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ABSTRACT
In this paper we analyze the problem of schema matching,
explain why it is such a “tough” problem and suggest di-
rections for handling it effectively. In particular, we present
the monotonicity principle and see how it leads to the use
of top-K mappings rather than a single mapping.

1. INTRODUCTION
Schema matching is the task of matching between con-

cepts describing the meaning of data in various heteroge-
neous, distributed data sources (e.g. database schemata,
XML DTDs, HTML form tags, etc.). Schema matching is
recognized to be one of the basic operations required by the
process of data integration [4], and thus has a great im-
pact on its outcome. Schema mappings (the outcome of the
matching process, as will be defined in Section 2) can serve
in tasks of generating global schemata, query rewriting over
heterogeneous sources, duplicate data elimination, and au-
tomatic streamlining of workflow activities that involve het-
erogeneous data sources. As such, schema matching has im-
pact on numerous applications. It impacts business, where
company data sources continuously realign due to chang-
ing markets. It also impacts life sciences, where scientific
workflows cross system boundaries more often than not.

Despite two decades of research in this area, summarized
in surveys (e.g., [21, 7, 23]) and various online lists (e.g.,
OntologyMatching1, Ziegler2, DigiCULT3, SWgr4) schema
matching still seems to involve ad-hoc solutions with only
a few works that involve foundational principles of schema
matching [4, 17, 15, 11, 2].

In 2001, Maurizio Lenzerini claimed that “Data Integra-
tion Is Harder Than You Thought” [14]. Here we shall ana-
lyze the problem of schema matching, which is a subproblem
of data integration, explain why it is such a “tough” problem
and suggest directions for handling it effectively.

2. SCHEMA MATCHING BASICS
Due to its cognitive complexity [6], traditionally schema

matching has been performed by human experts [13]. As
the process of data integration has become more automated,
the ambiguity inherent in concept interpretation has become
one of the main obstacles to effective schema matching. For

1http://www.ontologymatching.org/
2http://www.ifi.unizh.ch/˜pziegler/IntegrationProjects.html
3http://www.digicult.info/pages/resources.php?t=10
4http://www.semanticweb.gr/modules.php?name=News&
file=categories&op=newindex&catid=17

obvious reasons, manual concept reconciliation in dynamic
environments (with or without computer-aided tools) is in-
efficient and at times close to impossible. Introduction of
the Semantic Web vision [3] and shifts toward machine-
understandable Web resources and Web services have made
even clearer the vital need for automatic schema matching.

Although these tools comprise a significant step towards
fulfilling the vision of automated schema matching, it has
become obvious that the user must accept a degree of im-
perfection in this process [11]. A prime reason for this is the
enormous ambiguity and heterogeneity of data description
concepts: It is unrealistic to expect a single mapping engine
to identify the correct mapping for any possible concept in
a set. Another (and probably no less crucial) reason is that
“the syntactic representation of schemas and data do not
completely convey the semantics of different databases” [19];
i.e., the description of a concept in a schema can be se-
mantically misleading. Therefore, managing uncertainty in
schema matching has been recognized as the next issue on
the research agenda in the realm of data integration [15].

As a basis for our discussion we next layout a generic
model for schema matching that serves the needs of this pa-
per. However, the reader should not consider this model to
be complete or unique. Let S1 and S2 be two schemata,
defined using some data model (e.g., relational or ontologi-
cal), with n1 and n2 attributes, respectively. We set no par-
ticular constraints on the nature of attributes. Therefore,
attributes can be as simple as relational schema attributes,
or complex, e.g., sub-trees in an XML schema. A common
representation of the schema matching problem in the liter-
ature uses a bipartite graph G = (V, E), where nodes repre-
sent attributes, each side of the graph represents a different
schema (i.e., V = S1 ∪ S2), and an edge (v, u) represents a
possible mapping between attributes. A schema mapping in
this setting is a subset E′ ⊆ E.

