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Abstract. Ontologies are a crucial tool for formally specifying the vo-
cabulary and relationship of concepts used on the Semantic Web. In order
to share information, agents that use different vocabularies must be able
to translate data from one ontological framework to another. Ontology
translation is required when translating datasets, generating ontology
extensions, and querying through different ontologies. OntoMerge, an
online system for ontology merging and automated reasoning, can im-
plement ontology translation with inputs and outputs in OWL or other
web languages. The merge of two related ontologies is obtained by tak-
ing the union of the concepts and the axioms defining them, and then
adding bridging axioms that relate their concepts. The resulting merged
ontology then serves as an inferential medium within which translation
can occur. Our internal representation, Web-PDDL, is a strong typed
first-order logic language for web application. Using a uniform notation
for all problems allows us to factor out syntactic and semantic translation
problems, and focus on the latter. Syntactic translation is done by an
automatic translator between Web-PDDL and OWL or other web lan-
guages. Semantic translation is implemented using an inference engine
(OntoEngine) which processes assertions and queries in Web-PDDL syn-
tax, running in either a data-driven (forward chaining) or demand-driven
(backward chaining) way.

1 Introduction

One major goal of the Semantic Web is that web-based agents should process
and “understand” data rather than merely display them as at present [23]. On-
tologies, which are defined as the formal specification of a vocabulary of concepts
and axioms relating them, are seen playing a key role in describing the “seman-
tics” of the data. Using ontologies, web-based agents can treat web documents
as sets of assertions, and, in particular, draw inferences from them.1

? This research was supported by the DARPA DAML program.
1 We use scare quotes for “semantic” and “understand” because many people use the

former term without knowing what it means, and no one knows what the latter term
means. We will avoid the word “understand” wherever possible, but “semantic” in
the recent sense of “seeming to reveal a grasp of the meaning of the terms occurring
in,” as in “semantic translation,” seems unavoidable.



More and more ontologies are being developed [4] as formal underpinnings
for RDF-based data. An obvious desideratum of this movement is that two on-
tologies should not cover the same area; instead, those interested in formalizing
descriptions in that area should agree on a standard set of concepts. However,
this goal cannot always be met, for a variety of reasons. Some standard vocab-
ularies arise in different parts of the world or among different linguistic com-
munities, and attain popularity before their overlap is noticed. Even more likely
is that two vocabularies will partially overlap, usually because what is central
to one is peripheral to the other. For instance, a vocabulary devised by glove
manufacturers will have something to say about the parts of the hand and how
they mesh with the parts of gloves. A vocabulary devised by orthopedic surgeons
will also talk about the parts of the hand, but in very different ways, including,
obviously, going into much more detail.

It is much simpler to program two agents to communicate if they use the
same vocabulary. But in cases where their vocabularies differ, we must resort to
ontology translation to allow them to communicate at all. In this section, we first
describe the semantic differences between ontologies on similar domains. We then
define three different kinds of ontology translation problem: dataset translation,
ontology-extension generation and querying through different ontologies. We will
also distinguish ontology translation from ontology mapping and talk about some
previous related work.

In section 2, we describe our new approach: ontology translation by ontology
merging and automated reasoning. Our focus is on formal inference from facts
or queries expressed in one ontology to facts or queries expressed in another.
We will have little to say about eliminating syntactic differences, and instead
will generally assume that the facts or queries to be translated will be in the
same logical notation after translation as before; only the vocabulary will change.
Syntactic translation is not always trivial, but we will assume it is solved.

The merge of two related ontologies is obtained by taking the union of the
concepts and the axioms defining them, using XML namespaces [17] to avoid
name clashes. Bridging axioms are then added to relate the concepts in one on-
tology to the concepts in the other through the terms in the merge. Devising and
maintaining a merged ontology is a job for human experts, both domain experts
and “knowledge engineers.” Once the merged ontology is obtained, ontology
translation can proceed without further human intervention and the semantic
translation can be implemented by automated reasoning. The inference mech-
anism we use, a theorem prover optimized for the ontology-translation task,
is called OntoEngine. We use it for deductive dataset translation (section 3),
ontology-extension generation(section 4), and query handling through different
ontologies (section 5). We will also discuss related work and our future plans for
developing interactive tools for ontology merging based on our recent work on
integrating different neuronal databases in section 6.



1.1 The Differences between Ontologies on Similar Domains

The kinds of semantic differences between ontologies are innumerable, and rarely
correspond to simple correspondences between symbols in one and symbols in
the other, as we will discuss in section 1.3. For example, one genealogy ontology
might use two properties — firstname and lastname — to represent a person’s
name, where another might use only one property, fullname.

Some more subtle examples arise in translation between two bibliographical
ontologies developed at Yale [18] and CMU [3].2 While they are both obviously
derived from the Bibtex terminology, different decisions were made when ontol-
ogy experts developed them.

EXAMPLE 1.1.1. Both ontologies have a class called Article. In the yale bib
ontology, Article is a class which is disjoint with other classes such as Inproceedings
and Incollection. Therefore, in the yale bib ontology, Article only includes those
articles which were published in a journal. But in the cmu bib ontology, Article
includes all articles which were published in a journal, proceedings or collection.
There are no Inproceedings and Incollection classes in the cmu bib ontology.

Complicated semantic differences can be caused by different understandings
about similar concepts. Even if the concepts from two ontologies share the same
class or property name, it is still possible that they have quite different meanings.
The following example is about the booktitle property in the yale bib ontology
and cmu bib ontology.

EXAMPLE 1.1.2. In the cmu bib ontology, booktitle’s domain is the Book
class and it’s range is String. It means that a Book has some string as its title.
In the yale bib ontology, booktitle’s domain is Publication and its range is Literal,
which can be taken to be the same class as String. However, yale bib’s booktitle
domain is Publication. The assertion that publication P has booktitle S means
that P was published in a conference proceedings or anthology, and that it is
this proceedings or collection that has S as its title.

Another reason for complicated semantic differences is that they can be in-
herited from those between basic concepts, such as time, space etc.

