P. G. Kolaitis, L. Popa, and W. Tan, “Composing Schema
Mappings: Second-Order Dependencies to the Rescue,” TODS, vol. 30,
no. 4, pp. 994–1055, 2005.

[11] A. Nash, P. A. Bernstein, and S. Melnik, “Composition of Mappings
given by Embedded Dependencies,” in PODS, 2005, pp. 172–183.

[12] L. Yan, R. Miller, L. Haas, and R. Fagin, “Data-Driven Understanding
and Refinement of Schema Mappings,” in SIGMOD, 2001, pp. 485–496.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data Exchange:
Semantics and Query Answering,” TCS, vol. 336, no. 1, pp. 89–124,
2005.

[14] P. Atzeni, P. Cappellari, and P. A. Bernstein, “Model-Independent
Schema and Data Translation,” in EDBT, 2006, pp. 368–385.

[15] B. Alexe, L. Chiticariu, R. J. Miller, and W. Tan, “Muse: Mapping
Undestanding and deSign by Example,” UC Santa Cruz, Tech. Rep.
UCSC-CRL-07-10, 2007.

[16] L. Popa and V. Tannen, “An Equational Chase for Path-Conjunctive
Queries, Constraints, and Views,” in ICDT, 1999, pp. 39–57.

[17] “TPC Transaction Processing Performance Council,” http://tpc.org.
[18] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and

V. Lee, “The Amalgam schema and data integration test suite,” 2001,
www.cs.toronto.edu/˜ miller/amalgam.

[19] R. Hull and M. Yoshikawa, “ILOG: Declarative Creation and Manipu-
lation of Object Identifiers,” in VLDB, 1990, pp. 455–468.

[20] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm, “Supporting
Executable Mappings in Model Management,” in SIGMOD, 2005, pp.
167–178.

[21] P. A. Bernstein, S. Melnik, and P. Mork, “Interactive schema translation
with instance-level mappings,” in VLDB (demo), 2005, pp. 1283–1286.

[22] L. A. Rowe, ““Fill-in-the-Form” Programming,” in VLDB, 1985, pp.
394–404.

[23] M. Zloof, “Query-By-Example: A Data Base Language,” IBM Sys.
Journal, vol. 16, no. 4, pp. 324–343, 1977.

[24] M. J. Carey, L. M. Haas, V. Maganty, and J. H. Williams, “PESTO : An
Integrated Query/Browser for Object Databases,” in VLDB, 1996, pp.
203–214.

[25] A. M. Silva and M. A. Melkanoff, “A Method for Helping Discover the
Dependencies of a Relation,” in Adv. in Data Base Theory, 1979, pp.
115–133.

[26] C. Beeri, M. Dowd, R. Fagin, and R. Statman, “On the Structure of
Armstrong Relations for Functional Dependencies,” JACM, vol. 31,
no. 1, pp. 30–46, 1984.

[27] L. Chiticariu and W. Tan, “Debugging Schema Mappings with Routes,”
in VLDB, 2006, pp. 79–90.

