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Abstract. With the ever-growing amount of RDF data available across the Web,
the discovery of links between datasets and deduplication of resources within
knowledge bases have become tasks of crucial importance. Over the last years,
several link discovery approaches have been developed to tackle the runtime and
complexity problems that are intrinsic to link discovery. Yet, so far, little atten-
tion has been paid to the management of hardware resources for the execution of
link discovery tasks. This paper addresses this research gap by investigating the
efficient use of hardware resources for link discovery. We implement the HR3

approach for three different parallel processing paradigms including the use of
GPUs and MapReduce platforms. We also perform a thorough performance com-
parison for these implementations. Our results show that certain tasks that appear
to require cloud computing techniques can actually be accomplished using stan-
dard parallel hardware. Moreover, our evaluation provides break-even points that
can serve as guidelines for deciding on when to use which hardware for link dis-
covery.
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1 Introduction

Link Discovery (LD) is of central importance for realizing the fourth Linked Data prin-
ciple [1]. With the growth of the Web of Data, the complexity of LD problems has
grown considerably. For example, linking places from LinkedGeoData and DBpedia
requires the comparison of hundreds of thousands of instances. Over the last years,
several time-efficient algorithms such as LIMES [19], MultiBlock [9] and HR3 [18]
have been developed to address the problem of the a-priori quadratic runtime of LD
approaches. In general, these algorithms aim at minimizing the number of unneces-
sary similarity computations to carry out. While these approaches have been shown to
outperform naı̈ve LD implementations by several orders of magnitude, the sheer size
of the number of links can still lead to unpractical runtimes. Thus, cloud implemen-
tations of some of these algorithms (e.g., LIMESMR [7] and Silk MapReduce1) have
been recently developed. The speed-up of these implementations is, however, limited

1 https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce
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by a considerable input-output overhead that can lead to worse runtimes than on single
machines. Interestingly, the use of standard parallel hardware has recently been shown
to have the potential to outperform cloud computing techniques [6].

The multiplicity of available hardware solutions for carrying out LD led us to ask
the following fundamental question: When should which type of hardware be used to
optimize the runtime of LD processes? Providing an answer to this question promises to
enable the development of highly flexible and scalable LD frameworks that can adapt
to the available hardware environment. It will allow to decide intelligently upon when
to reach for remote computing services such as cloud computing services in contrast
to using local resources such as graphics processing units (GPUs) or multi-processor
and multi-core technology. To answer our research question, we compare the runtimes
of several implementations of HR3 for several datasets and find break-even points for
different hardware. We chose theHR3 algorithm because it is the first algorithm with a
guaranteed reduction ratio [18]. Thus, it promises to generate less overhead than other
LD algorithms for comparable problems. Moreover, this algorithm can be used in man-
ifold scenarios including LD, finding geographically related data (radial search) as well
as search space reduction for other LD algorithms. The main contributions of this work
are:

• We present the first implementation of a LD approach for GPUs. It relies on the
GPU for fast parallel indexing and on the CPU for the computation of distances.

• We show how load-balancing for Map-Reduce can be carried out for LD approaches
in affine spaces.

• We obtain guidelines for the use of different parallel hardware for LD by the means
of a comparative evaluation of different implementations on real-world datasets
from the Linked Open Data Cloud.

The remainder of the paper is organized as follows: We begin by giving a brief
overview of HR3 and other paradigms used in this work. In Section 3, we then show
how HR3 must be altered to run on GPUs. Section 4 focuses on the Map-Reduce im-
plementation of HR3 as well as the corresponding load balancing approach. Section 5
presents a comparison of the runtimes of the different implementations of HR3 and
derives break-even points for the different types of hardware2. The subsequent sec-
tion gives an overview of related work. Finally, Section 7 summarizes our findings and
presents future work.