EXAMPLE 1.1.3. There are several ontologies about time, such as DAML
Time [6] and the time ontology in OpenCyc [11]. Those time ontologies have
semantic differences among their concepts, such as events. Two genealogy on-
tologies, one based on DAML Time and the other on Cyc, might take identical
positions on all design choices about specifically genealogical questions, but look
different because of their differing assumptions about time, as expressed in the
way they make assertions about genealogically relevant events such as birth and
marriage.

2 These are “toy” ontologies developed as exercises to help populate the DARPA
DAML ontology library [4]. They are much simpler than real-world ontologies would
be. Their very simplicity helps reveal the phenomena we are after.



1.2 Three Kinds of Ontology Translation Problems

As we said above, we focus on three kinds of ontology translation problems:
dataset translation, ontology-extension generation and querying through differ-
ent ontologies.

Dataset translation can be defined as the translation of a “dataset” from one
ontology to another. We use the term dataset to mean a set of facts expressed in a
particular ontology [32]. The translation problem arises when web-based agents
try to exchange their datasets but they use different ontologies to describe them.

EXAMPLE 1.2.1. Suppose there is a web-based agent which uses the cmu bib
ontology to collect and process the bibliography information of researchers in the
area of computer science. A web-based agent at Yale can provide such informa-
tion about publications by members of the Yale CS department. The CMU agent
needs an ontology translation service to translate those datasets into the cmu bib
ontology before it can combine them with information it already has.

The problem of ontology extension generation is defined thus: given two re-
lated ontologies O1 and O2 and an extension (sub-ontology) O1s of O1, construct
the “corresponding” extension O2s.

EXAMPLE 1.2.2. DAML-S [5] is a general (“upper”) ontology describing
web services at the application level (i.e., focusing on business processes), and
WSDL Schema [16] is another general ontology describing web services at the
communication level (i.e., focusing on messages and protocols). To use DAML-S
to model a particular service, one must manually develop a sub-ontology that
uses the DAML-S vocabulary to describe, say, a book seller’s or airline’s web
service. But the description of a service is not complete or usable until it extends
all the way down to the communication level. In other words, given the DAML-
S sub-ontology for Congo.com, we would like to derive the “analogous” sub-
ontology of WSDL Schema. To oversimplify, if property PD maps to PW at the
upper level, and if PDC is a sub-property of PD belonging to the Congo ontology,
we should be able to infer the corresponding sub-property PWC of Congo.com’s
counterpart at the communication level. This process is part of grounding, to
use the terminology of [21].

Finally, we have the problem of querying through ontologies, in which a query
made by one agent has the potential to be answered by another agent (perhaps
a database manager) that uses a different ontology.

EXAMPLE 1.2.3. Suppose a web agent using the drc ged [8] genealogy on-
tology wants to find the marriage date of King Henry VI of England. It finds a
knowledge base that it has reason to trust, which contains information about the
individuals and families of European royalty, but it uses a different genealogy
ontology, bbn ged [2]. Ontology translation is required for the agent to get its
query answered.

1.3 The Relationship between Ontology Translation and Ontology
Mapping

It’s important to distinguish ontology translation from ontology mapping, which
is the process of finding correspondence (mappings) between the concepts of two



ontologies. If two concepts correspond, they mean the same thing, or closely
related things. The mappings should be expressed by some mapping rules which
explain how those concepts correspond. Obviously, finding such mappings can be
a valuable preprocessing step in solving the ontology-translation problem for the
two ontologies. Here we’d like to distinguish two main issues in ontology map-
ping: (1) how to find the mappings; (2) how to capture the meaning relationships
that mappings point to.

Automating the process of ontology mapping is an active area of research [34,
35, 25, 30]. However, a lot of it has focused on issue (1) while neglecting issue
(2), which makes some of it seem oddly detached from reality. In our “bookti-
tle” example, there is not much point in guessing that the occurrences of the
term booktitle in both bibliography systems might be related, unless you have a
framework for expressing that relationship.

In our experience, these relationships require the full power of predicate calcu-
lus. Hence we have chosen to focus first on how that power can be harnessed. We
agree that automatic tools can contribute to finding mappings, but it seems in-
evitable that for the time being human ontology experts will have to be involved
in fleshing those mappings out into realistic translation rules [32]. Many existing
automatic mapping tools can express simple semantic mappings between two
concepts using “subClassOf,” “subPropertyOf” or “equivalent” relationships,
but they are not very useful for capturing complicated semantic distinctions.
These distinctions can take committees of human experts days or weeks to fig-
ure out. Hence, although we prefer to focus on what the rules should look like,
and hold our ideas for automating their creation in abeyance for the time being.

1.4 Previous Related Work

Previous work on ontology translation for datasets has made use of two strate-
gies. One is to translate a dataset in any source ontology to a dataset in one
big, centralized ontology that serves as an interlingua which can be translated
into a dataset in any target ontology. Ontolingua [29] is a typical example. This
strategy can’t really work well unless a global ontology can cover all existing
ontologies, and the agreement can be got by all ontology experts to write trans-
lators between their own ontologies and this global ontology. Even if in principle
such harmony can be attained, in practice keeping all ontologies – including the
new ones that come along every day – consistent with the One True Theory is
very difficult. If someone creates a simple, lightweight ontology for a particular
domain, he may be interested in translating it to neighboring domains, but can’t
be bothered to think about how it fits into a grand unified theory of knowledge
representation.

The other strategy is to do ontology translation directly from a dataset in
a (source) ontology to a dataset in another (target) ontology, on a dataset-by-
dataset basis, without the use of any kind of interlingua. OntoMorph [24] is
a typical example of this strategy. For practical purposes this sort of program
can be very useful, but, because it tends to rely on special properties of the
datasets to be translated, it is best viewed as a “rewriting” system rather than



an inferential one. It doesn’t address the question of producing a general-purpose
translator that handles any source dataset.

