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Automated Semantic Matching of Ontologies with Verification (ASMOV) is a novel algorithm that uses lex-
ical and structural characteristics of two ontologies to iteratively calculate a similarity measure between
them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsisten-
cies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure
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its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet,
and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained
by combining lexical, structural and extensional matchers with semantic verification, and demonstrate
the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies.

© 2009 Elsevier B.V. All rights reserved.

ntology mapping
MLS

. Introduction

An ontology is a means of representing semantic knowledge
20], and includes at least a controlled vocabulary of terms, and
ome specification of their meaning [43]. Ontology matching
onsists in deriving an alignment consisting of correspondences
etween two ontologies [8]. Such an alignment can then be used
or various tasks, including semantic web browsing, or merging of
ntologies from multiple domains.

Our main motivation lies in the use of ontology matching for the
ntegration of information, especially in the field of bioinformatics.
owadays there is a large, ever-growing, and increasingly com-
lex body of biological, medical, and genetic data publicly available
hrough the World Wide Web. This wealth of information is quite
aried in nature and objective, and provides immense opportuni-
ies to genetics researchers, while posing significant challenges in
erms of housing, accessing, and analyzing these datasets [10]. The
bility to seamlessly access and share large amounts of heteroge-
eous data is crucial towards the advancement of genetics research,
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

nd requires resolving the semantic complexity of the source data
nd the knowledge necessary to link this data in meaningful ways
27]. Semantic representation of the information stored in multi-
le data sources is essential for defining correspondence among
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entities belonging to different sources, resolving conflicts among
sources, and ultimately automating the integration process [36].
Ontologies hold the promise of providing a unified semantic view
of the data, and can be used to model heterogeneous sources within
a common framework [25]. The ability to create correspondences
between these different models of data sources is then critical
towards the integration of the information contained in them.

In the biomedical and bioinformatics knowledge domain, efforts
at deriving ontology alignments have been aided by the active
development and use of vocabularies and ontologies. The Uni-
fied Medical Language System (UMLS) is a massive undertaking
by the National Library of Medicine to create a single repository
of medical and biological terminology [4]. Release 2007AB of the
UMLS contains over 1.4 million biomedical concepts and 5.3 mil-
lion concept names from more than 120 controlled vocabularies
and classifications, including the NCI Thesaurus developed by the
National Cancer Institute as a comprehensive reference terminol-
ogy for cancer-related applications [18].

In this paper, we describe the Automated Semantic Matching
of Ontologies with Verification (ASMOV) algorithm for ontology
matching. Most current approaches handle only tree-like struc-
tures, and use mainly elemental or structural features of ontologies
[14]. ASMOV is designed to combine a comprehensive set of
element-level and structure-level measures of similarity with a
technique that uses formal semantics to verify whether computed
hing with semantic verification, Web Semantics: Sci. Serv. Agents

correspondences comply with desired characteristics. We begin
with a discussion of the current state of the art in ontology match-
ing. Following, we present a brief definition of the problem and
a general description of the algorithm. Next, we provide details
of the similarity measure calculations, of the semantic verifica-

dx.doi.org/10.1016/j.websem.2009.04.001
http://www.sciencedirect.com/science/journal/15708268
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ion executed after an alignment is obtained, and of the conditions
or algorithm termination. Then, we provide the results of two
ets of experiments; the first set shows the accuracy of the algo-
ithm against the OAEI 2008 benchmark tests, and the second set
nalyzes the results of running the algorithm against two sets
f anatomy ontologies, using both the general-purpose WordNet
hesaurus (wordnet.princeton.edu) and the UMLS Metathesaurus
www.nlm.nih.gov/research/umls/). Finally, the limitations of the
ystem and the direction of future work are discussed, and our
onclusions are stated.

. Background and related work

Ontology matching is an active field of current research, with
vigorous community proposing numerous solutions. Euzenat

nd Shvaiko [14] present a comprehensive review of current
pproaches, classifying them along three main dimensions: gran-
larity, input interpretation, and kind of input. The granularity
imension distinguishes between element-level and structure-level
echniques. The input interpretation dimension is divided into syn-
actic, which uses solely the structure of the ontologies; external,
hich exploits auxiliary resources outside of the ontologies; and

emantic, which uses some form of formal semantics to justify
esults. The kind of input dimension categorizes techniques as ter-
inological, which works on textual strings; structural, which deals
ith the structure of the ontologies; extensional, which analyzes the
ata instances; and semantic, which makes use of the underlying
emantic interpretation of ontologies.

Most work on ontology matching has focused on syntactic or
tructural approaches. Early work on ontology alignment and map-
ing focused mainly on the string distances between entity labels
nd the overall taxonomic structure of the ontologies. However,
t became increasingly clear that any two ontologies constructed
or the same domain by different experts could be vastly dissim-
lar in terms of taxonomy and lexical features. Recognizing this,
ystems such as FCA-Merge [39] and T-Tree [12] analyze subclass
nd superclass relationships for each entity as well as the lexi-
al correspondences, and additionally require that the ontologies
ave instances to improve comparison. PROMPT consists of an

nteractive ontology merging tool [35] and a graph based map-
ing dubbed Anchor-PROMPT [34]. It uses linguistic “anchors” as
starting point and analyzes these anchors in terms of the struc-

ure of the ontologies. GLUE [11] discovers mappings through
ultiple learners that analyze the taxonomy and the information
ithin concept instances of ontologies. COMA [29] uses parallel

omposition of multiple element- and structure-level matchers.
orpus-based matching [28] uses domain-specific knowledge in
he form of an external corpus of mappings which evolves over
ime. RiMOM [41] discovers similarities within entity descriptions,
nalyzes instances, entity names, entity descriptions, taxonomy
tructure, and constraints prior to using Bayesian decision theory in
rder to generate an alignment between ontologies, and addition-
lly accepts user input to improve the mappings. Falcon-AO [19]
ses a linguistic matcher combined with a technique that repre-
ents the structure of the ontologies to be matched as a bipartite
raph. IF-Map [22] matches two ontologies by first examining their
nstances to see if they can be assigned to concepts in a refer-
nce ontology, and then using formal concept analysis to derive
n alignment. Similarity flooding [32] uses a technique of prop-
gation of similarities along the property relationships between
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

lasses. OLA [15] uses weighted averages between matchers along
ultiple ontology features, and introduces a mechanism for com-

utation of entity-set similarities based on numerical analysis; the
pproach used in ASMOV for the calculation of similarities at a lex-
cal, structural and extensional level is similar to OLA, but affording
 PRESS
Agents on the World Wide Web xxx (2009) xxx–xxx

more flexibility to the design of similarity measure calculations for
different features.

In the particular realm of ontology matching in the biological
domain, the AOAS system developed by the U.S. National Library
of Medicine [5,44], designed specifically to investigate the align-
ment of anatomical ontologies, uses the concept of “anchors” and
implements a structural validation that seeks to find correspon-
dences in relationships between anchors. Sambo [24] uses a similar
approach to lexical and structural matching, and complements it
with a learning matcher based on a corpus of knowledge com-
piled from published literature. Notably, both AOAS and SAMBO
take advantage of the part-of relation between entities, widely used
in biomedical ontologies but not defined in general languages such
as OWL; such a relation would be modeled as a property in a general
ontology.

Semantic techniques for ontology matching have received recent
attention in the literature. Semantic reasoning is by definition
deductive, while the process of ontology matching is in essence
an inductive task [14]. Semantic techniques therefore need a pre-
processing phase to provide an initial seeding alignment, which is
then amplified using semantic methods. This initial seeding can
be given by finding correspondences with an intermediate for-
mal ontology used as an external source of common knowledge
[1]. Deductive techniques for semantic ontology matching include
those used in S-Match [17], which uses a number of element-level
matchers to express ontologies as logical formulas and then uses
a propositional satisfiability solver to check for validity of these
formulas; and CtxMatch [6], which merge the ontologies to be
aligned and then uses description logic techniques to test each
pair of classes and properties for subsumption, deriving inferred
alignments.

Semantic techniques have also been used to verify, rather than
derive, correspondences. The approach by Meilicke et al. [30] uses
model-theoretic semantics to identify inconsistencies and auto-
matically remove correspondences from a proposed alignment.
This model, however, only identifies those correspondences that
are provably inconsistent according to a description logics formula-
tion. The same authors have extended this work to define mapping
stability as a criterion for alignment extraction [31]; the approach
in ASMOV introduces additional rules that seek to find positive ver-
ification that consequences implied by an alignment are explicitly
stated in the ontologies.