2 Preliminaries

The specification of link discovery adopted herein is tantamount to the definition pro-
posed in [18]. Given a formal relation3 R and two (not necessarily disjoint) sets of in-
stances S and T , the goal of link discovery is to find the set M = {(s, t) ∈ S ×T : R(s, t)}.
Given that the explicit computation of R is usually a very complex endeavor, most
frameworks reduce the computation of M to that of the computation of an approxima-
tion M̃ = {(s, t) : δ(s, t) ≤ θ}, where δ is a (complex) distance function and θ is a

2 Details to the experiments and code are available at http://limes.sf.net.
3 For example, http://dbpedia.org/property/near
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distance threshold. Note that when S = T and R = owl:sameAs, the link discovery
task becomes a deduplication task. Naı̈ve approaches to computing M̃ have a quadratic
time complexity, which is impracticable on large datasets. Consequently, a large num-
ber of approaches has been developed to reduce this time complexity (see [18] for an
overview). Most of these approaches achieve this goal by optimizing their reduction ra-
tio. In newer literature, theHR3 algorithm [17] has been shown to be the first algorithm
which guarantees that it can achieve any possible reduction ratio.
HR

3 builds upon the HYPPO algorithm presented in [16]. The rationale ofHR3 is
to maximize the reduction ratio of the computation of M̃ in affine spaces with Minkowski
measures. To achieve this goal, HR3 computes an approximation of M̃ within a dis-
cretization of the space Ω = S ∪ T . Each point ω = (ω1, . . . , ωn) ∈ Ω is mapped
to discrete coordinates (bω1/∆c, . . . , bωn/∆c), where ∆ = θ/α and α ∈ N\{0} is called
the granularity parameter. An example of such a discretization is shown in Figure 1:
The point B with coordinates (12.3436, 51.3339) is mapped to the discrete coordinates
(2468, 10226). The set of all points with the same discrete coordinates forms a hyper-
cube (short: cube) of width α in the space Ω. The cube that contains ω is called C(ω).
We call the vector (c1, . . . , cn) = (bω1/∆c, . . . , bωn/∆c) ∈ Nn the coordinates of C(ω).

Given the distance threshold θ and the granularity parameter α,HR3 computes the
set of candidates t ∈ T for each s ∈ S by using the index function given in Eq. 1.

index(C,C′) =


0, if ∃i : |ci − c′i | ≤ 1 with i ∈ {1, ..., n},
n∑

i=1
(|ci − c′i | − 1)p else.

(1)

where C = C(s) and C′ = C(t) are hypercubes and p is the order of the Minkowski
measure used in the space Ω.

Now, all source instances s are only compared with the target instances t such that
index(C(s),C(t)) ≤ αp. In our example, this is equivalent to computing the distance
between B and all points contained in the gray-shadowed area on the map. Overall,
HR

3 achieve a reduction ratio of ≈ 0.82 on the data in Figure 1 as it only performs 10
comparisons instead of 55.

3 Link Discovery on GPUs

3.1 General-Purpose Computing on GPUs

GPUs were originally developed for processing image data. Yet, they have been em-
ployed for general-purpose computing tasks in recent years. Compared to CPUs the
architecture of GPU hardware exhibits a large number of simpler compute cores and
is thus referred to as massively parallel. A single compute core typically contains sev-
eral arithmetic and logic units (ALU) that execute the same instruction on multiple data
streams (SIMD).

Parallel code on GPUs is written as compute kernels, the submission of which is
orchestrated by a host program executed on the CPU. Several frameworks exist for per-
forming general purpose computing on GPUs. In this work we use OpenCL4, a vendor-

4 http://www.khronos.org/opencl/
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Fig. 1. Example dataset containing 11 places from Leipzig. To identify all points with a maximum
Euclidean distance θ = 0.02, the space is virtually tiled into hypercubes with an edge length of
∆ = θ/4. A cube is identified by its coordinates (c1, ..., cn). The gray-shadowed cells indicate the
cubes whose points are compared with B, i.e., {C′ | index(C(B),C′) ≤ αp}.

agnostic industry standard. The memory model as exposed to OpenCL kernels is de-
picted in Figure 2: An instance of a compute kernel running on a device is called a work
item or simply thread5. Work items are combined into work groups. All items within
the same group have access to low-latency local memory and the ability to synchronize
load/store operations using barriers. Thus, the actual number of kernel instances run-
ning in parallel is often limited by register and local memory usage. Each work item is
assigned a globally (among all work items) and locally (within a work group) unique
identifier, which also imposes a scheduling order. Typically those identifiers are used to
compute local and global memory offsets for loading and storing data items that a given
thread works on. Data transfer between host program and compute device is done via
global device memory to which all work items have access, albeit with higher latency.