Previous work on ontology translation for query handling is closely related
to database mediators [35, 37] and query optimization [20]. The main difference
is that we don’t assume the existence of “captive” databases that are integrated
by a centralized authority. We assume that two data sources might have to find
“on the fly” a merged ontology relating them. Similarly, any query optimization
must be done dynamically, because the query handler doesn’t know in advance
which databases will contribute to which sub-queries. Finally, as we will discuss
in section 2.3, we assume the need for more powerful inference mechanisms to
handle the complexity of axiomatic ontologies compared to traditional database
schemas.

2 Our Approach: Ontology Merging and Automated
Reasoning

In this section, we describe our approach: ontology translation by ontology merg-
ing and automated reasoning. We have developed Web-PDDL as a strongly
typed, first-order logic language to describe axioms, facts, and queries, which
we use as our internal representation language. We have also designed and im-
plemented a first-order theorem prover, OntoEngine, which is optimized for the
ontology-translation task.

2.1 Separate Syntactic and Semantic Translation

Past work [29, 24] on ontology translation has addressed both syntactic and
semantic-issues, but tends to focus more on syntactic translation [24] because it
is easier to automate. “Semantic” translation is more difficult because creating
mapping rules often requires subtle judgments about the relationships between
meanings of concepts in one ontology and their meanings in another. We assume
that, at least for the foreseeable future, it can’t be fully automated.3

We break ontology translation into three parts: syntactic translation from
the source notation in a web language to an internal representation, semantic
translation by inference using the internal notation, and syntactic translation
from the internal representation to the target web language. All syntactic issues
are dealt with in the first and third phases, using a translator, PDDAML [14] for
translating between our internal representation and OWL. If a new web language
becomes more popular for the Semantic Web, we only need extend PDDAML to
handle it (assuming it is no more expressive than first-order logic). This allows
us to focus on semantic translation from one ontology to another.
3 The translation problem is certainly “AI-complete” in the sense that a program

that solved it would have to be as intelligent as a person; but in fact it may be even
harder than that, because agreeing on a translation in the most difficult cases might
require bargaining between experts about what their notations really mean. This is
not really the sort of problem a single program could solve, even in principle.



Our internal representation language is Web-PDDL [33], a strongly typed
first order logic language with Lisp-like syntax. It extends the Planning Domain
Definition Language (PDDL) [31] with XML namespaces, multi-type inheritance
and more flexible notations for axioms. Web-PDDL can be used to represent
ontologies, datasets and queries. Here is an example, part of the yale bib ontology
written in Web-PDDL.

(define (domain yale_bib-ont)

(:extends (uri "http://www.w3.org/2000/01/rdf-schema#" :prefix rdfs))

(:types Publication - Obj

Article Book Incollection Inproceedings - Publication

Literal - @rdfs:Literal)

(:predicates (author p - Publication a - Literal)

.....))

The :extends declaration expresses that this domain (i.e., ontology) is extended
from one or more other ontologies identified by the URIs. To avoid symbol
clashes, symbols imported from other ontologies are given prefixes, such as
@rdfs:Literal. These correspond to XML namespaces, and when Web-PDDL is
translated to RDF [33], that’s exactly what they become. Types start with capi-
tal letters and are the same concept as classes in some other web languages, such
as OWL. A type T1 is declared to be of a subtype of a type T0 by writing “T1

- T0” in the :types field of a domain definition. In other contexts, the hyphen
notation is used to declare a constant or variable to be of a type T , by writing “x
- T”. Predicates correspond roughly to “properties” in OWL, but they can take
any number of arguments. There are also functions, including Skolem functions
and built-in functions such as + and - that can be evaluated when appropriate.

Assertions are written in the usual Lisp style: (author pub20 ”Tom Jefferson”),
for instance. We’ll discuss quantifiers shortly.

Web-PDDL reflects a fundamentally different philosophy about knowledge-
representation (KR) languages than that embodied in notations such as RDF
and OWL. The latter reflect the strong opinions in the Description Logic com-
munity that a KR language should make it impossible to pose undecidable (or
even intractable) problems. Our attitude is that languages should be as expres-
sive as different reasoning applications will require. There are many interesting
application areas where useful programs exist in spite of scary worst-case per-
formance. As we hope to show below, ontology translation is a good example,
where certain simple techniques from theorem proving solve a large portion of
the problem, even though theorem proving is in principle undecidable.

2.2 Axiom-based Ontology Merging

If all ontologies, datasets and queries can be expressed in terms of the same
internal representation, such as Web-PDDL, semantic translation can be imple-
mented as formal inference working with a merged ontology of the source and
target ontologies. Ontology merging is the process of taking the union of the
concepts of source and target ontologies together and adding the bridging ax-
ioms to express the relationship (mappings) of the concepts in one ontology to



the concepts in the other. Such axioms can express both simple and complicated
semantic mappings between concepts of the source and target ontologies. The
simple semantic mappings include “subClassOf,” “subPropertyOf” or “equiva-
lent” relationships. For example, if two types (class) are equivalent (sameClas-
sAs), such as the Book type in the yale bib ontology is equivalent to the Book
type in the cmu bib ontology. Because types are not objects, we cannot write an
axiom such as (= T1 T2). So we have to use a pseudo-predicate (or, perhaps,
“meta-predicate”) T-> and write bridging axioms about equivalent types. In the
merged ontology of yale bib and cmu bib, the equivalent relationship about their
Book types is written in Web-PDDL:

(:axioms

(T-> @yale_bib:Book Book)

(T-> @cmu_bib:Book Book)

...

Namespace prefixes distinguish yale bib’s Book and cmu bib’s Book. The symbols
without a prefix are native to the merged ontology. Our axiom defines a new Book
type in the merged ontology, and makes yale bib’s Book equivalent to cmu bib’s
Book by making both of them be equivalent to the new defined Book in the
merged ontology.