3. Ontology matching algorithm

3.1. Ontology matching

In this section, we present a succinct definition of the concepts
of correspondences between entities and ontology matching; the
reader is referred to Ref. [14] for a more formal definition. An ontol-
ogy O contains a set of entities related by a number of relations.
Ontology entities can be divided in subsets as follows: classes, C,
defines the concepts within the ontology; individuals, I, denotes
the object instances of these classes; literals, L, represents concrete
data values; datatypes, T, defines the types that these values can
have; and properties, P, comprises the definitions of possible asso-
ciations between individuals, called object properties, or between
one individual and a literal, called datatype properties. Four specific
relations form part of an ontology: specialization or subsumption,
≤; exclusion or disjointness, ⊥; instantiation or membership, ∈; and
hing with semantic verification, Web Semantics: Sci. Serv. Agents

assignment, =.
The Web Ontology Language (OWL), a World Wide Web

Recommendation, is fast becoming the standard formalism for rep-
resenting ontologies. In particular, the OWL-DL sublanguage of
OWL supports those users who want the maximum expressiveness

dx.doi.org/10.1016/j.websem.2009.04.001
http://www.wordnet.princeton.edu/
http://www.nlm.nih.gov/research/umls/
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ithout losing computational completeness and decidability [38],
y restricting type separation so that the sets C, P, L, I, and T in the
ntology are disjoint. The ASMOV alignment algorithm presented in
his paper assumes that the ontologies to be aligned are expressed
n OWL-DL.

The objective of ontology matching is to derive an alignment
etween two ontologies, where an alignment consists of a set of
orrespondences between their elements. Given two ontologies, O
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

nd O′, a correspondence between entities e in O and e′ in O′, which
e denote as 〈e, e′〉, signifies that e and e′ are deemed to be equiva-

ent. Consider the two example ontologies in Fig. 1; based upon the
eaning of the labels of the elements, it would be expected that

n ontology matching algorithm will find an alignment that would

ig. 1. Example ontologies. Entities are identified by their id; where the label is different
ndicated by a directional arrow; equivalence by a bidirectional arrow, and disjointness b
lasses and properties of the ontology; part (b) shows individuals belonging to each onto
14], modified to illustrate multiple inheritance, compound property domains, disjointne
 PRESS
Agents on the World Wide Web xxx (2009) xxx–xxx 3

include, for example, the correspondences 〈a:Book, b:Volume〉 and
〈a:publishedBy, b:publisher〉.

3.2. ASMOV algorithm

The ASMOV process, illustrated in the block diagram in Fig. 2, is
an iterative process divided into two main components: similarity
calculation, and semantic verification. ASMOV receives as input two
hing with semantic verification, Web Semantics: Sci. Serv. Agents

ontologies to be matched, such as the two ontologies shown in the
example in Fig. 1, and an optional input alignment, containing a set
of pre-determined correspondences.

First, the similarity calculation process computes a similarity
value between all possible pairs of entities, one from each of the

, it is shown in parenthesis. Comments for entities are not shown. Subsumption is
y a dotted arrow. Cardinalities are shown next to each property. Part (a) shows the
logy. The ontologies themselves and graphical notation are based on an example in
ss, multiple cardinalities, and individual matching.

dx.doi.org/10.1016/j.websem.2009.04.001
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Fig. 1.

wo ontologies, and uses the optional input alignment to supersede
ny calculated measures; the details of this calculation, includ-
ng the description of the different attributes examined for each
air of entities, are provided in Section 4. This process results in
similarity matrix containing the calculated similarity values for

very pair of entities; partial views of this matrix for the ontolo-
ies in Fig. 1 are shown in Table 1. From this similarity matrix, a
re-alignment is extracted, by selecting the maximum similarity
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

alue for each entity. For example, 〈a:Product, b:Volume〉 has the
ighest value for a:Product, while 〈a:Book, b:Volume〉 has the
ighest value for b:Volume; both are included in the pre-alignment.
his pre-alignment is passed through a process of semantic veri-
cation, detailed in Section 5, which eliminates correspondences

Fig. 2. ASMOV blo
inued ).

that cannot be verified by the assertions in the ontologies, reset-
ting the similarity measures for these unverified correspondences
to zero. For example, the potential correspondence 〈a:Science,
b:Recording〉 is eliminated due to the existence of 〈a:Book,
b:Volume〉, because a:Science is a subclass of a:Book, while
b:Recording is not asserted to be a subclass of b:Volume.

This process results in a semantically verified similarity matrix
and alignment, which are then used to evaluate a finalization con-
hing with semantic verification, Web Semantics: Sci. Serv. Agents

dition as detailed in Section 6. If this condition is true, then the
process terminates, and the resulting alignment is final. Fig. 3
shows the alignment obtained from running the ASMOV process
over the ontologies in Fig. 1, which includes expected correct cor-
respondences in terms of our interpretation of the ontologies,

ck diagram.

dx.doi.org/10.1016/j.websem.2009.04.001


ARTICLE IN PRESSG Model
WEBSEM-158; No. of Pages 17

Y.R. Jean-Mary et al. / Web Semantics: Science, Services and Agents on the World Wide Web xxx (2009) xxx–xxx 5

Table 1
Partial similarity matrices for (a) classes, (b) properties, and (c) individuals after iteration 1 for example in Fig. 2.

Item Volume Essay Literature Narrative Novel Biography Autobiography

(a)
Product 0.194 0.531 0.115 0.218 0.056 0.434 0.055 0.052
Book 0.210 0.849 0.346 0.353 0.292 0.523 0.219 0.205
Pocket 0.242 0.523 0.050 0.050 0.051 0.449 0.050 0.047
Science 0.248 0.068 0.143 0.358 0.072 0.072 0.070 0.065
Popular 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Textbook 0.126 0.432 0.000 0.000 0.000 0.365 0.000 0.000

subject publisher creator writtenBy title

(b)
id 0.228 0.051 0.177 0.000 0.174
price 0.279 0.126 0.160 0.000 0.289
createdBy 0.000 0.000 0.000 0.500 0.000
authoredBy 0.000 0.000 0.000 0.500 0.000
title 0.301 0.056 0.230 0.000 1.000
publishedBy 0.000 0.000 0.000 0.500 0.000

Bertrand Russel Albert Camus Marguerite Yourcenar

(
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c)
myourcenar 0.000
acamus 0.000
brussel 0.625

uch as 〈a:Book, b:Volume〉, but also includes other correspon-
ences such as 〈a:price, b:year〉 that do not agree with a human

nterpretation of their meaning. The accuracy of ASMOV has been
valuated against a set of well-established tests, as presented in
ection 7.

. Similarity calculations

The ASMOV similarity calculation is based on the determination
f a family of similarity measures which assess the likelihood of
quivalence along three different ontology kinds of input as classi-
ed in [14]. The nature of this calculation process is similar to the
pproach used in OLA [15], both in its use of a normalized weighted
verage of multiple similarities along different ontology facets, and
specially in its use of similarities between entity sets. OLA, how-
ver, uses a graph structure to represent the ontology, and performs
ts set of calculations based on entity sets identified from this graph;
SMOV uses a more diversified approach, working from the OWL-
L ontology directly and proposing ad-hoc calculations designed

pecifically for each ontology facet. In addition, the ASMOV process
s made more tolerant of the absence of any of these facets in the
ntologies to be matched, by automatically readjusting the weights
sed in the weighted average calculation. ASMOV also is designed
o accept an input alignment as a partial matching between the
ntologies.

At each iteration k, for every pair of entities e ∈ O, e′ ∈ O′, ASMOV
btains a calculated similarity measure �k(e,e′), as a weighted aver-
ge of four similarities:

a lexical (or terminological) similarity, sL(e,e′), using either an
external thesaurus or string comparison;
two structural similarities:
◦ a relational or hierarchical similarity sH

k
(e, e′), which uses the

specialization relationships in the ontology; and
◦ an internal or restriction similarity sR

k
(e, e′), which uses the

established restrictions between classes and properties.
E ′
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

an extensional similarity, s
k
(e, e ), which uses the data instances

in the ontology.

The lexical similarity does not vary between iterations and is
herefore calculated only once, during pre-processing. Consider
00 0.625
25 0.000
00 0.000

F = {L,E,H,R} to be the set of similarity facets used in the calculation;
�k(e,e′) is computed as

�k(e, e′)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
f ∈ F

(wf sf
k
(e, e′))

∑
f ∈ F

wf

, if e and e′ are the same type of entity;

0.0, otherwise
(1)

where wf are weights assigned to each of the features in the calcu-
lation. Using fixed weights presents a problem, as noted in [2]: if a
given facet f is missing (e.g., if an entity in an ontology does not con-
tain individuals), the corresponding similarity value sf

k
is marked as

undefined, and its weight wf is changed to zero.
In addition, ASMOV accepts an optional input alignment Ao as a

set of correspondences, Ao = 〈e,e′〉, where each correspondence in
Ao has a confidence value n0(e,e′). This input alignment is used
to supersede any similarity measures, defining a total similarity
measure sk(e,e′) as follows:

sk(e, e′) =
{

n0(e, e′), if
〈

e, e′〉 ∈ A0

�k(e, e′), otherwise
(2)

The initial calculated similarity value between entities, �0(e,e′),
is given by the lexical similarity between the entities multiplied by
the lexical similarity weight. The total similarity measures for every
possible pair of entities e in O and e′ in O′ define a similarity matrix
Sk = {sk(e,e′)} for each iteration k.

