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Composition of mappings between schemas is essential to support schema evolution, data ex-

change, data integration, and other data management tasks. In many applications, mappings are

given by embedded dependencies. In this article, we study the issues involved in composing such

mappings.

Our algorithms and results extend those of Fagin et al. [2004], who studied the composition of

mappings given by several kinds of constraints. In particular, they proved that full source-to-target

tuple-generating dependencies (tgds) are closed under composition, but embedded source-to-target

tgds are not. They introduced a class of second-order constraints, SO tgds, that is closed under

composition and has desirable properties for data exchange.

We study constraints that need not be source-to-target and we concentrate on obtaining (first-

order) embedded dependencies. As part of this study, we also consider full dependencies and second-

order constraints that arise from Skolemizing embedded dependencies. For each of the three classes

of mappings that we study, we provide: (a) an algorithm that attempts to compute the composition;

and (b) sufficient conditions on the input mappings which guarantee that the algorithm will succeed.

In addition, we give several negative results. In particular, we show that full and second-order

dependencies that are not limited to be source-to-target are not closed under composition (for the

latter, under the additional restriction that no new function symbols are introduced). Furthermore,

we show that determining whether the composition can be given by these kinds of dependencies

is undecidable.
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1. INTRODUCTION

Many data management tasks, such as data translation, information integra-
tion, and database design, require manipulation of database schemas and map-
pings between schemas. A schema mapping (or just mapping) describes the re-
lationship between the data instances of two schemas. Examples of schema
mappings include SQL views, XSL transformations, integration constraints
on schemas [Lenzerini 2002], and GLAV assertions in peer-to-peer systems
[Halevy et al. 2003]. Mapping composition refers to combining two mappings
into a single one. If m12 is a mapping between schemas σ1 and σ2, and m23 is
a mapping between schemas σ2 and σ3, then the composition m12 ◦ m23 of m12

and m23 is a mapping that captures the same relationship between σ1 and σ3 as
the two mappings m12 and m23. This article studies two problems of mapping
composition for certain classes of mapping languages: under what conditions
the composition of two mappings can be expressed in the same langauge as
the input mappings (i.e., the composition is closed), and how to compute the
composition.

One application of mapping composition is schema evolution. For example,
consider a mapping m between schemas σ and v, for example, m is a view defined
on σ . Suppose that σ evolves into σ ′ and n is the mapping between σ ′ and σ .
The updated mapping m′ between σ ′ and v can be obtained as m′ = n ◦ m. As
another example of schema evolution, assume that σ1, σ2, σ3, σ4 are the versions
of a schema used in successive releases of a product. The mappings m12 (between
σ1 and σ2), m23 (between σ2 and σ3), and m34 (between σ3 and σ4) are used for
data migration for each subsequent release. A typical, time-consuming way
of migrating the data from σ1 to σ4 is by executing m12, m23, m34 one-by-one.
Composing m12 ◦ m23 ◦ m34 to get m14 allows us to migrate the data from σ1 to
σ4 in a single step, using m14.

Another well-known application of mapping composition is the processing
of queries over views, which is done in most commercial database systems.
We can look at a set of views V over some schema σ1 as a mapping from σ1

to the schema σ2 consisting of the name of the views in V. Similarly, we can
look at a query Q over V as a mapping from σ2 to a schema σ3 with a single
relation symbol consisting of the query’s name. The standard technique for
processing such a query Q over the set of views V is to compose Q with the view
definitions in V to obtain a new query Q ′. This is known as view unfolding or
query modification [Stonebraker 1975] and consists of replacing references to σ2

in the query by the definition of the corresponding view in V, thereby yielding
a query Q ′ over σ1. In terms of the definition of mapping composition given
before, m12 is the view definition and m23 is the query. Then, composition of m12

and m23 is a mapping m13 from σ1 to σ3 which is given by Q ′. Sets of views (or
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queries) give functional mappings which can be easily composed by substitution
(unfolding).

It is known that first-order queries are closed under composition. Thus, in
view unfolding, if m12 and m23 are both first-order queries, then their compo-
sition is a first-order query. The same holds for conjunctive queries and unions
of conjunctive queries.

Query composition corresponds to composition of functional mappings. In
a more general setting, the mappings to be composed may be nonfunctional,
and this makes the problem of composing them harder. For example, answer-
ing queries using views involves the composition of the query and the inverse
of the view. But inverting a functional mapping often yields a nonfunctional
mapping.

A similar scenario arises in schema evolution. If we have a query m from
schema σ to schema v, and an evolution mapping n from σ to σ ′, then to obtain
the updated mapping m′ from σ ′ to v, we need to compose m with the inverse
of n, which may not be a function.

Composition was recently studied by Madhavan and Halevy [2003] and by
Fagin [2004] (see “Related Work”, to follow). We address a similar set of ques-
tions as Fagin et al., but for different mapping languages. To be precise, they fo-
cus on mappings given by tuple-generating dependencies (tgds) and by second-
order constraints, both of which are restricted to be source-to-target, while we
study constraints that are first-order and need not be source-to-target. All of
these terms will be defined shortly. For the time being, we can think of a source-
to-target tgd as expressing the inclusion of two conjunctive queries Q1 ⊆ Q2,
where Q1 uses only symbols from the source schema and Q2 uses only symbols
from the target schema.

We have several motivations for pursuing this direction, including the
following:

—The ability to deploy composition mappings in existing database system prod-
ucts: Currently, second-order constraints are not supported by any database
system. While it is possible to develop a data exchange solution that chases
a source database with second-order constraints so as to populate the target
database, such a solution may not be practical for performance reasons. Ul-
timately, second-order constraints need to be translated into first-order data
transformations (e.g., SQL queries) if they are to be executed by a DBMS
efficiently.

—Allow schema constraints: If they are present, composition yields mappings
that may include functional or inclusion dependencies that are not source-
to-target. In particular, key and foreign-key constraints are commonplace in
real-world schemas. As an example, let R ⊆ S denote the mapping between
σ1 = {R(A, B)} and σ2 = {S(A, B)}, where A is a key of S, and let S ⊆
T denote a mapping between σ2 and σ3 = {T (A, B)}. Both mappings are
specified as source-to-target tgds. However, the composition mapping cannot
be expressed by any set of source-to-target tgds because in addition to R ⊆ T ,
it needs to include the constraint that A is key of R.

—Support mapping scenarios that reach beyond data integration settings that
focus on certain answers: Using source-to-target tgds for data exchange
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turned out to be very challenging. As explained in Fagin et al. [2003b, p. 1],
source-to-target tgds suffer from the inherent problem of underspecifying the
relationship between the source and target. To illustrate, source-to-target
tgds are not capable of expressing even the most primitive data exchange
mappings that simply copy data: A source-to-target tgd that expresses the
constraint S ⊆ T allows constructing the target database {T (a, b), T (b, a)}
for the source database {S(a, b)}; clearly, this is undesirable. To address this
issue, Fagin et al. introduced universal solutions [2003a] and cores 2003b,
which can be viewed as providing special semantics for source-to-target tgds,
resembling minimal model semantics for Datalog programs. In contrast,
a mapping that copies data can be expressed naturally by dependencies
{S ⊆ T, T ⊆ S}, one of which is source-to-target and another target-to-
source.

—The ability to efficiently validate the mapping constraints for a given pair of
databases: The work of Fagin et al. [2004] showed that mappings given by
second-order tgds can encode three-colorability, an NP-complete problem. In
other words, given a source and a target database, the problem of deciding
whether they satisfy a mapping given by second-order tgds may in general
require exponential time in the size of input databases.

