
Data Correspondence, Exchange and Repair

Gösta Grahne
Concordia University

Montreal, Canada, H3G 1M8
grahne@cs.concordia.ca

Adrian Onet
∗

Concordia University
Montreal, Canada, H3G 1M8
a_onet@cs.concordia.ca

ABSTRACT
Checking the correspondence between two or more database
instances and enforcing it is a procedure widely used in
practice without however having been explored from a the-
oretical perspective. In this paper we formally introduce
the data correspondence setting and its associated compu-
tational problems: checking the existence of solutions, and
verifying whether a candidate is a solution, for three distinct
types of solutions. Data correspondence is a generalization
of data exchange and peer data exchange, and a special case
of repairing inconsistent databases. We introduce a new class
of dependencies, called semi-LAV, that properly includes
both LAV and full dependencies, while retaining tractability
for peer data exchange, data correspondence, and database
repairs. We also introduce the concept of Σ-satisfying ho-
momorphisms. This new type of homomorphism, together
with recent advances, is essential in achieving tractability,
while at the same time allowing a large class of dependen-
cies, namely the aforementioned semi-LAV ones. We also
show the intractability for a series of problems in the case of
weakly acyclic tuple generating dependencies. This implies
that many tractability results for weakly acyclic dependen-
cies do not carry over to data correspondence; in these new
settings we need to restrict the dependencies a bit further,
yielding our semi-LAV dependencies.

1. INTRODUCTION
Verifying the coherence between two or more database

instances is a procedure widely used in practice, without
however having been explored in a systematic fashion in
database research. This paper represents a starting point
for understanding this important problem, called Data Cor-
respondence hereafter. By Data Correspondence we mean
the constructive testing between two (or more) database in-
stances in order to verify that they represent the same in-
formation. The challenge arises from the fact that the two

∗Contact author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2010, March 22–25, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-947-3/10/0003 ...$10.00

databases may be structured according to different schemas.
The prototypical example is to compare a decomposed, nor-
malized instance to the initial universal instance. In this,
and all other cases, the correspondence between the two in-
stances has to be expressed in some formal way, i.e. in some
logical formalism. In the decomposition example, the cor-
respondence could for instance be expressed in the familiar
algebraic notation by stating that

U = R1 &R2 &⋯ &Rn and πRi(U) = Ri, i ∈ {1,2, . . . , n},
where U is the universal schema, and {R1,R2, . . . ,Rn} is
the decomposed one. Given a universal instance u and
a decomposed instance {r1, r2, . . . , rn}, they correspond if
u = r1 & r2 & ⋯ & rn, and πRi(u) = ri, for i ∈ {1,2, . . . , n}.
Sometimes one wants to verify such a correspondence with-
out having the universal instance explicitly. In this case, the
question is whether there exists an instance u over U , such
that the above equations hold. This is known as testing the
instance {r1, r2, . . . rn} for global consistency (see e.g. [1]);
a problem that has indeed been thoroughly investigated.
Global consistency is however only a beginning, the gen-
eral framework we consider in this paper uses the recently
revitalized tuple generating dependencies [6] to describe the
relationship between two instances and their schemas. We
also go beyond global consistency, in that we not only want
to verify a correspondence, but in case the instances do not
correspond, we are interested in coercing the instances to
correspond by modifying one or both of them. In the decom-
position example, this could for example entail the deletion
of the “dangling tuples” in the ri relations.

For a real, concrete example from a financial brokerage
firm consider employees entering their working hours into a
database having schema

EmpHours (EmpId,ProjId,TotHours)
HourlyRate (EmpId,Rate)
Sponsor (MgrId, ProjId)
ExpensePlan (PlanId, Rate)

where EmpHours has the meaning that the employee with
EmpId worked at the project ProjId for a total of TotHours.
Relation HourlyRate records the hourly salary of the em-
ployee in a project. Associated with each project we have a
tuple in relation Sponsor with the meaning that the project
ProjId is sponsored from the funds of the manager with
MgrId. The relation ExpensePlan represents the hourly rate
used for different expense plans. On the other hand, the
Managers have to justify their use of funds by entering data
in a different database with schema:

Contribution (MgrId,EmpId,TotHours,Rate)
with the meaning that the manager with MgrId has paid
the employee with EmpId for TotHours hours at the rate of
Rate. In order to verify that funds have been appropriately
dispersed, the company relies on the following correspon-
dence dependencies.

EmpHours (ei, pi, th),Sponsor (mi, pi),HourlyRate (ei, r)
Ð→ Contribution (mi, ei, th, r),

Contribution (mi, ei, th, r)
Ð→ ∃pl ∶ HourlyRate (ei, r),ExpensePlan (pl, r).
If a non-correspondence is detected, the company would

bring the two database instances up to date, by entering
some missing tuples in the employee database (assuming
that the managers financial reports are correct).

Related work. Notwithstanding what we said above, there
are some islands of research that are closely related to, or
special cases of Data Correspondence, viz. Data Exchange,
Peer Data Exchange, and Repairing Inconsistent Databases.

Data Exchange is an important concept harking way back
to federated and heterogeneous databases. The problem was
finally put on a sound formal basis by the fundamental work
of Fagin, Kolaitis, Miller and Popa in [11]. The data ex-
change problem can be described briefly as follows: given
a “source” database schema, a “target” database schema, a
database instance over the source schema, and a set of de-
pendencies describing source to target mappings and target
constraints, find a database instance over the target schema
such that together with the source instance it satisfies the set
of dependencies. Besides finding the target instance there
are other connected problems, such as finding “good” tar-
get instances, finding compact target instances, answering
queries over target instances, as well as composing and in-
verting schema mappings defined by dependencies. In their
work Fagin et al. [11] introduced a special class of depen-
dencies (weakly acyclic tuple generating dependencies) for
which finding good target instances can be done in polyno-
mial time. The area is currently very active, for instance a
major technical breakthrough concerning compacting target
instances was recently achieved by Gottlob and Nash in [16].
For an overview of the field, see [5, 18].

Peer Data Exchange is a framework introduced by Fux-
man, Kolaitis, Miller and Tan in [14]. It represents a spe-
cial case of peer data management and a generalization of
data exchange. In this framework the source and the target
databases have different roles. The source database/peer is
considered to be the authoritative one, and the target is con-
sidered to have incomplete data. The relationship between
the two is expressed using source to target and target de-
pendencies, as in data exchange, but in addition there are
also target to source dependencies. The peer data exchange
problem is to find a superset of the target instance, such
that the two together satisfy the given dependencies. Fux-
man et al. study computational problems related to finding
these supersets. In addition to intractability results, the au-
thors identify a class of dependencies, albeit one having a
rather technical syntactic characterization, for which peer
data exchange can be executed efficiently.

Database repairs is one of the main problems associated
with inconsistent databases. A database instance is consid-

ered inconsistent if it violates the integrity constraints asso-
ciated with the schema (for a survey of the field, see [7, 9]).
A repair of an inconsistent database instance is an instance
consistent with the integrity constraints, such that the con-
sistent instance differs in some minimal way from the in-
consistent one. Several minimality criteria, each presenting
their own computational challenges, have been considered.
The symmetric difference repair, studied by Arenas et al.
in [4], requires that the symmetric difference between the
inconsistent database and the repair to be minimal, The
subset repairs, as studied by Chomicki and Marcinkowski
in [10], require the repair to be a maximal consistent sub-
set of the inconsistent instance. Lopatenko and Bertossi,
in [20], consider cardinality repairs, where the repair is to
be a subset of maximal cardinality, and Afrati and Kolaitis,
in [2], recently introduced the Pareto style component car-
dinality repair. The central computational problems related
to database repairs are the existence of a repair for a given
inconsistent database, and the repair checking problem, i.e.
test if a given consistent database satisfies the minimality
criterion. In their work, Afrati and Kolaitis [2] prove the
intractability for the repair checking problem in the general
case and also show that the subset repairs and symmetric
difference repairs are tractable for weakly acyclic dependen-
cies whose antecedents consist of a single atom. Such de-
pendencies are heavily used in information integration, and
are called Local As View (LAV). In addition, Staworko and
Chomicki prove in [22] that repair checking for subset and
symmetric difference minimality is tractable for full depen-
dencies, i.e. dependencies that have no existential quantifiers
in the consequent. In this paper we will show that one of our
correspondence problems is logspace reducible to database
repairs. More importantly, we will provide a large, natural
class of dependencies, called semi-LAV, that properly in-
cludes both the weakly acyclic LAV-dependencies and the
full dependencies, and for which all computational prob-
lems related to data correspondence are tractable. Thus,
as a byproduct, we also provide new, significantly extended
tractability results for database repairs.

