
Ontology Mapping Discovery with Uncertainty

Prasenjit Mitra1, Natalya F. Noy2, and Anuj R. Jaiswal1

1 The Pennsylvania State University, University Park, PA 16802, USA,
email{pmitra,arj135}@psu.edu,

2 Stanford University, Stanford, CA 94305, USA,
noy@smi.stanford.edu

Abstract. Resolving semantic heterogeneity among information sources
is a central problem in information interoperation, information integra-
tion, and information sharing among websites. Ontologies express the se-
mantics of the terminology used in these websites. Semantic heterogene-
ity can be resolved by mapping ontologies from diverse sources. Mapping
large ontologies manually is almost impossible and results in a number
of errors of omission and commission. Therefore, automated ontology
mapping algorithms are a must. However, most existing ontology map-
ping tools do not provide exact mappings. Rather, there is usually some
degree of uncertainty. We describe a framework to improve existing ontol-
ogy mappings using a Bayesian Network. Omen, an Ontology Mapping
ENhancer uses a set of meta-rules that capture the influence of the ontol-
ogy structure and the semantics of ontology relations and matches nodes
that are neighbors of already matched nodes in the two ontologies. We
have implemented a protype ontology matcher using probabilistic meth-
ods that can enhance existing matches between ontology concepts. Ex-
periments demonstrate that Omen successfully identifies and enhances
ontology mappings significantly.

1 Introduction

Information sources, even those from the same domain, are heterogeneous in na-
ture. Semantic heterogeneity of information sources occurs because the semantics
of the information in one source differs from that in another. Resolving seman-
tic heterogeneity among information sources is a central problem in information
interoperation, information integration, and information sharing. Ontologies ex-
press the semantics of the terminology used in these information sources.

In order to enable interoperation among heterogeneous information sources
or to compose information from multiple sources, we often need to establish
mappings between ontologies or database schemas. These mappings capture the
semantic correspondence between concepts in schemas or ontologies. Such on-
tology mappings are also useful when information sources are being integrated.
For example, when two banks are being merged, the schema of their correspond-
ing databases, and the metadata of their information sources, might need to
be mapped before these information sources can be integrated. Mapping large
ontologies manually is almost impossible and results in a number of errors of

2

omission and commission. Therefore, automated ontology mapping algorithms
are essential.

In recent years, researchers have developed a number of tools for finding
these mappings in a semi-automated fashion (see Section 6 for a brief overview).
Interactive tools enable experts to specify the mappings. In most cases, the
mappings produced are imprecise. For instance, automatic ontology-mapping
tools can rank possible matches, with the ones that are more likely to be correct
getting higher rankings. Most automatic ontology-mapping tools use heuristics
or machine-learning techniques, which are imprecise by their very nature. Even
experts sometimes could be unsure about the exact match between concepts and
typically assign some certainty rating to a match.

This work is based on the following premise: if we know a mapping be-
tween two concepts from the source ontologies (i.e., they match), we can use
the mapping to derive mappings between related concepts. Once a particular set
of mappings is established (by an expert or a tool), we can analyze the struc-
ture of ontologies in the neighborhood of these mappings to derive additional
mappings. For example, if two properties and their domains match, then we can
infer (with some certainty) that their ranges may be related as well. To do so, we
build a Bayesian Net with the concept mappings. The Bayesian Net uses a set of
meta-rules based on the semantics of the ontology relations that expresses how
each mapping affects other related mappings. We can use existing automatic and
semi-automatic tools to come up with initial probability distributions for map-
pings. Next, we use this probability distribution to infer probability distributions
for other mappings.

We have implemented a tool called Omen (Ontology Mapping ENhancer).
Omen uses a Bayesian Net and enhances existing ontology mappings by deriving
missed matches and invalidating existing false matches. Our preliminary results
show that by using Omen we can enhance the quality of existing mappings
between concepts across ontologies.

The primary contributions of this paper are as follows:

1. We introduce a probabilistic method of enhancing existing ontology map-
pings by using a Bayesian Net to represent the influences between potential
concept mappings across ontologies.