—Obtain closure under most basic mapping operators, in particular, composi-
tion and inverse: An operator is closed relative to a language L if its results
are expressible in L for all inputs in L. Specifically, closure is desirable for
supporting n-way composition.

One important contribution of this article is an algorithm for composing the
mappings given by embedded dependencies. Upon a successful execution, the
algorithm produces a mapping that is also given by embedded dependencies.
The algorithm we present is the best one we are aware of. It is used as a core
part of the implementation in Bernstein et al. [2006]. Nevertheless, it has some
inherent limitations. First, it may fail to produce a result, even if there exists
a set of embedded dependencies that expresses the composition mapping. Sec-
ond, it may generate a set of dependencies that is exponentially larger than the
input. We show that these difficulties are intrinsic and not an artifact of the al-
gorithm. We address them in part by providing sufficient conditions on the input
mappings which guarantee that the algorithm will succeed. Furthermore, we
devote significant attention to the novel and most challenging component of our
algorithm, which performs “de-Skolemization” to obtain first-order constraints
from second-order constraints.

To summarize our contributions in detail, we first explain the previous con-
tributions of Madhavan and Halevy [2003] and Fagin et al. [2004], covered in
the next section.

1.1 Related Work

A first semantics for composition of mappings was proposed in the pioneer-
ing work by Madhavan and Halevy [2003]. Under their definition, m13 is a
composition of m12 and m23 if the certain answers obtained by way of m13 for
any query in a class of queries L against schema σ3 are precisely those that can
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be obtained by using m23 and m12 in sequence. Notice that in their definition,
composition depends on the query class L.

Madhavan and Halevy focused on the relational case and considered map-
pings given by a certain class of embedded dependencies. An embedded de-
pendency [Fagin 1977, 1982; Nicolas 1987] is a formula which says that the
presence of certain tuples implies the presence of certain other tuples or cer-
tain equality conditions. In the standard formal notation, they are of the form
∀x̄(φ(x̄) → ∃ ȳ ξ (x̄, ȳ)), where x̄ and ȳ are sets of variables, φ(x̄) is a conjunction
of relation atoms, and ξ (x̄, ȳ) is a conjunction of relation or equality atoms that
uses all the variables of ȳ . For example, ∀x(R(x) → ∃ y S(x, y)) is an embed-
ded dependency, where R(x) and S(x, y) are relation atoms. Madhavan and
Halevy’s [2003] class of interest are source-to-target tuple-generating depen-
dencies (st-tgds), which correspond to GLAV formulas. A st-tgd is an embedded
dependency where φ refers only to relations of the source schema, ξ refers only
to relations of the target schema (which is disjoint from the source schema),
and there are no equality atoms in ξ (e.g., xi = y j ). For example, if R is a rela-
tion symbol from the source schema and S is a relation symbol from the target
schema, then ∀x(R(x) → ∃ y S(x, y)) is a st-tgd.

Madhavan and Halevy showed that the result of composition may be an
infinite set of formulas when the query languageL is that of conjunctive queries.
The authors proposed algorithms for the cases when composition can be done.
Their definition has some disadvantages. In particular, the result of composition
varies, depending on the choice of query language L. Also, the definition is
asymmetric, that is, it is based on queries over σ3 and does not consider queries
over σ1.

An alternative, language-invariant semantics for mapping composition was
proposed independently by Fagin et al. [2004] and Melnik [2004, Chap. 4]. They
considered mappings as binary relations on instances of schemas and defined
mapping composition as a set-theoretic composition of such binary relations.
This semantics makes the result of mapping composition unique and does not
depend on a specific logical formalism chosen for representing mappings and
queries.

Fagin et al. [2004] were the first to embark on a systematic investigation
of mapping composition under these natural semantics. They presented many
fundamental results; we survey only some of them here. First, they showed
that full st-tgds are closed under composition, but that embedded st-tgds are
not (a full st-tgd is an embedded st-tgd without existentially quantified vari-
ables, i.e., where ȳ is empty). To obtain closure in a more general setting, they
introduced SO tgds, a second-order extension of st-tgds which allows for existen-
tially quantified function symbols and equalities. These arise from Skolemizing
embedded st-tgds, that is, by replacing the existentially quantified variables in
ȳ by existentially quantified function symbols. They showed that SO tgds are
strictly more expressive than st-tgds, and closed under composition. This makes
them a suitable mapping language for data exchange and query-rewriting sce-
narios [Fagin et al. 2003a; Yu and Popa 2004]. Further results in Fagin et al.
[2004] are that the composition of mappings given by st-tgds may give mappings
undefinable in the finite-variable infinitary logic Lω

∞ω and that composition of
first-order mappings may give uncomputable mappings.
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Mapping composition is closely related to the constraint implication prob-
lem for views (see, e.g., Klug and Price [1982] and Abiteboul et al. [1995,
pp. 221–222]). Inferring view dependencies corresponds to computing the
range of a functional mapping, which we show to be reducible to mapping
composition.

1.2 Contributions

We extend the seminal work of Fagin et al. [2004] in two principal direc-
tions: (1) We study constraints that need not be source-to-target, and (2) we
concentrate on obtaining embedded dependencies (which are first-order). Very
roughly speaking, the main two challenges that we face involve recursion and
de-Skolemization.

We study the composition of three related kinds of mappings:

(1) FullD-mappings (given by full dependencies)

(2) ED-mappings (given by embedded dependencies)

(3) SkED-mappings (given by second-order constraints)

and the corresponding mappings without equality: FullTGD, TGD, and SkTGD.
ED-mappings subsume st-tgds, functional dependencies, and inclusion depen-
dencies, and can express view definitions. SkED constraints subsume the SO
tgds of Fagin et al. [2004], which in our terminology are source-to-target SkED
constraints.

The case of most interest to us is that of ED-mappings. We show that one
way to compose them is to:

(1) Skolemize the ED-mappings to get SkED-mappings;

(2) find a finite SkED axiomatization of all SkED constraints that hold for the
composition; and

(3) de-Skolemize the finite SkED axiomatization to get an ED-mapping.

The first step is easy; the difficulties arise in Steps 2 and 3. In the work
of Fagin et al. [2004], the source-to-target restriction simplifies Step 2. In
Step 3, our goal is to obtain embedded dependencies, which requires eliminating
second-order quantifiers. By contrast, the composition considered by Fagin et
al. [2004] is given by second-order constraints, so in their case, Step 3 does not
apply.

For SkTGD, we consider both restricted composition, in which we are not
allowed to introduce new function symbols, and unrestricted composition, in
which we are free to do so. Since no function symbols appear in the other kinds
of constraints we consider, restricted and unrestricted composition coincide for
them.

Observe that our mapping languages are capable of expressing within-
schema constraints, such as inclusion and functional dependencies. In this
article, we assume that schema constraints are part of each mapping which
mentions the schema. So, we do not need to refer to them explicitly.

To list our contributions, we need to refer to many classes of mappings. To
simplify presentation, we use the following convention. Whenever we refer to a
class of constraints without equality (e.g., TGD), we imply that the result also
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holds for the corresponding class of constraints with equality (e.g., ED) unless
otherwise stated. In contrast, whenever we refer to a class of constraints with
equality, we do not imply that the result holds for the corresponding class of
constraints without equality. Furthermore, our negative results do not require
the use of constants and our positive results allow them. Our contributions
include the following:

Negative Results:

(1) We show that FullTGD-mappings are not closed under composition and that
SkTGD-mappings are not closed under restricted composition (Theorem 1).