The reason we need a Book type in the merge is: the merge will be a totally
new ontology which can be merged further with other ontologies. Suppose we
have got the cyb ontology as the merge of the cmu bib and yale bib ontologies.
There is another foo bib ontology needs to be merged with the cyb ontology and
the foo bib ontology also has a Book type. Since we already have cyb’s Book,
we don’t need to specify the relationship between foo bib’s Book and cmu bib’s
Book, or the relationship between foo bib’s Book and yale bib’s Book. What we
need to do is specify the relationship between foo bib’s Book and cyb’s Book.
Therefore, we need to define types and predicates in the merge, even through
they are the same as one of two related types or predicates in the component
ontologies.

The more complicated semantic mappings, such as the one about yale bib’s
booktitle and cmu bib’s booktitle in Example 1.1.2, can be expressed as bridging
axioms in the merged ontology. But we must be careful to distinguish the two
senses of (booktitle a s), which in yale bib means “Inproceedings or Incollection
a appeared in a book with title s” and in cmu bib means “The title of book
a is s”. Namespace prefixes suffice for the distinguishing two booktitles. The
more interesting task is to relate the two senses, which we accomplish with the
bridging axioms

(forall (a - Article tl - String)

(iff (@yale_bib:booktitle a tl) (booktitle a tl)))

(forall (a - @yale_bib:Inproceedings tl - String)

(iff (booktitle a tl)

(exists (p - Proceedings)

(and (contain p a)

(@cmu_bib:inProceedings a p)

(@cmu_bib:booktitle p tl)))))



Note that the bridging axioms can be used to go from either ontology to the
other. The second axiom uses an existential quantifier and p is a existential
quantified variable. It also can be written in the form of skolem functions after
skolemization [38]:

(forall (a - @yale_bib:Inproceedings tl - String)

(if (booktitle a tl)

(and (contains (@skolem:aProc a tl) - Proceedings a)

(@cmu_bib:inProceedings a (@skolem:aProc a tl))

(@cmu_bib:booktitle (@skolem:aProc a tl) tl)))))

We use the prefix @skolem: as a convention for the skolem functions.
Some bridging axioms may need “callable” functions. For example, yale bib’s

year predicate uses Number to represent the year when a publication was pub-
lished. However, cmu bib’s year predicate uses String to represent the year. When
we try to express the mapping between these two predicates, we select yale bib’s
year predicate as the one in the merge. We have to use two functions, one for
converting a number to a string and the other one for converting a string to a
number, to express these mapping axioms:

(forall (p - Publication yn - @cmu_bib:Year)

(if (@cmu_bib:year p yn)

(year p (@built_in:NumbertoString yn))))

(forall (p - Publication y - String)

(if (year p y)

(@cmu_bib:year p (@built_in:StringtoNumber y))))

We use the prefix built in to indicate that these two functions are built-in func-
tions.

For the foreseeable future the construction of merged ontologies has to involve
the efforts of human experts. If necessary, when the source and target ontologies
are very large, automatic mapping tools can give some suggestions to human
experts, but, in our view, before we know what bridging axioms look like, there’s
no point in spending a lot of effort on building automated tools.

2.3 OntoEngine: An Optimized Theorem Prover for Semantic
Translation

Our decision to use a theorem prover for semantic translation may cause some
concern, given that in general a theorem prover can run for a long time and
conclude nothing useful. However, in our experience, the sorts of inferences we
need to make are focused on the following areas:

– Forward chaining from facts in source ontology to facts in target ontology.
– Backward chaining from queries in one ontology to get bindings from datasets

in another.
– Introduction of skolem terms from existential quantified variables or skolem

functions.



– Use of equalities to substitute existing constant terms for skolem terms.

Our theorem prover, called OntoEngine, is specialized for these sorts of in-
ference. OntoEngine uses generalized Modus Ponens chaining through bridging
axioms with specified directions. To avoid infinite loops, we set a limit to the
complexity of terms that OntoEngine generates; and, of course, OntoEngine
stops when it reaches conclusions (or, in the case of backward chaining, goals)
in the target ontology, which is called target control. Target control can avoid
some redundant inference back from target ontology to source ontology. In addi-
tion, OntoEngine has a good type-checking system based on the strongly typed
feature of Web-PDDL. The type-checking system can be used in both forward
and backward chaining and can terminate blind alleys at the unification stage,
without generating goals to prove that a term is of the correct type.

OntoEngine can use equalities to substitute existing constant terms for skolem
terms or other general function terms. Equality substitutions can decrease redun-
dant inference results, such as redundant facts and queries. In OWL ontologies,
equalities occur mainly in cardinality axioms, which state that there is exactly
one or at most one object with a given property.4 For example, in a genealogy
ontology, there are two predicates husband and wife, whose cardinality axioms
say that one family has only one husband and only one wife. The cardinality
axiom about husband can be expressed in Web-PDDL:

(forall (f - Family h1 - Male h2 - Male)

(if (and (husband f h1)

(husband f h2))

(= h1 h2)))

It is important to compare OntoEngine with other inference systems, such
as Datalog systems, description logic systems and resolution theorem provers,
which may be used to do reasoning with bridging axioms to implement seman-
tic translations. The comparisons also can explain why we designed and built
OntoEngine rather than use other existing inference systems.

A Datalog system can do backward chaining with Prolog-like rules to answer
queries using view relations in databases [37]. To avoid generating an infinite
number of answers, Datalog rules are required to satisfy some safety condi-
tions [39]. Hence, there are not any existentially quantified variable in the head
(conclusion) side of a Datalog rule and Datalog systems don’t have any mecha-
nism to generate skolem terms or do equality substitution. However, relationships
between concepts from different ontologies may require bridging axioms with ex-
istentially quantified variable in the conclusion side, such as the bridging axiom
about booktitle in section 2.2. OntoEngine can generate skolem terms and do
equality substitution to avoid redundant answers so that it can handle such kind
of complicated axioms.