Summary of results. In this paper we show that the afore-
mentioned problems can be seen in our unified framework
of data correspondence. A data correspondence setting con-
sists of two non-overlapping schemas, named R1 and R2, to
emphasize their symmetrical role, together with a set Σ of
tuple generating dependencies describing the mapping from
R1 to R2, and from R2 to R1. An instance of the data cor-
respondence problem for a setting consists of two instances,
one over R1, and the other over R2. Testing whether the
instances satisfy Σ can be done in deterministic logarithmic
space (in the size of the instances) [1]. If the instances do
not correspond, we will be looking for a solution to the dis-
crepancy. Such a solution consists of modified versions of
the initial instances. We distinguish between two classes of
data correspondence problems: In the uniform setting the
role of the two instances are symmetric, and as data sources
they are considered to be either sound but possibly incom-
plete, or complete but possibly unsound, or neither (cf. [17]).
In the first case our instances consist of facts known to be
true, but may miss other facts. In this case we look for mod-
ifications that are minimal supersets of the initial instances.
In the second case our instances contain all true facts, but
may additionally contain false facts. Then we are looking
for modifications that are maximal subsets of the initial in-

stances. If our information is neither sound, nor complete,
the modifications consists of instances that differ minimally
from the initial ones, with respect to symmetric difference
(that is, with respect to both inserted and deleted facts).
The second class of problems are the non-uniform versions
of the previous. Here one of the data sources, say R1, is
the authoritative one, i.e. it is sound and complete, and can
therefore not be modified. Only the instance over R2 is to be
changed, based on superset, subset, or symmetric difference
minimality.

We can thus see that peer data exchange corresponds to
the non-uniform correspondence setting where we look for
modifications that are supersets of the second instance. If
we furthermore restrict the second instance to initially be
empty and omit the target to source dependencies, we have
the classical data exchange setting. The uniform correspon-
dence setting, if generalized so that the schemas R1 and R2

are allowed to overlap, or equivalently, if there is only one
schema, becomes repairing inconsistent databases.

Most of our results are obtained using homomorphism
techniques, in particular some recently developed ones (i.e.
[2,11,16]). We introduce the new concept of Σ-satisfying ho-
momorphisms, where Σ is a set of dependencies. This type
of homomorphism is central in our characterizations and
tractability results. Previously, Staworko and Chomicki [22]
gave a characterization of when an instance is a repair of
another, with respect to a set Σ of full tuple generating
dependencies. Using the new notion of Σ-satisfying homo-
morphisms, we are able to extend the characterization to
any set of tuple generating dependencies. We also define
a new, large class of dependencies called semi-LAV. This
class properly includes all LAV-dependencies, and all full
dependencies. Modulo a small discrepancy, our semi-LAV
dependencies also properly include half of the tractable class
discovered in peer data exchange [14] (that technical class
actually consists of two distinct classes, and by “half” we
mean the first of these). Using our Σ-satisfying homomor-
phisms together with the previously mentioned homomor-
phism techniques, we show in this paper that all here con-
sidered computational tasks related to data correspondence
can be carried out in time polynomial in the input instances,
whenever Σ is a set of semi-LAV dependencies. Although
not “optimal” in an absolute sense, we show the goodness
of the semi-LAV dependencies by deriving intractability re-
sults for the slightly larger class of general weakly acyclic
dependencies, pertaining to most of the data correspondence
problems.

The rest of this paper is organized as follows. Section 2
gives the basic definitions and formally describes the prob-
lems we study in this paper. Section 3 contains the char-
acterizations of solutions to the problems, along with some
polynomial algorithms for general weakly acyclic tuple gen-
erating dependencies. In Section 4 we prove the intractabil-
ity for all the cases (the bulk of them) not covered by the
polynomial time algorithms of Section 3. In Section 5 we
introduce the new class of semi-LAV tuple generating de-
pendencies, and give polynomial time algorithms for all data
correspondence problems. Conclusions and some prospects
for further work follow in Section 6. Missing proofs can be
found in the full version.

1
The original definition of LAV dependencies [19] additionally re-

quires that all variables in the antecedent also appear in the conse-
quent, and that there are no repeated variables in the antecendent.

2. DEFINITIONS
Basics. A schema R is a finite set {R1, . . . ,Rn} of rela-
tional symbols, each Ri having a fixed arity ki. Let Const
be a countably infinite set of constants, and Vars a countably
infinite set of variables. An instance I of R is an interpreta-
tion that assigns to each relational symbol Ri a finite ki-ary
relation RI

i ⊂ (Const ∪ Vars)ki . An instance I over R is
usually identified with the set of tuples {RI

i ∶ Ri ∈ R}. We
denote by ∣I ∣ the size of I, i.e. the number of tuples in I, and
with dom(I) the set of constants and variables that appear
in I. An instance I, such that dom(I) ⊆ Const is called a
ground instance. If I and J are two instances over the same
schema R, we denote by I ⊆ J the fact that RI

i ⊆ R
J
i , for

all i ∈ {1, . . . , n}. We write J ≤I K if J ⊕ I ⊆ K ⊕ I, that is,
if (I ∖ J) ∪ (J ∖ I) ⊆ (I ∖K) ∪ (K ∖ I). If the inclusion is
proper, we write J <I K. Clearly ≤I is a partial order, for
each instance I.

Let R1 and R2 be two database schemas with no relational
symbols in common. An instance (I1, I2) is said to be an
instance over (R1,R2) if I1 is an instance over R1 and I2 an
instance over R2. If (I1, I2) and (J1, J2) are instances over
(R1,R2), we write (I1, I2) ⊆ (J1, J2) if I1 ⊆ J1 and I2 ⊆ J2,
i.e. if I1 ∪ I2 ⊆ J1 ∪ J2.

Let I and J be instances over a schema R. A homomor-
phism h from I to J is a function on Vars ∪ Const that is
identity on Const, extended to tuples and relations in the
natural way, such that h(RI

i) ⊆ RJ
i , for all i ∈ {1, . . . , n}.

The Gaifman graph (of variables) GI for an instance I is
an undirected graph with vertex set dom(I) ∩ Vars and an
edge between two vertices x and y if x and y appear together
in a tuple of I. A block is a connected set of variables in GI .
Let V ⊆ dom(I) ∩ Vars. We denote with blocks(V,GI) the
set of all blocks from the Gaifman graph GI restricted to the
variables in V . Similarly, blocks(GI) denotes the set of all
blocks in GI (without restriction). If b is a block we denote
by blocksize(b) the cardinality of b.

A conjunctive query ϕ(x̄) over a schema R is a conjunc-
tions of relational atoms from R, where x̄ denotes the free
variables of the atoms of ϕ. A tuple generating dependency
(tgd) is a first order sentence of the form

∀x̄ ϕ(x̄)→ ∃ȳ ψ(x̄, ȳ),
where ϕ (the antecedent) and ψ (the consequent) are con-
junctive queries, x̄ denotes the universally quantified vari-
ables, and ȳ the existentially quantified ones. An equality
generating dependency (egd) of the form ∀x̄ ϕ(x̄)→ x1 = x2,
is like a tgd, except that the consequent is an equality be-
tween the variables x1 and x2 that also are part of x̄. For an
easier representation we, as is common in the field, omit the
universal quantifiers. In this paper we consider tgd’s only,
egd’s will be dealt with in a forthcoming paper. A full tgd is
a tgd that has no existentially quantified variables. A LAV-
tgd (Local-As-View tgd1) is a tgd that has only one atom
in the antecedent. We denote a finite set of tgd’s by Σ, and
individual tgd’s by ξ.

An instance I is said to satisfy a set of dependencies, de-
noted I ⊧ Σ, if I satisfies Σ in the standard model theoretic
sense.

A position is a pair (R, i) where R is a relational symbol
from schema R and i is a index between 1 and the arity
of R. A variable x is said to appear in position (R, i) in a
conjunctive query ϕ(x̄) if x is in x̄ and x appears on the i-th
position of R in ϕ.