Threads on modern GPUs do not run in isolation. They are scheduled in groups
of 64 or 32 work items depending on the hardware vendor. All threads within such a
group execute the same instruction in lock-step. Any code path deviations due to control
flow statements need to be executed by all items, throwing away unnecessary results
(predication). It is therefore essential that each work item in such a group performs the
same amount of work. The OpenCL framework does not expose the size of such groups
to the API user. An upper bound is given by the work group size, which is always an
integer multiple of the schedule group size.

5 We use the therms work item and thread interchangeably in this work.
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Fig. 2. OpenCL memory model

3.2 GPU-basedHR3 Implementation

For GPU-based computation all data must be copied to the device via the PCIe bus. We
therefore only perform expensive computations on the device that benefit from the mas-
sive parallelism. In the case of HR3 this is the computation of the index function that
determines which hypercubes a given cubes needs to be compared with. Since GPUs
work best with regular memory access patterns a few preparation steps are needed.
These are performed serially on the host. First, we discretize the input space Ω = S ∪T ,
resulting in a set of hypercubes. All hypercubes are then sorted component-wise. The
number of hypercubes determines the global work size. That is, each thread is assigned
a hypercube (called pivot cube) determined by its global id. The work to be done by
each thread is then to compute all those hypercubes that abide by the bound on indexes
set byHR3.

A naı̈ve implementation would have each thread compare its pivot cube to all other
cubes, resulting in an amount of work quadratic in the number of hypercubes. A better
approach is to minimize the amount of cube comparisons while maintaining an even
work distribution among threads within the same group. Since hypercubes are globally
sorted and fetched by work items in increasing schedule order, the ordering is main-
tained also locally. That is, let g = k + 1 be the local work group size. The work item
with the least local id per group is assigned the smallest pivot cube C0 while the last
work item having the highest local id operates on the largest cube Ck as its pivot. Both
work items therefore can determine a lower and upper bound for the whole group as
follows. The first item computes the cube C0−α = (c0

1 − α, . . . , c
0
n − α) and the last item

computes the cube Ck+α = (ck
1 + α, . . . , ck

n + α), where c0
i and ck

i are the coordinates of
the respective pivot cubes. Thread 0 then determines il, the index of the largest cube
not greater then C0−α while thread k computes iu, the index of the smallest cube that is
greater than Ck+α. After a barrier synchronization that ensures all work items in a group
can read the values stored by threads 0 and k, all work items compare their pivot cube to
cubes at indices il, . . . (iu − 1) in global device memory. Since all work items access the
same memory locations fetches can be efficiently served from global memory cache.

In OpenCL kernels dynamic memory management is not available. That is, all
buffers used during a computation must be allocated in advance by the host program.
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Fig. 3. Result index computation forHR3 on GPU hardware

In particular, the size of the result buffer must be known before submitting a kernel
to a device. We therefore cannot simply write the resulting cubes to an output vector.
Instead, we compute results in two passes. During the first pass each thread writes the
number of results it needs to produce to an output vector. A prefix sum over this vector
yields at each index the accumulated number of results of threads with a lower id. This
value can be used as an index into the final output vector at which each thread can start
writing its results.

As an example consider Figure 3. It shows four threads (0 . . . 3), each of which
loads a single cube from the sorted source cubes vector. The index from which each
threads loads its cube is given by its id6. In this example we assume a granularity factor
of α = 4. For thread 1 the smallest cube its pivot cube needs to be compared with is
C(D) = (2464, 10265) while the largest is C(B) = (2468, 10266). It therefore writes 2
into an output vector, again using its thread id as an index. Thread 0 as well as 2 and
3 do the same, which results in the result size vector as depicted in Figure 3. In order
to determine the final indexes each thread can use for storing its results in the result
vector, an exclusive prefix sum is computed over the result size vector. This operation
computes at each index i the sum of the elements at indexes 0 . . . (i − 1), resulting in
the accumulated result size vector. A result vector of the appropriate size is allocated
and in a second kernel run each thread can now write the cube coordinates starting at
the index computed in the previous step. Indexing results are then copied back to the
host where comparison of the actual input points is carried out. Since this operation
is dominated by the construction of the result it cannot be significantly improved on
parallel hardware.