Description logics [22] are subsets of first order logic. Compared to the stan-
dard predicate calculus, the expressivity of description logic is limited, in order
to guarantee the decidability of inference. There is a tradeoff between the ex-
pressivity of a representation language and the difficulty of reasoning over the
4 Actually, you can specify other cardinalities, but it is pretty rare to do so.



representation built using that language. Although description logic (DL) reason-
ing systems are usually quite efficient, sometimes guaranteeably so, they cannot
generate new objects — only select subsets of existing objects. For example,
the DL systems cannot generate skolem terms although description logics have
existential quantifier. The DL rules (axioms) do not allow (built-in) functions
which is necessary in some bridging axioms, such as year example in section 2.2.
OntoEngine can generate skolem terms and process the axioms with (built-in)
functions.

OntoEngine is not a complete first-order theorem prover, unlike resolution-
based systems, such as Otter [40]. One reason (besides our obvious desire for
efficiency) is that we have empirically observed that some deductive techniques
are not necessary for ontology translation. Most important, so far we have had
little need for case analysis, in which a proposition is proved by showing that it
follows from A and from B, when A∨B is the strongest conclusion that can be
drawn about A and B.

3 Deductive Ontology Translation between Datasets

In this section we describe how to apply our new approach to implement dataset
translation. We set up an online ontology translation service, OntoMerge, to do
deductive dataset translation on the Semantic Web. A more detailed account
on the forward chaining algorithm for our generalized modus ponens reasoner
appears in [26].

The problem for translating datasets can be expressed abstractly thus: given
a set of facts in one vocabulary (the source), infer the largest possible set of
consequences in another (the target). We break this process into two phases:

1. Inference: working in a merged ontology that combines all the symbols and
axioms from both the source and target, draw inferences from source facts.

2. Projection: Retain conclusions that are expressed purely in the target vo-
cabulary.

In Example 1.2.1, suppose the source ontology is yale bib and the target
ontology is cmu bib. Considering the semantic difference mentioned in Example
1.1.2, the fact “The publication BretonZucker96 appeared in the Proceedings of
IEEE Conf. on Computer Vision and Pattern Recognition” is expressed in the
yale bib ontology thus:

(:objects ... BretonZucker96 - InProceedings)

(:facts ... (booktitle BretonZucker96 "Proceedings of CVPR’96"))

In the cmu bib ontology, the same fact should be expressed thus:

(:objects ... BretonZucker96 - Article proc38 - Proceedings)

(facts ... (inProceedings BretonZucker96 proc38)

(booktitle proc38 "Proceedings of CVPR’96") ...)

Recall the bridging axioms related to this booktitle example:



(forall (a - Article tl - String)

(iff (@yale_bib:booktitle a tl) (booktitle a tl)))

(forall (a - @yale_bib:Inproceedings tl - String)

(iff (booktitle a tl)

(exists (p - Proceedings)

(and (contain p a)

(@cmu_bib:inProceedings a p)

(@cmu_bib:booktitle p tl)))))

When used from left to right, the bridging axioms causes the inference engine to
introduce a new constant (proc38) to designate the proceedings that the article
(BretonZucker96) appears in. Such skolem terms are necessary whenever the
translation requires talking about an object that can’t be identified with any
existing object.

On the Semantic Web model, the knowledge is mostly represented in XML-
based web languages. We have set up an online ontology-translation system
called OntoMerge. OntoMerge serves as a semi-automated nexus for agents and
humans to find ways of coping with notational differences, both syntactic and
semantic, between ontologies. OntoMerge wraps OntoEngine with PDDAML,
which implement the syntactic translation for the input and output DAML or
OWL files. The architecture of OntoMerge for translating datasets is shown in
Figure 1.
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Fig. 1. The OntoMerge Architecture for Translating Datasets

When receiving an input dataset to translate, OntoEngine needs a merged
ontology that covers the source and target ontologies. If no such merged ontology
is available, all OntoEngine can do is to record the need for a new merger. (If
enough such requests come in, the ontology experts may wake up and get to
work.) Assuming that a merged ontology exists, located typically at some URL,
OntoEngine tries to load it in. Then it loads the dataset (facts) in and does
forward chaining with the bridging axioms, until no new facts in the target
ontology are generated.

OntoMerge has worked well so far, although our experience is inevitably
limited by the demand for our services. In addition to the small example from the



dataset5 using the yale bib ontology to the equivalent dataset using the cmu bib
ontology, we have also run it on some big ones.

Experiment 1: OntoMerge translates a dataset6 with 7564 facts about the
geography of Afghanistan using more than 10 ontologies into a dataset in the map
ontology [10]. 4611 facts are related to the geographic features of Afghanistan
described by the geonames ontology [9] and its airports described by the airport
ontology [1]. Some facts about an airport of Afghanistan are:

(@rdfs:label @af:OAJL "JALALABAD")

(@airport:icaoCode @af:OAJL "OAJL")

(@airport:location @af:OAJL "Jalalabad, Afghanistan")

(@airport:latitude @af:OAJL 34.399166666666666)

(@airport:longitude @af:OAJL 70.49944444444445)

Actually either of these two ontologies just partly overlaps with the map ontology.
The main semantic difference between their overlapping with the map ontology
is: in the map ontology, any location in a map is a point whether it is an airport
or other kind of geographic feature such as a bridge. But in the airport and
geonames ontologies, an airport is a special location which is different from a
bridge, and it’s not a point. We have merged the geonames ontology and the
airport ontology with the map ontology. One of bridging axioms in the merge of
the airport ontology and the map ontology is below:

(forall (x - Airport y z - Object)

(if (and (@airport:latitude x y) (@airport:longitude x z))

(and (location (@skolem:aPoint x y z) - Point

(@skolem:aLocation x y z) - Location)

(latitude (@skolem:aLocation x y z) y)

(longitude (@skolem:aLocation x y z) z))))

After OntoEngine loads the two merged ontologies and all 7564 facts in, those
4611 facts in the airport and geonames ontologies are translated to 4014 facts in
the map ontology by inference. The translated dataset for the above airport like:

(@map:label Point31 "JALALABAD")

(@map:label Point31 "OAJL")

(@map:label Point31 "Jalalabad, Afghanistan")

(@map:location Point31 Location32)

(@map:latitude Location32 34.399166666666666)

(@map:longitude Location32 70.49944444444445)

As part of DAML Experiment 2002, the result can be used by a map agent
(BBN’s OpenMap) to generate a map image about the airports and geographic
features of Afghanistan. The semantic translation (inference) process by Onto-
Engine, which contains 21232 reasoning steps, only takes 18 seconds (including
the time for loading the input dataset and merged ontologies) on our PC in PIII
800MHZ with 256M RAM.