For a set Σ of tgd’s over a database schema R the depen-
dency graph of Σ is the directed graph that has as vertices
all the positions associated with all relational symbols from
R. The dependency graph has two types of edges:

● Regular edges. There is a regular edge between ver-
tices (R, i) and (S, j) if there exists a tgd ξ ∈ Σ that
has a variable x that appears both in position (R, i)
in the antecedent of ξ, and in position (S, j) in the
consequent of ξ.

● Existential edges. There is an existential edge between
vertices (R, i) and (S, j) if there is a tgd ξ ∈ Σ that
has a variable x that appears in position (R, i) of the
antecedent, and an existentially quantified variable y
that appears in position (S, j) in the consequent.

A set of Σ of tgd’s is said to be weakly acyclic if the
dependency graph of Σ does not have any cycles containing
an existential edge [11].

The chase of an instance I w.r.t. a set of tgd’s Σ is an al-
gebraic proof procedure that repeatedly forces I ⊧ ∃ȳφ(ā, ȳ)
by adding tuples to I, whenever I ⊧ ϕ(ā), for some tgd
ϕ(x̄) → ∃ȳ φ(x̄, ȳ) in Σ, and vector ā of elements from
dom(I). For a more detailed description of the chase, see
[3, 6, 11, 21]. The chase might not terminate (in the finite),
but [11] has shown that if Σ is a finite set of weakly acyclic
tgd’s it terminates, and does so in time polynomial in ∣I ∣. We
denote the (finite or infinite) result by chaseΣ(I). The cru-
cial property, from our point of view, is that chaseΣ(I) ⊧ Σ.

Data Correspondence. Let R1 and R2 be two schemas
with no relation symbols in common. A (data) correspon-
dence mapping for (R1,R2) is either a tgd of the form

φ1(x̄)→ ∃ȳφ2(x̄, ȳ),
or a tgd of the form

φ2(x̄)→ ∃ȳφ1(x̄, ȳ),
where all the atoms of φ1 are over R1, and the atoms of φ2

are over R2. We consider finite sets Σ = Σ12 ∪ Σ21 of such
correspondence mappings, where Σ12 contains all the tgd’s
of the first form, and Σ21 the tgd’s of the second form. Note
that tgd’s Σ12 are used to specify data exchange mappings
[11], where the source schema is R1, and the target schema
is R2.

A data correspondence setting is as a triple (R1,R2,Σ),
where Σ = Σ12 ∪Σ21 is a set of correspondence mappings for
(R1,R2) as above. We say that a ground instance (I1, I2)
of (R1,R2) satisfies the setting if (I1, I2) ⊧ Σ.

Let (R1,R2,Σ) be a correspondence setting, and (I1, I2) a
ground instance over (R1,R2). Then ⟨(I1, I2), (R1,R2,Σ)⟩,
denotes an instance of the uniform data correspondence prob-
lem. For such an instance, usually denoted simply (I1, I2,Σ),
there are three types of solutions, namely: subset solutions,
superset solutions, and ⊕-solutions.

Definition 1. Let (I1, I2,Σ) be an instance of the uni-
form data correspondence problem, and (K1,K2) a non-
empty ground instance over (R1,R2). If (K1,K2) satisfies
Σ, we say that (K1,K2) is a

● subset solution if (K1,K2) ⊆ (I1, I2) and (K1,K2) is
maximal among the subsets of (I1, I2) satisfying Σ.

● superset solution if (K1,K2) ⊇ (I1, I2) and (K1,K2) is
minimal among the supersets of (I1, I2) satisfying Σ.

● ⊕-solution if (K1,K2) is ≤(I1,I2)-minimal among the
instances satisfying Σ. ∎

Note that in all cases an instance can have one, or several
solutions. Subset and ⊕-solutions might not exist, whereas
superset solutions always do.

The non-uniform data correspondence problem is similar
to the uniform one, except that the instance I1 is kept fixed
when looking for solutions. This has, among other things,
the consequence that not even superset solutions are guar-
anteed to exist.

Definition 2. Let (I1, I2,Σ12,Σ21) be an instance of the
non-uniform data correspondence problem, and K2 a non-
empty ground instance over R2. If (I1,K2) satisfies Σ, we
say that K2 is a

● subset solution if K2 ⊆ I2 and K2 is maximal among
the subsets of I2, such that (I1,K2) satisfies Σ.

● superset solution if K2 ⊇ I2 and K2 is minimal among
the supersets of I2, such that (I1,K2) satisfies Σ.

● ⊕-solution if K2 is ≤I2 -minimal among the instances
over R2, such that (I1,K2) satisfies Σ. ∎

These above definitions give rise to classes of decision
problems that we study in this paper. The first class is the
existence of solutions to the correspondence problem, and
the second class is to check whether a given instance is a so-
lution. We note that Fuxman, Kolaitis, Miller and Tan [14]
have investigated, under the name of Peer Data Exchange,
the existence of superset solutions to the non-uniform corre-
spondence problem. However, they do not require a solution
to be minimal, which in fact leaves out an additional compu-
tational hurdle similar to computing the core of a solution.
We shall return to this issue in Section 4.

In addition, it turns out that our correspondence problem
can be seen as a special case of the problem of repairing
inconsistent databases, in particular the problem of repair
checking, which recently has been illuminated by Afrati and
Kolaitis [2]. The definition is as follows:

Definition 3. ([2]) Let I be a ground instance over a
schema R, and Σ a set of constraints. Then a ground in-
stance K over R that satisfies Σ is a

● subset repair of I w.r.t. Σ, if K ⊆ I and K is maximal
among the subsets of I that satisfies Σ.

● superset repair of I w.r.t. Σ, if K ⊇ I and K is minimal
among the supersets of I that satisfies Σ.

● ⊕-repair of I w.r.t. Σ, if K is ≤I-minimal among the
instances satisfying Σ. ∎

Afrati and Kolaitis actually did not consider the second
problem, but they did in addition also investigate cardinality
based repairs (i.e. a subset of maximal cardinality satisfy-
ing the dependencies). Cardinality based repairs however
turned out to be intractable even for the simplest kind of
dependencies, so they are not included in the present paper.

We now formally define the decision problems studied in
this paper.

Existence-of-Solution(Σ,∗,uniform/non-uniform)
Let Σ = Σ12 ∪ Σ21. The input is an instance (I1, I2), and
the question is whether the uniform/non-uniform correspon-
dence problem (I1, I2,Σ12,Σ21) has a ∗-solution, where ∗ is
one of subset/superset/⊕.

Solution-Checking(Σ,∗,uniform/non-uniform)
Input: instances (I1, I2) and (K1,K2). Question: is the
instance (K1,K2) a ∗-solution to the uniform/non-uniform
correspondence problem (I1, I2,Σ12,Σ21).

Existence-of-Repair(Σ,∗)
The input is an instance I, and the question is whether I
has a ∗-repair w.r.t. Σ.

Repair-Checking(Σ,∗)
The input is instances I and K, and the question is whether
the instance K is a ∗-repair of I w.r.t. Σ.

3. BASIC CHARACTERIZATIONS
Our first contribution is a general characterization of re-

pairs, applicable to any set of tgd’s. For this we need the
following lemma and definition.

Lemma 1. ([13]) Let I and J be instances, and Σ a set of
tgd’s over a schema R. If I ⊆ J there exists a homomorphism
h, such that h(chaseΣ(I)) ⊆ chaseΣ(J). ∎

Before we introduce the next concept let us consider the
following set of dependencies between R1 and R2 in a uni-
form correspondence setting (cf. [12]):

Σ12 = {Emp (e)→ ∃m EmpMgr (e,m)},
Σ21 = {EmpMgr (e,m)→Manager; (m),

EmpMgr(e, e)→ SelfMgr (e, e)}.
Consider the instance I, where EmpI

= {(ron), (phokion)},
and EmpMgrI

= ManagerI
= SelfMgrI

= ∅. Let the de-
pendencies be Σ = Σ12 ∪ Σ21, and denote chaseΣ(I) by K.
Then EmpK

= {(ron), (phokion)}, ManagerK
= {(x), (y)},

EmpMgrK
= {(ron, x), (phokion, y)}, and SelfMgrK

= ∅.
Then take instance J , with EmpJ

= {(ron), (phokion)},
ManagerJ

= {(ron), (thomas)}, SelfMgrJ
= ∅, EmpMgrJ

= {(ron, ron), (phokion, ron)}. It is easy to see that the ho-
momorphism h that maps both null values x and y to ron is
a homomorphism from K = chaseΣ(I) into J . On the other
hand, neither h(K) nor J satisfies Σ. These observations
lead to the introduction of a new type of homomorphism,
namely Σ-satisfying homomorphisms.