2. In Omen, we provide an implemented framework where domain knowledge
of mapping influences can be input easily using simple meta-rules.

3. We demonstrate the effectiveness of Omen in our preliminary experiments.

To the best of our knowledge, no existing work has extensively used a proba-
bilistic representation of ontology mapping rules and probabilistic inference to
improve the quality of existing ontology mappings.

The rest of the paper is organized as follows. Section 2 contains a descrip-
tion of the knowledge model used to represent the ontologies and the mapping
expressions, and, we discuss the use of meta-rules to generate new probability
distributions based on existing ones. Section 4 contains a description of how the
Bayesian Net that Omen uses is constructed. In Section 5, we briefly outline our
prototype implementation and provide the results of our experiments. Section 6

3

describes some scope for future work. In Section 7, we discuss the related work
and conclude the paper in Section 8.

2 OMEN and its Bayesian Network

In this section, we define some preliminary concepts and then describe the
OMEN algorithm.

2.1 Knowledge Model

We assume a simple ontology model (similar to RDF Schema). We use the fol-
lowing components to express ontologies:

Classes Classes are concepts in a domain, organized in a subclass–superclass
hierarchy with multiple inheritance.

Properties Properties describe attributes of classes and relationships between
classes. Properties have one or more domains, which are classes to which
the property can be applied; and one or more ranges, which restrict the
classes for the values of property.

We use the following notation conventions through the rest of this paper:

– all concepts from O have no prime (’); all concepts from O′ have a prime (’);
– upper-case C with or without a subscript is a class;
– lower-case q with or without a subscript is a property;
– P (C1 θ C2, x) indicates that the probability of the match (C1 θ C2) is x.

2.2 The BN-Graph: Nodes and Edges

Each node in the Bayesian Net graph represents a unique match between two
concepts in the source ontologies. Consider Figure 1. This figure represents some
classes in ontology O in the left-hand tree and some classes in ontology O′ in the
right-hand tree. The thin arrows in the figure are relationships between classes
in the ontology, such as subclass–superclass relationships. The gray nodes and
arrows represent the BN graph superimposed on the graphs representing ontolo-
gies. Nodes in the BN graph are matches between pairs of classes or properties
from different ontologies. Arrows in the BN graph (the solid gray arrows in Fig-
ure 1) represent the influences between the nodes in the BN graph. For example,
in Figure 1, the mapping between concepts C1 and C ′

1 affects the mapping be-
tween concepts C2 and C ′

2, which in turn affects the mapping between C3 and C ′
3

Conditional Probability Tables (CPTs) represent how a probability distribution
in one node in the BN graphs affects the probability distribution in another node
downstream from it.

4

m(C3, C3')

m(C1, C1')

m(C2, C2')

C3

C1 C1'

C2'C2

C3'

Fig. 1. Subgraphs representing some concepts in ontologies O and O′ (small circles)
and relations between them (thin arrows). The large gray ovals and solid arrows rep-
resent a snippet of the BN graph with nodes corresponding to matches and arrows
corresponding to influences in the BN graph.

2.3 a priori Probabilities, Evidence and CPTs

We refer to the matcher whose output is input to Omen as the prior matcher.
The input to the Omen algorithm consists not only of the two source ontologies
to be matched, but also, of the initial probability distributions on the “root”
nodes (nodes with no parents) in the BN graph as generated by a prior matcher.
We refer to this probability value as the a priori probability of the node. Note that
our definition of mapping allows for inputs that are themselves imprecise and
contain some probability values. For instance, if there is an ontology matcher
that produces a set of pairs of matches ordered according to the algorithm’s
certainty about the match we can translate that into specific values for each
m(Cn, C ′

k) where the probability value for “=” is less than 1 and diminishes as
we go further down in the ranked list of the external matcher’s result.

In order to run a Bayesian Net we need to provide it with two types of
information: (1) evidence (obtained from the a priori probabilities) describing
what we already know with high confidence, and (2) Conditional Probability Ta-
bles, describing how the parent nodes influence the children or how the children
influence the parent nodes in the Bayesian Network.