(2) We show that the problem of determining whether the composition of two
FullTGD-mappings is a FullTGD-mapping is undecidable (Theorem 2).
This result carries over to TGD-mappings and to restricted composition
of SkTGD-mappings.

(3) Expressing the composition of two FullTGD-mappings may require
FullTGD constraints that are exponentially larger in size than the input
mappings, even over fixed schemas (Example 5). This result carries over
to TGD-mappings and SkTGD-mappings. We show that there are TGD-
mappings which require exponentially larger expressions in TGD than in
SkTGD (Theorem 8); that is, an exponential increase in size may occur in-
dependently at each of the Steps 2 and 3 of the procedure outlined earlier.
We develop a novel inexpressibility mechanism that allows us to show this
result (Section 7).

Positive Results:

(4) We present necessary and sufficient (but uncomputable) conditions for com-
position of FullTGD- and restricted composition SkTGD-mappings (Theo-
rems 3 and 6).

(5) We present algorithms that compute the composition of FullTGD- and re-
stricted composition SkTGD-mappings whenever they terminate (Corol-
lary 1). These algorithms are very similar and can be seen as an extension
of that in Fagin et al. [2004] to handle mappings that are not restricted to
being source-to-target.

(6) We introduce exponential-time sufficient conditions for the preceding algo-
rithms to terminate (Theorem 4).

(7) We present an algorithm to compute the composition of TGD-mappings,
which consists of three steps, as outlined previously: (1) Skolemize, (2) in-
voke the restricted composition algorithm for SkTGD-mappings, and (3)
de-Skolemize.

(8) The de-Skolemization step may fail (after all, SkTGD has more expressive
power than TGD, since, as shown in Fagin et al. [2004], it can encode NP-
complete problems). We show how to check in polynomial time whether it
will succeed and whether its output will be exponentially larger than its
input (Proposition 3).

(9) We identify exponential-time recognizable subsets of FullTGD and SkTGD
that are closed under composition (restricted for the latter) and inverse,
and that include source-to-target constraints as well as constraints which
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express view definitions (Theorem 5). We do not provide such a subset of
TGD, since the conditions on it would be very restrictive (to ensure that
de-Skolemization succeeds).

In addition, we identify two different kinds of composition of SkTGD-
mappings: restricted and unrestricted. In Section 8, we will see that SkTGD
constraints require special semantics for the function symbols. We introduce an-
other fragment of second-order logic, namely, ∃SOED, and we show that every
finite set of source-to-target SkED constraints is equivalent, under the special
semantics, to a finite set of source-to-target ∃SOED constraints under the usual
semantics for ∃SO (Theorem 11).

Composition is only one of many useful operations on mappings. Bernstein
et al. [Bernstein 2003; Bernstein et al. 2000] introduced a general framework
called model management, where operators on schemas and mappings are used
to simplify the development of metadata-intensive applications. The basic op-
erators include domain, range, composition, and inverse. Further operators are
discussed in Melnik et al. [2003, 2005].

(10) We show that domain, range, and composition are closely related and can
be reduced to each other (Proposition 5).

This is one reason why, in this context, composition and inverse are fundamen-
tal. The latter is easy if we use symmetric restrictions on mapping languages.
Thus, FullD-, ED-, and SkED-mappings have trivial inverse mappings. On the
other hand, composition turns out to be very hard and is the primary subject
of this article.

1.3 Outline

This article is structured as follows. In Section 2, we give a formal definition of
mapping composition and specify the mapping languages that we consider. In
Section 3 we present the deductive system used in our proofs. In Sections 4, 5,
and 6, we study the composition of mappings given by, respectively, full, second-
order, and embedded dependencies. In Section 7, we present formal tools for
showing inexpressibility results for embedded dependencies. In Section 8 we
examine the semantics of SkED. In Section 9 we briefly consider how some other
basic operators on mappings, such as domain and range, relate to composition.
Section 10 is the conclusion.

2. PRELIMINARIES

A term is a constant, variable, or expression f (t1, . . . tm), where f is a function
symbol of arity m and t1, . . . tm are terms. A signature is a function from a set
of relation symbols to positive integers which give their arities. In this work,
we use the terms signature and schema synonymously. Given a relation symbol
R of arity n, a relation atom is an expression of the form R(t1, . . . , tn), where
t1, . . . , tn are terms.

2.1 Constraints

A constraint or dependency is a sentence (i.e., a formula with all variables
bound). We denote sets of constraints with capital Greek letters and individual
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constraints with lowercase Greek letters. We will need to refer to the following
kinds of constraint:

Name Abbreviation Form

Full tuple-generating dependency FullTGD ∀x̄(φ(x̄) → ψ ′(x̄))
Tuple-generating dependencies TGD ∀x̄(φ(x̄) → ∃ ȳ ψ(x̄, ȳ))
Skolemized TGD SkTGD ∃ f̄ ∀x̄(φ(x̄), χ (x̄) → ψ ′(x̄))
Existential second-order TGD ∃SOTGD ∃R̄∀x̄(φ(x̄) → ∃ ȳ ψ(x̄, ȳ))

where φ(x̄) is a conjunction of relational atoms with variables in x̄, χ (x̄) is a set
of equalities either between variables or between a variable and a term, ψ ′(x̄) is
a conjunction of relational atoms with variables in x̄, ψ(x̄, ȳ) is a conjunction of
relational atoms with variables in x̄ and ȳ , f̄ is a sequence of function symbols,
and R̄ is a sequence of relation symbols. We allow constants and the degenerate
case where φ and χ are missing.

Terms are built from constants, variables, and functions in f̄ . We require
that every variable in x̄ be safe. A variable is safe if it appears in a relational
atom in φ(x̄) or alone on one side of an equation in χ , where the other side is a
term constructed from safe variables.

We define full dependency (FullD), embedded dependency (ED), Skolemized
embedded dependency (SkED), and existential second-order embedded depen-
dency (∃SOED) similar to, respectively, FullTGD, TGD, SkTGD, and ∃SOTGD,
except that we also allow equalities on the righthand-side of →.

The Skolemization of a universal-existential formula is the result of applying
the following replacement: For every occurrence of a first-order existentially
quantified variable v, remove ∃v and replace the quantified variable wher-
ever it appears in the scope of the quantifier with a new term of the form
f (x̄), where f is a new function symbol and x̄ are the universally quantified
variables. In addition, introduce a second-order existentially quantified func-
tion symbol f just outside the scope of x̄. For example, the Skolemization of
∀x y(R(x, y) → ∃z S( y , z)) is ∃ f ∀x y(R(x, y) → S( y , f (x, y)). The classes of
constraints in SkTGD we define here are in unnested form, so we would rewrite
this as ∃ f ∀x yz(R(x, y), z = f (x, y) → S( y , z)). Skolemizing TGD constraints
gives SkTGD constraints (but not all SkTGD constraints correspond to Skolem-
ized TGD constraints).

∃SOTGD constraints are obtained by adding existential second-order quan-
tification over relations to TGD. The existential second-order quantification in
SkTGD and ∃SOTGD apply to a finite set of constraints, not necessarily to just
one (this is not easy to illustrate in the previous table). Formally, we achieve
this through a single sentence, which is the conjunction of the constraints in
this finite set.

Given a source signature σS and a target signature σT disjoint from σS , a
constraint is source-to-target (ST) if all the relational atoms in φ are over σS or
R̄ and all relational atoms in ψ or ξ are over σT or R̄. Similarly, a constraint is
target-to-target if it is over σT . We call mappings given by source-to-target con-
straints GLAV mappings and mappings given by source-to-target and target-
to-target constraints GLAVT mappings.