Definition 4. Given an instance K and a set Σ of tgd’s
over a schema R, as well as a ground instance I over R, a
Σ-satisfying homomorphism from K into I is a homomor-
phism h from K into I, such that h(K) ⊆ J ⊆ I, and J ⊧ Σ,
for some J ⊆ I. ∎

We can now state necessary and sufficient conditions for
when an instance K, such that K ⊧ Σ, is a ⊕-repair for a
given instance I w.r.t. the set Σ of tgd’s. The first condition
assures that K ∖ I does not contain superfluous tuples, and
the second condition guarantees that no more tuples from I
could be added to K.

Theorem 1. Let Σ be a set of tgd’s, I a ground instance,
and K a ground instance such that K ⊧ Σ. Then K is a ⊕-
repair if and only if the following conditions are satisfied:

1. For all Σ-satisfying homomorphisms h, such
that h(chaseΣ(I ∩K)) ⊆ K, and all instances J ⊆ K,
such that J ⊧ Σ and h(chaseΣ(I ∩K)) ⊆ J , it holds
that J =K.

2. There does not exist a tuple t ∈ I ∖K, and Σ-satisfying
homomorphism h with an instance J ⊆ K ∪ I, J ⊧ Σ,
such that h(chaseΣ((I ∩K) ∪ {t})) ⊆ J ⊆K ∪ I.

Proof : Suppose K is a ⊕-repair. As K ⊧ Σ, we have
chaseΣ(K) = K. By Lemma 1 there then exists a homo-
morphism h such that h(chaseΣ(I ∩K)) ⊆ K. Towards a
contradiction, suppose that there is an instance J , such that
h(chaseΣ(I ∩K)) ⊆ J ⊂ K and J ⊧ Σ. Then J ∖ I ⊂ K ∖ I,
and since I∩K ⊆ chaseΣ(I∩K) and I∩K is ground, we have
that I ∩K ⊆ J , meaning that I ∖J ⊆ I ∖K, and consequently
that J <I K. But this contradicts the assumption that K is
a ⊕-repair. Therefore it must be that J = K, meaning that
K satisfies condition 1.

Suppose then that condition 2 is violated, and tuple t, Σ-
satisfying homomorphism h, and instance J exist. Since for
such a J , we would have I ∖ J ⊂ I ∖K, it would follow that
J <I K, contradicting the assumption that K is a ⊕-repair.

For the only if direction, let K be an instance such that
K ⊧ Σ, and K satisfies conditions 1 and 2. We need to show
thatK is ⊕-minimal. If this is not the case, there must be an
instance J , such that J ⊧ Σ and J <I K. Thus J ∖I ⊆K ∖I,
and I ∖ J ⊆ I ∖ K, and at least one of the inclusions is
proper. Suppose first that it were the case that I∖J = I∖K.
Then we would have J ⊆ K. Thus, if J ∖ I were to be a
proper subset of K ∖ I, it would necessarily be that J ⊂ K.
Since then I ∩K = I ∩ J , we will also have chaseΣ(I ∩K)
= chaseΣ(I ∩ J). By Lemma 1 we have a homomorphism
h, such that h(chaseΣ(I ∩ J)) ⊆ chaseΣ(J) = J. Then it
would hold that h(chaseΣ(I ∩K)) ⊆ J ⊂ K, contradicting
condition 1.

If it were the case that I ∖ J ⊂ I ∖ K, we would find
a tuple t ∈ (J ∩ I) ∖ (K ∩ I), that is in I ∖ K, such that
by Lemma 1 we would have a homomorphism h, such that
h(chaseΣ((I ∩K)∪{t})) ⊆ J ⊆K ∪ I, a contradiction to the
assumption that K satisfies condition 2. ∎

As we mentioned before, a correspondence solution is a
special case of a repair, so the above characterization can
also be used for the correspondence problem, by the follow-
ing lemma.

Lemma 2. Let (I1, I2,Σ1,Σ2) be an instance of the uni-
form data correspondence problem, and (K1,K2) a ground
instance, such that (K1,K2) ⊧ Σ12 ∪ Σ21. Then (K1,K2)
is a subset (superset, ⊕) solution to the uniform correspon-
dence problem if and only if (K1,K2) is a subset (superset,
⊕, respectively) repair of (I1, I2) w.r.t. Σ12 ∪Σ21. ∎

In case of solutions to the non-uniform correspondence
problem, we have a characterization similar to Theorem 1.

Theorem 2. Let (I1, I2,Σ12,Σ21), with Σ = Σ12 ∪ Σ21,
be an instance of the non-uniform correspondence problem,
and K2 an instance such that (I1,K2) ⊧ Σ. Then K2 is a
⊕-solution for (I1, I2,Σ12,Σ21) if and only if the following
conditions are satisfied:

1. For all Σ-satisfying homomorphism h, such that we
have h(chaseΣ(I1, I2 ∩ K2)) ⊆ (I1,K2), and all in-
stances J2 ⊆ K2 such that we have (I1, J2) ⊧ Σ and
h(chaseΣ(I1, I2∩K2)) ⊆ (I1, J2), it holds that J2 =K2.

2. There does not exist a tuple t ∈ I2 ∖ K2 and a Σ-
satisfying homomorphism h with a“witnessing” instance
J2 ⊆ (I2 ∪ K2), such that we have (I1, J2) ⊧ Σ, and
h(chaseΣ(I1, I2 ∩K2 ∪ {t})) ⊆ (I1, J2).

Proof : Follows the lines of the proof of Theorem 1. ∎

The next theorem is due to Fagin, Kolaitis and Popa [11],
and was further highlighted by Gottlob and Nash [16]. Note
that any set Σ12 of tgd’s is non-recursive, and hence weakly
acyclic.

Theorem 3. ([11])

1. Let I be a ground instance, and Σ a weakly acyclic
set of tgd’s. Then there is a polynomial p, such that
∣chaseΣ(I)∣ ≤ p(∣I ∣).

2. Let (I1, I2) be a ground instance. Then chaseΣ12(I1, I2)
has bounded blocksize.

3. Let I and K be instances such that blocksize(GI) ≤ c,
for some constant c. Then it can be tested whether
there exists a homomorphism from I to K in time
O(∣K ∣c). ∎

We will also use the following result, obtained by Afrati
and Kolaitis.

Theorem 4. ([2]) Let Σ be a set of weakly acyclic tgd’s
and I an instance, such that I ⊧ Σ. Then there exists a
constant c, depending only on Σ, such that for each tuple
t ∈ I there is an instance Kt ⊆ I, such that t ∈ Kt,Kt ⊧ Σ,
and ∣Kt∣ ≤ c. ∎

Armed with these results we will now derive polynomial
time algorithms that determine the existence of database
repairs and of uniform correspondence solutions for weakly
acyclic tgd’s.

Theorem 5. Let Σ be a set of weakly acyclic tgd’s. Then
the problem

Existence-of-Repair(Σ, subset)
can be solved in polynomial time.

Proof: Let I,Σ be an instance of the problem, and c the
constant mentioned in Theorem 4. Consider the following
algorithm:

Repair-Search(I,Σ, c)
1 for i← 1 to c
2 do for K ⊆ I, ∣K ∣ = i
3 do if K ⊧ Σ return true
4 return False

The algorithm is obviously sound. The completeness fol-
lows directly from Theorem 4. The inner loop on line 2 is
executed at most (∣I∣

i
) times, and the outer loop on line 1

at most c times. Thus line 3 is executed at most ∣I ∣c times.
Each execution of line 3 is done deterministically in space
logarithmic in at most c. Consequently, the algorithm runs
in time polynomial in the size of I. ∎

Using Lemma 2 we obtain

Corollary 1. Let Σ = Σ12∪Σ21 be a set of weakly acyclic
tgd’s. Then the problem

Existence-of-Solution(Σ, subset, uniform)
can be solved in polynomial time. ∎

We note that Existence-of-Repair(Σ, superset) as well

as Existence-of-Solution(Σ, superset, uniform) are non-

problems, since superset solutions always exist (recall that
no egd’s are present). We now turn our attention to the solu-
tion checking problem for data correspondence. It the next
section we shall see that the uniform version of this prob-
lem is coNP-complete for weakly acyclic tgd’s and all types
of solutions. However, using homomorphism techniques we
are able show that the non-uniform version of the problem
is polynomial for subset and superset solutions for any set
of tgd’s. Somewhat surprisingly then, as shown in the next
section, it turns out that the non-uniform version is coNP-
hard for ⊕-solutions even for weakly acyclic tgd’s. Before
that, we show the polynomial results.