4 MapReduce-based Link Discovery

In this section we present an implementation of HR3 with MapReduce (MR), a pro-
gramming model designed for parallelizing data-intensive computing in cluster envi-

6 For means of readability we show only one id per thread that serves as both its local and global
id.
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Algorithm 1: BasicHR3 - Map

1 map(kin=unused, vin = ω)
2 ∆← θ/α;
3 cid1 ← getCubeId(C(ω));
4 RC ← getRelatedCubes(C(ω), ∆);
5 foreach C′ ∈ RC do
6 cid2 ← getCubeId(C′);
7 if cid1 ≤ cid2 then
8 output(cid1.cid2.0,
9 (ω, 0));

10 else
11 output(cid2.cid1.1,
12 (ω, 1));

// part = hash(cid1,cid2) mod r
// sort component-wise by entire key
// group by cid1, cid2

Algorithm 2: BasicHR3 - Reduce

1 reduce(ktmp=cid1, cid2,
2 vtmp=list< ω, f lag) >)
3 bu f ← {};
4 if cid1 = cid2 then
5 foreach (ω, f lag) ∈ vtmp do
6 foreach ω′ ∈ bu f do
7 compare(ω, ω′);

8 bu f ← bu f ∪ {ω};

9 else
10 foreach (ω, f lag) ∈ vtmp do
11 if flag=0 then
12 bu f ← bu f ∪ {ω};

13 else
14 foreach ω′ ∈ bu f do
15 compare(ω,ω′);

ronments [2]. MR implementations like Apache Hadoop rely on a distributed file sys-
tem (DFS) that can be accessed by all nodes. Data is represented by key-value pairs and
a computation is expressed employing two user-defined functions, map and reduce,
which are processed by a fixed number of map (m) and reduce tasks (r). For each inter-
mediate key-value pair produced in the map phase, a target reduce task is determined
by applying a partitioning function that operates on the pair’s key. The reduce tasks first
sort incoming pairs by their intermediate keys. The sorted pairs are then grouped and
the reduce function is invoked on all adjacent pairs of the same group.

We describe a straightforward realization ofHR3 as well as an advanced approach
that considers skew handling to guarantee load balancing and to avoid unnecessary data
replication. In favor of readability, we consider a single dataset only.

4.1 HR
3 with MapReduce

HR
3 can be implemented with a single MR job. The main idea is to compare the points

of two related cubes within a single reduce call. We call two cubes C,C′ related iff
index(C,C′) ≤ αp. For each input point ω, the map function determines the surround-
ing cube C(ω) and the set of related cubes RC, which might contain points within the
maximum distance. For each cube C′ ∈ RC, map outputs a (cid1 � cid2 � flag, (p, flag))
pair with a composite key and the point itself as value. The first two components of the
key identify the two involved cubes using textual cube ids: cid1= min{C(ω).id,C′.id}
and cid2= max{C(ω).id,C′.id}. The flag indicates whether ω belongs to the first or to
the second cube. The repartitioning of the output key-value pairs is done by applying a
hash function on the first two key components. This assigns all points of C(ω) ∪ C′ to
the same reduce task. All key-value pairs are sorted by their complete keys. Finally, the
reduce function is invoked on all values whose first two key components are equal. In
reduce, the actual distance computation takes place. Due to the sorting, it is ensured that
all points of the cube with the smaller cube id are processed first allowing for an efficient
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(a) HR3 with Load Balancing for MR (b) CPM

Fig. 4. Overview of the MR-based HR3 implementation with load balancing (left) and the cube
population matrix for the example dataset with m = 2 (right)

comparison of points of different cubes. The pseudo-code of the HR3 implementation
is shown in Algorithms 1 and 2.