4.1. Lexical similarity

The lexical feature space consists of all the human-readable
information provided in an ontology. Three such lexical features are
considered in OWL ontologies: the id, the label, and the comment.

4.1.1. Lexical similarity for labels and Ids
hing with semantic verification, Web Semantics: Sci. Serv. Agents

Let the two labels being compared be l and l′, belonging respec-
tively to entities (classes or properties) e and e′. ASMOV is capable
of working with or without an external thesaurus; if an external
thesaurus is not used, only string equality is used as a measure. Let
� denote a thesaurus, and syn(l)the set of synonyms and ant(l) the

dx.doi.org/10.1016/j.websem.2009.04.001
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et of antonyms of label l; the lexical similarity measure between
he labels of e and e′, sL(e,e′), is then given as follows:

L(e, e′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.0, if l = l′

0.99, if l′ ∈ syn(l)
0.0, if l′ ∈ ant(l)
Lin(l, l′), if l ∈ ˙ ∧ l′ ∈ ˙ ∧ l′ /∈ syn(l)

tok(l) ∩ tok(l′)
max(|tok(l)|, |tok(l′)|) , otherwise

(3)

The similarity measure for synonyms is set slightly lower than
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

he measure for actual string equality matches, in order to privilege
xact matching between terms. Lin(l,l′) denotes the information-
heoretic similarity proposed by Lin in [26]; it provides a good

easure of closeness of meaning between concepts within a the-
aurus. The tokenization function tok(l) extracts a set of tokens from

ig. 3. Example alignments. Part (a) shows the alignment obtained by ASMOV between cla
 PRESS
Agents on the World Wide Web xxx (2009) xxx–xxx

the label l, by dividing a string at punctuation and separation marks,
blank spaces, and uppercase changes; when at least one of the labels
to be compared is not found in the thesaurus, and if they are not
exactly equal, the lexical similarity is computed as the number of
overlapping tokens.

ASMOV optionally finds a lexical similarity measure between
identifiers of entities e and e′, sid(e,e′), in the same way as with
labels, except that the Lin function is not used; in case that the
identifiers are not found to be synonyms or antonyms, the number
of overlapping tokens is computed. In principle, identifiers in OWL
hing with semantic verification, Web Semantics: Sci. Serv. Agents

are meant to be unique, and do not necessarily have a semantic
meaning [38], and thus the similarity measurement is made to be
more restrictive.

The lexical similarity measure sL(e,e′) is designed to privilege
labels (and ids) that can be found within the thesaurus used by the

sses and properties of the ontology; part (b) shows alignment between individuals.

dx.doi.org/10.1016/j.websem.2009.04.001
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Fig. 3.

ystem; thus, it avoids using other commonly used metrics such
s string edit or n-grams. While this design choice results in less
olerance for spelling mistakes, on the other hand it avoids influ-
ncing the matching process with similarities between identifiers
hat happen to share the same letters or n-grams. Nevertheless,
s part of our future work, we are exploring the inclusion of non-
anguage-based techniques within a weighted average with the
hesaurus-based measure.

Examples of lexical similarity measures for both labels and ids
or some classes in the ontologies in Fig. 1, are provided in Table 2,
here the results have been calculated using WordNet as the the-

aurus.

.1.2. Lexical similarity for comments
Comments are processed differently, since they usually consist

f a phrase or sentence in natural language. In this case, we compute
he similarity between the comments of entities e and e′, sc(e,e′), as
variation of Levenshtein distance but applied to tokens. First, an
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

rdered set of tokens is obtained from the comment of each of the
ntities; then, we calculate the number of token operations (inser-
ions, deletions, and substitutions of tokens) necessary to transform
ne of the comments into the other. Let x, x′ be the comments of e, e′

espectively, and let op(x, x′) denote the number of token operations

able 2
xamples of lexical similarity calculations.

: b: sid slabel

ook Volume 0.99 0.99
D CD 1.0 0.99
ook Reference 0.0 0.955
ale Female 0.0 0.0
inued ).

needed, and tok(x) denote the number of tokens in a comment,

sc(e, e′) = 1 − op(x, x′)
max(|tok(x)|, |tok(x′)|) (4)

Consider for example the comments for classes a:Book
and b:Volume. The comment for a:Book is “A written work
or composition that has been published, printed on
pages bound together.” For b:Volume, it is “A physi-
cal object consisting of a number of pages bound
together.” Each of these phrases is tokenized, where a:Book
results in 14 tokens and b:Volume in 11 tokens. The total number
of token operations necessary to transform a token into another is
10, 7 substitutions and three insertions (or deletions). The lexical
similarity for these two comments then is 1 − (10/14) = 0.286.

4.1.3. Lexical similarity measure calculation
The lexical similarity measure is calculated as the weighted

average of the label, id, and comment similarities. The weights
hing with semantic verification, Web Semantics: Sci. Serv. Agents

used in this calculation have been determined experimentally, as
label weight wlabel = 0.5, id weight wid = 0.3, and comment weight
wcomment = 0.2. From the results given above, then, the lexical sim-
ilarity measure between a:Book and b:Volume can be calculated
as 0.849.

Notes

Same id and label, both synonyms
Labels are “CD” for a:CD, and “Certificate of Deposit” for b:CD

Not synonyms, but closely related
Antonyms (as example only: b:Female does not exist in example ontologies)

dx.doi.org/10.1016/j.websem.2009.04.001
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Table 3
Relational similarity calculations.

a: b: Relational similarity
Entity Parent set Children set Entity Parent Set Children Set Parent Children Total
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.2. Entity-set similarity

For the calculation of the structural and extensional similarities,
n several cases it is necessary to determine a single similarity mea-
ure for sets of entities; in this section we provide the details of this
alculation. Let E and E′ be a set of entities from ontology O and
′, and let S = {s(e,e′)} denote a matrix containing a set of similarity
alues from each e ∈ E, e′ ∈ E′. The procedure to obtain this single
easure for these sets is as follows:

First, a greedy selection algorithm is used to obtain a set of cor-
respondences AS = {ei, e′

j
}. This algorithm iteratively chooses the

largest s(ei, e′
j
) in S and eliminates every other similarity for ei and

e′
j
from S, until all ei or all e′

j
are eliminated.

Next, a similarity measure sset(E,E′,S) is calculated using the fol-
lowing formula:

sset(E, E′, S) =

2 ×
∑

〈
ei,ej,s(ei,ej)

〉
∈ AS

s(ei, e′
j
)

|E| + |E′| (5)

This normalization accounts for any difference in size between E
nd E′; some entities from the larger set will not have a correspon-
ence and will reduce the overall similarity measure. Note that Eq.
5) will always yield values between 0 and 1, since the total number
f correspondences in AS cannot be greater than the average size of
he two sets E and E′.

.3. Relational similarity

The relational similarity is computed by combining the sim-
larities between the parents and children of the entities being
ompared. As classes or properties may contain multiple parents
nd children, the similarity calculation is calculated as the average
f the similarities of all parents or children, in order to restrict the
esults between 0 and 1.

Let e and e′ be two entities belonging to ontologies O and O′

espectively, and let U, U′ be the sets of entities that are parents of
and e′. Let e = a:Book and e’ = b:Volume; then U = {a:Product,
:Knowledge Container} and U′ = {b:Reference, b:Item}. If
he sets U and U′ are both empty, the parent similarity measure
etween e and e′ is undefined and ignored; if only one is empty, the
easure is 0.0. Otherwise, we construct a parent similarity matrix
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

P(k−1)(e,e′) containing the similarity measures at the (k − 1)th
teration between each u ∈ U and u′ ∈ U′. The parent similarity mea-
ure sU

k
(e, e′) for the kth iteration is then calculated as sset(U,U′,

P(k−1)(e,e′)). A similar calculation is performed for the children
ets, resulting in the children similarity measure sV

k
(e, e′).

able 4
nternal similarity for properties. Note that in the similarity between a:id and b:year, t
:Product and b:Volume.