Theorem 6. Let Σ = Σ12 ∪ Σ21 be a set of tgd’s. Then
the problem

Solution-Checking(Σ, subset, non-uniform)
can be solved in polynomial time.

Proof : Let (I1, I2) be an instance, Then instance K2 ⊆ I2 is
a subset solution for (I1, I2,Σ12,Σ21), if (I1,K2) ⊧ Σ, and
there does not exist an instance J2, such that K2 ⊂ J2 ⊆

I2 and (I1, J2) ⊧ Σ. The test (I1,K2) ⊧ Σ can be done
deterministically in space logarithmic in the size of (I1,K2).
It is easy to see that a J2, as mentioned above, does exist if
and only if there is a tuple t ∈ I2 ∖K2 and a homomorphism
h, such that h(chaseΣ21(K2 ∪ {t})) ⊆ I1. It follows from
Theorem 3 that the existence of such a homomorphism h
can be determined in time polynomial in the size of I1. The
chase with Σ21 and the homomorphism test is repeated for
each tuple in I2 ∖K2. The whole process thus runs in time
polynomial in the size of (I1, I2). ∎

Theorem 7. Let Σ = Σ12 ∪ Σ21 be a set of tgd’s. Then
the problem

Solution-Checking(Σ, superset, non-uniform)
can be solved in polynomial time.

Proof : Let the instance be (I1, I2) and K2 the candidate
solution. First test if (I1,K2) ⊧ Σ. If so, look for a tuple
t ∈ K2 ∖ I2, and a homomorphism h from chaseΣ12(I1) to

K2 ∖ {t}. By Theorem 3 this process can be carried out in
time polynomial in the size of (I1,K2). Evidently, if such a
tuple t and homomorphism h is found, K2 is not a superset
solution, since then (I1,K2 ∖ {t}) ⊧ Σ, meaning that K2 is
not minimal. If no tuple t and homomorphism h is found,
K2 is obviously minimal. ∎

As we will see in the next section the remaining problems
are intractable for weakly acyclic tgd’s.

4. HARD CASES
We just saw that for the non-uniform correspondence prob-

lem, checking whether an instance is a subset solution or a
superset solution is polynomial. If we allow a solution to
be in part a subset, and in part a superset, the problem
becomes coNP-complete.

Theorem 8. Let Σ = Σ12 ∪ Σ21 be a set of tgd’s. Then
the problem

Solution-Checking(Σ,⊕,non-uniform)
is in coNP, and is coNP-hard even for weakly acyclic tgd’s.

Proof : Let the instance be (I1, I2) and K2 the candidate
solution. To see that the problem is in coNP, consider the
complementary problem, this is, does there exist an instance
J2, such that (I1, J2) ⊧ Σ, and J2 <I2 K2? This problem
is clearly in NP, since we can guess J2, and then check in
logarithmic space whether (I2, J2) ⊧ Σ.

For the lower bound we will, in the spirit of [2], reduce
the Positive 1-In-3-SAT problem to the ⊕-repair checking
problem. The Positive 1-In-3-SAT problem asks whether
a set of disjunctive clauses, each having three positive vari-
ables, is satisfiable with a truth assignment that makes ex-
actly one variable in each clause true. This problem is known
to be NP-complete [15].

We consider the schema (R1,R2), where R1 = {P,E,V,F},
and R2 = {T,S,D}. Let Σ12 consist of the following depen-
dencies

P (x, y, z) → ∃u, v,w ∶ T (x,u), T (y, v) (1)

T (z,w), S(u, v,w)

F (u, v,w, u′, v′,w′) → D(u, v,w, u′, v′,w′) (2)

and Σ21 consist of

T (x,u), T (x,u′) → E(u,u′) (3)

S(u, v,w), S(u′, v′,w′), (4)

D(u, v,w, u′, v′,w′) → V (u, v,w).
Note that Σ12 ∪Σ21 is a weakly acyclic set.

Given an instance P of the Positive 1-In-3-SAT prob-
lem we construct I1 as

P I1
= {(x, y, z) ∶ x ∨ y ∨ z is a clause in P}

EI1
= {(0,1), (1,0)}

V I1
= {(0,0,1), (0,1,0) (1,0,0)}

F I1
= {(u, v,w) (u′, v′,w′) ∶ u, v,w, u′, v′,w′ ∈ {1,0},

(u, v,w) ≠ (u′, v′.w′)}

and I2 as

T I2
= {(x,0) ∶ x variable in P}

SI2
= {(0,0,1), (0,1,0), (1,0,0)}

DI2
= F I1 .

Finally let K2 be

TK2
= {(x,1) ∶ x is a variable in P}

SK2
= {(1,1,1)}

DK2
= DI2 .

It is straightforward to verify that (I1,K2) ⊧ Σ. The re-
duction clearly being polynomial, it remains only to prove
that there exists a truth assignment for P making exactly
one variable in each clause true if and only if K2 is not a
⊕-repair.

Suppose that there exists such a Positive 1-In-3 truth as-
signment making P true. Let this truth assignment be rep-
resented by a mapping ν from the variables of P to {0,1}.
Consider then an instance J2 with

T J2
= {(x, ν(x)) ∶ x is a variable in P}

SJ2
= {(0,0,1), (0,1,0), (1,0,0)}

DJ2
= DK2 .

It is easy to verify that (I1, J2) ⊧ Σ, and that J2 <I2 K2.
Thus K2 is not a ⊕-repair.

For the other direction, suppose that there does not exist
a Positive 1-In-3 truth assignment making P true. Let us
try to construct an instance J2, such that (I1, J2) ⊧ Σ and
J2 <I2 K2, by manipulating K2 to become ⊕-closer to I2.

First we note that dependencies (1) and (3) force the in-
terpretation of T to contain exactly a truth assignment for
each variable, and that dependency (2) blocks us from delet-
ing tuples from DK2 .

We could make K2 closer to I2 by replacing some tuples
(x,1) in TK2 with (x,0). But then, in order to satisfy depen-
dency (1), we would have to replace the tuple (1,1,1) ∈ SK2

with at least one tuple containing at least one ’0’. Suppose
first, that there were only one new tuple, and this tuple
would contain only one ’0’. This would make the resulting
instance ≤I2 -incomparable with K2. To avoid this, we could
leave tuple (1,1,1) in the interpretation of S. But then the
interpretation of S would contain at least two tuples. So, in
any case, dependency (4) will be triggered, forcing the inter-
pretation of S to contain only tuples from V I1 . We would
then have constructed a Positive 1-In-3 truth assignment
for P in the interpretation of T . We have now exhausted all
possibilities to improve the solution K2, and can therefore
conclude that K2 indeed is a ⊕-solution. ∎

Afrati and Kolaitis derived the following complexity theo-
retic characterization for repair checking with weakly acyclic
tgd’s.

Theorem 9. ([2]) There is a weakly acyclic set Σ of tgd’s
such that the

Repair-Checking(Σ,∗)
problem is coNP-complete, both for ∗ being subset and ⊕ ∎

To this we can now add the missing piece.

Theorem 10. There is a weakly acyclic set Σ of tgd’s
such that the

Repair-Checking(Σ, superset)
problem is coNP-complete. ∎

The next theorem shows that the result of Afrati and Ko-
laitis [2] can actually be sharpened to also hold for subset
solution checking for the correspondence problem.

Theorem 11. There are weakly acyclic sets Σ = Σ12∪Σ21

of tgd’s such that the problem

Solution-Checking(Σ,∗,uniform)
is coNP-complete, for ∗ being any of subset/superset/⊕. ∎

Let us now consider the existence of solutions for the non-
uniform correspondence settings. For this, as will be proved,
all the three cases subset/superset/⊕ are intractable for gen-
eral weakly acyclic set of tuple generating dependencies.

Theorem 12. There are weakly acyclic sets Σ = Σ12∪Σ21

of tgd’s such that the problem

Existence-of-Solution(Σ,∗,non-uniform)
is NP-complete, for ∗ being any of subset/superset/⊕. ∎

5. PTIME FOR SEMI-LAV TGD’S
In order to overcome the intractability barriers from the

previous section, it is clear that the set Σ of dependencies
has to be restricted. We next introduce a large class of
tgd’s for which all of the considered problems can be solved
in polynomial time. The proofs rely on recently developed
homomorphism techniques (i.e. [2, 11, 16]), and on the Σ-
satisfying homomorphisms introduced in Section 3.