The described approach has two major drawbacks. First, a map task operates only on
a fraction of the input data without global knowledge about the overall data distribution.
Thus, each point is replicated and repartitioned |RC| times, independently of whether
there are points in the related cubes or not. Second, this approach is vulnerable to data
skew, i.e., due to the inherent quadratic time complexity varying cube sizes can lead
to severe load imbalances of the reduce tasks. Depending on the problem size and the
granularity of the space tiling, the scalability of the described approach might be limited
to a few nodes only. We provide an advanced approach that addresses these drawbacks
in the next section.

4.2 HR
3 with Load Balancing

The advanced approach borrows ideas from the load balancing approaches for Entity
Resolution presented in [12]. An overview is shown in 4(a). The overall idea is to sched-
ule a light-weight analysis MR job that linearly scans the input data in parallel and col-
lects global data statistics. The second MR job utilizes these statistics for a data-driven
redistribution of points ensuring evenly loaded reduce tasks.

Data Analysis Job. The first job calculates the cube index of each point in the map
phase and sums up the number of points per (non-empty) cube in reduce. The output is
a cube population matrix (CPM) of size c × m that specifies the number of points of c
cubes across m input partitions. For our running example, an analysis job with m = 2
map tasks would read data from two input partitions Π0 and Π1 (cf. table in Figure 1)
and produce the CPM shown in 4(b).

Distance Computation Job. The second MR job is based on the same number of map
tasks and the same partitioning of the input data. At initialization, each map task reads
the CPM. Similar to the basic approach, the reduce function processes pairs of related
cubes. Because the CPM allows for an easy identification of empty cubes, the number
of intermediate key-value pairs can be reduced significantly. As an example, for point

8



(a) (b)

Fig. 5. Match task creation and reduce task assignment with/without splitting of large tasks (left).
Example data flow for second MR job (right)

B of the running example, the map function of the basic approach would output 77 key-
value pairs. With the knowledge encoded in the CPM, this can be reduced to two pairs
only, i.e., for computing B’s distances to the points C and D, respectively.

Before processing the first input point, each map tasks constructs a list of so-called
match tasks. A match task is a triple (Ci,C j,w), where Ci,C j are two related cubes and
w = |Ci| · |C j| (w = |Ci| · (|Ci| − 1)/2 for i = j) is the corresponding workload. The
overall workload W is the sum of the workload of all match tasks. To determine each
match task’s target reduce task, the list is sorted in descending order of the workload.
In this order, match tasks are assigned to the r reduce tasks following a greedy heuris-
tic, i.e., the current match task is assigned to the reduce task with the currently lowest
overall workload. The resulting match tasks are shown on the top of 5(a). Obviously,
the reduce tasks are still unevenly loaded, because a major part of the overall work-
load is made up by the match task C4 − C4. To address this, for each large match task
M = (Ci,C j,w) with w > W/r, both cubes are split according to their input partitioning
into m subcubes. Consequently, M is split into a set of smaller subtasks, each compris-
ing a pair of split subcubes before the sorting and reduce task assignment takes place.
The bottom of 5(a) illustrates the splitting of the large match task (C4 − C4). Because
its workload w = 6 exceeds the average reduce task workload of 9/2 = 4.5, C4 is split
into two subcubes C4,0 (containing E, F) and C4,1 (containing G, H). This results in
three subtasks (C4,0,C4,0, 1), (C4,1,C4,1, 1), and (C4,0,C4,1, 4) that recompose the orig-
inal match task. Thus, both reduce tasks compute approximately the same number of
distances indicating a good load balancing for the example.

After the initial match task creation, map task i builds an index that maps a cube to a
set of corresponding match tasks. Thereby, only cubes of whom the input partition i ac-
tually contains points, need to be considered. For each input pointω and each match task
of the cube C(ω), the map function outputs a (red task �match task � flag, (ω, flag))
pair. Again, the flag indicates to which of the match task’s (possibly split) cubes ω
belongs to. The partitioning is only based on the reduce task index. The sorting is per-
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Fig. 6. Datasets used for evaluation

formed on the entire key, whereas the grouping is done by match task index. 5(b) il-
lustrates the dataflow for the running example. Note, that due to the enumeration of the
match tasks and the sorting behavior, it is ensured that the largest match tasks are pro-
cessed first. This makes it unlikely that larger delays occur at the end of the computation
when most nodes are already idle.