Given a set of constraints � over the signature σ1 ∪ σ2, �|σ1
is the set of

constraints in � which contain only relation symbols in σ1.
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2.2 Mappings

A schema mapping is a binary relation on instances of database schemas (an
instance of a database schema is a database that conforms to this schema).
Given a class of constraints L, we associate to every expression of the form
(σ1, σ2, �12) the mapping

{〈A, B〉 : (A, B) |= �12}.
Here, �12 is a finite subset of L over the signature σ1 ∪ σ2, σ1 is the input (or
source) signature, σ2 is the output (or target) signature, A is a database with
signature σ1, and B is a database with signature σ2. To simplify the presenta-
tion, we require that σ1 and σ2 be disjoint (otherwise, we do some renaming).
Moreover, (A, B) is the database with signature σ1 ∪ σ2 obtained from taking
all the relations in A and B together. Its domain is the union of the domains of
A and B.

We say that m is given by expression E = (σ1, σ2, �12) if the mapping asso-
ciated to E is m. Furthermore, we say that m is an L-mapping if m is given by
an expression (σ1, σ2, �12), where �12 is a finite subset of L.

2.3 Composition and Inverse

Given two mappings m12 and m23, the composition m12 ◦ m23 is the mapping

{〈A, C〉 : ∃B(〈A, B〉 ∈ m12 ∧ 〈B, C〉 ∈ m23)}.
We study the following problem: Given two expressions of the aforementioned
form, specified above, find an expression for the composition. In other words, we
are concerned with the syntactic counterpart to the semantic operation defined
earlier. We say that two L-mappings given by the expressions (σ1, σ2, �12) and
(σ3, σ4, �12) are compatible if σ2 = σ3 and σ1, σ2, σ4 are pairwise disjoint. We
only consider composition of compatible L-mappings and therefore, we have
only a partial composition operation on expressions. We say that L is closed
under composition if the composition of any two compatible L-mappings is an
L-mapping.

Given a mapping m12 between σ1 and σ2, we define the inverse m−1
12 of m12 to

satisfy

(A, B) ∈ m12 iff (B, A) ∈ m−1
12 .

We use a simple definition of inverse given by “swapping” the domain and
range of a mapping (in contrast to the definition in Fagin [2006], which serves
a different purpose). Closure under inverse is defined similarly to closure under
composition.

Notice that under these definitions, it is possible to get a language which is
closed under both inverse and composition by considering the set of SkTGD-
mappings consisting of mappings of the following three kinds: the mapping
given by the empty set of constraints (unconstrained mappings), mappings
given by a set of source-to-target constraints (ST mappings), and mappings
given by a set of target-to-source constraints (TS mappings). The inverse of an
ST mapping is a TS mapping, and conversely. The inverse of the unconstrained
mapping is the unconstrained mapping. Furthermore, the composition of ST
with ST gives ST, of TS with TS gives TS, and that of any other combination
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gives the unconstrained mapping (these facts are not obvious, but follow from
our results in subsequent sections).

3. DEDUCTIONS

In some of the following results and algorithms, we will need to refer to
some specific deductive system. Here we outline its basics; the details are not
essential.

We write FullTGD or SkTGD constraints augmented with constants as rules
of the form φ(x̄), χ (x̄) → ψ(x̄), leaving the second-order quantifiers over func-
tions ∃ f̄ and the first-order universal quantifiers ∀x̄ implicit. We call φ(x̄), χ (x̄)
the premise and ψ(x̄) the conclusion (similarly for FullD or SkED constraints).
If the premise is empty, we write only the conclusion. We call rules of the form
ψ(c̄), where c̄ is a tuple of constants, facts. In most cases we will assume, with-
out loss of generality, that our rules have a single atom in the conclusion, since
every rule with k atoms in the conclusion can always be rewritten as k rules,
each with a single atom in the conclusion.

Definition 1. A deduction from rules � is a sequence of rules, each obtained
in one of three ways:

(1) by copying a rule from �,

(2) by applying expand/rename on a rule appearing earlier in the sequence, or

(3) by applying resolution on two rules appearing earlier in the sequence.

We call such rules axiom rules, expand/rename rules, and resolution rules,
respectively. We say that a deduction has length n if it consists of n lines.

A rule r obtained by expand/rename from rule r ′ may have additional atoms
in the premise, may have variables replaced (consistently and simultaneously)
by arbitrary terms,1 may have equalities of the form v = t between a variable
v and a term t removed whenever v does not appear elsewhere in the rule,
and may have replacements in the conclusion consistent with equalities in the
premise.

A rule r obtained by resolution of the two rules s and t has as premise the
atoms in the premises of s and t, except for those atoms in the conclusion of s,
and as conclusion the atoms in the conclusion of t.

A rule ξ is a variant of ξ ′ if ξ can be deduced from ξ ′ without using resolution,
and conversely. Since each rule has a single atom in the conclusion, a rule r
obtained by resolution from rules p, q consists of the conclusion of q and the
premises in p and q that do not appear in the conclusion of p.

To illustrate the deductions introduced in Definition 1, consider the follow-
ing examples: The rule R(x, y), z = f (x, y) → S(x, z) is a valid result of ap-
plying expand/rename to R(u, v) → S(u, f (u, v)). The rule R(x, y), S( y , z) →
S(x, z) is the result of applying resolution to rules R(x, y) → S(x, y) and
S(x, y), S( y , z) → S(x, z).

We call a resolution step a σ2-resolution if it involves the elimination of an
atom with a relation symbol from σ2. In the previous example, if σ2 contains S,
then we have a σ2-resolution.

1We allow distinct variables to be replaced by the same term.
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We annotate our deductions by numbering the rules in them in ascending
order and by adding annotations to each line indicating how this line was ob-
tained. It is enough to annotate a resolution rule with just two numbers and an
expand/rename rule with a single number and a variable assignment. Axiom
rules are indicated through a lack of any other annotation. A variable assign-
ment is a list of items of the form x := y , where x is a variable and y is a
term.

Example 1. Given � = {R(x, y) → S(x, y), S(z, z) → T (z, z)}, and 	 =
{R(1, 1)}, the following is a valid deduction from � ∪ 	:

1. R(1, 1)

2. R(x, y) → S(x, y)

3. R(1, 1) → S(1, 1) [2] x := 1, y := 1

4. S(1, 1) [1, 3]

5. S(z, z) → T (z, z)

6. S(1, 1) → T (1, 1) [5] z := 1

7. T (1, 1) [4, 6]

Here rules 1, 2, and 5 are axioms, 3 and 6 are expand/rename, and 4 and 7 are
resolution.

We call a sequence of (at most) two rename-only steps followed by a resolution
step on the results of these steps a rename-resolution. In the preceding example,
4 is obtained by rename-resolution from 1 and 2, and 7 is obtained by rename-
resolution from 4 and 5. A σ2-rename-resolution is a rename-resolution where
the resolution step is a σ2-resolution.

If there is a deduction γ from a set of constraints � where the last line of γ

contains a constraint ξ , we say that ξ is deduced from �, which we write � � ξ ,
and that γ witnesses � � ξ . We write � � �′ in the case where � � ξ for every
ξ ∈ �′. The L-deductive closure of � is

DC(L, �) := {ξ ∈ L : � � ξ}.
We write DC(�) when L is clear from the context. We write D |= � if all con-
straints in � are true in D. We write � |= �′ if for all instances D, D |= �

implies D |= �′. It is easy to check that if � � �′, then also � |= �′; namely,
the deductive system is sound.

We will need the following proposition.