We refer to a node as an evidence node if and only if the prior matcher
identified the pair of ontology concepts that the node represents to be matched
with very high certainty (e.g., the probability of match computed by the prior
matcher exceeds a high threshold).

5

The final missing piece are the CPTs. The CPTs describe how a match
between two classes affects other matches (these are the solid gray arrows in
Figure 1). For example, a match between two classes from the source ontologies
affects the match between their superclasses. Or a match between properties
affects the match between their domains. These rules depend on the knowledge
model and semantics of the relationships (such as subclass or domain) defined
in the knowledge model. Therefore, we have developed a set of generic meta-
rules that enable us to generate CPTs for each particular pair of ontologies
automatically. In fact, our implementation is parameterized with respect to the
meta-rules, and we can add or remove meta-rules to evaluate which ones work
best for a particular knowledge model.

We present some of the meta-rules that we used in the next Section.

2.4 A Scalable Selection of Nodes

We assume that the influence of a matching node traverses to nodes that are at
a distance of k from an evidence node, where the distance is measured as the
minimum number of edges traversed from the evidence node to reach the node.
If the node is too far from the evidence node, the influence of the evidence node
is negligible. Therefore, to improve the performance of the Bayesian Network,
it makes sense to prune the BN-graph and retain only those nodes within a
distance of k from an evidence node. Therefore, Omen generates only nodes in
the BN-graph that are at a maximum distance of k from an evidence node. The
value of k is tuneable by the expert running the system, but empirically, we
found a small value like k = 1 or k = 2 suffices. That is, larger values of k
make very little difference to the result but increase the size of the Bayesian Net
significantly. For small values of k, the graph may be disconnected. In such a
case, the algorithm is run separately on each graph.

Anther factor that effects the size of the BN-graph is the number of parents
(i.e., nodes that influence the match) that each node has. For example, if a
concept C has 5 parents, and C ′ has 8 parents, the node representing a match
between C and C ′ would have 40 parent nodes in the BN-graph. As we discuss
in the next section, the size of a CPT is exponential with respect to the number
of parents of a node. Therefore, generating the CPT would cost 240 units of
computation. Even if the computation is very small, this number is exceedingly
large and very soon makes the Bayesian Net unweildy. Thus, we restrict the
maximum number of parent nodes for a single node to 10. We choose these 10
parents by selecting the top 5 parents with the maximum a priori probability and
the top 5 parents with the minimum a priori probability. The logic behind such
a choice is that if the strong influences of these nodes do not alter the decision
whether the two concepts match or not, then the weaker influences of the parents
that were not chosen will also not alter the above-mentioned decision.

If the Bayesian Net is constructed by adding edges such that matching ances-
tor nodes in an ontology influence the children nodes, we refer to this method as
the “top-down” method since the influence flows down from the top. A method
where Omen constructs the Bayesian Net edges such that matching descendant

6

nodes influence their ancestors, we call the method a “bottom-up” method. In
case the ontologies contain cycles and this introduces cycles in the BN-graph, the
algorithm breaks cycles in the BN-graph by rejecting the edges from the parents
whose matching information is minimum (a priori probability near 0.5).

2.5 The Omen Algorithm

The following summarizes the Omen algorithm:

– Input: source ontologies O and O′, initial probability distribution for matches,
positive and negative evidence thresholds.

– Steps:
1. If initial probability of a match is above a given threshold, create a node

representing the match and mark it as evidence node.
2. For each pair of concept pair of concepts (C,C ′) , where C ∈ O and

C ′ ∈ O′, create a node in the BayesNet graph.
3. Create edges between the added nodes using the rules for top-down or

bottom-up iterations.
4. Prune out nodes that are at a distance greater than k from an evidence

node (a node with a priori probability above the positive threshold or
below the negative threshold).

5. Use the meta-rules to generate CPTs for the BayesNet.
6. Run the BayesNet to generate the a posteriori probabilities of each node.
7. Select those nodes with a posteriori probabilities over a given threshold

as matches.
– Output: a new set of matches

The output of Omen overrides the input matches and is accepted as the new
set of matches. The new set of matches may override an initial match or generate
a new match that the input did not contain.