First, we introduce the new class of tgd’s. For this, we
need the concept of the rank of a node in the dependency
graph of a set Σ of tgd’s.

Definition 5. ([11]) Let (R, i) be a vertex in the depen-
dency graph of a set Σ of tgd’s. Then rank(R, i) is the
maximum number of existential edges along any path in the
graph ending in (R, i). ∎

Lemma 3. ([11]) If Σ is a weakly acyclic set of tgd’s,
then for each node (R, i) of the dependency graph of Σ,
rank(R, i) is finite and is bounded by some constant c de-
pending only on Σ. ∎

Definition 6. Let Σ be a set of tgd’s over a schema R.
For all relational symbols R ∈ R that occur in Σ, we say
that a position (R, i) is unsafe if rank(R, i) > 0. Any rela-
tional symbol R that contains an unsafe position is said to
be unsafe. A set Σ of weakly acyclic dependencies is said
to be semi-LAV if all unsafe relational symbols occur in the
antecedents of LAV-dependencies only. ∎

For an example, consider the following set of semi-LAV
dependencies that is neither LAV nor full. The application
is a police database concerning traffic contraventions. The
schema is

Driver (LicenceId, Name)
Contravention (LicenceId, Municipality, Date, Type)
Ticket (LicenceId, Date, Penalty, DemeritPoints)
DriverHist (LicenceId, Type)
PenaltyUpgrade (Type1, Type2, Type3)
Notification (InsuranceId, LicenceId, DemeritPoints)

The relation Driver contains information about drivers that
have been convicted of traffic offenses, and relation Con-
travention stores data regarding the contraventions. The
attribute Type can take values ’minor’, ’medium’, and ’ma-
jor.’ The relation Ticket contains the ticket information,
and DriverHist contains information regarding the history
of the driver’s contraventions. The relation PenaltyUpgrade
represents a constraint between different contraventions, for
example if for some driver we have both a ’minor’ and a
’medium’ contravention it implies that the driver is also as-
signed a ’major’ contravention, since she is a repeat offender.
Finally, the relation Notification represents the notifications
sent to the insurance companies for fee increases. The set Σ
of dependencies is

Driver (l, n),Contravention (l,m, d, t)
→ ∃p, dm ∶ Ticket (l, d, p, dm),

DriverHist (l, t)

DriverHist (l,minor),
DriverHist (l,medium),
PenaltyUpgrade (minor,medium,major)

→ DriverHist (l,major)

Ticket (l, d, p, dm) → ∃i ∶ Notification (i, l, dm)

In this set we have rank(Ticket ,3) = rank(Ticket ,4) = 1,
and rank(Notification ,1) = 2. The rest of the positions have
a rank of 0. Therefore Ticket and Notification are the only
unsafe relation symbols, and since Ticket appears in the an-
tecedent only of a LAV dependency and Notification does
not appear in any antecedent it follows that Σ is a set of
semi-LAV tgd’s.

The class of semi-LAV tgd’s possesses several useful prop-
erties, which we show next.

Lemma 4. Let Σ be a set of semi-LAV tgd’s, let I be a
ground instance, and K be the result of an arbitrary chase
sequence using Σ starting from I. Then for any variable x
that occurs in K, the number of tuples in K that contain x
is bounded by a constant that depends only on Σ.

Proof : Let J be the first instance in the chase sequence
from I to K where the variable x appears, and denote with
Jx the subset of tuples of J where x appears. If r is the
maximum number of atoms in the consequent of any depen-
dency in Σ, it is clear that ∣Jx∣ ≤ r. Furthermore, as x can
appear only in tuples of unsafe relations (called unsafe tu-
ples), it means that the tuples in Jx can only be matched
with the antecedents of some LAV-dependencies, each such
antecedent consisting of a single atom. Consequently, the
set of tuples Kx in K that contain x can be generated by
chasing Jx using only the LAV-dependencies in Σ. As Σ
is weakly acyclic, it follows from Theorem 3 that there is
a polynomial p such that ∣Kx∣ ≤ p(∣Jx∣). Thus ∣Kx∣ ≤ p(r),
which is a constant depending only on Σ. ∎

Lemma 5. Let Σ be a set of weakly acyclic tgd’s, I a ground
instance, and K the result of some arbitrary chase sequence
using Σ starting from I. Then there exists a partitioning
{V0, V1, . . . , Vm} of the variables in K such that variable
x ∈ Vi iff x was generated during the chase process using
only variables from {V0, . . . , Vi−1}.

Proof: Let N0,N1, . . . ,Nm be a partition of the nodes in
the dependency graph of Σ based on their rank. Since Σ is
weakly acyclic, such a partitioning exists, and for any de-
pendency in Σ the rank of the positions in the consequent
is larger than or equal to the rank of any position in the
antecedent [11]. We show the existence of the variable par-
titioning constructively based on the chase steps: Initially
let Vi to be the empty set, for all i ∈ {0,1, . . . ,m}. Dur-
ing the chase process when a new variable x is created in a
position (R, i) we add that variable to set V1 if there were
no variables in the tuples that triggered the dependency.
We add the variable x to the set Vi if the set of variables
belonging to the tuples that triggered the dependency that
generated x is a subset of {V0 ∪V1 ∪ . . .∪Vi−1} and there ex-
ists a variable y in that set such that y ∈ Vi−1. Because the
rank of each position is at most m, it means that variable x
cannot be generated by variables belonging to Vm or higher.
This proves the existence of partitioning {V0, V1, . . . , Vm} of
the variables. Note that V0 = ∅. ∎

Theorem 13. Let Σ be a set of semi-LAV tgd’s, let I be a
ground instance, and K be the result of some arbitrary chase
sequence using Σ starting from I. Then there is a constant c,
depending only on Σ, such that blocksize(GK) ≤ c.

Proof: Let {V0, V1, . . . , Vm} be the partitioning of the vari-
ables in K, as described in Lemma 5. We prove by an in-
duction on i that there are constants ci, such that for any
block b ∈ blocks(V0 ∪ ⋯ ∪ Vi,G

K), we have blocksize(b) ≤
ci, meaning that blocksize(GK) = max{blocksize(b) ∶ b ∈
blocks(V0 ∪⋯ ∪ Vm,G

K)} ≤ cm.
Basis: Clearly V0 = ∅, and blocks(V0,G

K) = ∅. We can
therefore set c0 = 0.

Inductive step: Let b be a block in blocks(V0∪⋯∪Vi,G
K).

If all the variables in b are in V0∪⋯∪Vi−1, the block b is also in
blocks(V0∪⋯∪Vi−1,G

K) and by the inductive hypothesis we
have blocksize(b) ≤ ci−1. Suppose then that x is a variable in
b from Vi. This means that x was generated from variables
in V0 ∪ ⋯ ∪ Vi−1 by an existential dependency ξ. There are
three cases to consider:

Case 1: ξ is a dependency with possibly several atoms in
the antecedent. Then all these atom are over safe relations,
not containing variables. Thus x, along with the other exis-
tential variables in the consequent of ξ will form their own
block in blocks(V0 ∪ ⋯ ∪ Vi,G

K), with blocksize at most s,
where s is the maximum number of special edges incident
from any node in the dependency graph of Σ.

Case 2: ξ has a single unsafe atom in the antecedent,
but none of the (universally quantified) variables in the an-
tecedent occur in the consequent. Then ξ does not propa-
gate any variables from the antecedent to the consequent,
and, as in case 1, the variable x will belong to a block in
blocks(V0 ∪⋯ ∪ Vi,G

K), with blocksize at most s.
Case 3: ξ has a single unsafe atom in the antecedent.

Then ξ was triggered by a single tuple containing only vari-
ables in V0 ∪ ⋯ ∪ Vi−1. Thus each of these variables belong

to a block b′ ∈ blocks(V0 ∪⋯ ∪ Vi−1,G
K), and by the induc-

tive hypothesis blocksize(b′) ≤ ci−1. Therefore b′ consists
of at most ci−1 variables, say Y = {y1, . . . , yci−1}. Let KY

denote the subset of tuples of K, that contain variables in
Y , and Ky` the tuples that contain variable y`. By Lemma
4 there are constants d1, . . . , dci−1 , such that ∣Ky` ∣ ≤ d`, for
` ∈ {1, . . . , ci−1}. Consequently ∣KY ∣ ≤ ∑ci−1

`=1 d`. Each tu-
ple in KY can generate at most D ⋅ s new variables x in Vi,
where D is the number of dependencies in Σ. Each such gen-
erated variable x increases the blocksize of b′ by at most one.
Consequently blocksize(b) ≤ blocksize(b′) + ∣KY ∣ ⋅D ⋅ s ≤
ci−1 +∑ci−1

`=1 d` ⋅D ⋅ s. ∎

We are now in a position to show a crucial result.