3. MODELING UNCERTAINTY IN SCHEMA
MATCHING

Melnik and Bernstein [4, 17] have proposed the Match
abstraction as a basic tool for model management. Match
operates on schemata and returns a mapping E′ ⊆ E.

To represent the uncertainty inherent in the matching pro-
cess, one can extend the bipartite graph to use labeled edges,
where a label of an edge can have the semantics of a “level of
certainty.” Therefore, a label can be a function ω : E → [0, 1]
where a label of 1 between two nodes represents the highest
level of certainty regarding the attribute mapping.

It is common to compute the uncertainty of a schema
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matching from the level of uncertainty of its components.
Therefore, given a mapping ( E′, one can define a schema
mapping level of certainty as a function Ω : 2E → [0, 1].
Examples of Ω include weighted average, dice [8], and others
(e.g., by comparing top-2 mappings [5]).

So far, no limitations were set on the set of edges in E′. A
typical cardinality constraint of 1 : 1 sets a constrains as fol-
lows: ∀v ∈ V, (v, u) ∈ E′ → ∀w ∈ V \{u}, (v, w) � E′. It is
worth noting that only limited research is currently devoted
to other types of cardinality constraints, such as 1 : n, n : 1,
and n : m (e.g., [24]). The interested reader is referred to
[9] for a discussion and analysis of this phenomenon.

While modeling uncertainty in schema matching provides
a nice formal framework, many questions remain unresolved.
How can one choose a good heuristic for determining the
labeling of edges (ω)? Are there “good” and “bad” Ω func-
tions? The next section presents the monotonicity principle
as a mechanism for providing insights into the selection pro-
cess of the ω and Ω functions.

4. THE MONOTONICITY PRINCIPLE
The evaluation of schema mappings (the outcome of schema

matching) is typically performed with respect to some “golden
rule” mapping, as given (at least conceptually) by a domain
expert. We denote such a mapping to be the exact mapping.
Clearly, such expert opinions are not readily available when
matching schemata (otherwise, one can simply use the ex-
pert opinion). Therefore, empirical evaluation is typically
performed on a limited set of schemata to “get the feeling”
on the performance of a matching algorithm. Two metrics
(and their combinations), borrowed from the area of Infor-
mation Retrieval, namely precision and recall, were used for
the empirical evaluation of performance. Assume that out
of the n1 × n2 attribute mappings, there are c ≤ n1 × n2

correct attribute mappings, with respect to the expert map-
ping. Also, let t ≤ c be the number of mappings, out of the
correct mappings, that were chosen by the matching algo-
rithm and f ≤ n1 × n2 − c be the number of incorrect such
attribute mappings. Then, precision is computed to be t

t+f

and recall is computed as t
c
. Clearly, higher values of both

precision and recall are desired. From now on, we shall focus
on the precision measure, denoting by p(E′) the precision of
a schema mapping E′. Extensions that include the recall
measure as well are left open for future research.

We observe that precision takes its values from a dis-
crete domain in [0, 1]. Therefore, one can create equiva-
lence schema mapping classes on 2E , the power set of G’s
edges. Two mappings E′ and E′′ belong to a class p if
p(E′) = p(E′′) = p, where p ∈ [0, 1]. Let us consider now
two mappings, E′ and E′′, such that p(E′) < p(E′′). For
each of these two mappings we can compute their schema
mapping level of certainty, Ω(E′) and Ω(E′′). We say that
a matching algorithm is monotonic if for any two such map-
pings p(E′) < p(E′′) → Ω(E′) < Ω(E′′).

Clearly, a monotonic matching algorithm can easily iden-
tify the exact mapping. Let E∗ be the exact mapping, then
p(E∗) = 1. For any other mapping E′, p(E′) ≤ p(E∗), since
p takes its values in [0, 1]. Therefore, if p(E′) < p(E∗) then
from monotonicity Ω(E′) < Ω(E∗). All one has to do then is
to devise a method for finding a mapping E∗ that maximizes
Ω.5 In fact, this is one of the two most common methods

5In [11], where the monotonicity principle was originally in-

Figure 1: Illustration of the monotonicity principle

for identifying the exact mapping nowadays [8, 11, 5]. The
other common method, adopted in [18, 12] and others, is
to only determine the values of ω automatically, allowing
the user to identify the exact (schema) mapping from the
individual attribute mappings.

