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Abstract. For the effective alignment of ontologies, the computation of equiva-
lence relations between elements of ontologies is not enough: Subsumption re-
lations play a crucial role as well. In this paper we propose the "Classification-
Based Learning of Subsumption Relations for the Alignment of Ontologies" 
(CSR) method. Given a pair of concepts from two ontologies, the objective of 
CSR is to identify patterns of concepts' features that provide evidence for the 
subsumption relation among them. This is achieved by means of a classification 
task, using state of the art supervised machine learning methods. The paper de-
scribes thoroughly the method, provides experimental results over an extended 
version of benchmarking series and discusses the potential of the method. 
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1 Introduction 

In spite of the fact that ontologies provide a formal and unambiguous representation 
of domain conceptualizations, it is rather expectable to deal with different ontologies 
describing the same domain of knowledge, introducing heterogeneity to the conceptu-
alization of the domain and difficulties in integrating information. 

Although many efforts [1] aim to the automatic discovery of equivalence relations 
between the elements of ontologies, in this paper we conjecture that this is not 
enough: To deal effectively with the ontologies’ alignment problem, we have to deal 
with the discovery of subsumption relations among ontology elements. This is par-
ticularly true, when we deal with ontologies whose conceptualizations are at different 
“granularity levels”: In these cases, the elements (concepts and/or properties) of an 
ontology are more generic than the corresponding elements of another ontology. Al-
though subsumption relations between the elements of two ontologies may be de-
duced by exploiting equivalence relations between other elements (e.g., a concept C1 
is subsumed by all subsumers of C2, if C1 is equivalent with a concept C2), in the ex-
treme cases where no equivalence relations exist, this can not be done. In any case, 
we conjecture that the discovery of subsumption relations between elements of differ-
ent ontologies can enhance the discovery/filtering of equivalence relations, and vise-
versa, augmenting the effectiveness of our ontology alignment and merging methods. 



This is of great importance when dealing with real-world ontologies, where, as it is 
also stated in the conclusions of the Consensus Track of OAEI 06 [2], current state of 
the art systems “confuse” subsumption relations with equivalence ones. 

To make the above claims more concrete, let us consider the ontologies depicted in 
Fig. 1. These specify the concept Citation in O1 (which is equivalent to the concept 
Reference in O2), and Publication in O2 (which is equivalent to the concept Work 
in O1). Each of these ontologies elaborates on the specification of distinct concepts: O2 
elaborates on the concept Publication and O1 on the concept Citation. Further-
more, as shown in Fig.1, concepts are related among themselves via object properties 
whose lexicalizations differ: For instance, in O2, the concept Reference is related via 
the object property of with the concept Publication, while in O1, the corresponding 
concept Citation is related via the object property to with the concept Work. Given 
these ontologies, and given that equivalent properties in the two ontologies do not 
have the same lexicalization, and that non-equivalent concepts do have the same lexi-
calization, we may distinguish two cases: 

 

 

Fig. 1. Example ontologies for assessing the subsumption relation between concepts. 

 
In case that the equivalencies between the concepts of the two ontologies are not 

known, conclusions concerning subsumption relations between the concepts of the 
two ontologies cannot be drawn by a reasoning mechanism: This case clearly shows 
the need to discover both equivalence and subsumption relations between the con-
cepts of the source ontologies. 

In case the equivalences between the concepts of these two ontologies are known 
(the automatic discovery of these equivalencies is not a trivial task), one may deduce 
subsumption relations between the subsumees of these concepts. Specifically, a rea-
soning engine shall deduce that concepts that share the same lexicalization and the 
same properties are equivalent, which is wrong in our case: For instance, given that 
the properties of the concept Book of O1 are pair wise equivalent to the properties of 
the concept Book of O2, a reasoning service may wrongly assess that the concept 
Book of O1 is equivalent to the concept Book of O2: However Book from O1 specifies 
book citations, while Book from O2 specifies book publications. Therefore, it seems 
that although the discovery of subsumption relations among the elements of distinct 
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ontologies must be done with respect to the known equivalence relations, a reasoning 
mechanism does not suffice for this purpose. 

What is clearly needed is a method that shall discover subsumption relations be-
tween concept pairs of two distinct ontologies, separately from subsumptions and 
equivalencies that can be deduced by a reasoning mechanism. For instance, the con-
cept Book of O1 (respectively, O2) must be assessed to be subsumed by the concept 
Reference (respectively, Work) of O2 (respectively, O1), without assessing that it is 
equivalent to the concept Book of this ontology, even if their properties and labels are 
identical. By admitting the later wrong mapping, numerous wrong subsumption rela-
tions can be deduced, e.g., that Book in O1 is subsumed by the Publication in O2 
(Book specifies book citations, while Publication the publications themselves). 