Theorem 14. Let Σ be a set of semi-LAV tgd’s, and I
and K be two ground instances such that K ⊆ I. Then the
problem of deciding if there exists a Σ-satisfying homomor-
phism from chaseΣ(K) into I is polynomial.

Proof : We know that the result of chasing a ground in-
stance with a set of semi-LAV tgd’s has the size of each block
bounded by a constant that depends only on Σ. Also, we
know from the definition of semi-LAV tgd’s that unsafe rela-
tional symbols (that is relational symbols that may contain
variables generated during the chase process) in Σ appear
only in antecedents of LAV tgd’s.

The following algorithm takes as input a set Σ of semi-
LAV tgd’s, a ground instance I, and the constant c from
Theorem 4. The algorithm returns True if there is a Σ-
satisfying homomorphism from from chaseΣ(K) into I, and
returns False otherwise. For a block b of the variables of J ,
we denote by Jb the set of all tuples where variables of b
occur. Also, for an instance I, we denote with Iu the subset
of unsafe tuples in I.

Homom-Search(K,I,Σ, c)
1 J ← chaseΣ(K), result ← true
2 for each block b ∈ blocks(GJ)
3 do resultb ← false
4 do for each homom. hb from b to I
5 for each tuple t ∈ hb(Jb)
6 for i← 1 to c
7 for Ab,t ∶ {t} ⊆ Ab,t ⊆ Iu, ∣Ab,t∣ = i
8 do if (hb(b) ∪Ab,t) ⊧ Σ
9 then resultb ← true

10 do result ← result & resultb

11 return result

Suppose that the algorithm returns True. Let b be a
block in GJ . Based on an enumeration of dom(K ∪ I), let
hb be the first homomorphism the algorithm discovers, and
for each t ∈ Jb, let Ab,t the smallest corresponding set, such
that (hb(Jb) ∪Ab,t) ⊧ Σ. Let

JΣ
= ⋃

b∈blocks(GJ)
(hb(Jb) ∪ {Ab,t ∶ t ∈ hb(Jb)}) .

We claim that h = ⋃{hb ∶ b ∈ blocks(GJ)} is a Σ-satisfying
homomorphism form J to I. Clearly h(J) ⊆ JΣ

⊆ I. We
thus have to show that JΣ

⊧ Σ, that is, that JΣ
⊧ ξ for each

ξ ∈ Σ. There are two cases to consider:
Case 1: ξ is a LAV-tgd whose antecedent consists of a

single atom over an unsafe predicate. Let t ∈ JΣ be an

unsafe tuple triggering ξ. Then there is a block b in GJ ,
such that t ∈ hb(Jb), or t ∈ Ab,t. Then (hb(b) ∪ Ab,t) ⊧ ξ.
Since LAV-tgd’s are closed under union [8], and all sets Ab,t

contain unsafe tuples only, it follows that JΣ
⊧ ξ.

Case 2: The antecedent of ξ consists of possibly several
atoms, and all these atoms are over safe predicates. Since
any possible set of triggering tuples is already present in J ,
and J was obtained by chasing K with Σ, it follows that
JΣ
⊧ ξ.

To show that the algorithm is complete, let J = chaseΣ(K),
and suppose that there exists a homomorphism h, and an
an instance L ⊧ Σ, such that h(J) ⊆ L ⊆ I. Let h be
the smallest such homomorphism, based on the enumera-
tion of dom(K ∪ I). We need to show that the algorithm
returns True. The homomorphism h can obviously be ex-
pressed as a union of homomorphisms hb, each from a block
of b ∈ blocks(GJ). Thus the algorithm will certainly discover
h. Since h(J) ⊆ L, and L ⊧ Σ, Theorem 4 guarantees that
for each b and tuple t ∈ Iu, the corresponding set Ab,t ⊆ L
will be discovered by the algorithm. Consequently, the al-
gorithm will return True.

It remains to analyze the time complexity of the algo-
rithm. We know from Theorem 3 that the size of J is poly-
nomial in the size ofK and that J therefore has a polynomial
number of blocks. The same theorem also tells us that for
each block of b ∈ blocks(GJ) there are at most ∣I ∣c homomor-
phisms from b into I. Similarly to the algorithm in Theorem
5, line 8 is repeated at most O(∣I ∣c) times. Finally, the test
if (hb(b) ∪ Ab,t) ⊧ Σ can be done in space logarithmic in
∣I ∣. In conclusion, the algorithm runs in time polynomial in
∣K ∣ + ∣I ∣. ∎

The preceding theorems allow us to derive polynomial
time algorithms for all problems, not covered in Section 3,
for the case when Σ is a set of semi-LAV tgd’s.

Theorem 15. Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV
tgd’s. Then the problem

Existence-of-Solution(Σ, subset, non-uniform)
can be solved in polynomial time.

Proof : Let (I1, I2) be an instance of the problem. In or-
der to determine if there exists an instance K2 ⊆ I2, such
that (I1,K2) ⊧ Σ, it suffices to determine if there exists a
Σ-satisfying homomorphism from chaseΣ(I1,∅) to (I1, I2).
Since Σ is a set of semi-LAV tgd’s, it follows from Theorems
14 and 3 that the latter condition can be tested in polyno-
mial time. ∎

Theorem 16. Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV
tgd’s. Then the problem

Existence-of-Solution(Σ, superset, non-uniform)
is polynomial.

Proof : Let (I1, I2) be an instance of the problem. First com-
pute (K1,K2) = chaseΣ(I1, I2). Then, search for a homo-
morphism h, such that h(K1) ⊆ I1, and (h(K1), h(K2)) ⊧ Σ.
The crucial point is that (K1,K2) has bounded blocksize,
since Σ is semi-LAV. ∎

Theorem 17. Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV
dependencies. Then the problem

Existence-of-Solution(Σ,⊕,non-uniform)
is polynomial.

Proof : Chase (I1,∅) with Σ and search for a homomorphism
h, such that h(chaseΣ(I1,∅))) ⊧ Σ. Theorems 3 and 13
guarantee that this can be done in polynomial time. ∎

Theorem 18. Let Σ be a set of semi-LAV dependencies.
Then the problem

Repair-Checking(Σ,∗)
is polynomial, for ∗ being any of subset, superset, and ⊕.

Proof : Let us first consider the ⊕-case. We want to check
if an instance K is a ⊕-repair of I w.r.t. Σ. First test if
K ⊧ Σ. If so, K is indeed a ⊕-repair if and only if both
conditions in Theorem 1 are fulfilled. Since Σ is semi-LAV,
the required homomorphism tests can be done in polynomial
time, as per Theorem 14. For the subset and superset cases,
it suffices to test condition 2, and condition 1, respectively,
of Theorem 1. ∎

From the previous theorem and Lemma 2 we can conclude:

Theorem 19. Let Σ = Σ12 ∪ Σ21 be a set of semi-LAV
dependencies. The problem

Solution-Checking(Σ,∗,uniform)
can be solved in polynomial time, for ∗ being any of subset,
superset, and ⊕. ∎

Here is the final piece.

Theorem 20. Let Σ be a set of semi-LAV dependencies.
Then the problem

Solution-Checking(Σ,∗,non-uniform)
is polynomial, for ∗ being any of subset, superset, and ⊕.