Figure 1 provides an illustration of the monotonicity prin-
ciple using a mapping of “Absolute Agency” with “Adult
Singles,” both taken from the dating and matchmaking do-
main, using the combined algorithm, as provided by Onto-
Builder.6 Given a set of mappings, each value on the x-axis
represents a class of schema mappings with a different pre-
cision. The z-axis represents the level of certainty. Finally,
the y-axis stands for the number of schema mappings from
a given precision class and with a given level of certainty.

Two main insights can be derived from Figure 1. First,
the level of certainty of mappings within each schema map-
ping class form a “bell” shape, centered around a specific
level of certainty. Such a behavior indicates a certain level
of robustness of a schema matcher, assigning similar cer-
tainty levels to mappings within each class. Second, the
“tails” of the bell shapes of different classes overlap. There-
fore, a schema mapping from a class of a lower precision
may receive a higher level of certainty than a mapping from
a class of a higher precision. This, of course, contradicts
the monotonicity definition. In fact, our experience with
various schema matching algorithms and various real-world
schemata shows that no matcher we have encountered is
shown (even empirically) to be monotonic. However, the
first observation serves as a motivation for a definition of a
statistical monotonicity, first introduced in [11]:

Definition 1 (Statistical monotonicity). Let E =
{E1, E2, ..., Em} be a set of mappings over schemata S1 and
S2 with n1 and n2 attributes, respectively, and define n =
max(n1, n2). Let E1, E2, ..., En+1 be subsets of E such that
for all 1 ≤ i ≤ n + 1, E ∈ Ei iff i−1

n
≤ p (E) < i

n
. We

define Mi to be a random variable, representing the level
of certainty of a randomly chosen mapping from Ei. E is
statistically monotonic if the following inequality holds for
any 1 ≤ i < j ≤ n + 1:

Ω̄ (Mi) < Ω̄ (Mj) (1)

troduced, it was shown that while such a method works well
for fuzzy aggregators (e.g., weighted average) it does not
work for t-norms such as min.
6http://ie.technion.ac.il/OntoBuilder
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where Ω̄ (M) stands for the expected value of M .

Intuitively, a schema matching algorithm is statistically
monotonic with respect to given two schemata if the ex-
pected certainty level increases with precision. Statistical
monotonicity can assist us in explaining certain phenomena
in schema matching and also to serve as a guideline in find-
ing better ways to use schema matching algorithms.

5. FROM STATISTICAL MONOTONICITY
TO TOP-K SCHEMA MAPPINGS

Consider the set of all possible mappings between two
schemata, ranked in a decreasing order of Ω(·) of some (sta-
tistically) monotonic matcher. Assume that this set of map-
pings is statistically monotonic. Looking at the top-ranked
mapping (the best mapping E′), is it the exact mapping
E∗? Not necessarily. Although Ω̄ (Mi) < Ω̄ (Mn) for all
1 ≤ i < n, for specific instances Ω (E′) > Ω (E∗) is a valid
option, given the statistical nature of our definition. There-
fore, an immediate observation from this analysis is that if
one limits oneself to a matching task that identifies the best
mapping, one may not identify the exact mapping. This is a
well-known fact in the schema matching research area, since
rarely one has a precision and recall of 1, indicating that
E′ = E∗. Therefore, this model serves as a justification, in
a retrospect to a tough reality (recall that the first part of
the title of this paper is “Why is Schema Matching Tough”).

An additional observation goes as follows. Given the mono-
tonic nature of our matcher, it seems likely that the number
of mappings E′ satisfying Ω (E′) > Ω (E∗) is small with re-
spect to the total number of possible mappings. To motivate
this observation, consider once more Figure 1 and note that
a mapping E′ for which Ω (E′) > Ω (E∗) must come from
the “upper tail” of the mapping groups with lower preci-
sion. The chance that such a mapping will indeed receive
a higher similarity measure decreases with group precision.
Therefore, the exact mapping is likely to be found in the
top-K mappings, where K depends on the distribution of
similarity values of the precision groups, but is likely to be
much smaller than the set of all possible mapping.