: b:

ntity Domain Range Entity

uthoredBy Book Author written

d {Product, Author, Publisher} xsd:anyURI year
e {Item, Reference} {Pocket, Science} 0.3562 0.4433 0.3997
or {writtenBy} - 0.5198 Undef. 0.5198

{Auto-biography} - 0.2450 Undef. 0.2450

The total relational similarity sH
k

(e, e′) is then calculated as the
weighted sum of the parent and children similarity calculations;
ASMOV uses equal weights for both sets. If both the parent and
children similarity measure are undefined, then the total relational
similarity itself is undefined and ignored. If one of them is unde-
fined, then the other is used as the relational similarity.

The relational similarity between properties and between indi-
viduals is calculated in an analogous manner; in the case of
individuals, the calculation considers the classes to which indi-
viduals are asserted members as their parents. Examples of these
calculations for classes, properties, and individuals are presented
in Table 3.

4.4. Internal similarity

The internal similarity is calculated differently for classes and
properties in the ontology.

4.4.1. Internal similarity for properties
For properties, the internal similarity sR is calculated as a

weighted sum of the domain and range similarities using Eq. (1).
For the domain of all properties and for the range of object proper-
ties, the similarity is calculated as the similarity between the classes
that define the domain and range. If these consist of the union of
multiple classes, the best matched pair is used. Consider properties
p and p′, and let their domain be dom(p) and dom(p′), respectively.
Further, let dom(p) = (c1 ∪. . .∪ cM), and dom(p′) = (c′

1 ∪. . .∪ c′
N). First,

the pair (cm, c′
n) with the highest similarity value at the (k − 1)th iter-

ation is chosen; note that if N = M = 1, cm = dom(p), cn = dom(p′). The
domain similarity for properties at the kth iteration is then given by

sRD
k (p, p′) = s(k−1)(cm, c′

n) (6)

The range similarity for object properties sRR(p,p′) is calculated
analogously. The total internal similarity for properties is then cal-
culated as the weighted average between the domain and range
similarities; ASMOV uses equal weights for both. To calculate the
range similarity of two datatype properties p and p′, Wu–Palmer
similarity [42] is calculated over the canonical taxonomy structure
of XML Schema datatypes [3].

Table 4 illustrates two examples for the calculation of internal
similarity for properties, one for object properties and the other for
datatype properties with multiple domain classes.
hing with semantic verification, Web Semantics: Sci. Serv. Agents

4.4.2. Internal similarity for classes
For classes, the internal similarity sR

k
(c, c′) for the kth iteration

is calculated by taking into account the similarities of all local
property restrictions associated to a class, considering the simi-
larity between the properties themselves, and the cardinality and

he domain similarity is obtained from the highest similarity, in this case, between

Internal similarity

Domain Range Domain Range Total

BY Volume Writer 0.4649 0.3330 0.3974
{Volume, CD} xsd:int 0.3423 0.4444 0.3934

dx.doi.org/10.1016/j.websem.2009.04.001
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Table 5
Internal similarity calculation for classes a:Book and b:Volume. (a) Similarities
at first iteration; (b) cardinality restriction similarities; (c) value restriction sim-
ilarities; (d) matrix of property restriction similarities, calculated as a weighted
average using weights wprev = 0.5, wcard = 0.1, wvalue = 0.4. (e) Correspondences
derived by the entity-set similarity calculation. The resulting internal class similarity
sR

k
(a:Book,b:Volume) = 0.524.

(a)

year publisher title isbn writtenBy

authoredBy 0.000 0.189 0.000 0.000 0.520
id 0.325 0.017 0.457 0.399 0.000
topic 0.431 0.019 0.692 0.616 0.000
price 0.510 0.042 0.422 0.325 0.000
createdBy 0.000 0.118 0.000 0.000 0.449
publishedBy 0.000 0.613 0.000 0.000 0.511
title 0.431 0.019 0.950 0.616 0.000

(b)

year publisher title isbn writtenBy

authoredBy 0.000 1.000 0.000 0.000 0.000
id 0.000 0.000 1.000 1.000 0.000
topic 0.000 0.000 0.000 0.000 1.000
price 1.000 0.000 0.000 0.000 0.000
createdBy 0.000 1.000 0.000 0.000 0.000
publishedBy 0.000 1.000 0.000 0.000 0.000
title 0.000 0.000 1.000 1.000 0.000

(c)

year publisher title isbn writtenBy

authoredBy 0.000 0.000 0.000 0.000 0.330
id 0.000 0.000 0.000 0.000 0.000
topic 0.444 0.000 1.000 1.000 0.000
price 0.000 0.000 0.000 0.000 0.000
createdBy 0.000 0.000 0.000 0.000 0.000
publishedBy 0.000 0.764 0.000 0.000 0.062
title 0.444 0.000 1.000 1.000 0.000

(d)

year publisher title isbn writtenBy

authoredBy 0.000 0.194 0.000 0.000 0.392
id 0.163 0.008 0.329 0.300 0.000
topic 0.393 0.009 0.746 0.708 0.100
price 0.355 0.021 0.211 0.163 0.000
createdBy 0.000 0.159 0.000 0.000 0.225
publishedBy 0.000 0.712 0.000 0.000 0.280
title 0.393 0.009 0.975 0.808 0.000

(e)

a: b: Similarity

authoredBy writtenBy 0.392
topic isbn 0.708
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alue restrictions for these properties. Let c and c′ be two classes
elonging to ontologies O and O′, and let P(c) and P(c′) be the sets
f properties whose domain includes c and c′, respectively. If both
(c) and P(c′) are empty, the internal similarity between c and c′

s undefined and ignored in the calculation of Eq. (1). Otherwise,
or each pair of properties pm ∈ P(c) and p′

n ∈ P(c′), we calculate a
roperty restriction similarity sRP

k
(pm, p′

n) as the weighted average
f three values:

The first value, s(k−1)(pm, p′
n), is the similarity between the two

properties at the (k − 1)th iteration.
The second value, scard(pm,pn), is a measure of the agreement in
cardinality restrictions: if the two properties are restricted to the
same minimum and maximum cardinality, this measure is 1.0,
otherwise, it is 0.0.
The third value, svalue(pm, p′

n), is a measure of the similarity in
value restrictions. Two types of value restrictions are considered:
restrictions on particular property values, called enumerations,
and restrictions on the class of the allowable values, which are
called range restrictions. If one of the property value restrictions
is defined as an enumeration of possible individual values, and the
other is not, the value restriction similarity measure is 0.0. If both
are enumerations, then this measure is calculated as the propor-
tion of the enumerated individuals that match from one property
restriction to another with respect to the total number of possi-
ble matches. If neither property being compared is restricted by
enumerations, then their value restriction similarity measure is
calculated by comparing the classes defined by the range restric-
tion on the properties, as in the case of property internal similarity
detailed in Section 4.4.1 above.

We then construct an property restriction similarity matrix
k(c,c′), containing all sRP

k
(pm, p′

n) between each pm ∈ P(c) and
′
n ∈ P(c′), and calculate the relational similarity measure sR

k
(c, c′) =

set(P(c), P(c′), Rk(c, c′)). Table 5 shows an example of the calcula-
ion of internal class similarity between a:Book and b:Volume.

.4.3. Internal similarity for individuals
Let dp denote the value of property p for individual d; the internal

imilarity sR
k
(d, d′) between two individuals d and d′ is calculated by

omparing the values of their properties, as follows:

For any two datatype properties p and p′ with values for d
and d′ respectively, a value similarity svalue

k
(d, p, d′, p′) is set to

s(k−1)(p,p′), the total similarity between the properties at the
previous iteration, if their corresponding values are lexically
equivalent, otherwise it is set to undefined.
For any two object properties p and p′ with values O and O′ for
d and d′, respectively, a value similarity svalue

k
(d, p, d′, p′) is set to

s(k−1) (O, O′), the total similarity between O and O′ at the previous
iteration.

The similarities between properties then define a matrix Svalue(d,
′). Let P(d) and P′(d′) be the sets of both datatype and object prop-
rty values for d and d′; then the relational similarity between
he individuals is calculated using the entity-set similarity evalu-
tion algorithm as sR

k
(d, d′) = sset(P(d), P ′(d′), Svalue(d, d′)). Table 6

hows the calculation of similarity between individuals a:b2 and
:my2.
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
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.5. Extensional similarity

.5.1. Extensional similarity between classes
The extensional similarity measure for two classes is calculated

n the same way as the children hierarchical similarity. Let I(c)
price year 0.355
publishedBy publisher 0.712
title title 0.975

and I′(c′) be the sets of individuals members of classes c and c′,
and let IS(k−1)(c,c′) be the similarity matrix formed by the total
similarity values for each pair of individuals d ∈ I(c), d′ ∈ I(c′). The
extensional similarity measure for classes c and c′ is then given by
sD

k
(c, c′) = sset(I(c), I(c′), IS(k−1)(c, c′)). An example calculation for

classes a:Male and b:Writer is shown in Table 7.