PROPOSITION 1. If 	 is a set of facts in L and � ∪ {φ} ⊆ L for L ∈
{FullD, SkED}, then the following are equivalent (notice that φ could be a fact):

(1) � ∪ 	 � φ.
(2) There is ξ ∈ L such that � � ξ and 	, ξ � φ with ξ over the signature of 	.

PROOF. If (2) holds, then we have deductions γ ′ and γ ′′ witnessing � � ξ and
	, ξ � φ. Then γ obtained by appending γ ′′ to γ ′ witnesses � ∪ 	 � φ.

Now, assume that (1) holds and γ witnesses � ∪	 � φ. We set γ ′ to γ , except
for the following replacements, which we make rule-by-rule from the first rule
in γ to the last:
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(1) If rule r is an axiom rule from 	, remove it.

(2) If rule r is an axiom rule not from 	, keep it as it is.

(3) If rule r is obtained by expand/rename from rule i, replace every constant
c in r and in the variable assignment for r with a corresponding variable vc
(a different variable for every constant).

(4) If rule r is obtained by resolution from rules i and j and rule i was an axiom
rule from 	, replace r with a trivial expand/rename from rule j .

(5) If rule r is obtained by resolution from rules i and j and rule i was not an
axiom rule from 	, replace r with the result of applying resolution to the
new rules i and j .

(See Example 1, shown previously.) Take ξ to be the last rule in γ ′. Steps 4
and 5 ensure that ξ is over the signature of 	. Then γ ′ is a valid deduction
witnessing � � ξ , since axioms from 	 are no longer used and since aforemen-
tioned replacements 1 through 5 ensure that rule r is correctly deduced from
the previously replaced rules. Also, 	, ξ � φ is witnessed by a deduction γ ′′,
which consists of the following sequence:

—The axioms from 	 that were removed from γ to obtain γ ′;
—ξ followed by ξ ′ obtained from ξ by renaming each variable vc to the corre-

sponding constant c; and

—a sequence of resolution steps using each axiom from 	 and starting with
ξ ′.

Example 2. Given the deduction γ from Example 1, γ ′ is:

1.

2. R(x, y) → S(x, y)

3. R(v1, v1) → S(v1, v1) [2] x := v1, y := v1

4. R(v1, v1) → S(v1, v1) [3]

5. S(z, z) → T (z, z)

6. S(v1, v1) → T (v1, v1) [5] z := v1

7. R(v1, v1) → T (v1, v1) [4, 6]

The following replacements have been made for each rule:

(1) Axiom from 	: removed by 1.

(2) Axiom from �; unchanged by 2.

(3) Expand rename: 1 replaced with v1 by 3.

(4) Resolution on 1,3: trivial expand/rename by 4.

(5) Axiom from �; unchanged by 2.

(6) Expand rename: 1 replaced with v1 by 3.

(7) Resolution on 4 and 6: resolution by 5.

—Chase. Here, we define a modified chase procedure which is needed in
the proof of several results to follow. The definition is similar, but somewhat
different from the usual chase.
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Definition 2. Given an instance D, the result of chasing D with constraints
� ⊆ SkED and the set of Skolem functions F , denoted chase(D, �, F ), is the
database D′′ obtained from D′ := {Ri(c̄) : � ∪ 	 ∪ � � Ri(c̄)}, where:

— c̄ is a tuple of constants,

— 	 := {Ri(c̄) : D |= Ri(c̄)} is the set of facts given by D, and

— � := { f (c̄) = a : f ∈ F, f (c̄) = a} is the set of facts given by F ,

as follows. Define c0 ≡ c1 iff � ∪ 	 ∪ � � c0 = c1. Now to obtain D′′ from D′,
pick one constant c0 from every equivalence class and replace every constant
in this equivalence class with c0. In other words, D′′ := D′/ ≡. All functions in
F are required to have the same domain which includes D. If they have finite
range, then chase(D, �, F ) is finite. We write chase(D, �) for chase(D, �, ∅).

This definition is a variation on the usual definition, in which the functions
in F are constructed during the chase process. In particular, for any chase
sequence of the regular chase in which new witnesses are introduced, we set
the functions in F accordingly and then, the result of the modified chase defined
before is exactly the same as the regular chase. On the other hand, we allow the
function in F to “collapse witnesses,” so the universality property of the regular
chase does not always hold for the chase defined here. We use this definition
of the chase because: (1) we need to chase with SkED-constraints, for which
the functions in F are given, and (2) because it will be convenient to have a
definition of the chase that is closely related to the deductive system we use.

The important property we need of this modified chase is (a similar property
holds for the standard chase):

PROPOSITION 2. chase(D, �, F ) |= �.

PROOF. Set D′′ := chase(D, �, F ). Let D′, 	, and � be as in Definition 2.
Pick ξ ∈ �. Assume that ξ is ∀x̄(φ(x̄), χ (x̄, ȳ) → ψ(x̄, ȳ), where φ, χ , ψ are
as in the definition of SkED. Pick any tuple of constants c̄ and assume that
D′′ |= φ(c̄). Pick the unique tuple of constants d̄ such that � � χ (c̄, d̄ ). Then
�∪	∪� � φ(c̄), χ (c̄, d̄ ). Therefore, since ξ ∈ �, we also have �∪	∪� � ψ(c̄, d̄ ).
Without loss of generality, assume that ψ(c̄, d̄ ) is a single relational atom or an
equation. In the former case, this relational atom must be in D′ and there-
fore also in D′′. In the latter case, this equation equates two constants which
are equivalent in D′ and therefore equal in D′′. In either case, ξ holds in D′′
for c̄.

4. FULL DEPENDENCIES

We start by studying the composition of FullD-mappings; that is, mappings
given by full dependencies. All results in this section apply to both FullD-
and FullTGD-mappings. We will see that the techniques introduced to han-
dle these cases can be extended to handle SkED- and ED-mappings. We first
show that FullTGD is not closed under composition (Theorem 1) and further-
more, that determining whether the composition of two FullD-mappings is a
FullD-mapping is undecidable (Theorem 2). Then we give necessary and suffi-
cient, noncomputable conditions for the composition of two FullTGD-mappings
to be a FullTGD-mapping (Theorem 3). The following algorithm computes the
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composition of two FullD-mappings given by (σ1, σ2, �12) and (σ2, σ3, �23). The
algorithm, when it terminates, computes the deductive closure of �12 ∪ �23,
then restricts this deductive closure to those constraints which do not refer to
σ2. Theorem 3 to follow shows that the deductive closure so restricted gives
precisely the composition.

Procedure FULLD-COMPOSE(�12, �23)

Set � := �12 ∪ �23

Repeat
Set �′ := ∅
For every pair φ, ψ ∈ �

For every way in which φ, ψ can be σ2-rename-resolved
to yield ξ and if there is no variant of ξ in �

set �′ := �′ ∪ {ξ}
Set � := � ∪ �′

Until �′ = ∅
Return �13 := �|σ13

FULLD-COMPOSE

terminates on FullD-mappings satisfying the conditions of Theorem 4, which
can be checked in exponential time (see also Corollary 1). The obstacle to com-
position is recursion, yet recursion is not always a problem (Example 3). We also
define good-FullD, a subset of FullD, recognizable in exponential time, which
is closed under composition (Theorem 5).

THEOREM 1. There are GLAVT FullTGD-mappings whose composition is not
an FO-mapping. In particular, GLAVT FullTGD is not closed under composition.