Rank Combined algorithm
0 71%
1-10 19%
11-99 10%
>100 0%

Average rank 7

Table 1: Exact mapping positioning with respect to
the best mapping

Table 1 presents an empirical analysis, taken from [11],
summarizing the positioning of the exact mapping using a
statistically monotonic matcher. A rank of 0 means that the
algorithm was successful in identifying the exact mapping as
the best mapping. Other ranks show the positioning within
all possible mappings (9! = 362, 880). Even if this matcher
fails to identify the exact mapping as the best mapping, it
was still ranked high, saving one the need to possibly iterate
over all permutations.

Following this observation, a matching process can be de-
vised iteratively, where in each iteration a schema mapping

Figure 2: Precision and Recall for Stability analysis
with K = 10

is tested for correctness (e.g., by sending a form to a server).
In case of a failure, the next best mapping is being con-
structed. An algorithm for generating top-K mappings was
presented in [1], based on Murty’s assignment algorithm [20].

In [10], another use of top-K mappings was suggested.
Previously, we have assumed that a matcher can find the
exact mapping. Such an assumption may not be valid. For
example, assume that our matching algorithm solves a max-
imum weight bipartite graph problem to identify mappings.
Such an algorithm aims at adding as many attributes as
possible to a mapping. However, in many real-world cases,
some attributes cannot be mapped. Such a scenario is typ-
ically handles by setting a threshold so that attribute map-
pings with low certainty level cannot be included in a schema
mapping. Alas, thresholds are not easily tuned [22]. There-
fore, the algorithm proposed in [10] suggests to generate a
dynamic threshold by analyzing simultaneously a set of
top-K mappings. According to our observations, monotonic
matchers tend to rank high schema mappings with many
correct attribute mappings. Therefore, the algorithm keeps
attribute mappings only if they appear a sufficient number
of times (a threshold t) in the top-K mappings.

Figure 2 presents the average change to precision and re-
call for different thresholds over 43 real data pairs, as pre-
sented in [10]. K was set to 10. For this data set, preci-
sion increases (in general) up to t = 0.9 with the increased
threshold. Recall demonstrates a monotonic decrease with
the increased threshold. Such a phenomenon accords with
our initial intuition and is expected for monotonic matchers.
A closer look at the amount of improvements reveals that
the matcher provides an increase of 25.6% (with t = 0.9).
As for recall, it decreases by a maximum of 8%.

6. DISCUSSION AND CONCLUSIONS
In this paper we have introduced the principle of mono-

tonicity as a theoretical principal in schema matching and
showed the relationships between matcher monotonicity and
its ability to generate useful mappings. A few attempts at
setting theoretical foundation for schema matching exist in
the literature. The seminal work of Melnik and Bernstein
[4, 17] has been discussed already in Section 3.

A recent work on representing and reasoning about map-
pings between domain models was presented in [15]. This
work provides a model representation and inference analy-
sis. Managing uncertainty was recognized as the next step
on the research agenda in this area and was left open for a
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future research. Our work fills this gap in providing a model
that represents the uncertainty (as an imprecision measure)
in the matching process outcome.

Soundness of schema matching methods was discussed in
[2]. There, matching correctness was defined using prag-
matic competence, the ability to make decisions that are
sound with respect to the semantics of the problem. The
monotonicity principle can be viewed as a method for refin-
ing pragmatic competence using quantified methods.

Studying the uncertainty inherent to the schema match-
ing process (which is the “tough” part of schema matching)
is an ongoing research task (see, e.g., [16]). More matchers
are needed, utilizing top-K mappings. Also, a more refined
classification of monotonic matchers is needed, based on as-
pects such as application domain and the amount of variance
of certainty level values within each precision group.
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