5 Evaluation

The aim of our evaluation was to discover break-even points for the use of parallel
processor, GPU and cloud implementations of LD algorithms. For this purpose, we
compared the runtimes of the implementations of HR3 presented in the previous sec-
tions on four data sets within two series of experiments. The goal of the first series
of experiment was to compare the performance of the approaches for link discovery
problems of common size. Thereafter, we carried out a scalability evaluation on a large
dataset to detect break-even points of the implementations. In the following, we present
the datasets we used as well as the results achieved by the different implementations.

5.1 Experimental Setup

We utilized the four datasets of different sizes shown in Figure 6. The small dataset DS1
contains place instances having three elevation features. The medium-sized datasets
DS2 and DS3 contain instances with geographic coordinates. For the scalability experi-
ment we used the large dataset DS3 and varied its size up to 6·106. Throughout all exper-
iments we considered the Euclidean distance. Given the spectrum of implementations at
hand, we ran our experiments on three different platforms. The CPU experiments (Java,
Java2, Java4, Java8 for 1, 2, 4 and 8 cores) were carried out on a 32-core server running
JDK 1.7 on Linux 10.04. The processors were 8 quad core AMD Opteron 6128 clocked
at 2.0 GHz. The GPU experiments (GPU) were performed on an average consumer
workstation. The GPU was a AMD Radeon 7870 GPU with 20 compute units, each of
which has the ability to schedule up to 64 parallel hardware threads. The host program
was executed on a Linux workstation running Ubuntu 12.10 and AMD APP SDK 2.8.
The machine had an Intel Core i7 3770 CPU and 8 GB of RAM. All C++ code was
compiled with gcc 4.7.2. Given that C++ and Java are optimized differently, we also
ran the Java code on this machine and computed a runtime ratio that allowed our results
to remain compatible. The MapReduce experiments (basic: MR, load balanced: MRl)

10



(a) DS1 (b) DS2

(c) DS3 (d) DS2–DS3

Fig. 7. Comparison of runtimes for Experiment 1

were performed with the Dedoop prototype [11] on Amazon EC2 in EU-west location.
For the first experiment we used 10 nodes of type c1.medium (2 virtual cores, 1.7 GB
memory). For the large data set we employed 20 nodes of type c1.xlarge (8 virtual cores,
7 GB memory).

5.2 Performance Comparison

The results of our performance comparison are shown in Figure 7. While the parallel
implementation ofHR3 on CPUs scales linearly for uniformly distributed data, the con-
siderable skew in the DS3 data led to the 8-core version being only 1.6 times faster than
the mono-core implementation with a threshold of 1◦. This impressively demonstrates
the need for load balancing in all parallel link discovery tasks on skewed data. This need
is further justified by the results achieved by MR and MRl on DS3. Here, MRl clearly
outperforms MR and is up to 2.7 times faster. Still, the most important result of this
series of experiments becomes evident after taking a look at the GPU and Java runtimes
on the workstation.

Most importantly, the massively parallel implementation outperforms all other im-
plementations significantly. Especially, the GPU implementation outperforms the MR
and MRl by one to two orders of magnitude. Even the Java8 implementation is outper-
formed by up to one order of magnitude. The performance boost of the GPU is partly
due to the different hardware used in the experiments. To measure the effect of the
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hardware, we ran the server Java program also on the workstation. A comparison of
the runtimes achieved during this rerun shows that the workstation is between 2.16 and
7.36 times faster than the server. Still, our results suggests that our massively parallel
implementation can make an effective use of the underlying architecture to outperform
all other implementations in the indexing phase. The added efficient implementation of
float operations for the distance computation in C++ leads to an overall superior per-
formance of the GPU. Here, the results can be regarded as conclusive with respect to
MR and MRl and clearly suggest the use of local parallelism when dealing with small
to average-sized link discovery problems.