3 Meta-rules for Generating New Probability
Distributions

In this section, we show examples of meta-rules that are used to match the ontolo-
gies and discuss how Omen generates new probability distributions depending
upon existing ones.

3.1 Examples of Meta-rules

The following is one of the basic meta-rules we used in our implementation: if
two concepts C1 and C ′

1 match, and there is a relationship q between C1 and
C2 in O and a matching relationship q′ between C ′

1 and C ′
2 in O′, then we can

increase the probability of match between C2 and C ′
2. Informally, if two nodes in

an ontology graph match and so do two arrows coming out of these nodes, then

7

the probability that nodes at the other end of the arrows match is increased. In
the formal rule below we generalize this meta-rule to any relationship θ between
C1 and C ′

1, not just match.

P (C1 θ C ′
1, x) ∧ P (q = q′, 1) ∧ q(C1, C2) ∧ q′(C ′

1, C
′
2)⇒ P (C2 θ C ′

2,min(1, x + δ))

where δ is an expert-provided constant less than 1. We use a similar meta-rule
for the case where relationships q and q′ do not match (i.e., for arbitrary pair of
outgoing edges), but subtract delta from x in the consequent. Other meta-rules
rely more heavily on the semantics of the ontology language.

The following is an example of a meta-rule to generate a mapping between
classes in the range of a property based on the mapping of the properties them-
selves and their domains. Not included explicitly in the rule (for brevity) is an
assumption that both properties, q and q′, have a single domain and range.

P (Cd = C ′
d, x) ∧ P (q = q′, 1) ∧ domainOf(q, Cd) ∧ domainOf(q′, C ′

d)∧
rangeOf(q, Cr) ∧ rangeOf(q′, C ′

r)
⇒ P (Cr = C ′

r, x)

Below are some (informal) examples of other metarules:

Mappings between properties and ranges of properties: If two properties match,
and each of them has a single range, we can increase the probability of match
between the classes representing the range. Similarly, if two properties q and q′

match and the range of q is a union of classes C1 and C2, and the range of q′ is
a class C ′, then the tool can increase the probability that C1 is a specialization
of C ′ and C2 is a specialization of C ′.

Mapping between properties: If the ranges between two classes are ranges for
matching properties, then they may match (but probabilities are reduced some-
what in comparison to the case when the domains match as well).

Mappings between superclasses and all but one sibling: In this case, we say that
the existing matches between the superclasses and the matched siblings result
in the remaining siblings matching with high probability.

We experimented with three different ways of generating the CPTs for the
nodes in a BN graph:

1. Fixed Influence Method (FI): The meta-rules state that the probability of
the children matching depends upon whether the parents match and is given
by a set of constants. An example of such a rule is:

P [Cp = C ′
p, x] ∧ x > tmax ∧ q(Cp, Cc) ∧ q(C ′

p, C
′
c)⇒ P [Cc = C ′

c, 0.9]

where tmax is an expert-defined threshold value. There are similar rules for
the other cases.

8

2. Initial Probability Method (AP): The meta-rules state that the probability
distribution of a child node is affected depending upon the probability dis-
tribution of the parent node by a set of constants. An example of this class
of meta-rules is:

P (C1 θ C ′
1, x)∧P (q = q′, 1)∧q(C2, C1)∧q′(C ′

2, C
′
1)∧P [C2 θC ′

2, y]∧(y > tmax)
⇒ P (C1 θ C ′

1,min(1, (x + δ))

where tmax and δ are expert-provided constants less than 1.
3. Parent Probability Method (PP): The meta-rules state that the probability

distribution of the child node is derived from the probability distribution of
the parent node using a set of constants.