5 http://cs-www.cs.yale.edu/homes/dvm/daml/datasets/yale bib dataset.daml
6 http://www.daml.org/2001/06/map/af-full.daml



Experiment 2: OntoEngine translates a bigger dataset7 with 21164 facts (on
3010 individuals and 1422 families of European royalty) in the bbn ged genealogy
ontology [2] to 26956 facts in the drc ged genealogy ontology [8]. Here are some
facts in the bbn ged ontology about a King of France :

(@bbn_ged:name @royal92:@I1248@ "Francis_II")

(@bbn_ged:sex @royal92:@I1248@ "M")

(@bbn_ged:spouseIn @royal92:@I1248@ @royal92:@F456@)

(@bbn_ged:marriage @royal92:@F456 @royal92:event3138)

(@bbn_ged:date @royal92:event3138 "24 APR 1558")

(@bbn_ged:place @royal92:event3138 "Paris,France")

Although these two genealogy ontology are very similar and overlap a lot,
there are still some differences. For example, in the drc ged ontology, there are
two properties wife and husband, but the most related concept in the bbn ged
ontology is the spouseIn property. As our general understanding, if a person is
a male (his sex is “M”) and he is spouseIn some family which is related to some
marriage event, he will be the husband of that family. We have written the
bridging axioms for the bbn ged and drc ged ontologies to express such semantic
differences. The one for the above example is given below.

(forall (f - Family h - Individual m - Marriage)

(if (and (@bbn_ged:sex h "M") (@bbn_ged:spouseIn h f)

(@bbn_ged:marriage f m))

(husband f h)))

This merged genealogy ontology works well for semantic translation. After
loading the input dataset and merged ontology, OntoEngine runs 85555 reasoning
steps to generate all the 26956 facts. The whole process takes 59 seconds. The
translated dataset for King Francis II in the drc ged ontology is:

(@drc_ged:name @royal92:@I1248@ "Francis_II")

(@drc_ged:sex @royal92:@I1248@ "M")

(@drc_ged:husband @royal92:@F456 @royal92:@I1248@)

(@drc_ged:marriage @royal92:@F456 @royal92:event3138)

(@drc_ged:date @royal92:event3138 "24 APR 1558")

(@drc_ged:location @royal92:event3138 "Paris,France")

Prospective users should check out the OntoMerge website8. We have put
all URLs of existing merged ontologies there. OntoMerge is designed to solicit
descriptions of ontology-translation problems, even when OntoMerge can’t solve
them. However, according to our experience, we believe that in most cases we
can develop and debug a merged ontology within days that will translate any
dataset from one of the ontologies in the merged set to another. It’s not difficult
for a researcher who knows first-order logic to write bridging axioms in Web-
PDDL. We encourage other people to develop their own merged ontology to
solve ontology translation problems they encounter.

7 http://www.daml.org/2001/01/gedcom/royal92.daml
8 http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html



4 Ontology Extension Generation

As we have said, manually developing sub-ontologies extended from existing
ontology(s) is tedious at the Web scale. Tools are needed to make it easier
because the number of sub-ontologies is usually much larger. In this section,
we will introduce our approach to generate ontology extensions automatically
by ontology translation.

One scenario is that ontology experts have some sub-ontologies of the existing
ontology(s), and they want to generate the corresponding sub-ontologies of other
related existing ontology(s). If they know the relationships between those exist-
ing ontologies, ontology-translation tools can automate this process. Another
scenario is that ontology experts often need to update some existing ontologies
when new knowledge or new requirement comes up. This work has to be done
manually, but how about updating their sub-ontologies? Since they know the
relationships between the old and updated ontologies, new sub-ontologies can
be generated automatically.

In Example 1.2.2, if ontology experts can merge DAML-S and WSDL Schema
first, they can translate Congo.com into its “grounding.” The advantage is they
only need to get one merged ontology for DAML-S and WSDL Schema. Further
translation from the sub web service ontologies of DAML-S to their groundings
on WSDL Schema can be implemented automatically.

The structure for OntoMerge to generate ontology extensions is similar to
that shown in Figure 1. The difference is the input and output are not datasets
but sub-ontologies. Instead of a set of facts, we input a set of sub-property
definitions. In Example 1.2.2, the following sub-property occurs in the Congo.com
ontology:

(deliveryAddress sp1 - SpecifyDeliveryDetails st2 - @xsd:string)

where SpecifyDeliveryDetails is a subtype of @DAML-S:Process. To find the corre-
sponding sub-property of a WSDL property, we create an instance of deliveryAd-
dress, with new skolem constants for the variables:

(deliveryAddress SDD-1 str-2)

;;SDD-1 and str-2 are skolem constants of types SpecifyDeliveryDetails

;;and @xsd:string respectively

Hypothetically assume that this is a true fact, and draw conclusions using for-
ward chaining. This inference process uses the axioms in the Congo ontology,
and the bridging axioms in the merged ontology for DAML-S and WSDL Schema
such as:

(forall (ob1 ob2)

(if (deliveryAddress ob1 ob2) (@process:input ob1 ob2)))

;;the above axiom is from the Congo ontology to express that

;;deliveryAddress is a sub property of @process:input in DAML-S.

(forall (x - @DAML-S:Process)

(exists (sg - ServiceGrounding) (ground sg x)))



(forall (p - Process sg - ServiceGrounding ob1 - String)

(if (and (ground sg p) (@process:input p ob1))

(exists (ms - Message pa - Part pm - Param)

(and (@wsdl:input p pm) (paramMessage pm ms)

(part ms pa) (partElement pa ob1)))))

;;these two axioms are from merged ontology for DAML-S and WSDL Schema.