PROOF. Consider the GLAVT FullTGD-mappings m12 and m23 given by
(σ1, σ2, �12) and (σ2, σ3, �23), where

�12 is R(x, y) → S(x, y)
S(x, y), S( y , z) → S(x, z)

�23 is S(x, y) → T (x, y)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T }. Together, these constraints say that
R ⊆ S ⊆ T and that S is transitively closed. The composition m12 ◦ m23 is the
set of all pairs (R, T ) such that tc(R) ⊆ T . Intuitively, the FullTGD-constraints
which express the composition are constraints of the form

R(x, v1), R(v1, v2), . . . , R(vi−1, vi), R(vi, y) → T (x, y),

but no finite set of them expresses tc(R) ⊆ T . In fact, the composition m12 ◦m23

is not even expressible in first-order logic (FO), since if we had an FO sentence
φ such that

〈R, T 〉 ∈ m12 ◦ m23 iff (R, T ) |= φ,

we could create an FO formula ψ(x, y) obtained by replacing every occurrence
of T (u, v) in φ with x �= u ∨ y �= v. Then, given a domain D with R ⊆ D2,
we would have R |= ψ[a, b] iff (R, D2 − 〈a, b〉) |= φ iff tc(R) ⊆ D2 − 〈a, b〉 iff
〈a, b〉 �∈ tc(R). Therefore ∀x∀ y ¬ψ(x, y) would say that R is a connected graph,
contradicting the fact that this can not be expressed in FO [Fagin 1975] (see,
e.g., Example 2.3.8 in Ebbinhaus and Flum [1999]).
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THEOREM 2. Checking whether the composition of two FullTGD-mappings
is a FullTGD-mapping is undecidable (in fact, coRE-hard). Furthermore, the
problem is undecidable, even when the second mapping is a single fixed source-
to-target TGD.

PROOF. We reduce Post’s correspondence problem (PCP)—known to be unde-
cidable (see, e.g., Sipser [1997])—to the problem of deciding whether m12 ◦ m23

is a FullTGD-mapping where m12 and m23 are FullTGD mappings. A PCP prob-
lem consists of a finite number of tiles, each with two strings of 0s and 1s: a
top string and a bottom string. The decision problem is to determine whether
a PCP problem has a solution. A solution is a string S of 0s and 1s such that
there is a sequence of tiles for which the concatenation of the top strings and
bottom strings of tiles are both equal to S. For example, the PCP problem with
the two tiles 00/001 and 11/1 (the string before the slash is the top string and
the string after the slash is the bottom string) has a solution: 0011, obtained
by the sequence consisting of the first tile followed by the second tile.

The reduction is partially inspired by an undecidability proof by Christoph
Koch (Theorem 3.1 in Koch [2002]). Given a PCP problem, we define m23 so that
there is a solution to the PCP problem iff m12 ◦ m23 is not a FullTGD-mapping.
The FullTGD-mappings m12, m23 are given by (σ1, σ2, �12) and (σ2, σ3, �23),
where

—σ1 = {A, B, O, I, E},
—σ2 = {C, D, Q , J}, and

—σ3 = {T }
with C quaternary, all other relations binary, and with �12 and �23 as described
to follow. We will use A to mark the beginning and end of a path made of O and
I edges, which will correspond to strings of 0s and 1s. We will use B similarly
and use E as an undirected graph to detect cycles, which will correspond to
reused variables.

Similarly, we will use C (which is quaternary) to mark the beginning and
end of two paths, each made of Q and J edges, which will correspond to strings
of 0s and 1s (we use Q and J because they resemble O and I ). We write

x0011 y for A(x, y), O(x, u), O(u, v), I (v, w), I (w, y),

x ′0011 y ′ for B(x ′, y ′), O(x ′, u′), O(u′, v′), I (v′, w′), I (w′, y ′), and
x
x ′0011

y
y ′ for C(x, x ′, y , y ′), Q(x, u), Q(u, v), J (v, w), J (w, y),

Q(x ′, u′), Q(u′, v′), J (v′, w′), J (w′, y ′).

(the intermediate variables are not specified in this notation). We will also use
D as an auxiliary marker and T as our “target.”

We will define constraints �12 and �23, the former independent of the PCP
instance and the latter encoding the tiles of a PCP instance such that the com-
position of m12 and m23 is given by the following set of full TGDs �13:

A(x, x), B(x ′, x ′) → T (x, x ′) (1)

A(x, y), B(x ′, y ′), E(z, z ′) → T (x, x ′) (2)
x S y , x Sy → T (x, x ′) (3)
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for every S which is a solution to the PCP problem, together with constraints
(4) to (8) to follow. Any PCP problem with a solution has an infinite number
of solutions (the concatenation of a finite number of solutions is a solution), so
σ13 contains seven constrains for a PCP problem with no solution and infinitely
many constraints for a PCP problem with a solution. It is clear that the set
containing constraints (1), (2), and all constraints of the form

x S y , x ′ Sy ′ → T (x, x ′)

for all solutions S, except for a solution Ŝ, does not imply that

x Ŝ y , x ′ Ŝ y ′ → T (x, x ′).

Therefore, the composition of the mappings m12 and m23 is given by a finite set
of full TGDs iff the PCP problem has no solution, as desired.

�12 contains the following full TGDs:

A(x, y), B(x ′ y ′) → E(x, x ′) (4)

O(x, y) → E(x, y) (5)

I (x, y) → E(x, y) (6)

E( y , x) → E(x, y) (7)

E(x, y), E( y , z) → E(x, z) (8)

A(x, y), B(x ′, y ′), E(z, z ′) → C(x, x ′, x, x ′) (9)

A(x, y), B(x ′, y ′) → D(x, x ′) (10)

D(x, x ′), O(x, y), O(x ′, y ′) → Q(x, y), Q(x ′, y ′), D( y , y ′) (11)

D(x, x ′), I (x, y), I (x ′, y ′) → J (x, y), J (x ′, y ′), D( y , y ′) (12)

A(x, y), B(x ′, y ′), D( y , y ′) → C(x, x ′, y , y ′) (13)

The first six constraints will be used to detect repeated variables. The last four
constraints are sufficient to deduce

x S y , x ′ Sy ′ → x
x ′ S y

y ′

for an arbitrary string S, applying (10) once, (11) once for every 0 in S, (12)
once for every 1 in S, and then (13) once. Intuitively, we copy one 0 or one 1
from the top and bottom strings at a time from σ1 to σ2 and move the D-marker
correspondingly, also one step at-a-time.

�23 depends on the PCP instance. Given the tiles 00/001 and 11/1, it contains
the following full TGDs:

C(x, x ′, x, x ′) → T (x, x ′) (14)

C(x, x ′, z, z ′), Q( y , u), Q(u, z), Q( y ′, u′), Q(u′, v′), J (v′, z ′) → C(x, x ′, y , y ′) (15)

C(x, x ′, z, z ′), J ( y, z), J ( y ′, u′), J (u′, z ′) → C(x, x ′, y, y ′). (16)

More generally, each of the constraints, except for the first, encodes one tile,
with the top string encoded as a path through Q and J edges going from y to z
and the bottom string encoded as a path through Q and J edges going from y ′
to z ′. Using these constraints repeatedly corresponding to the tiles that make
up a solution S, we obtain

x S y , x ′ Sy ′ → C(x, x ′, x, x ′).
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Intuitively, applying these constraints corresponds to removing one tile at-a-
time from the top and bottom strings and moving the end points in the C-marker
until we obtain C(x, x ′, x, x ′). Finaly, we apply constraint (14) to obtain

x S y , x ′ Sy ′ → T (x, x ′).