The algorithm must combine probabilitic influences of different rules and
determine the probability distribution of a mappings. For example, consider a
pair of classes, C and C ′ (Figure 2). In the example in the figure, the following
mappings can affect the probability that they match (depending on a specific
set of meta-rules used):

Cd

C

C0

C1

Cd'

C'

C0'

C1'

subclass subclass
q subclass

subclass

q'

Fig. 2. The probability distribution for the mapping between C and C′ is affected by
the mappings between their superclasses, siblings, and domains of the properties q and
q′ for which C and C′ are ranges.

– A mapping between superclasses of C and C ′

– Mappings between the siblings of C and C ′

– A mapping between properties q and q′ (P (q = q′, 1)) for which C and C ′

are ranges respectively, and mappings between domains of q and q′ (P (Cd =
C ′

d, z)).

4 Experimentation and Results

Omen uses BNJ, Version 3.0 pre-Alpha 3 [1] as its probabilistic inference en-
gine. We used two ontologies obtained from the Knowledge Representation and

9

Reasoning group at the Vrije University.3 The ontologies are expressed in RDF
using RDF-Schema. They contain concepts related to university departments
and students, staff and faculty of the departments.

Metrics: We used the metrics of precision and recall as defined in the
standard information retrieval literature. Precision identifies the ratio of cor-
rect matches among the matches identified by the tool and recall identifies the
number of matches the tool was able to detect among the “ideal” set of correct
matches.

The parameters of the experiment were as follows. The size of the ontologies
were 134 nodes and 198 nodes respectively.

a priori Probabilities: We obtained the a priori probabilities by running the
Lexical Matcher obtained from the Onion project [10]. We considered an ev-
idence threshold of 0.99 for the a priori probability. Note, that these figures
implies that 10% of the evidence supplied to Omen was wrong. From the re-
sults, we see that Omen is robust enough to overcome these wrong evidence
inputs to a reasonable extent.

We set k = 2, where k is the maximum distance of a node from the evidence
node in the Bayesian Network. The thresholds used for the a posteriori proba-
bilities to be considered matches were 0.75 for true matches and 0.25 for false
matches. We ran Omen for two passes to generate the results reported below.
The input of the first pass was the output obtained from the Lexical Matcher.
The input of the second pass was the output generated by the first pass of
Omen. The second pass considered the matches generated by the first pass with
high probabilities as evidence and tried to generate even more matches. We also
continued the experiments beyond the second pass, however, additional passes
did not produce significant changes in the precision and recall for our datasets.
Hence we do not report those results.

We show the results of the experiments in Figure 3. The sizes of the Bayesian
Networks generated by the different methods varied from 100 to 1300 in the first
pass and from 1400 to 1450 nodes in the second pass for all the methods shown.
That is, Omen considered 1400 matches and selected the final results from among
them.

In generating the results, we tallied only the new results that Omen gener-
ated. That is, we did not attribute to Omen any result that was already correctly
generated by the Lexical Matcher. The results show that Omen can successfully
generate good quality results even when the easier results have been generated
by the prior matcher. This indicates that Omen can be a good value-add to
ontology matching tools and enhance and refine existing ontology matches.

Because of the large sizes of the ontologies, we could not manually match
the entire ontologies and therefore do not have the recall values of the entire
ontologies. We resorted to sampling to bring the sizes down to get an idea of
the recall of our algorithms. Nevertheless, for the large ontologies, whereas the
Lexical Matcher generated at most 12 correct matches (with a threshold of 0.85),
Omen generated 74 correct matches (using its best method). These numbers

3 http://wbkr.cs.vu.nl/

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TT-AP TT-PP TT-FI TB-APPP TB-PPPP

Methods

P
re

ci
si

on
 o

bt
ai

ne
d

by
 O

M
E

N

TT-AP: Pass1 = Top Down MethodType = AP, Pass2 = Top Down MethodType = AP
TT-PP: Pass1 = Top Down MethodType = PP, Pass2= Top Down MethodType = PP
TT-FI: Pass1 = Top Down MethodType = FI, Pass2= Top Down MethodType = FI
TB-APPP: Pass1 = Top Down MethodType = AP, Pass2= Bottom Up MethodType = PP
TB-PPPP: Pass1 = Top Down MethodType = AP, Pass2= Bottom Up MethodType = PP

Fig. 3. Results for the ontologies of size 134 x 198 nodes

indicate that Omen identifies a significant number of matches that were missed
by the Lexical Matcher, has a higher recall than the Lexical Matcher, and can
reduce the amount of human intervention required in ontology mapping.