The key observation that leads to conclusive results when comparing GPU and CPU
results is that the generation of the cube index required between 29.3% (DS1, θ = 50m)
and 74.5% (DS3, θ = 1◦) of the total runtime of the algorithm during the deduplication
tasks. Consequently, while running a parallel implementation on the CPU is advisable
for small datasets with small thresholds for which the index computation makes up
a small percentage of the total computation, running the approach on medium-sized
datasets or with larger thresholds should be carried out on the GPU. This conclusion
is yet only valid as long as the index fits into the memory of the GPU, which is in
most cases 4 to 8 times smaller than the main memory of workstations. Medium-sized
link discovery tasks that do not fit in the GPU memory should indeed be carried out
on the CPUs. Our experiments suggest a break-even point between CPU and GPU for
result set sizes around 108 pairs for 2-dimensional data. For higher-dimensional data
where the index computation is more expensive, the break-even point is reached even
for problems smaller than DS1.

5.3 Scalability: Data Size

The strengths of the cloud are revealed in the second series of experiments we per-
formed (see Figure 8). While the DFS and data transfer overhead dominates the total
runtime of the LD tasks on the small datasets, running the scalability experiments on 20
nodes reveals that for tasks which generate more than 12 billion pairs as output, MRl

outperforms our local Java implementation. Moreover, we ran further experiments with
more than 20 nodes on the 6 million data items. Due to its good scalability, the cloud im-
plementation achieves the runtime of the GPU or performs even better for more nodes,
e.g., for 30 (50) nodes MRl requires approx. 32min (23min). It is important to remem-
ber here that the GPU implementation runs the comparisons in the CPU(s). Thus, the
above suggested break-even point will clearly be reached for even smaller dataset sizes
with more complex similarity measures such as the Levenshtein distance or the trigram
similarity. Overall, our results hint towards the use of local massively parallel hardware
being sufficient for a large number of link discovery tasks that seemed to require cloud
infrastructures. Especially, numeric datasets can be easily processed locally as they re-
quire less memory than datasets in which strings play the central role. Still, for LD tasks
whose intermediate results go beyond 1010 pairs, the use of the cloud still remains the
most practicable solution. The clue for deciding which approach to use lies in having an
accurate approximation function for the size of the intermediate results.HR3 provides
such a function and can ensure that it can achieve an approximation below or equal to
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Fig. 8. Comparison of runtimes on DS4

any possible error margin. Providing such guarantees for other algorithms would thus
allow deciding effectively and conclusively when to reach for the cloud.

6 Related Work

Link discovery has become an important area of research over the last few years. Herein,
we present a brief overview of existing approaches.7 Overall, the two main problems
time complexity and generation of link specifications have been at the core of the re-
search on LD.

With regard to time complexity, time-efficient string comparison algorithms such
as PPJoin+ [26], EDJoin [25] that were developed for deduplication were integrated
into several link discovery frameworks such as LIMES [18]. Moreover, dedicated time-
efficient approaches were developed for LD. For example in [19], an approach based on
the Cauchy-Schwarz inequality is presented. The approaches HYPPO [16] andHR3 [17]
rely on space tiling in spaces with measures that can be split into independent mea-
sures across the dimensions of the problem at hand. Especially, HR3 was shown to
be the first approach that can achieve a relative reduction ratio r′ less or equal to any
given relative reduction ratio r > 1. Standard blocking approaches were implemented
in the first versions of SILK and later replaced with MultiBlock [9], a lossless multi-
dimensional blocking technique. KnoFuss [22] also implements blocking techniques
to achieve acceptable runtimes. Further LD frameworks have been participated in the
ontology alignment evaluation initiative [4].

With regard to the generation of link specifications, some unsupervised techniques
were newly developed (see, e.g., [22]), but most of the approaches developed so far

7 See [17,10] for more extensive presentations of the state of the art.
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abide by the paradigm of supervised machine learning. For example, the approach pre-
sented in [8] relies on large amounts of training data to detect accurate link specification
using genetic programming. RAVEN [20] is (to the best of our knowledge) the first ac-
tive learning technique for LD. The approach was implemented for linear or Boolean
classifiers and shown to require a small number of queries to achieve high accuracy.
Later, approaches combining active learning and genetic programming for LD were
developed [10,21].