This shows that we can deduce the constraints 3 introduced before.
We can deduce constraint (1) using constraints (10), (13), and (14) and we

can deduce constraint (2) using constraints (9) and (14).
To complete the proof, we must show that all other full TGDs over σ1 ∪ σ3 that

can be deduced from �12 ∪ �23 are implied by the constraints in �13. Clearly,
any such constraint must have an atom of the form T (x, x ′) as its conclusion and
therefore, must be obtained using constraint (14) from a constraint with con-
clusion C(x, x ′, x, x ′). Such a conclusion can only be obtained using constraints
(9), (13), or the constraints in �23 encoding tiles. If obtained through constraint
(9), then since A, B, and E are over σ1, such a constraint must be implied by
constraint (2). If obtained through constraint (13), then we must have y = x
and y ′ = x ′ and we must obtain D(x, x ′), which can only be obtained through
constraint (10). Any constraint so obtained must be implied by constraint (1).
We are left with only the possibility of a deduction using the constraints that
correspond to tiles. It is tedious, but straightforward to verify that this leads to
constraints which are implied by a constraint of the form

x S y , x ′ Sy ′ → T (x, x ′),

where S is a solution to the PCP problem or to some constraint that has a
premise of the form

x S′ y , x ′ S′′
y ′ → T (x, x ′),

where S′ and S′′ are not necessarily equal and neither is necessarily a solu-
tion, but where at least some variable is shared among them (to verify this,
we essentially reverse the process obtained to deduce constraints of the form
(3), given earlier). In the latter case, however, there must be a cycle in E and
therefore, by constraint (8) (transitive closure), a 1-loop in E. Therefore, any
such constraint must be implied by constraint (2).

Finally, notice that we can move the constraints encoding tiles (which are
over σ2) to �12, in which case �23 contains a single fixed source-to-target
constraint.

THEOREM 3. If the FullD-mappings m12, m23 are given by (σ1, σ2, �12) and
(σ2, σ3, �23) with �123 := �12 ∪ �23 and σ13 = σ1 ∪ σ3, then the following are
equivalent:

(1) There is a finite set of constraints �13 ⊆ FullD over the signature σ13 such
that m13 := m12 ◦ m23 is given by (σ1, σ3, �13).

(2) There is a finite set of constraints �13 ⊆ FullD over the signature σ13 such
that

DC(FullD, �123)|σ13
= DC(FullD, �13).

(3) There is k such that for every ξ over σ13 satisfying �123 � ξ , there is a
deduction of ξ from �123 using (at most) k σ2-resolutions.2

2Notice that no bound is given on the number of σ1- or σ3-resolutions.
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PROOF. The proof uses Lemmas 1 and 2 to follow. First, we show the equiv-
alence of (1) and (2), then we show the equivalence of (2) and (3).

Assume that (2) holds. Then 〈A, C〉 ∈ m12 · m23

iff ∃B (A, B, C) |= �123 (by definition of ·)
iff (A, C) |= DC(FullD, �123)|σ13

(by Lemma 1 to follow)
iff (A, C) |= DC(FullD, �13) (since (2) holds)
iff (A, C) |= �13. (since DC is sound)

This shows that (1) holds.
Conversely, assume that (1) holds. Then

(A, C) |= DC(FullD, �123)|σ13

iff ∃B (A, B, C) |= �123 (by Lemma 1 to follow)
iff 〈A, C〉 ∈ m12 · m23 (by definition of ·)
iff (A, C) |= �13 (since (1) holds)
iff (A, C) |= DC(FullD, �13). (since DC is sound)

This shows that (2) holds.
Now, assume that (3) holds. Set � to the set of all constraints in

DC(FullD, �123)|σ13
which can be deduced using (at most) k σ2-resolutions and

no other resolutions. Clearly, every constraint in � can be obtained by ex-
pand/rename from a finite subset �13 ⊆ �. We show that (2) holds. Assume
that there is a deduction γ witnessing �123 � ξ . Since (3) holds, we can assume
that γ has k′ ≤ k σ2-resolutions. By Lemma 2 to follow, there is a deduction γ ′
witnessing �123 � ξ also with k′ σ2-resolutions and with all of them occurring
before any other resolutions. Break γ ′ into two parts: γ ′

1—the initial segment of
γ up to and including the last σ2-resolution, and γ ′

2—the remainder of γ ′. Since
the last line of γ ′ does not contain any symbols from σ2 and since there are no
σ2-resolutions in γ ′

2, we can assume that the only constraints from γ ′
1 used in γ ′

2
are those which do not contain any symbols from σ2. Every such constraint in
γ ′

1 must be in �, by definition of �. Since every constraint ψ in γ ′
2 does not con-

tain any symbols from σ2 and since �123|σ13
⊆ �13, we have �13 � ψ . Therefore,

�13 � ξ , as desired.
Conversely, assume that (2) holds. Take k to be the total number of σ2-

resolutions needed to deduce every ψ ∈ �13 from �123. Assume that �123 � ξ .
Then there is a deduction γ witnessing �13 � ξ . Clearly, γ has no σ2-resolutions.
From γ , we obtain γ ′ witnessing �123 � ξ by appending to γ a deduction of ev-
ery constraint in �13 and by replacing every line where an axiom from �13 is
used by a vacuous expand/rename of the line where the deduction of this axiom
ends. Clearly, γ ′ has exactly k σ2-resolutions, as desired. This shows that (3)
holds.

LEMMA 1. Under the hypotheses of Theorem 3, the following are equivalent:

(1) (A, C) |= DC(FullD, �123)|σ13
.

(2) ∃B (A, B, C) |= �123.

PROOF. Assume (A, B, C) |= �123 for some B. Then (A, B, C) |= DC(FullD,
�123) (by soundness) and therefore (A, C) |= DC(FullD, �123)|σ13

, since B is not
mentioned in DC(FullD, �123)|σ13

.
Conversely, assume that (A, C) |= DC(FullD, �123)|σ13

. We set

(A′, B, C′) := chase((A, ∅, C), �123).

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 4, Publication date: March 2007.



20 • A. Nash et al.

If this chase terminates and A = A′ and C = C′, then we have (A, B, C) |= �123

by Proposition 2, which implies (A, B) |= �12 and (B, C) |= �23, as desired.
It is clear that the chase terminates, since no new constants are introduced.

Now assume, to get a contradiction, that A �= A′ or C �= C′. Set 	AC to the set
of facts given by A and C. Then we must have

�123 ∪ 	AC � R(c̄),

where c̄ is a tuple of constants and R is a relation in A or C not containing c̄ or

�123 ∪ 	AC � c0 = c1,

where c0, c1 are distinct constants in A or C.
We consider the former case; the latter is similar. We must have (A, C) �|=

R(c̄). If �123 ∪	AC � R(c̄), then by Proposition 1, there exists ξ ∈ FullD over σ13

such that �123 � ξ and 	AC, ξ � R(c̄). Since (A, C) |= 	AC and (A, C) �|= R(c̄), it
follows that (A, C) �|= ξ , contradicting (A, C) |= DC(FullD, �123)|σ13

.

LEMMA 2. Under the hypotheses of Theorem 3, if there is a deduction γ

witnessing �123 � ξ with (at most) k σ2-resolutions, then there is γ ′ witness-
ing �123 � ξ with (at most) k σ2-resolutions and where furthermore, all σ2-
resolutions occur before all other resolutions.

PROOF. The basic idea of the proof is to repeatedly swap the first σ2-
resolution which occurs after a non-σ2-resolution with this resolution until all
σ2-resolutions occur first.