This paper deals with discovering subsumption relations between concepts of two 
distinct ontologies. This is done by using the "Classification-Based Learning of Sub-
sumption Relations for the Alignment of Ontologies" (CSR) method. CSR computes 
subsumption relations between concept pairs of two distinct ontologies by means of a 
classification task, using state of the art supervised machine learning methods. The 
classification mechanisms proposed exploit two types of concepts’ features: Concept 
properties, and terms extracted from labels, comments, properties and instances of 
concepts. Specifically, given a pair of concepts from the two source ontologies, the 
classification method “locates” a hypothesis concerning concepts’ relation, which best 
fits to the training examples [3], generalizing beyond them. Concept pairs are repre-
sented as feature vectors of length equal to the number of the distinct features of 
source and target ontologies: In case features correspond to concept properties, prop-
erties that are equivalent (i.e., properties with equivalent meaning) correspond to the 
same vector component. In case features are terms, then terms with the same surface 
appearance correspond to the same vector component. It must be pointed that the ex-
amples for the training of the classifiers are being generated by exploiting the known 
subsumption and equivalence relations in both source ontologies, considering each 
source ontology in isolation. 

The machine learning approach has been chosen since (a) there are no evident ge-
neric rules directly capturing the existence of a subsumption relation between ontol-
ogy elements, and (b) concept pairs of the same ontology provide examples for the 
subsumption relation, making the method self-adapting to idiosyncrasies of specific 
domains, and non-dependant to external resources. The conjecture is that, if the su-
pervised learning method generalizes successfully from the training examples, then 
the learned model shall capture the “patterns”, in terms of the chosen features (i.e., 
properties or terms), for the discovery of subsumption relations that can not be de-
duced by a reasoning mechanism. 

The rest of the paper is structured as follows: Section 2 states the problem and pre-
sents works that are most closely related to our approach. Section 3 provides back-
ground knowledge concerning the learning and classification methods used. Section 4 
presents the proposed classification-based method for subsumption discovery. Section 
5 presents and thoroughly discusses the experimental settings, as well as the results. 
Section 6 concludes the paper by pointing out the key points of our method and 
sketching further work for the improvement of the method. 



2 Problem Statement and Related Work 

2.1 Problem Statement 

An ontology is a pair O=(S, A), where S is the ontological signature describing the 
vocabulary (i.e., the terms that lexicalize ontology elements) and A is a set of onto-
logical axioms, restricting the intended meaning of the terms included in the signa-
ture. In other words, A includes the formal definitions of ontology elements that are 
lexicalized by natural language terms in S. Subsumption relations are ontological axi-
oms included in A. Distinguishing between concepts and properties, we consider a 
partition of S comprising the sets Sp and Sc, denoting the sets of terms lexicalizing on-
tology properties and ontology concepts, respectively. Let also T be the set of distinct 
terms that are in S, or that are extracted from labels, comments or instances of ontol-
ogy elements. 

Ontology mapping from a source ontology O1=(S1,A1) to a target ontology 
O2=(S2,A2) is a morphism f:S1 S2 of ontological signatures specifying elements’ 
equivalences, such that A2⊨f(A1), i.e., all interpretations that satisfy O2’s axioms also 
satisfy O1’s translated axioms. However, considering different types of relations be-
tween ontology elements, the ontology mapping problem can be stated as follows: 
Classify any pair (C1,C2) of elements of the input ontologies, such that Ci is a term in 
Si, i=1,2, to any of the following relations, consistently: equivalence (≡), subsumption 
(inclusion) (⊑), mismatch (⊥) and overlapping (⊓). By doing this, ontologies O1 and 
O2 can be aligned, resulting to a new consistent and coherent ontology. 

In this paper we deal with the subsumption computation problem which, given the 
above generic problem, is as follows: Given (a) a source ontology O1=(S1,A1) and a 
target ontology O2=(S2,A2) such that S1=S1c∪S1p and S2=S2c∪S2p, (b) the set T1∪T2 of 
distinct terms that appear in both ontologies (considering terms with the same surface 
appearance to be “equivalent” in meaning), and optionally (c) a morphism f:S1p S2p 
from the lexicalizations of the properties of the source ontology to the lexicalizations 
of the properties of the target ontology (specifying properties’ equivalences), classify 
each pair (C1,C2) of concepts, where C1 is a term in S1c and C2 is a term in S2c, to two 
distinct classes: To the “subsumption” (⊑) class, or to the class “R”. The latter class 
denotes pairs of concepts that are not known to be related via the subsumption1 rela-
tion, or that are known to be related via the equivalence, mismatch or overlapping 
ones. 