4.5.2. Extensional similarity between properties
To determine extensional similarity between properties, all indi-
hing with semantic verification, Web Semantics: Sci. Serv. Agents

viduals that contain a value for a given property are analyzed to
determine a list of possible matches. Only properties which are
both object or both datatype can have an extensional similarity;
otherwise, the similarity is undefined.

dx.doi.org/10.1016/j.websem.2009.04.001
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Table 6
Internal similarity calculation for individuals a:b2 and b:my2. (a) Matrix of property value similarities; (b) correspondences derived by the entity-set similarity calculation.
The resulting internal class similarity sR

k
(a:b2,b:my2) = 0.437.

(a)

title: Mémoires d’Hadrien year: 1951 writtenBy: Marguerite Yourcenar publisher: nice publisher: libro

title: Mémoires d’Hadrien 0.950 0.000 0.000 0.000 0.000
authoredBy: myourcenar 0.000 0.000 0.217 0.000 0.000
publishedBy: nb 0.000 0.000 0.062 0.469 0.330
publishedBy: gh 0.000 0.000 0.062 0.330 0.330

(b)

a: b: Similarity

title: Mémoires d’Hadrien title: Mémoires d’Hadrien 0.950
authoredBy: myourcenar writtenBy: Marguerite Yourcenar 0.217
publishedBy: nb publisher: nice 0.469
p
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ublishedBy: gh publisher: libro

Given two properties p in O and p′ in O′, let the sets I(p)
nd I(p′) denote the set of individuals that contain one or more
alues for each property, and let I′ denote the set of all indi-
iduals in O′. Further, for a given individual d, let dp denote the
alue of the property p for individual d. The individual similarity
alculation is performed by finding a set of individual correspon-
ences BD = 〈d·p, d′·p′ ′〉, d ∈ I(p), d′ ∈ I′. A correspondence belongs to
D if

for p and p′ ′ object properties, sk(d·p, d′·p′ ′), the total similarity
measure between individuals d·p and d′·p′ ′ at the previous itera-
tion, is greater than zero.
for p and p′ ′ datatype properties, d·p and d′·p′ ′ are lexically equiv-
alent.

A second set AD ⊆ BD, is obtained by restricting it to correspon-
ences where the property at the second individual p′ ′ = p′. Then,
he individual similarity between properties p and p′, sD

k
(p, p′), is

iven by the ratio of the sizes of sets AD and BD.
In the example in Fig. 1, there are three different values

or the property a:authoredBy: a:brussel, a:acamus,
nd a:myourcenar. Each of these values has a non-zero
imilarity at iteration 1 with one individual each from
ntology b: b:Bertrand Russel, b:Albert Camus, and
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
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:Marguerite Yourcenar. Each of these occurs once as the
alue of b:writtenBy, and b:Bertrand Russel occurs addition-
lly as a value for b:subject. The individual similarity between
:authoredBy and b:writtenBy is then 0.75.

able 7
xtensional similarity calculation for classes a:Male and b:Writer. (a) Matrix of
imilarity values for instances in previous iteration; (b) correspondences derived
y the entity-set similarity calculation. The resulting extensional class similarity sR

k
a:Male,b:Writer) = 0.171. Note the reduction effect due to the existence of a third
ndividual in ontology b:.

a)

Bertrand Russel Albert Camus Marguerite Yourcenar

camus 0.074 0.213 0.074
russel 0.213 0.074 0.074

b)

: b: Similarity

camus Albert Camus 0.213
russel Bertrand Russel 0.213
0.330

5. Semantic verification process

5.1. Pre-alignment extraction

In order to perform semantic verification, a pre-alignment Bk
is first extracted from the similarity matrix Sk that results from
the similarity calculations. This pre-alignment is obtained using a
greedy algorithm as follows. A correspondence 〈e, e′〉 is inserted into
the alignment Bk if it has not been previously eliminated through
the process of semantic verification, and if sk(e,e′) is maximal to
within a similarity threshold � either for e or for e′; that is, if
there does not exist an ei such that 〈ei,e′〉 has not been eliminated
and |sk(ei,e′) − sk(e,e′)| ≤ �, or there does not exist an e′

j
such that

〈e, e′
j
〉 has not been eliminated and |sk(e, e′

j
) − sk(e, e′)| ≤ �. Note

that if two elements ea and eb have similarity values such that
|sk(ea,e′) − sk(eb,e′)| ≤ �, then both 〈ea, e′〉 and 〈eb, e′〉 are inserted
into the pre-alignment.

5.2. Semantic verification

The pre-alignment Bk is then passed through a process of seman-
tic verification, designed to verify that certain axioms inferred from
an alignment are actually asserted in an ontology, removing cor-
respondences that lead to inferences that cannot be verified. It is
important to underline that the idea is not to find semantically
invalid or unsatisfiable alignments, but rather to remove correspon-
dences that are less likely to be satisfiable based on the information
present in the ontologies. This approach is similar to the notion
of mapping instability defined in [31], where mappings are con-
sidered to be stable when subsumptions implied by the merge of
the mapped ontologies and their mapping can be verified in the
ontologies themselves. It is also similar to the approach used in
[23] to derive ontology fragments based on an existing alignment
by verifying subsumptions as well as domain and range axioms. In
addition to these axioms, ASMOV uses equivalence and disjointness
relationships.

Let O and O′ be two ontologies, let Bk be a pre-alignment between
O and O′, and let B12 = 〈e1, e′

1, e2, e′
2〉 be an alignment consist-

ing of a single pair of correspondences, B12 ⊆ Bk. Consider OM to
be an ontology defined by the merge of O, O′, and B12, where the
correspondences in B12 are transformed into equivalence axioms.
hing with semantic verification, Web Semantics: Sci. Serv. Agents

Suppose that an axiom ˛ involving only entities in O can be inferred
in OM from the relations derived from the correspondences in B12;
B12 is said to be verified in O if ˛ is independently asserted by O. If B12
cannot be verified, the correspondence with the lowest confidence
value is eliminated from Bk and set in a list of removals, with the

dx.doi.org/10.1016/j.websem.2009.04.001
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umption incompleteness: 〈a:Pocket, b:Novel〉 is kept, while 〈a:Science, b:R

s kept, while 〈a:Author, b:Publishing House〉 is eliminated.

ther correspondence stated as the cause for elimination; if both
orrespondences have the same measure, neither is eliminated.

Let e1, e2 be two distinct entities in O, and e′
1, e′

2 distinct entities
n O′. The following kinds of inferences are examined by the ASMOV
emantic verification process:

Multiple-entity correspondences: A multiple-entity correspon-
dence, illustrated in Fig. 4 (a), occurs when an alignment contains
both 〈e1, e′

1〉 and 〈e2, e′
1〉. Such an alignment implies that (e1 = e2),

so if this axiom is not asserted, the alignment cannot be verified.
Crisscross correspondences: Suppose that e2 ≤ e1 and e′

2 ≤ e′
1.

A crisscross correspondence, shown in Fig. 4(b), occurs
when an alignment contains both 〈e1, e′

2〉 and 〈e2, e′
1〉:

[(e2 ≤ e1) ∧ (e1, e′
2) ∧ (e2, e′

1) ∧ (e′
1, e′

2)] implies both (e1 = e2)
and (e′

1, e′
2). If both equivalences are not actually asserted in O or

O′ respectively, then the alignment cannot be verified.
Disjointness-subsumption contradiction: Suppose that (e2 ≤ e1)
and (e2 ⊥ e′

1). If an alignment contains both 〈e1, e′
2〉 and 〈e2, e′

1〉,
this implies (e2 ⊥ e1) and (e′

2 ≤ e′
1), which are both invalid and

therefore cannot be verified. This contradiction is illustrated in
Fig. 4(c); note that since (e2 = e1) → (e2 ≤ e1), this also holds for
equivalences.
Subsumption and equivalence incompleteness: If an alignment
contains both 〈e1, e′

1〉 and 〈e2, e′
2〉, then (e2 ≤ e1) and (e′

2 ≤ e′
1)

mutually imply each other; subsumption incompleteness occurs
when one of the two is not asserted in its corresponding ontology,
as shown in Fig. 4(d). Equivalence incompleteness is similar.
Domain and range incompleteness: Let c, c′ be classes and p, p′

be properties in O and O′ respectively, let dom(p) denote the
domain of a property p, and suppose c ∈ dom(p). If an align-
ment contains both 〈c,c′〉 and 〈p,p′〉, this implies (c′ ∈ dom(p));
domain incompleteness occurs when this axiom cannot be ver-
ified, as illustrated in Fig. 4(e). A similar entailment exists for
ranges.