To study the recall of Omen, we sampled the ontologies and computed the
ideal results on the small set of ontology selections manually. For the next ex-
periments, we extracted portions of the ontologies manually to make sure that
they have at least some overlap. Matching predicates is beyond the scope of this
tool. If we want to match predicates, a work-around is to reify them, that is
represent the predicates as nodes lying between the nodes whose relationships
they represent. We obtained matched predicates across the ontologies using the
Lexical Matcher using a threshold. When we decided that two predicates rep-
resented the same relationship, the names of one predicate was replaced by the
names of the matching predicate in the other. As indicated earlier, we limited
experiments to small portions of ontologies because we wanted to generate the
benchmark correct mappings manually and we did not have resources to create
this benchmark manually for large ontologies. Note that the algorithm itself is
scalable and does not require such extraction.

Threshold values of 0.85 and 0.15 (for positive and negative matches respec-
tively) are used to determine a match from the posterier probability generated by
Omen. In some cases, the threshold was taken to be too stringent and resulted in
lower recall. As future work, we intend to look into dynamically selecting proper
thresholds by clustering.

We experimented with two sets of ontology graphs. In the first set, both
graphs had 11 nodes each and in the second case both had 19 nodes. The pre-
liminary results that we obtained are given in the two tables below:

Table 1 lists the results for the case where the source ontologies were of size 11
nodes each. In this case, we specified three matching nodes as positive evidence

11

Table 1. Summary of results for the smaller ontologies

Case No. CPT-Method Precision Recall F-measure

1 FI 0.75 0.375 0.5
AP 1.0 0.5 0.67

2 FI 1.0 0.5 0.67
AP 1.0 0.875 0.933

3 AP 1.0 0.75 0.85
4 AP 1.0 0.125 0.22

and four pairs of nodes that do not match as negative evidence. The precision,
recall and f-measure are calculated in the usual Information Retrieval (IR) sense
using both the positive match and the negative match results together. In case
1, the evidence was introduced at random points. In case 2, the evidence was
introduced at or very near the leaf nodes. The results show that introducing the
evidence at or near the leaf nodes increased the performance of the algorithm.
Case 3 is very similar to Case 2, but with false evidence introduced. Case 4 shows
the effect of introducing drastic errors in the initial probabilities. Since the CPTs
in the AP method depend directly on the quality of the initial probabilities, when
we assigned the initial probabilities at random intentionally, the quality of the
results deteroriate.

Overall, we see that the AP method outperforms the FI method in both
cases. We also see that by giving only 3 matches out of 11, we could generate
upto 7 of the missing matches. This implies that the method can be very useful
even when the results of the previous matcher is not very good as not as it is
totally random.

We show the results for the case where the source ontologies contained 19
nodes each in Figure 4. The figure shows 7 different test cases for the three
different CPT-generating methods. The FI method is shown first, followed by
the AP method, followed by the PP method for each test case.

The evidence provided in the cases above were as follows: For case 1, we
provided positive evidence of 4 matches at or near the leaf nodes. For cases 2,
3, and 4, we provided positive evidence of 5 matches and negative evidence of 4
matches. For cases 5, 6, and 7 we provided positive evidence of 6 matches and
negative evidence of 4 matches. In cases 2, and 3 the evidence was also provided
at or near the leaf nodes. In cases 4, and 5, the evidence was provided at or near
the root nodes. In cases 6 and 7, the evidence was provided at randomly selected
nodes. In cases 3, 5, and 7, wrong evidence was introduced.

Not surprisingly, we see that both the AP and the PP methods outperforms
the FI method of constructing CPTs and provide good precision and recall val-
ues. The AP method slightly outperforms the PP method in general. However,
the PP method is more stable, that is, it recovers from a few wrong evidences
better than the AP method. In this case, the place where the evidence was
introduced did not matter much for the AP and PP methods.