2.2 Related Work 

Due to the evolving nature of ontologies, to the large number of elements that they 
comprise, and to the importance of the ontology alignment task, there are many re-
search efforts towards automating this task. The majority of these methods focus on 
discovering equivalence relations between ontology elements [1] (e.g., concepts and 
properties). As a result, there has been a dramatic increase in the efficacy and effi-

                                                           
1 This means that a pair of concepts belonging to “R” may belong to the subsumption relation. 



ciency of the methods that locate equivalences among ontology elements, while sub-
sumption relations have not been thoroughly studied. 

Concerning the computation of subsumption relations, related works have strong 
dependence on external resources, such as WordNet, domain ontologies or text cor-
pora. A limitation that does not apply in the method proposed in this paper. 

The method proposed in [4] transforms the mapping problem into a satisfiability 
problem, by taking into account the hierarchical relations between WordNet senses, 
along with the lexical and structural knowledge of the input ontologies. 

Another related approach [5] introduces the WordNet Description Logics (WDL) 
language so as to align two different ontologies. WordNet is treated as an intermedi-
ate ontology. Similarly, in [6], [7] the authors propose the exploitation of background 
knowledge in the form of domain ontologies. 

The authors in [8] loosen the formal constraints of the subsumption relation by ex-
ploiting hits returned by Google. Two more Google-based approaches [9], [10] ex-
ploit the so called Hearst patterns and test their validity by exploiting the returned 
hits. 

Most machine learning based approaches aim to the discovery of equivalence rela-
tions between ontology elements and do not deal with subsumption relations as we do 
in this work. To the best of our knowledge, the most relevant machine learning tech-
nique is presented in [11]. Specifically, the authors propose a method based on Impli-
cation Intensity theory, which is a probabilistic model of deviation from statistical in-
dependence. The method takes as input a hierarchy of concepts and a set of 
documents, each one indexed under a specific concept. Then, the proposed model is 
applied in order to locate strong derivations between sets of terms that appear in the 
documents and as a consequence between their indexed concepts. 

In this paper we consider the subsumption computation problem as a binary classi-
fication problem, where a classifier has to assess whether a pair of concepts belongs 
to the subsumption relation. As it will be explained, the semantics of the input ontolo-
gies are exploited in order the method to generate the appropriate examples for the 
training of the classifier. This makes the proposed method dependent only from the 
source ontologies and independent from any third/external domain resource. 

3 Classification and Inductive Learning 

Classification is one of the main problems addressed within the machine learning dis-
cipline. It concerns the classification of example cases into one of a discrete set of 
classes. When the number of classes is restricted to two, the problem is referred to as 
a binary classification problem. More accurately, the binary classification problem is 
defined as follows: Given a set of m examples (xj, yj), j=1, 2, … , m (the training data-
set) of vectors xj sampled from some distribution D, the output is a function 
c:Rn→{0,1} (classifier) which classifies additional samples xk sampled from the same 
distribution D to the classification classes {0,1}. It holds that xj∈Rn and yj∈{0,1}. The 
i-th component of vector xj is termed the feature i, Xi

j of the xj sample. 
In the context of studying the subsumption computation problem, we have used 

specific implementations of well studied classifiers: (a) Probabilistic classifiers spec-



ify the function c as a probabilistic function, assessing the probability p(xj ,yj) that the 
document xj falls within a category yj. From this category we have selected a Naïve 
Bayes (Nb) classifier. (b) Memory-based classifiers store the training data in memory 
and when a new instance is encountered, similar instances are retrieved from their 
memory and used for the instance classification. We used the k-nearest neighbor 
(Knn) with value of k=2. (c) Support Vector Machines (SVMs) based classifiers map 
input vectors to a higher dimensional space where a maximal separating hyperplane is 
constructed. The transformation of the data to the new space is made through func-
tions called kernels. We have selected the libSVM [12] implementation with its de-
fault values and radial basis function as kernel. (d) Decision Tree classifiers exploit a 
tree structure in which each interior node corresponds to a feature. The branch from a 
node to a child represents a possible value of that feature, and a leaf node represents 
the classification class given the values of the features represented by the path from 
the root. Weka’s j48 [3] is the implementation of the widely used state of the art C4.5 
decision tree learning algorithm that we have used in this work. 