The entity resolution (ER) problem (see [14,3] for surveys) shares many similar-
ities with link discovery. The MR programming model has been successfully applied
for both ER and LD. [23] proposes a MR implementation of the PPJoin+ algorithm
for large datasets. A first application for MR-based duplicate detection was presented
in [24]. In addition, [7] as well as Silk MapReduce8 implement MR approaches for
LD. Several MR implementations for blocking-based ER approaches have been inves-
tigated so far. An MR implementation of the popular sorted neighborhood strategy is
presented in [13]. Load balancing for clustering-based similarity computation with MR
was considered in [12]. The ER framework Dedoop [11] allows to specify advanced ER
strategies that are transformed to executable MR workflows and submitted to Hadoop
clusters.

Load balancing and skew handling are well-known problems for parallel data pro-
cessing but have only recently gained attention for MapReduce. SkewTune [15] is a
generic load balancing approach that is invoked for a MapReduce job as soon as the
first map (reduce) process becomes idle and no more map (reduce) tasks are pending.
Then, the remaining keys (keygroups) of running tasks are tried to redistribute so that
the capacity of the idle nodes is utilized. The approach in [5] is similar to our previous
load balancing work [12] as it also relies on cardinality estimates determined during the
map phase of the computation.

7 Conclusion and Future Work

In this paper, we presented a comparison of the runtimes of various implementations of
the same link discovery approach on different types of parallel hardware. In particular,
we compare parallel CPU, GPU and MR implementations of the HR3 algorithm. Our
results show that the CPU implementation is most viable for two-dimensional problems
whose result set size is in the order of 108. For higher-dimensional problems, massively
parallel hardware preforms best even for problem with results set sizes in the order of
106. Cloud implementations become particularly viable as soon as the result set sizes
reach the order of 1010. Our results demonstrate that efficient resource management
for link discovery demands the development of accurate approaches for determining
the size of the intermediate results of link discovery frameworks. HR3 provides such
a function. Thus, in future work, we will aim at developing such approximations for
string-based algorithms. Moreover, we will apply the results presented herein to develop
link discovery approaches that can make flexible use of the hardware landscape in which
they are embedded.

8 https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce

14

https://www.assembla.com/spaces/silk/wiki/Silk_MapReduce


References
1. Auer, S., Lehmann, J., Ngonga Ngomo, A.C.: Introduction to Linked Data and Its Lifecycle

on the Web. In: Reasoning Web. pp. 1–75 (2011)
2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Com-

mun. ACM 51(1), 107–113 (2008)
3. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey.

IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
4. Euzenat, J., Ferrara, A., van Hage, W.R., et al.: Results of the Ontology Alignment Evaluation

Initiative 2011. In: OM (2011)
5. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load Balancing in MapReduce Based on

Scalable Cardinality Estimates. In: ICDE. pp. 522–533 (2012)
6. Heino, N., Pan, J.Z.: RDFS Reasoning on Massively Parallel Hardware. In: ISWC. pp. 133–

148 (2012)
7. Hillner, S., Ngonga Ngomo, A.C.: Parallelizing LIMES for large-scale link discovery. In:

I-SEMANTICS. pp. 9–16 (2011)
8. Isele, R., Bizer, C.: Learning Linkage Rules using Genetic Programming. In: OM (2011)
9. Isele, R., Jentzsch, A., Bizer, C.: Efficient Multidimensional Blocking for Link Discovery

without losing Recall. In: WebDB (2011)
10. Isele, R., Jentzsch, A., Bizer, C.: Active Learning of Expressive Linkage Rules for the Web

of Data. In: ICWE. pp. 411–418 (2012)
11. Kolb, L., Thor, A., Rahm, E.: Dedoop: Efficient Deduplication with Hadoop. PVLDB 5(12),

1878–1881 (2012)
12. Kolb, L., Thor, A., Rahm, E.: Load Balancing for MapReduce-based Entity Resolution. In:

ICDE. pp. 618–629 (2012)
13. Kolb, L., Thor, A., Rahm, E.: Multi-pass Sorted Neighborhood blocking with MapReduce.

Computer Science - R&D 27(1), 45–63 (2012)
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