12

Precision Recall F-measure

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Fig. 4. Results for the ontologies of size 19 nodes

4.1 I3CON Ontologies

We also experimented with the “Computer Science”, “Network”, “Animal”, and
“Hotel” ontologies obtained from I3CON. 4. Due to lack of space, we show in
Figure 5, a comparison of the f-measures of OMEN using the Lexical Matcher
from ONION as the initial matcher with other known ontology matchers .

Fig. 5. Results for the I3CON ontologies.

This set of ontologies were proposed by ATL. Most of the other methods
whose results were reported did extremely poorly for the “Computer Science”
ontology. We observed that the three OMEN algorithms outperform the existing
algorithms although the initial results provided by Onion’s Lexical Matcher did

4 http://www.atl.external.lmco.com/projects/ontology/i3con.html

13

not. For the “Network” ontology, the performance of the OMEN methods were
at par with the other methods except for ATL’s methods. Unfortunately, ATL
does not publish their exact algorithms. OMEN performs at par with the known
and published ontology matching algorithms for this ontology. For the “Animal”
ontology, Omen outperforms other published ontology matching algorithms and
matches the performance of ATL’s matcher. Omen does slightly poorer than
Teknowledge’s and ATL’s tool, but provides reasonable performance.

The above-mentioned results indicate that Omen can be used to complement
a set of heuristic ontology mapping tools and enhance the results of ontology
matchers. Not surprisingly, it performs reasonably well and is the most valuable
when the results of the ontology matchers are not very good in the first place
and Omen has ample scope to enhance the results.

5 Future Work

Designing better CPTs using more of the semantics of the ontology relationships,
and emperically evaluating them and experimenting with large ontologies and
coupling our matcher with various external matchers are charted for as future
work.

We also intend to experiment with Omen to run it over various other sets of
ontologies and also with ontologies with carefully crafted semantics to validate
our findings further. One impediment is obtaining such ontologies, but with the
adoption of semantic web technologies, we expect to obtain more ontologies to
experiment with.

6 Related Work

We reported our initial work in a workshop (without widely disseminated pa-
per proceedings)[9]. Apart from that, we outline works that are most related
to ours below. Two research directions are related to our work: automatic or
semi-automatic discovery of ontology mappings and the use of uncertainty in
knowledge-based systems.

6.1 Automatic ontology mapping

Over the past decade, researchers have actively worked on developing methods
for discovering mappings between ontologies or database schemas. For example,
Similarity Flooding [8] and AnchorPrompt [12] algorithms compare graphs repre-
senting the ontologies or schemas, looking for similarities in the graph structure.
GLUE [3] is an example of a system that employs machine-learning techniques
to find mappings. GLUE uses multiple learners exploiting information in con-
cept instances and taxonomic structure of ontologies. GLUE uses a probabilis-
tic model to combine results of different learners. Hovy [5] describes a set of
heuristics that researchersat ISI/USC used for semi-automatic alignment of do-
main ontologiesto a large central ontology. Their techniques are based mainly

14

onlinguistic analysis of concept names and natural-languagedefinitions of con-
cepts. A number of researchers propose similarity metrics between concepts in
different ontologies based on their relations to other concepts. For example, a
similarity metric between concepts in OWL ontologies developed by Euzenat and
Volchev [4] is a weighted combination of similarities of various features in OWL
concept definitions: their labels, domains and ranges of properties, restrictions
on properties (such as cardinality restrictions), types of concepts, subclasses and
superclasses, and so on. Finally, approaches such as ONION [11] and Prompt
[13] use a combination of interactive specifications of mappings and heuristics
to propose potential mappings.

The approach that we describe in this paper is complementary to the tech-
niques for automatic or semi-automatic ontology mapping. Many of the methods
above produced pairs of matching terms with some degree of certainty. We can
use these results as input to our network and run our algorithm to improve the
matches produced by others or to suggest additional matches. In other words,
our work complements and extends the work by other researchers in this area.