4 The CSR Method 

4.1 Description of the overall CSR method 

The discrete steps of the CSR method, as depicted in Fig. 2, are the following: 

 

 

Fig. 2. Overview of the CSR method. 

 
− Reasoning services are being used for inferring all facts according to ontologies’ 

specification semantics: The objective of this step is to compute implied subsump-
tion and equivalence relations between existing ontology elements. This is a neces-
sary step as it affects the generation of the training dataset (subsection 4.3). 

− Currently CSR exploits two types of features: Concepts’ properties and terms ap-
pearing in the “vicinity” of concepts. In both cases features are generated by gath-
ering all discrete properties or terms from both ontologies. This is further detailed 
in the next subsection.  

− The sets of training examples are being generated according to the rules defined in 
subsection 4.3. The balancing of the training dataset is an important issue that is 
being tackled in this step, as well. 

− The classifier is being trained using the training dataset, and 
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− Concept pairs are being classified by the trained classifier, pruning the search 
space according to the method explained in subsection 4.4. 
 
Studying the importance of concepts’ properties to assessing the subsumption rela-

tion between concepts (a) appeals to our intuition concerning the importance of prop-
erties as distinguishing characteristics of concepts, (b) it provides the basis for a 
method considering only properties’ equivalences. This basic method can be further 
enhanced with the computation of equivalences between other concepts’ distinguish-
ing features (e.g., concepts in a given vicinity), and can be further combined with 
other alignment methods. As far as the use of terms is concerned, (a) their use for de-
scribing the intended meaning of concepts appeals to our intuition, and (b) it does not 
necessitate the use of any method for the discovery of equivalence relations among 
ontology elements. This paper studies the potential of CSR with these two types of 
features, while leaving further enhancements and combinations for future work. 

4.2 Features Generation 

Each pair of concepts (C1,C2) is represented by a feature vector whose components’ 
values are as follows: 

 
− “0”, if the corresponding feature does not appear neither in C1 nor in C2. 
− “1”, if the corresponding feature appears only in C1. 
− “2”, if the corresponding feature appears only in C2. 
− “3”, if the corresponding feature appears in both C1 and C2. 

 
As it can be noticed, feature vectors are not identical for symmetrical pairs of con-

cepts. This allows the computation of the direction of the subsumption relation. In the 
case where properties are being used as features of concept pairs, given the equiva-
lences among ontology properties computed by a morphism f, equivalent properties 
correspond to the same component of concepts’ feature vectors. To compute proper-
ties’ equivalences, we have used the SEMA [13] mapping tool which has been evalu-
ated in the OAEI 2007 contest [14]. Towards discovering mappings between proper-
ties SEMA exploits: (a) Lexical information concerning names, labels and comments 
of ontologies’ properties. (b) Properties’ domain, range and hierarchy for propagating 
similarities among properties. Therefore, we emphasize that by “property appearance” 
we do not mean the occurrence of the property’s lexicalization, but the occurrence of 
property’s meaning assessed by SEMA. 

In the case where terms are being used for the representation of concepts’ pairs, 
terms are being extracted from both ontologies. Each distinct term corresponds to a 
specific component of the feature vector and the length of the vector is equal to the to-
tal number of all distinct terms from both input ontologies. Specifically, for each con-
cept of the input ontologies, terms are being extracted from its “vicinity”, as it is 
specified by the following rule: Given a concept, the method extracts terms occurring 
in the local name, label and comments of this concept, from all of its properties (ex-
ploiting the properties’ local names, labels and comments), as well as from all of its 



related concepts. Finally, terms from all instances of the corresponding concept are 
being extracted. 

By exploiting the equivalence and disjoint relations between ontology elements, 
the conjunction and disjunction constructors, the appearance of a term in an element 
is determined by the following rules: (i) Given an ontology element, the method con-
siders terms appearing in all its equivalent elements. (ii) If the corresponding element 
is defined as the disjunction (conjunction) of other elements, then the method unions 
(respectively, intersects) the sets of terms that appear in the constituent elements. (iii) 
If two elements are defined to be disjoint, then the method considers these terms that 
are not common in both elements.  

During this step, tokenization, stemming and elimination of stop words is per-
formed on the set of extracted words. 