Every unverified correspondence is added to a list of removals;
hen, all existing unverified correspondences are checked to
etermine whether the cause of elimination subsists, removing
orrespondences from the list if the cause has disappeared. If at
east one correspondence is newly unverified or at least one previ-
usly unverified correspondence has been removed from the list of
emovals, then a new pre-alignment is extracted from the existing
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
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imilarity matrix, and the semantic verification process is restarted
rom this new pre-alignment. Otherwise, the semantically verified
lignment Ak and matrix Tk are obtained, the first by removing all
nverified correspondences from the pre-alignment Bk provided as

nput to the semantic verification process, and the second by reset-
) crisscross correspondences; (c) disjointness-equivalence contradiction; (d) sub-
ing〉 is eliminated; (e) domain and range incompleteness: 〈a:Author, b:Writer〉

ting to zero the similarity values of all unverified correspondences
in the list of removals.

6. Algorithm termination and convergence

6.1. Finalization condition

The semantically verified alignment Ak and matrix Tk are sub-
jected to the evaluation of a finalization condition, in order to
determine whether the algorithm should terminate, or whether a
new iteration should be started by recomputing the similarity val-
ues. Two finalization conditions are potentially used to determine
when the iterative process should stop. The most stringent con-
dition requires that the resulting matrix Tk be repeated to within
the same similarity threshold � used for pre-alignment extraction
in Section 5.1; that is, that for some iteration x < k, and for every
sk(e,e′) in Tk, sx(e,e′) in Tx, |sx(e,e′) − sk(e,e′)| ≤ �.

In practice, we have found that it is enough to require that the
resulting alignment be repeated, that is, that for some iteration x < k,
Ax = Ak. Although it cannot be guaranteed that this looser condition
will necessarily result in the same alignment as if the matrix itself
were repeated, we posit that for most practical cases the results will
be very similar, at a much lesser processing cost.

Due to the iterative nature of the ASMOV alignment algorithm,
it is important to determine if these finalization conditions guar-
antee its termination. For this, we determine that under most
circumstances the algorithm converges, and that this convergence
guarantees termination. We also show that if a cyclic condition is
encountered, termination is also ensured.

6.2. Convergence without semantic verification

We first examine the case where no correspondences are ever
eliminated through the semantic verification processes. To prove
convergence, we will show that the similarities increase mono-
tonically and have an upper bound. Assuming that for iteration
k > 0, for any e in O, e′ in O′, sk(e,e′) ≥ s(k−1)(e,e′), an investigation of
each of the similarity calculations shows that s(k+1)(e,e′) ≥ sk(e,e′),
since all calculations are based either on values that remain con-
stant throughout iterations, or on the similarities between two
related entities, which cannot decrease. For example, the parent
relational similarity measure is based on the similarity measures
hing with semantic verification, Web Semantics: Sci. Serv. Agents

of the parents at the previous iteration, which cannot decrease.
Thus, the total similarity measure cannot decrease. Now observe
that the initial calculated similarity value �0(e,e′) = wLsL(e,e′); from
Eq. (1) it is clear that �0(e,e′) is the lowest possible value that any
sk(e,e′) may take. Since similarity values are upper-bound to 1.0,

dx.doi.org/10.1016/j.websem.2009.04.001
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the OAEI 2008 campaign. As mentioned in the OAEI 2008 results [7],
ASMOV was one of the three best performing systems; this mirrors
our success during the OAEI 2007 evaluations [13]. The total time
required to run all benchmarks was 76 s, an order of magnitude
Fig. 5. Example of un

k(e,e′) converges to some s∞(e,e′) ≤ [1 − wL (1 − sL(e,e′))]. The use of
non-zero threshold � in the stringent finalization check described

n Section 3.2 ensures that the algorithm terminates, since for
arge enough k, |sk+1(e,e′) − sk(e,e′)| ≤ �. Since equivalent matrices
enerate equivalent alignments, the looser finalization check also
uarantees termination.

.3. Convergence with semantic verification

When an unverified correspondence is eliminated, the similarity
easure of this correspondence, which was some positive value

t the previous iteration, is forced to 0.0. This in turn could cause
ther similarity measures to decrease in value. As long as these
liminated correspondences are not restored, then the algorithm
ill eventually converge for the reasons espoused in Section 6.1.

It is possible that “unverified hunting” situations arise, how-
ver, especially for ontologies that are not well modeled or those
rom very different knowledge domains. Suppose the example in
ig. 5, where a crisscross correspondence is discovered in the first
teration in (a). The second iteration finds a new set of correspon-
ences as in (b), and eliminates 〈a:Author, b:Writer〉 in favor of
a:Human, b:Female〉; since 〈a:Author, b:Writer〉 is no longer

correspondence, this could lead again to the matching in (a).
nder this situation, it is possible that the algorithm does not con-
erge, but rather that it enters a cyclic situation. Provided that the
imilarity threshold � is non-zero, the number of possible matrices
s finite, and therefore the algorithm is guaranteed to terminate. The
umber of possible alignments is also finite, even if the threshold

s zero, therefore termination is also ensured under the looser con-
ition. Note that termination will occur much faster, under a cyclic
ituation, by requiring only that an alignment be repeated.

. Experimental results

A prototype of ASMOV has been implemented as a Java applica-
ion. Using this prototype, two sets of experiments were carried out.
he first set of experiments was done using the 2008 benchmark
eries of tests created by the Ontology Alignment Evaluation Initia-
ive (OAEI) [7], in order to determine the accuracy of the ASMOV
lgorithm. The second set of experiments was performed using
he NCI Thesaurus (describing the human anatomy) and the Adult

ouse Anatomy ontologies, which are also part of the OAEI 2008
ontest, in order to analyze the algorithm using different thesauri.

The experiments were carried out on a PC running SUSE Linux
erver with two quad-core Intel Xeon processors (1.86 GHz), 8 GB
f memory, and 2 × 4 MB cache.

.1. Evaluation of accuracy
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

The goal of ontology matching is to generate an alignment
hat discovers all correct correspondences, and only correct corre-
pondences, where correctness is judged with respect to a human
nterpretation of meaning. In some cases, either incorrect corre-
pondences are discovered, or correct correspondences are not. For
ed hunting situation.

example, in Fig. 3, the correspondence 〈a:price, b:year〉 is incor-
rect in terms of our interpretation of the meaning of “price” and
“year.” Nevertheless, since these two concepts are not antonyms,
since their structural characteristics are similar, and since there do
not exist semantic clues to reject their equivalence, the correspon-
dence is included by ASMOV in the alignment.

To evaluate accuracy of ontology matching, it is necessary to
quantify both the number of correct correspondences not found,
and the number of incorrect correspondences found. This is done by
using a gold standard alignment between two ontologies previously
derived by human experts, running the algorithm on the ontologies,
and then calculating precision (p), the percentage of gold standard
correspondences that exist within the extracted alignment, recall
(r), the percentage of correct extracted correspondences that exist
within the gold standard, and F1, the harmonic mean of precision
and recall. Let G be the gold standard alignment, and A be the align-
ment extracted by the ontology matching algorithm,

p = |A ∩ G|
|A| , r = |A ∩ G|

|G| , F1 = 2pr

p + r
(7)

We have evaluated the accuracy of ASMOV using the well-
established OAEI benchmark series of tests, in their 2008 version,
and we have compared these results with those of other algorithms
that competed in the OAEI challenge. These tests are confined to
the domain of bibliographic references (BibTeX). The benchmark
tests start from a reference ontology to a multitude of alterations.
As ontologies may be modeled in a different manner by different
developers, the variations between the tests highlight how well the
algorithm would perform in the real world.

Fig. 6 graphs these values for ASMOV against all other entrants in
hing with semantic verification, Web Semantics: Sci. Serv. Agents

Fig. 6. Accuracy of ASMOV vs. OAEI 2008 entrants.

dx.doi.org/10.1016/j.websem.2009.04.001
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Fig. 7. Effect of semantic verification on accuracy, by level of difficulty.

mprovement over our 2007 implementation [21]. Total memory
sed to run these tests was 23.5 MB, including the Java Virtual
achine.
The OAEI 2008 benchmark tests are divided into 10 levels of diffi-

ulty, where the most difficult tests have less information on which
o base an alignment; we have run experiments to determine F1
or each of these sets of benchmarks. Furthermore, to gauge the
ffect of our semantic verification process, we have run the experi-
ents both using the full ASMOV implementation, as well as using
system without the semantic verification. The results of these

xperiments are shown graphically in Fig. 7. It can be clearly seen
hat, as expected, the accuracy of ASMOV decreases as the tests
ecome more difficult. It can also be seen from the plot of the differ-
nce between the two measures, shown in Fig. 7 as a line graph with
he scale on the right axis, that the semantic verification process
roduces an important improvement on the overall F1 measure, and
hat this improvement is more significant for matching situations
here there are sparse cues available.