OntoEngine can generate the translated facts in Web-PDDL:

(@wsdl:input SDD-1 Param374)

(@wsdl:operation PortType367 SDD-1)

(@wsdl:partElement Part376 str-2)

(@wsdl:part Message375 Part376)

(@wsdl:paramMessage Param374 Message375)

where Param374 and such are further skolem terms produced by instantiating
existential quantifiers during inference.

All of the conclusions are expressed in the WSDL Schema ontology. The
first three mention the two skolem constants in the original assumption. These
are plausible candidates for capturing the entire meaning of the deliveryAddress
predicate as far as WSDL Schema is concerned. So to generate the new extension
WSDL congo, simply create new predicates for each of these conclusions and
make them sub-properties of the predicates in the conclusions:

(define (domain WSDL_congo)

(:extends (uri "http://schemas.xmlsoap.org/wsdl/"))

(:types SpecifyDeliveryDetails - Operation ....)

(:predicates

(deliveryAddress_input arg1 - SpecifyDeliveryDetails arg2 - Param)

(deliveryAddress_operation arg1 - PortType

arg2 - SpecifyDeliveryDetails)

(deliveryAddress_partElement arg1 - Part arg2 - @xsd:string)

...

The corresponding axioms for sub-property relationships are:

(forall (ob1 ob2) (if (deliveryAddress_input ob1 ob2)

(@wsdl:input ob1 ob2)))

(forall (ob1 ob2) (if (deliveryAddress_operation ob1 ob2)

(@wsdl:operation ob1 ob2)))

(forall (ob1 ob2) (if (deliveryAddress_partElement ob1 ob2)

(@wsdl:partElement ob1 ob2)))

The output sub-ontology is a grounding of Congo in WSDL Schema and it can
be represented in WSDL after feeding it into a translator between Web-PDDL
and WSDL. That translator has been embedded in PDDAML and the output
for the grounding of Congo in WSDL looks like:

<wsdl:message name="SpecifyDeliveryDetailsInputMsg">

<wsdl:part name="deliveryAddressPart"

element="xsd:string"/>

...



</wsdl:message>

<wsdl:portType name="SpecifyDeliveryDetails_PortType">

<wsdl:operation name="SpecifyDeliveryDetails">

<wsdl:input name="SpecifyDeliveryDetailsInput"

message="SpecifyDeliveryDetailsInputMsg"

</wsdl:input>

</wsdl:operation>

</wsdl:portType>

Our automatically generated WSDL congo is very similar to the manually
produced grounding by the DAML-S group9.

This result is encouraging, but obviously much remains to be done. The
technique of treating skolemized definitions as pseudo-axioms can translate only
axioms expressing sub-property relationships in the source sub-ontology. Trans-
lating more general axioms is a future project.

5 Querying through Different Ontologies

Forward-chaining deduction is a data-driven inference technique that works well
for translating datasets and ontology-extension generation. We have also embed-
ded a backward-chaining reasoner into OntoEngine. This module becomes the
central component of an end-to-end workflow (similar to that in figure 1 to trans-
late queries expressed in the standard queyr language DQL [7] to Web-PDDL,
answer the queries using backward chaining, and translate the results back as a
DQL response. As usual, we will focus on the semantic internals of this process,
not the syntactic translations between Web-PDDL and DQL.

To extend OntoMerge to handle querying problem through different ontolo-
gies, we embedded some tools for query selection and query reformulation. One
input query can be the conjunction of some sub-queries and each of them may
be answered by different knowledge bases. We might not be able to “translate”
the whole input query in one ontology to the query in another. For example,
suppose we add to the query of Example 1.2.3 a conjunct asking for the name of
the woman Henry VI married (the @xsd prefix is for “XML Schema Datatype”):

(:query (freevars (?k ?q - Individual ?f - Family ?m - Marriage

?n - @xsd:string ?d - @xsd:date)

(and (@drc_ged:name ?k "Henry_VI") (@drc_ged:husband ?f ?k)

(@drc_ged:wife ?f ?q) (@drc_ged:name ?q ?n)

(@drc_ged:marriage ?f ?m) (@drc_ged:date ?m ?d))))

The required answer must give the bindings for variables ?d and ?n.
This query is expressed using the drc ged ontology. Suppose an agent asks

OntoMerge for help in answering it, and OntoMerge’s library of merged on-
tologies includes some with drc ged ontology as a component. This means that
OntoMerge might be able to help answer the query with those web resources

9 http://www.daml.org/services/daml-s/0.7/CongoGrounding.wsdl



described by the other component ontologies of the merged one. In particular,
suppose OntoMerge has a merged ontology for the drc ged and bbn ged ontolo-
gies. It can would ask some broker agent to find some web knowledge bases
using the bbn ged ontology. In this experiment, we just assume one such web
knowledge base exists (and is trustworthy!).

The whole process is described as follows. OntoMerge calls the query selec-
tion tool to select one sub-query. Here, the tool will first select (@drc ged:name
?k ”Henry VI”) because it only has one variable. OntoEngine then does backward
chaining for this sub-query and translates it into a query in the bbn ged ontology,
(@bbn ged:name ?k ”Henry VI”). The new one is sent to the web knowledge base
described by the bbn ged ontology, which returns the binding {?k/@royal92:@I1217@}.
(@royal92:@I1217@ is an Individual in the web knowledge base.) With this binding,
OntoMerge call the query-reformulation tool to reform the rest of the sub-queries
and get another selection: (@drc ged:husband ?f @royal92:@I1217@). After back-
ward chaining and querying, the next binding we get is {?f/ @royal92:@F448@},
which leads to a new sub-query

(and (@drc_ged:wife @royal92:@F448@ ?q)

(@drc_ged:marriage @royal92:@F448@ ?m))

and its corresponding one in the bbn ged ontology:

(and (@bbn_ged:sex ?q "F") (@bbn_ged:spouseIn ?q @royal92:@F448@)

(@bbn_ged:marriage @royal92:@F448@ ?m))

The bindings this time are {?q/@royal92:@I1218@}, and {?m/@royal92:event3732}.
Repeat the similar process and the final query in the bbn ged ontology is

(and (@bbn_ged:name @royal92:@I1218@ ?n)

(@bbn_ged:date @royal92:event3732 ?d))

The ultimate result is {?n/”Margaret of Anjou”} and {?d/”22 APR 1445”}.
In addition, answering query by backward chaining may be necessary in the

middle of forward chaining. For example, when OntoEngine is unifying the fact
(P c1) with (P ?x) in the axiom:

(P ?x) ∧ (member ?x [c1, c2, c3]) ⇒ (Q ?x)

it can’t conclude (Q c1) unless it can verify that c1 is a member of the list
[c1,c2,c3], and the only way to implement this deduction is by answering that
query by backward chaining.