For example, according to the above, given the ontologies in Fig. 1 and the proper-
ties’ equivalences of≡to, from≡in, pages≡noOfPages, numberOfPa-
pers≡noOfPapers provided by SEMA, the concept pair (Cita-
tion,Publication) is represented by the feature vector (0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 
1). The features are date, of≡to, from≡in, pages≡noOfPages, publishing-
House, numberOfPapers≡noOfPapers, title, contributors, chapters, con-
ferenceName, journalName and fromAuthors according to the order of their ap-
pearance. Concerning case where features are terms, the feature vector is (.., 1, 3, 1, 1, 
1, 1, 3, 1, 1, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,..). The features in order of appearance are 
citation, from, authors, article, to, in, date, work, no, of, pages, pub-
lishing, house, book, title, contributors, publication, proceedings, 
number, and reference. All the vector components that are not shown correspond 
to terms that do not appear in the vicinity of any of the two concepts, so their value is 
set to 0. 

4.3 Creating the Training Dataset 

As it has been stated, training examples for classes “⊑” and R are being generated by 
exploiting the source and target ontologies, according to the semantics of specifica-
tions. The basic rules for the generation of the training examples for the class “⊑” are 
as follows:  

Subsumption Relation. Include all concept pairs from both input ontologies that be-
long in the subsumption relation. The subsumption relation may or may not be direct. 
If more than one hierarchy is specified, then all hierarchies need to be exploited. 

Equivalent concepts. Enrich the set of concept pairs generated by the above rule, 
by taking into account stated and inferred equivalence relations between concepts. In 
detail, for each concept pair (C1,C2) that belongs in the subsumption relation, and for 
each stated equivalence relation Ci≡Cik, i∈{1,2}, k=1,2,…, then the pair (C1,C2k) (or 
the pair (C1k,C2)) belongs to the subsumption relation, as well. 

Union of concepts. Enrich the set of pairs by exploiting the union construct in the 
definition of concepts: When one concept (e.g., the concept C4⊔C5) is constructed as 
the union of others, and it is defined to be subsumed by another concept (e.g., by the 
concept C2), then each concept in the union is subsumed by the more general one (i.e., 



it holds that C4⊑C2 and C5⊑C2). By taking into account also the equivalence rule (e.g., 
C4≡C3), the concept C4 can be substituted by its equivalent concept, and therefore, the 
pair (C3,C2) is included as well. 

According to the open world semantics, we need to exploit the stated axioms for 
the generation of training examples: Therefore, in case there is not an axiom that 
specifies the subsumption relation between a pair of concepts (or in case this relation 
can not be inferred by exploiting the semantics of specifications), then this pair does 
not belong to the subsumption class and it is included in the generic class “R”. The 
following cases summarize the rules for the generation of examples for the class “R”: 

Concepts belonging to different hierarchies. If two concepts belong to different hi-
erarchies of the same ontology, then no explicit subsumption relation is defined 
among them. As a result, all pairs following this rule are characterized as training ex-
amples of the class “R”. This set of pairs can be enriched by taking into account the 
stated equivalence and union relations between concepts, as explained in the case of 
class “⊑”. 

Siblings at the same hierarchy level. This includes pairs of concepts that are sib-
lings (share the same subsumer) and that are not related via the subsumption relation. 
As a result, all possible pairs following this rule are characterized as training exam-
ples of the class “R”. Similarly to the first category, this category can also be enriched 
by exploiting concepts’ equivalences and unions. 

Siblings at different hierarchy levels. If any concept that is in a pair belonging in 
the ”siblings of the same hierarchy level” category is substituted by any of its sub-
sumees, then new pair examples are recursively generated, until the leaf concepts of 
the ontology are reached. These examples constitute a new category called ”siblings 
at different hierarchy levels”. Similarly with the previous categories, this one also can 
be enriched by exploiting the union construct of concepts and the equivalence relation 
between concepts. 

Concepts related thought a non-subsumption relation. This includes concepts that 
are related via an object property and are not related with a subsumption relation. As 
with the previous categories, this category may also be enriched by considering un-
ions and equivalences between concepts. 

Inverse pairs of class “⊑”. All concepts pairs (C2,C1) such that C1 subsumes C2, but 
it cannot be inferred that C2 subsumes C1, constitute examples for the class “R”. 

As it is evidenced by the above, the number of training examples for the class “⊑” 
are much less than the ones for class “R”. It is very important for the performance of 
the classifier that the training examples for both classes to be balanced in numbers.  