To better analyze the influence of the various matchers used in
SMOV in the overall accuracy, we have also run the algorithm using
nly one of the four similarity matchers at a time, without semantic
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
World Wide Web (2009), doi:10.1016/j.websem.2009.04.001

erification; the lexical matcher is always used as seeding value for
he iterative algorithm. The results of these tests are shown in Fig. 8.
t can clearly be seen that the combination of all four matchers pro-
uces a more accurate result than the use of any individual matcher.

Fig. 8. Effect of matchers on accuracy.
 PRESS
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It is interesting to note that most of the accuracy is still being given
by the entity-level lexical matching, while the other matchers act
as complements to enhance precision and/or recall.

7.2. Comparison of alignments using UMLS and WordNet

The implementation of the ASMOV ontology alignment algo-
rithm contemplates the use of a standardized thesaurus adapter
application programming interface (API), to enable the inter-
changeability of thesauri and therefore the use of the algorithm
in different domains. This thesaurus adapter API has been
derived from the implementation of the Java WordNet library
(http://jwn.sourceforge.net/), an open-source implementation for
connectivity to WordNet version 2.0. The interface used in this
library has been expanded and modified to incorporate features
from WordNet 2.1, as well as to allow for the implementation of
other thesauri.

This API contains six interfaces: Dictionary database, Index
word, Synonym set, Word, Pointer, and Pointer type.

• Dictionary database: this interface is a bridge between the applica-
tion and the lexical reference database, providing independence
from the actual database implementation. It exposes one method
that lets an application lookup index words from the underlying
database.

• Index word: the index word is the text being queried, tagged with
its synonym sets and its part-of-speech (POS). Depending on the
implementation of the thesaurus, the text may actually represent
a combination of words, such as “heart attack”.

• Synonym set: A synonym set represents a concept and contains a
set of words that are alternative names for that concept. A syn-
onym set can also contain a description that describes it in a
human-readable format.

• Word: the word interface wraps a word, its description and its
intended meaning through a synonym set.

• Pointer: a pointer encodes a semantic relationship between
words. These relationships are directional, with a source, a target
and a pointer type.

• Pointer type: this interface describes a type of semantic relation-
ship between concepts. Each thesaurus defines its own set of
pointer types through this interface; at a minimum, a thesaurus
adapter must provide a synonym, antonym, hypernym (or par-
ent), and hyponym (or child) relationship.

We have implemented this standardized API for two different
thesauri: WordNet and the UMLS Metathesaurus. The implemen-
tation for WordNet has been achieved by updating the existing
JWordNet library. In the case of the UMLS Metathesaurus, the imple-
mentation of the API leverages the Java library created by the UMLS
in order to retrieve concepts. Thus, the implementation of the Dic-
tionary database interface queries the UMLS library in order to
retrieve a set of concepts associated with a given text. These con-
cepts represent synonym sets and are combined to form a UMLS
Index word. Since concepts in UMLS are non-linguistic entities, no
POS is tagged to the Index word. Concepts in UMLS are tied to their
various names; each of these names is wrapped by the implemen-
tation of the word interface.

Since UMLS does not provide an antonym relationship between
concepts, the UMLS thesaurus adapter for ASMOV investigates
whether two concepts are related in some way, either as synonyms,
hypernym–hyponym, or by some of the other UMLS relation-
hing with semantic verification, Web Semantics: Sci. Serv. Agents

ships such as the ‘related’ relationship. If no relationship other
than ‘sibling’ is found, then the two concepts are treated as if
they were antonyms for purposes of the lexical similarity calcu-
lation, to avoid mapping closely related but antonymous concepts
such as ‘Man’ and ‘Woman’. This antonymy assumption is similar

dx.doi.org/10.1016/j.websem.2009.04.001
http://jwn.sourceforge.net/
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Table 8
Accuracy for OAEI anatomy test.

WordNet UMLS
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Table 10
OAEI anatomy test results for ASMOV using partial alignments.

Without partial Using partial

T
E

M

U
T
U
L
A
C
C

recision 0.431 0.787
ecall 0.453 0.652
1 0.442 0.713

o the strong disjointness assumption used in [37] for correct-
ng ontologies. Currently, it is only used in ASMOV to provide
ompleteness to UMLS; however, this assumption could be more
idely applicable for semantic verification, as discussed under

ection 8.
Additionally, it is well-known that UMLS exhibits some seman-

ic inconsistencies, in particular circular hierarchical relations [33],
hich causes problems when calculating some lexical similarity
easures such as Lin [26]; where there exists a circular hierar-

hy, it is not possible to determine which of the elements within
he circularity is actually the root. For these tests, we have used
he naïve approach outlined in [33] in order to resolve Eq. (3)
hen terms are neither synonyms nor antonyms. This approach
orks well in order to find a common hypernym between two

erms even if circular relations are found. However, the distance
rom this common hypernym to the root of the thesaurus may
ot be computable. In order to avoid this issue, we have used a
ubset of the UMLS Metathesaurus containing only references to
he NCI Thesaurus; this ensured that all concepts retrieved would
ave the ‘NCI Thesaurus’ concept (C1140168) as the common root
oncept. We have manually verified that all terms involved in
he tests have at least one path to this root. The implementa-
ion of the formal approach outlined in [33] is a matter of future
ork.

Alignment results using these two different thesauri have been
ompared using two real-world anatomy ontologies: a subset of
he NCI Thesaurus encoding the human anatomy, and the Adult

ouse Anatomy developed by the Jackson Laboratory Mouse
enome Informatics. We have specifically used the versions of

hese ontologies presented for evaluation at the OAEI 2007 and
008 challenges; the authors in Ref. [5] present a report on an
lignment of previous versions of these ontologies using other
echniques.

The accuracy of ASMOV using UMLS Metathesaurus and Word-
et is shown in Table 8. This overall accuracy evaluation of the
lgorithm using both thesauri was computed through independent
esting by the evaluators of the OAEI challenge. Total time elapsed
or the execution of ASMOV was 3 h and 50 min, using 600 MB of

emory. As can be appreciated, the accuracy of ASMOV using UMLS
or these specialized anatomy ontologies is substantially greater
han its accuracy using the generic WordNet thesaurus. This result
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
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llustrates the advantages to be gained from the use of domain-
pecific knowledge in order to enhance ontology alignments. In
rder to explore the accuracy of these mappings further, we ana-

yzed a sample set of mappings from Ref. [5], and results from the
artial alignments provided by OAEI 2008.

able 9
xamples of ontology mappings.

ouse anatomy concept [5] UML

Mapped NCI concept Valid? Mapp

terine cervix Cervix uteri Yes Cervi
endon Tendon Yes Tend
rinary bladder urothelium Transitional epithelium Yes Gallb
ienal artery Splenic artery Yes Splen
lveolus epithelium Alveolar epithelium Yes Alveo
ervical vertebra 1 C1 vertebra Yes Noth
erebellum lobule I Lingula of the lung No Noth
�-Precision 0.339 0.402
�-Recall 0.258 0.254
�-F1 0.293 0.312

7.2.1. Sample of ontology correspondences
In Ref. [5], some examples of correct correspondences and one

example of an incorrect correspondence between terms in previous
versions of these two ontologies are presented by the authors. We
have tabulated these mappings in Table 9, comparing them with
the mappings obtained by ASMOV using both UMLS and Word-
Net. As can be seen, UMLS as a thesaurus provides much better
results for this small sample. While we believe this higher accu-
racy is partially due to the fact that the lexical features in the NCI
anatomy are codified as concepts in UMLS, the ability to find accu-
rate correspondences in the mouse anatomy is the result of the
help provided by the UMLS Metathesaurus in relating medical and
biological concepts not found in WordNet.

7.2.2. Partial alignments
For the OAEI 2008 challenge, a partial alignment for these two

ontologies was given, to be used as input for one of the tasks
for this test. This partial alignment contained all correspondences
considered trivial, i.e., those that could be found by simple string
comparison, and a set of 54 non-trivial correspondences [7]. The
evaluation for the task using partial alignments was done by the
OAEI committee as follows: consider Gp to be the partial align-
ment provided, G to be the full reference alignment, and A to be
the alignment obtained by the system under evaluation. Then, the
�-Precision and �-Recall are calculated for an alignment A − Gp,
against a gold standard A − G. The results obtained for ASMOV are
shown in Table 10. While the results obtained leave substantial
margin for improvement, we should note that there was a marked
increase in the overall accuracy of the system when using a partial
alignment.