6 Related Work and Future Work

So far, our discussion has focused more on how to express the semantic dif-
ferences between two ontologies in a merged ontology, and how to implement
ontology translation by inference. Although we think the process of ontology
merging needs human experts’ involvements and can’t be fully automated for
the foreseeable future, it will be helpful to develop some semi-automatic tools
for ontology merging.



Our ontology merging is rather different from what some other people have
emphasized in talking about ontology combination because we focus more on
bridging axioms for inference. The PROMPT [36] and Chimaera [34] systems
focus on ontology editing for merging two similar ontologies. They try to do
ontology matching semi-automatically according to name similarity and taxo-
nomic structure. The matching provides user with some suggestions for further
refinement. Some recent work, such as GLUE [25], has used machine learning
and exploit information in the data instances to generate mapping rules of two
ontologies. GLUE still only generates simple mapping rules about “subClassOf,”
“superClassOf,” and “equivalent” relationships. Ontology experts can check the
accuracy of these simple mapping rules and write the remaining, more compli-
cated, mapping rules by themselves.

We are not the only ones who have realized that deductive rules are an
important component of inference and translation systems. The emerging stan-
dard is OWL Rule [13], which can be characterized as an XML serialization of
logic-programming rules. While we use heuristics similar to those embodied in
logic programming, we believe that ontology translation requires equality sub-
stitution and a more systematic treatment of existential quantifiers than logic
programming can provide. A recent paper [28] on the relation between rules and
description logics attempts to restrict rules even further. Our approach is to
“layer” logic on top of RDF in a way that leaves it completely independent of
the constraints of description logics [33].

The idea of building up merged ontologies incrementally, starting with local
mergers, has been explored in a recent paper [19], in which bridging rules are
assumed to map database relations by permuting and projecting columns. These
rules are simpler than ours, but in return the authors get some very interesting
algorithms for combining local ontology mappings into more global views.

Recently, we began cooperating with the medical informatics researchers of
Yale to apply our approach to integrate different Web-based neuronal databases:
Yale’s SenseLab database and Cornell’s CNDB database. Although both of their
data and database schemas have been marked up by using some XML specifi-
cations, there are still some major differences between what the data of each
database concerns. The differences exist because the database designers had
different views and purposes: SenseLab’s data is about model and structure in-
formation of a particular class of neurons but CNDB’s is about experimental
data for individual neurons measured at a particular day. These kind of dif-
ferences make data integration very difficult. Based on OntoMerge structure,
we are designing some initial tools to support construction and testing of ax-
ioms for merging two different database schemas. Our future work will focus
on designing human computer interactive tools to help domain experts, such as
neuroscientists, to find and build bridging axioms between the concepts from
different ontologies or database schemas. The biggest obstacle is that domain
experts may not be familiar with any formal logic languages but only know
the knowledge of their domains. Therefore, this future work will involve auto-
matic ontology mapping, bridging axiom production from machine learning and



natural language processing, pattern reuse and consistency testing for merged
ontologies.

A full treatment of answering query by backward chaining across ontolo-
gies would raise the issue of query optimization, which we have not focused
much on yet, although there are some query selection and reformulation tools
in OntoMerge. There is a lot of work in this area, and we will cite just two
references: [27, 20].

7 Conclusions

The distributed nature of the Web makes ontology translation one of the most
difficult problems web-based must cope with. We described our new approach to
implement ontology translation on the Semantic Web. Here are the main points
we tried to make:

1. Ontology translation is required when translating datasets, generating on-
tology extensions, or querying through different ontologies. It must be dis-
tinguished from ontology mapping, which is the process of finding likely
correspondences between symbols in two different ontologies. This sort of
mapping can be a prelude to translation, but it is likely to be necessary for
the foreseeable future for a human expert to produce useful translation rules
from proposed correspondences.

2. Ontology translation can be thought of in terms of ontology merging. The
merge of two related ontologies is obtained by taking the union of the terms
and the axioms defining them, then adding bridging axioms that relate the
terms in one ontology to those in the other through the terms in the merge.

3. If all ontologies, datasets and queries can be expressed in terms of the same
internal representation, semantic translation can be implemented by auto-
matic reasoning. We believe the reasoning required can be thought of as
typed, first-order inference with equality substitution, easily implemented
using a language such as Web-PDDL for expressing type relationships and
axioms. The syntactic translation can be done by an automatic syntax trans-
lator between Web-PDDL and other Web agent languages.

We set up an online ontology translation server, OntoMerge, to apply and
validate our method. We have evaluated our approach by the experiments for
large web knowledge resources and its performance is good so far. We also discuss
the efficiency and completeness of our inference system. We hope the existence
of OntoMerge will get more people interested in the hard problem of generating
useful translation rules.

Our results so far open up all sorts of avenues of further research, especially
in the area of automating the production of bridging axioms. Although these
can be quite complicated, many of them fall into standard classes. We are work-
ing on tools that allow domain experts to build most such axioms themselves,
through a set of dialogues about the form of the relation between concepts in
one ontology and concepts in the other. We also will develop tools to check the



consistency of the generated bridging axioms. The long-range goal is to allow
domain experts to generate their own merged ontologies without being familiar
with the technicalities of Web-PDDL.
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