Being balanced in numbers, we intend that the two classes are equally represented 
in the training dataset. This is referred as the dataset imbalance problem. In the con-
text of the classification task, various techniques have been proposed towards its solu-
tion [15]. In this work, to tackle this problem, we have adopted two alternatives: The 
under-sampling and the over-sampling methods. 

According to the under-sampling method, all different categories of class “R” are 
equally sampled (randomly), until the selected examples are equal in numbers with 
the ones of class “⊑”. In the case of over-sampling, the method selects examples for 
the class “⊑” randomly, until the two classes have the same number of examples. 



4.4 Pruning the Search Space 

Taking into account the semantics of the subsumption relation, instead of generating 
all possible concept pairs from both ontologies, we prune the search space by exclud-
ing pairs of concepts for which a subsumption relation can not be assessed to hold, 
due to the existent and currently computed relations. First we provide two short defi-
nitions: A root concept is every concept of the ontology that does not have a sub-
sumer. Root concepts may not have sub-concepts, hence are called unit concepts. We 
consider that an ontology may include more than one subsumption hierarchies for 
concepts. 

In order to prune the search space, the proposed algorithm firstly checks all the 
concepts from the first ontology and unit/root concepts of the second ontology. If a 
pair is not classified in the class “⊑”, then the hierarchy rooted by the corresponding 
concept of the second ontology is not being examined by the classifier. If a pair is as-
sessed to belong to the class “⊑”, then the concept of the first ontology is recursively 
being tested with the direct subsumees of the corresponding concept in the second on-
tology, until either a pair is assessed to belong in the class “R”, or until the leaf con-
cepts are reached. 

5 Experimental Results and Discussion 

5.1 The Dataset 

The testing dataset has been derived from the benchmarking series of the OAEI 2006 
contest [14]. As our method exploits the properties of concepts (in cases where prop-
erties are used as concept pairs’ features), we do not include those OAEI 2006 on-
tologies where concepts have no properties. The compiled corpus is available at the 
URL http://www.icsd.aegean.gr/incosys/csr. For each pair of ontologies we have cre-
ated the gold standard ontology, including subsumption relations among concepts. 

All benchmarks (101-304) except those in categories R1-R4 (real-world cases), de-
fine the second ontology of each pair as an alteration of the same first. The bench-
marks can be categorized based on their common features as follows: (a) in categories 
A1-A5 (101-210, 237, 238 and 249), elements’ lexicalizations of the target ontologies 
are altered in various ways (e.g., uppercasing, underscore, foreign language, syno-
nyms or random strings), (b) in categories A6-A7 (225 and 230) restrictions are re-
moved and/or properties are modeled in more detail and/or the hierarchy is flattened, 
(c) in categories F1-F2 (222, 237, 251 and 258) the hierarchies are flattened and in F2 
also random lexicalizations of all elements are introduced, and (d) categories E1-E2 
(223, 238, 252 and 259) result from F1-F2 with expanded hierarchies. 

5.2 Experiments and Results 

Results show the precision and recall of the proposed method as it is applied in the 
different types of ontology pairs specified in subsection 5.1. Precision is the ratio 



#correct_pairs_computed/#pairs_computed and recall is the ratio                          
#correct_pairs_computed/#pairs_in_gold_standard. 

We have run experiments for the benchmark series specified using each of the 
classifiers: C4.5, Knn, NaiveBayes (Nb) and Svm. For each of the classifies we have 
run four experiments using terms or properties as features of concept pairs, in combi-
nation with the dataset balancing method: over and under-sampling. Subsequently, we 
denote each type of experiment with X+Y+Z, where X is the classifier, Y is the type 
of features used (“Props” for properties or “Terms” for terms) and Z is the type of da-
taset balancing method used (“over” and “under” for over- and under-sampling). For 
instance, the experiment type “C4.5+Props+Over” indicates the use of the C4.5 classi-
fier in CSR, exploiting properties as features, with over-sampling for balancing the 
training dataset. 

Furthermore, the results of our method are compared to the results of a baseline 
classifier, which is based on the Boolean Existential Model. This classifier does not 
perform any kind of generalization: In order to classify a testing concept pair, it con-
sults the vectors of the training examples of the class “⊑”, and selects the first exact 
match. The comparison with this classifier has been performed for showing how CSR 
classifiers generalize over the training examples, learning subsumption cases not pre-
sent in the training examples. Here we have to point out that both CSR and the base-
line classifier exploit the same information. As terms or properties are being used as 
features, two different types of experiments have been conducted using the baselines 
classifier: The one with properties (Baseline+Props) and the other with terms (Base-
line+Terms). 