In order to investigate further the performance of ASMOV
against the OAEI anatomy tests, we used the provided partial align-
ment as a gold standard, We then ran ASMOV using two different
combinations of weights: the first set is the one used for the OAEI
contest, which had to be the same set as those used for the bench-
mark, and the second set was derived experimentally to improve
accuracy. The results of this further investigation are presented in
Table 11; it is clear that the variation in weights resulted in a sub-
stantial increase in correct correspondences found. Nevertheless,
there is still an important number of correspondences that were not
found in this partial alignment. We believe that the main cause for
hing with semantic verification, Web Semantics: Sci. Serv. Agents

this is the semantic verification process, and more specifically in the
evaluation of subsumption incompleteness between entities that
have multiple parents. Some correspondences are being eliminated
unless all possible assertions of subsumption exist; this condition
seems too stringent, and needs to be reevaluated. In addition, other

S WordNet

ed NCI concept Correct? Mapped NCI concept Correct?

x Yes Ectocervix No
on Yes Tendon Yes
ladder epithelium No Nothing No
ic artery Yes Nothing No
lar epithelium Yes Alveolar epithelium Yes

ing No Cervical vertebra No
ing Yes Cerebellar cortex No

dx.doi.org/10.1016/j.websem.2009.04.001
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Table 11
Total number of correspondences found for partial alignment in Anatomy test. The
standard weights used were wL = 0.2, wH = 0.3, wR = 0.4, wE = 0.1, wlabel =
0.5, wid = 0.3, wcomment = 0.2. The optimized weights used were wL = 0.4, wH =
0.1714, wR = 0.2571, wE = 0.15, wlabel = 0.58, wid = 0.12, wcomment = 0.3.

Standard weights Optimized weights

Correct correspondences found 855 891
Correspondences found but not

in gold standard
407 431

Correspondences in gold 114 78
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standard not found
recision 0.678 0.674
ecall 0.882 0.920

ystems such as SAMBO make use of more of the semantic knowl-
dge included within UMLS, especially the relation part-of; this
hows an important avenue for improvement to ASMOV’s semantic
erification. The OAEI organizers have offered to open their refer-
nce alignment after the 2008 challenge; this will enable us to make
more in-depth analysis of this issue.

. Limitations and future work

The evaluations of ASMOV presented in Section 7 show the
otential of our algorithms in deriving useful alignments even
hen relatively little information is present in the ontologies being
atched. In particular, we have been able to show that the combina-

ion of similarity matchers in multiple dimensions, with a process
or semantic verification of the resulting alignments, results in a
ystem with high accuracy. Nevertheless, there is room for contin-
ed improvement in our algorithms. In the following sections, we
resent some of the limitations of our current algorithm implemen-
ation, and the direction of our ongoing work.

.1. Evaluation of other OAEI results

The OAEI anatomy test results show that, under dissimilar
ntologies, the accuracy of ASMOV is reduced. We believe this is
ostly due to stringiness in the semantic verification process; fur-

her evaluation is merited in this regard.
In addition, we should note that ASMOV participated in three

dditional tracks in both OAEI 2007 and OAEI 2008: the directory
ests, the fao tests, and the conference tests. All these tests are blind;
hus, it is difficult to make comprehensive evaluations of the results.
he results for the directory tests show that ASMOV had the high-
st precision but low recall. We believe this may be because the
emantic verification process is eliminating too many potential cor-
espondences, in particular where multiple entities in one ontology
re being mapped to a single entity in the other ontology without
n equivalence assertion; if corroborated, this may show that the
ultiple-entity verification is too strict, and it also may show that

ntology pre-processing may be required. In the fao tests, we did
ot report any correspondences found; this was due to our under-
tanding that correspondences should be reported only on classes.
fter re-running these tests to include matching of individuals, we

ound a substantial number of correspondences in most of the tests;
owever, it was not possible to verify which of these are actually
orrect with respect to the gold standard. The conference tests do
ot have a complete reference alignment, and the evaluations are
eing done over tentative alignments. The results from 2008 show
hat ASMOV had the best accuracy of the three systems that were
Please cite this article in press as: Y.R. Jean-Mary, et al., Ontology matc
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ble to complete this test.
We should further note that ASMOV did not participate in

he multilingual directory (mldirectory), library, and very large
rosslingual resources (vlcr) tests during OAEI 2008. In the first case,
his non-participation was because we have not yet implemented
 PRESS
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an interface to a multilingual thesaurus, without which the mldirec-
tory test would have given poor results. In the case of library and
vlcr, these tests are designed using the SKOS ontology language,
while ASMOV is specifically designed to work with OWL-DL.

8.2. Computational cost and complexity

The implementation of ASMOV used in the OAEI 2008 tests pro-
duced an improvement of an order of magnitude with respect to
our 2007 implementation. Nevertheless, the run time of over 3 h
for the anatomy tests still suggests that improvements in execution
efficiency are needed.

While a formal derivation of computational complexity for
ASMOV is beyond the scope of this paper, we present here an initial
analysis. Let O and O′ be the ontologies being matched, and let N and
N′ be the number of entities in O and O′ respectively. Further, con-
sider that most similarity calculations between two entities e ∈ O
and e′ ∈ O′ entail the comparison of entity subsets related to e and
e′. It is reasonable to assume that in most cases the size of each of
these entity subsets is much smaller than N and N′. For example,
for the relational similarity calculation between e and e′, the size of
the parent and children sets of e and e′ can be assumed to be much
smaller than the overall size of each ontology. With this assump-
tion, such comparisons can be approximated as constant time with
respect to the size of the ontologies. Thus, the overall complexity
for each similarity calculation can be approximated as ©(NN′).

The complexity of the semantic verification process can be esti-
mated by recognizing that this entails the comparison between
pairs of entities from each ontology. The total number of pairs of
entities in O is N(N − 1)/2; thus, the upper bound on this process is
©(N2N′2).

These processes are repeated iteratively until a finalization con-
dition is reached. The above two results show that each iteration for
ASMOV is performed in polynomial time. As has been noted in Sec-
tion 6, the algorithm converges under most circumstances, but may
encounter cyclical conditions under others. The total number of
iterations required for termination depends especially on the inter-
nal characteristics of the ontologies being aligned. An upper bound
for the number of iterations is given by either the number of possi-
ble matrices or alignments; the latter is a much smaller number, but
both are exponential over the number of terms in the ontologies.
This indicates that the number of iterations that ASMOV needs to
execute must be closely studied in order to reduce computational
cost. With this aim, then, we are currently performing a formal eval-
uation of the complexity of the ontology matching problem and of
ASMOV in particular.

8.3. Direction of ongoing work

Our ongoing work is focused on the improvement in the per-
formance and capabilities of ASMOV. One interesting avenue of
exploration is the preprocessing of ontologies to reduce the num-
ber of required iterations; [40] have examined the performance
of ASMOV and other systems under such preprocessing, obtain-
ing some evidence that it could increase accuracy. A particular
type of preprocessing is the semantic clarification by pinpointing
detailed in [37], which could be used to provide more compre-
hensive information within the ontologies and thus enhance the
process of semantic verification.

We are also investigating the expansion of the semantic rules
hing with semantic verification, Web Semantics: Sci. Serv. Agents

used for semantic verification, especially where it concerns sets of
more than two correspondences; pairwise verification is only an
approximation of an overall verification of the resulting alignment
[31]. Also, the method used for the extraction of the initial pre-
alignment is being further examined.

dx.doi.org/10.1016/j.websem.2009.04.001
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In terms of the similarity calculations, we are studying the inclu-
ion of non-language-based techniques in the lexical similarity,
uch as the combination of cosine similarity and Jaro–Winkler
unctions presented in Ref. [9]. We are working to improve and
treamline the implementation of ASMOV, and we are research-
ng and designing capabilities to allow the algorithm to work with
arger ontologies through partitioning algorithms. In addition, we
re developing mechanisms to implement a more formal approach
o resolve circular relations in the UMLS Metathesaurus adapter.
inally, ASMOV, coupled with algorithms for ontology creation and
or semantic querying, is currently being applied in the develop-

ent of a system for the integration of heterogeneous biological
nd biomedical data sources.

. Conclusion

In this paper, we have presented the ASMOV ontology match-
ng algorithm, including a detailed discussion of the calculations
sed to determine similarity between two entities from differ-
nt ontologies. We have also shown that the algorithm converges
o a solution. The experimental results presented illustrate that
SMOV outperforms most existing ontology matching algorithms,
nd obtains accuracy values for the OAEI 2008 benchmarks on par
ith the best system in the contest. We have also shown that the
rocess of semantic verification enhances the performance of the
ystem, especially under sparser information in the ontologies to be
atched. Additional experimental results demonstrate the adapt-

bility of ASMOV through the use of a thesaurus adapter API. Tests
n the alignment of a human anatomy with a mouse anatomy ontol-
gy show that the use of a specialized thesaurus such as UMLS
ignificantly improves the alignment of ontologies of a particular
nowledge domain. There are still important avenues for the fur-
her improvement in the performance of ASMOV, in particular, the
re-processing of ontologies to provide more complete information
or semantic verification.
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