Proof : The subset and superset cases follows directly from
Theorems 6 and 7 respectively. In the ⊕-case we need to
check if an instance K2 is a ⊕-solution for the non-uniform
correspondence problem of (I1, I2) w.r.t. Σ = Σ12 ∪ Σ21.
First test if (I1,K2) ⊧ Σ. If so, K2 is indeed a ⊕-solution for
the non-uniform correspondence problem if and only if both
conditions in Theorem 2 are fulfilled. Since Σ is semi-LAV,
the required homomorphism tests can be done in polynomial
time, as per Theorem 14. ∎

6. SUMMARY
For an overview of the complexities, the results are sum-

marized in the three tables below. In Table 1 the complex-
ities for the solution existence problems are presented, by
considering different types of dependencies. For database
repair and uniform correspondence cases the superset and
symmetric difference solutions always exist. The semi-LAV

Table 1: The complexity of existence for correspondence solution/database repair
Existence db-repair unif. corr. sol. non-unif. corr. sol. non-unif. corr. sol.
Σ weakly acyc. weakly acyc. weakly acyc. semi-LAV

subset P Thrm. 5 P Cor. 1 NPC Thrm. 12 P Thrm. 15

superset - - NPC Thrm. 12 P Thrm. 16

⊕ - - NPC Thrm. 12 P Thrm. 17

Table 3: The complexity of solution check
Solution Check uniform uniform non-uniform non-uniform
Σ weakly acyc. semi-LAV weakly acyc. semi-LAV

subset coNPC Thrm. 11 P Thrm. 19 P Thrm. 6 P Thrm. 6

superset coNPC Thrm. 11 P Thrm. 19 P Thrm. 7 P Thrm. 7

⊕ coNPC Thrm. 11 P Thrm. 19 coNPC Thrm. 8 P Thrm. 20

Table 2: The complexity of database repair
Repair Check Σ weakly acyc. Σ semi-LAV

subset coNPC [2] P Thrm. 18

superset coNPC Cor. 10 P Thrm. 18

⊕ coNPC [2] P Thrm. 18

dependencies make the problems tractable for the non-uni-
form correspondence case even though the existence check
is NP-complete for general weakly acyclic tgd’s.

Table 2 summarizes the complexities of the database re-
pair check problems. Afrati and Kolaitis proved in [2] the
coNP-completeness for general weakly acyclic tgd’s for sub-
set and symmetric difference repair check. In this paper we
showed that the intractability also holds for superset repair
check. When replacing the weakly acyclic tgd’s with semi-
LAV dependencies the repair check, for all cases, becomes
polynomial.

Finally, Table 3 tallies the complexities for the solution
checking problems for both the uniform and non-uniform
settings. For the uniform correspondence problems the semi-
LAV dependencies enable tractability for all cases (subset,
superset and symmetric difference). When the non-uniform
correspondence setting is considered, the semi-LAV depen-
dencies add tractability only for the symmetric difference
case, the subset and superset cases were proved tractable
already for general weakly acyclic tgd’s.

Evidently solution checking and solution existence are com-
putationally related. For instance, if solution checking is de-
cidable, it follows that establishing the existence of a solu-
tion is recursively enumerable. Likewise, since our solutions
are of polynomial size in a finite search space, if solution
checking is doable in polynomial time, then solution exis-
tence can be determined in non-deterministic polynomial
time. However, the main hurdle lies in verifying the desired
properties. Indeed, in some cases the problem does jump
from P to NP, for example Theorems 6 and 7 vs. Theorems
12. In other cases, for example in Theorem 6 and 7 vs.
Theorem 15 and 16, both problems are in P. On the other
hand, there are two exceptions, where solution checking is
intractable, but determining the existence of a solution is
polynomial. These are Theorem 9 [2], vs. Theorem 5, and
Theorem 11 vs. Corollary 1.

For the 9 vs. 5 case, we note that the existence version
is easier, since we don’t have to verify any maximality. If a

subset satisfying the dependencies exist, surely a maximal
one also exists.

For the 7 vs. 12 case, we note that the checking problem
is easier, since we only have to test if even one tuple can
be deleted from the candidate. If so, surely the candidate
is not minimal. On the other hand, for Theorem 12 we can
construct an instance such that a consistent subset of the
candidate can exist if and only if the intractable reductee
has a solution. Note however, that opposed to Theorems
6 and 7, where we can inspect single tuples, in Theorem 8
this is no longer true: we have to simultaneously deal with
insertable and deletable tuples. Consequently the combina-
torial blow up.

7. CONCLUSIONS
In this paper we introduced the data correspondence set-

ting and carried out a systematic investigation of the associ-
ated computational problems. One of the main results is the
introduction of the new class of semi-LAV dependencies that
are an extension of full and LAV dependencies. The class
of semi-LAV dependencies has the desirable property that
all the considered problems become tractable. The class is
optimal in the sense that relaxing the condition results in
intractability, which can be seen from the many proofs of
Section 4.

In the current work we only considered tuple generating
dependencies. Since equality generating dependencies easily
lead to intractability [7, 9, 10] they are left for future work.
We also omitted the cardinality based repairs as these types
of repairs are intractable even in the case of full and LAV
tuple generating dependencies.

Compared to the Peer Data Exchange problem [14] the
superset solution existence/check for the non-uniform cor-
respondence problem adds an extra minimality condition to
the solution. Even if the classes of semi-LAV dependencies
and the tractable class in [14] are not comparable, the semi-
LAV dependencies introduce tractability also when there are
target dependencies, something that could not be handled
by [14].

Query answering in correspondence settings was not ex-
plicitly considered here. On one hand, a conjunctive query is
expressible as a tgd, but it remains to study the problem of
deciding when a tuple belongs to all solutions/repairs. The
general problem is known to be Πp

2-complete, but a more
fine grained analysis is still lacking.

Perhaps the most challenging problem is to allow the input
instances to contain null values. This is a natural require-
ment, since database instances should be closed under data
exchange [13]. The presence of null values in the input in-
stances however destroys the the bounded blocksize of the
chase, thus presenting a problem not easy to cope with.

Acknowledgements
We are grateful to the anonymous referees for detailed and
constructive comments.

8. REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu.

Foundations of Databases. Addison-Wesley, 1995.

[2] Foto N. Afrati and Phokion G. Kolaitis. Repair
checking in inconsistent databases: algorithms and
complexity. In ICDT, pages 31–41, 2009.

[3] Alfred V. Aho, Catriel Beeri, and Jeffrey D. Ullman.
The theory of joins in relational databases. ACM
Trans. Database Syst., 4(3):297–314, 1979.

[4] Marcelo Arenas, Leopoldo E. Bertossi, and Jan
Chomicki. Consistent query answers in inconsistent
databases. In PODS, pages 68–79, 1999.

[5] Pablo Barceló. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[6] Catriel Beeri and Moshe Y. Vardi. A proof procedure
for data dependencies. J. ACM, 31(4):718–741, 1984.

[7] Leopoldo E. Bertossi. Consistent query answering in
databases. SIGMOD Record, 35(2):68–76, 2006.

[8] Balder ten Cate and Phokion G. Kolaitis. Structural
characterizations of schema-mapping languages. In
ICDT, pages 63–72, 2009.

[9] Jan Chomicki. Consistent query answering: Five easy
pieces. In ICDT, pages 1–17, 2007.

[10] Jan Chomicki and Jerzy Marcinkowski. On the
computational complexity of minimal-change integrity
maintenance in relational databases. In Inconsistency
Tolerance, pages 119–150, 2005.

[11] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller,
and Lucian Popa. Data exchange: Semantics and
query answering. In ICDT, pages 207–224, 2003.

[12] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and
Wang Chiew Tan. Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans.
Database Syst., 30(4):994–1055, 2005.

[13] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and
Wang Chiew Tan. Reverse data exchange: coping with
nulls. In PODS, pages 23–32, 2009.

[14] Ariel Fuxman, Phokion G. Kolaitis, Renée J. Miller,
and Wang Chiew Tan. Peer data exchange. ACM
Trans. Database Syst., 31(4):1454–1498, 2006.

[15] M. R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[16] Georg Gottlob and Alan Nash. Data exchange:
computing cores in polynomial time. In PODS, pages
40–49, 2006.

[17] Gösta Grahne and Alberto O. Mendelzon. Tableau
techniques for querying information sources through
global schemas. In ICDT, pages 332–347, 1999.

[18] Phokion G. Kolaitis. Schema mappings, data
exchange, and metadata management. In PODS,
pages 61–75, 2005.

[19] Maurizio Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[20] Andrei Lopatenko and Leopoldo E. Bertossi.
Complexity of consistent query answering in databases
under cardinality-based and incremental repair
semantics. In ICDT, pages 179–193, 2007.

[21] David Maier, Alberto O. Mendelzon, and Yehoshua
Sagiv. Testing implications of data dependencies.
ACM Trans. Database Syst., 4(4):455–469, 1979.

[22] Slawomir Staworko and Jan Chomicki. Consistent
query answers in the presence of universal constraints.
CoRR, abs/0809.1551, 2008.