To investigate whether, given a set of equivalence relations, a reasoning mecha-
nism suffices for the purpose of computing subsumption relations among the elements 
of distinct ontologies we also compare CSR with a Description Logics’ reasoning en-
gine2. In order for the reasoner to be able to infer subsumption relations between con-
cepts of the source ontologies we specify axioms concerning only properties’ equiva-
lencies (Reasoner+Props), or alternatively, both properties’ and concepts’ 
equivalencies (Reasoner+Props+Con). At this point we must recall that when CSR 
exploits terms, then no equivalence mappings are required. 

Fig. 3 and Fig. 4 depict the average precision and recall values in all types of ex-
periments. The first important observation by looking at Fig. 3 and Fig. 4 is (as it was 
expected) that a reasoner cannot infer all the subsumption relations between concepts 
of the input ontologies. Especially, for the Reasoner+Props+Con type of experiments, 
the reasoner infers many false positives (precision: 41%). On the other hand, when 
only property mappings are exploited (Reasoner+Props) the reasoner achieves a low 
recall value (58%). Even in the case where the precision and recall of the equivalence 
mappings produced by SEMA are 100% (A1 category, Fig. 7 and Fig. 8) and the two 
ontologies are almost the same (only some minor axioms are suppressed in the second 
ontology), the reasoner achieves precision 82% and 71% depending of the type of 
equivalencies considered (Fig. 5). The same applies in Fig. 6 for the A1 ontologies. 
These results provide firm evidence that a reasoning mechanism does not suffice for 
the purpose of computing subsumption relations among the elements of distinct on-
tologies, even if equivalence relations are computed with high precision. 

                                                           
2 We have used Pellet in our experiments (http://pellet.owldl.com). 



This conjecture is further evidenced by the results achieved in the real world cases 
(R1 to R4) shown in Fig. 5 and Fig. 6. Indeed, the reasoner, in both types of experi-
ments in R3 and R4 achieves low precision in a moderate recall. Especially, the case 
R4 is quite interesting, as the precision and recall of SEMA is quite high (Fig. 7 and 
Fig. 8). The same applies in cases F1 and A7: In F1 the precision and recall of SEMA 
is almost 100% (Fig. 7 and Fig. 8). In this case the reasoner exploiting both properties 
and concepts equivalences (Reasoner+Props+Con) achieves precision 13%, and recall 
85%; the reasoner exploiting properties equivalences (Reasoner+Props) achieves pre-
cision 62% and recall 85%. 
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Fig. 3. Overall precision per experiment. 
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Fig. 4. Overall recall per experiment. 
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Fig. 5. Precision in all test categories. 
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Fig. 6. Recall in all test categories. 
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Fig. 7. SEMA’s overall performance. 
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Fig. 8. SEMA for properties. 

 
Furthermore, as Fig. 4 shows, nearly all types of experiments (with the exception 

of the SVM) contacted with the CSR method achieve a better recall than the baseline 
classifiers (Baseline+Props and Baseline+Terms). This means that classifiers do gen-
eralize, as they manage to locate subsumptions that are not in their training dataset. 
Moreover, for each of the classifiers there is a type of experiment in which CSR per-



forms better than the baseline classifier in terms of precision (with the exception of 
the SVM). A fact which is very important, since it shows that in these cases over-
generalization does not take place. 

As Fig. 3 shows, the C4.5 classifier exploiting terms with over-sampling 
(C4.5+Terms+Over) outperforms all classifiers in terms of precision. Also, as shown 
in Fig. 4, the same classifier achieves one of the highest recalls: Therefore, subse-
quently we shall focus on these type of experiments with C4.5. 

The fact that C4.5+Terms+Over has the best overall performance in terms of preci-
sion and recall among all classifiers can be explained by the specific features of deci-
sion tree classifiers: (i) Disjunctive descriptions of cases, an inherent feature of deci-
sion trees, fits naturally to the subsumption computation problem. This is true since 
more than one features may indicate whether a specific concept pair belongs in the 
class “⊑”. (ii) Decision trees are very tolerant to errors in the training set [3]. This is 
true as far as the training examples, as well as the values of vector components for the 
representation of examples are concerned. In our case, the values of vector compo-
nents may not be correct as the task for the discovery of equivalencies among proper-
ties is erroneous. 