6.2 Probabilistic knowledge-base systems

Several researchers have explored the benefits of bringing together Bayes Nets
and knowledge-based systems and ontologies. For instance, Koller and Pfeffer
[7] developed a “probabilistic frame-based system,” that allows annotation of
frames in a knowledge base with a probability model. This probability model is
a Bayesian Net representing a distribution over the possible values of slots in a
frame. In another example, Koller and colleagues [6] have proposed probabilistic
extensions to description logics based on Bayesean Networks.

In the context of the Semantic Web, Ding and Peng [2] have proposed prob-
abilistic extensions for OWL. In this model, the OWL language is extended to
allow probabilistic specification of class descriptions. The authors then build a
Bayesean Network based on this specification, which models whether or not an
individual matches a class description and hence belongs to a particular class in
the ontology.

Researchers in machine learning have employed probabilistic techniques to
find ontology mappings. For example, the GLUE system mentioned earlier [3],
uses a Bayes classifier as part of its integrated approach. Similarly, Prasad and
colleagues [14] use a Bayesean approach to find mappings between classes based
on text documents classified as exemplars of these classes. These approaches,
however, consider instances of classes in their analysis and not relations between
classes, as we do. As with other approaches to ontology mapping, our work can
be viewed as complementary to the work done by others.

7 Conclusion

We have outlined the design and implementation of Omen, an ontology match
enhancer tool, that improves existing ontology matches based on a probabilis-
tic inference. This tool is dependent upon a set of meta-rules that express the

15

influences of matching nodes on the existence of other matches across concepts
in source ontologies that are located in the proximity of the matching nodes.
We described how we implemented a simple first version of the matching tool
and discussed our preliminary results to show that Omen usefully complement
existing ontologing matching tools.

References

1. Bayesian network tools in java(bnj), version 2.0, July 2004.
2. Z. Ding and Y. Peng. A probabilistic extension to ontology language owl. In

37th Hawaii International Conference On System Sciences (HICSS-37), Big Island,
Hawai, 2004.

3. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In The Eleventh International WWW Conference,
Hawaii, US, 2002.

4. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-Lite.
In The 16th European Conference on Artificial Intelligence (ECAI-04), Valencia,
Spain, 2004.

5. E. Hovy. Combining and standardizing largescale, practical ontologies for machine
translation and other uses. In The First International Conference on Language
Resources and Evaluation (LREC), pages 535–542, Granada, Spain, 1998.

6. D. Koller, A. Levy, and A. Pfeffer. P-Classic: a tractable probabilistic description
logic. In 14th National Conference on Artificial Intelligence (AAAI-97), 1997.

7. D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, 1998. AAAI
Press.

8. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In 18th International
Conference on Data Engineering (ICDE-2002), San Jose, California, 2002. IEEE
Computing Society.

9. P. Mitra, N. F. Noy, and A. R. Jaiswal. Omen: A probabilistic ontology-mapping
tool. In Working Notes of the ISCW-04 Workshop on Meaning Coordination and
Negotiation, [MCN-04], held in conjunction with the 3rd International Semantic
Web Conference, November 2004.

10. P. Mitra and G. Wiederhold. Resolving terminological heterogeneity in ontologies.
In Workshop on Ontologies and Semantic Interoperability at the 15th European
Conference on Artificial Intelligence (ECAI 2002), July 2002.

11. P. Mitra, G. Wiederhold, and S. Decker. A scalable framework for interoperation of
information sources. In The 1st International Semantic Web Working Symposium
(SWWS’01), Stanford University, Stanford, CA, 2001.

12. N. F. Noy and M. A. Musen. Anchor-PROMPT: Using non-local context for se-
mantic matching. In Workshop on Ontologies and Information Sharing at the Sev-
enteenth International Joint Conference on Artificial Intelligence (IJCAI-2001),
Seattle, WA, 2001.

13. N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

14. S. Prasad, Y. Peng, and T. Finin. A tool for mapping between two ontologies
using explicit information. In AAMAS 2002 Workshop on Ontologies and Agent
Systems, Bologna, Italy, 2002.