If we compare the results achieved by the best CSR classifier that exploits terms as 
features (C4.5+Terms+Over) to the results achieved by the reasoner that exploits the 
least possible input (i.e., reasoner with properties’ equivalencies), as shown in Fig.3 
and Fig.4, CSR performs better in terms of recall and precision. Indeed, in this case 
C4.5 achieves the best balance between precision (80%) and recall (78%), than any 
other method in the experiments, although it does not exploit equivalence mappings. 

By observing Fig. 5 and Fig. 6 we see that in cases where the source ontologies dif-
fer substantially (e.g., cases A7, R1-R4) CSR with C4.5 exploiting terms and over-
sampling (C4.5+Terms+Over) not only has the higher precision, but also is among the 
highest in terms of recall. In any case CSR achieves a good balance between recall 
and precision. Also, C4.5+Terms+Over performs better than the baseline classifier, 
generalizing beyond the training examples. Furthermore, in these cases it performs 
better than the reasoner, which means that it locates subsumptions that cannot be in-
ferred by using the equivalence relations produced by SEMA (results in category A7 
in Fig. 5 and Fig. 6 are very depictive). 

Here we have to comment about categories E1, E2, F1, and F2: Although the con-
ceptualizations of the target ontologies differ from the source, there is a special detail 
that highly favors the reasoner: In F1 and E1 the concepts’ hierarchy is flattened or 
expanded, respectively, but the initial concepts (along with their properties and re-
strictions) defined in the first ontology remain almost unchanged in the second ontol-
ogy. This means that the reasoner can relatively easily infer subsumptions through the 
equivalence relations returned by SEMA, in conjunction with the subsumption rela-
tions defined in each ontology hierarchy. Furthermore, the newly introduced concepts 
in E1 and E2 have no defined properties at all, a fact that lowers the discriminating 
ability of CSR when it uses properties as features. The same applies to categories F2 
and E2, but now the lexical information is suppressed in the second ontology. 

In Fig. 9 we present the number of relations computed, which, contrary to what 
CSR assesses, are equivalence rather than subsumption relations. As it is shown, C4.5 
which is the best performing classifier has an average of one or less in all types of ex-



periments. This is a really important feature of CSR, as it can perform a “filtering” in 
the results of any mapping system that locates equivalence relations [2]. 
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Fig. 9. Confused Equivalencies of CSR. 
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Fig. 10. ROC areas under line values. 

 
To further assess the quality of the classifier with the best overall results, we per-

formed ROC analysis (Fig. 10). In our case, ROC analysis indicates the “goodness” of 
the classifier in classifying testing examples in the distinct classes “⊑” and “R”. It is 
generally accepted that values ranging in [0.5, 0.6] indicate a failure in the classifica-
tion task, values ranging in [0.6, 0.7] indicate a poor classifier, values ranging in [0.7, 
0.8] indicate a fair classifier, values ranging in [0.8, 0.9] indicate a good classifier and 
finally values in [0.9, 1.0] indicate an excellent classifier.  

By examining the ROC area under line values of the CSR method with C4.5 in all 
types of experiments, it is obvious that the classifier is always “good” and in the ma-
jority of the test cases (8/15) can be characterized as “excellent”. It must be stated that 
these values depict that, although the performance of the classifier in the class “R” is 
of no evident interest for the ontology alignment problem, as in these cases the classi-
fier cannot decide, the CSR method performs even better there. 

6 Conclusions and Future Work 

In this paper we propose the CSR method. CSR aims to the computation of subsump-
tion relations between concept pairs of two distinct ontologies by exploiting proper-
ties’ equivalence mappings, as well as appearances of terms in concepts’ vicinity. 
Towards this goal, CSR assesses whether concept pairs of the source ontologies be-
long to the subsumption relation by means of a classification task using state of the art 
machine learning methods. Given a pair of concepts from two ontologies, the objec-
tive of CSR is to identify patterns of concepts’ features (properties or terms) that pro-
vide evidence for the subsumption relation among these concepts. For the learning of 
the classifiers, the proposed method generates training datasets from the source on-
tologies specifications, tackling also the problem of imbalanced training datasets. 

Experimental results show the potential of the method: CSR generalizes effectively 
over the training examples, showing (a) the importance of both properties and terms 
to assessing the subsumption relation between concepts of discrete ontologies (b) the 



importance of incorporating more precise property mapping methods into the process, 
(c) the potential to further improve the method via the incorporation of more types of 
features, via the combination of different types of features or via its combination with 
other methods. 

Lastly, it must be pointed that CSR manages to discriminate effectively between 
equivalence and subsumption relations. This is a really important feature of CSR, as it 
can be used for filtering equivalences computed by other alignment methods [2]. 
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