Assume that we have k < m and a deduction γk,� witnessing �123 � ξ with:

(1) exactly m σ2-resolutions,

(2) where the first k resolutions are σ2-resolutions, and

(3) where there are exactly � non-σ2-resolutions before the k+1-th σ2-resolution
or the end of the deduction.

We proceed by induction on k and �. Given γk,� with � > 0, we show how
to obtain the deduction γk,�−1 satisfying 1, 2, and 3. In the case where � = 0,
we simply set γk+1,�′ := γk,0 picking �′ so that γk+1,�′ satisfies 1, 2, and 3, given
earlier. Once we get γm,�′ for some �′, we set γ ′ := γm,�′ and we are done.

Consider the line s containing δ, the (k+1)th σ2-resolution in γk,� of, say, lines
i and j containing, respectively, α and β. Consider also the line r containing λ,
the �-th non-σ2-resolution in γk,� of, say, lines r1 and r2.

Now we have to consider several cases. If i, j < r < s, then we can obtain
γk,�−1 by moving line s to just before r. If lines i, j are not derived from line
r, then we can obtain γk,�−1 by first rearranging the deduction γk,� to obtain a
deduction γ ′

k,� such that i, j < r < s, then proceeding as before.
Otherwise, either α or β has been obtained through expand/rename from

line r. To simplify the presentation, we assume that both have been obtained
through a single expand/rename from line r (the other cases are similar). We
have r < i, j < s. By rearranging γk,� if needed, we can assume that i = r + 1,
j = r +2 and s = r +3. Since α and β can be obtained from r by expand/rename,
α1, α2 and β1, β2 (intuitively, the “unresolved” parts of λ expand/renamed as α

and β) can be obtained, respectively, from lines r1, r2 by expand/rename so that
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α is the resolution of α1, α2 and β is the resolution of β1, β2. We replace the four
contiguous lines r, i, j , s:

r λ [r1, r2]
r + 1 α [r]
r + 2 β [r]
r + 3 δ [r + 1, r + 2]

with the following seven lines:
r α1 [r1]
r + 1 α2 [r2]
r + 2 β1 [r1]
r + 3 β2 [r2]
r + 4 λ1 [r + 1, r + 2]
r + 5 λ2 [r, r + 4]
r + 6 δ [r + 5, r + 3].

The important point is that line r + 4 now contains a σ2-resolution, since α2

and β1 must resolve through a relation symbol of σ2 because α and β do. Notice
that we have δ on line r +6, since the result of resolution on α1, α2, β1, and β2 is
the same as the result of resolution on α and β (this is because the resolution
is “associative”).

COROLLARY 1. Under the hypotheses of Theorem 3, FULLD-COMPOSE(�12, �23),
whenever it terminates, yields �13 such that m12 ◦ m23 is given by (σ1, σ3, �13).

The constraints in the proof of Theorem 1 fail to satisfy (3) of Theorem 3
and therefore, FULLD-COMPOSE(�12, �23) will not terminate when �12 and �23

are as in the proof of Theorem 1 for input. In contrast, FULLD-COMPOSE(�12, �23)
will terminate on �12, �23 from the example to follow, which does satisfy (3) of
Theorem 3, so recursion is not always bad.

Example 3. Consider the FullTGD-mappings m12 and m23 given by (σ1, σ2,
�12) and (σ2, σ3, �23), where

�12 is R(x, y) → S(x, y)
S(x, y), S( y , z) → R(x, z)

�23 is S(x, y) → T (x, y)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T }. Together, these constraints say that
R ⊆ S ⊆ T , and that R and S are transitively closed (because the constraints

S(x, y), S( y , z) → S(x, z)
R(x, y), R( y , z) → R(x, z)

can be deduced from �12). The constraints

R(x, y), R( y , z) → R(x, z)
R(x, y) → T (x, y)

express exactly the composition m12 ◦ m23, and are exactly those found by
FULLD-COMPOSE(�12, �23).

The coRE-hardness from Theorem 2 implies that algorithm FULLD-COMPOSE

may not terminate, even when the composition is a FullD-mapping. This hap-
pens, for example, in the following case.
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Example 4. Consider the FullTGD-mappings m12 and m23 given by
(σ1, σ2, �12) and (σ2, σ3, �23), where

�12 is R(x, y) → S(x, y)
R(x, y), R( y , z) → R(x, z)
S(x, y), S( y , z) → S(x, z)

�23 is S(x, y) → T (x, y)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T }.
The constraints

R(x, y), R( y , z) → R(x, z)
R(x, y) → T (x, y)

express exactly the composition m12 ◦ m23, but algorithm FULLD-COMPOSE will
never terminate, since it will deduce at least the infinitely many constraints it
would deduce in the proof of Theorem 1. This is because �12 here includes all
the constraints in �12 there.

Even if the algorithm terminates, it may produce a result which is exponen-
tial in size of the input mappings. This is unavoidable, as the following example
shows.3

Example 5. There is a FullTGD-mapping m12 and a sequence of FullTGD-
mappings mk

23 given by �12 and �k
23 over fixed signatures σ1 = {R}, σ2 = {S},

and σ3 = {T }, where R, S, and T are binary relations such that the composition
m12 ◦ mk

23 grows exponentially in the size of �k
23.

The mapping m12 is given by:

R(x, y), R( y , x) → S(x, y)
R(x, y), R(x, x) → S(x, y)

and the family of mappings mk
23 is given by �k

23, which contains the single
constraint

S(x, u1), S(u1, u2), . . . , S(uk−1, y) → T (x, y)

saying that if there is a path of length k in S, then there is an edge in T . For
each atom S(u, v) in the premise of this last constraint, we can substitute either
R(u, v), R(v, u) or R(u, v), R(u, u) to obtain a constraint over σ1 ∪σ3 which gives
2k constraints in the composition.

The following conditions are sufficient for algorithm FULLD-COMPOSE to ter-
minate. On the other hand, Example 6, to follow, illustrates a case where these
conditions are violated. Intuitively, these conditions say that there is no “non-
trivial” recursion on some atom in σ2. It would be nice to have simpler termina-
tion conditions of wide applicability, but we are not aware of any such. Items 3
and 4 guarantee this “nontriviality.” If either fails, then the recursion can only
proceed for a finite number of steps.

3This is essentially a result on query unfolding [Sagiv and Yannakakis 1980]. Lucian Popa first

brought this to our attention through an example that required a varying schema.
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THEOREM 4. Under the hypotheses of Theorem 3, if no constraint of the form
φ(z̄), S( ȳ) → S(x̄) can be deduced from �123 using only σ2-rename-resolutions
such that

(1) φ(z̄) is a conjunction of atoms over σ123,
(2) there is no atom S(w̄) in φ(z̄) where w̄ contains all the variables in x̄,
(3) there is a variable in x̄ which is not in ȳ, and
(4) S is a relation symbol in σ2

then FULLD-COMPOSE(�12, �23) terminates and therefore, m12 ◦m23 is a FullD-
mapping. Furthermore, these conditions can be verified in exponential time in
the size of �12 ∪ �23.

PROOF. The conditions can be checked in exponential time as follows. Run
kσ2

− 1 iterations of the main loop of FULLD-COMPOSE(�12, �23), where kσ2
is the

number of relation symbols in σ2, and check whether a constraint of the form
given previously is in �.

For the termination claim, assume the hypotheses hold. Consider any de-
duction γ witnessing �123 � ξ , which uses only σ2-rename-resolutions where ξ

contains a σ2 atom in the conclusion. Assume without loss of generality that all
rename operations are performed first, followed by all resolution operations.
Assume also that every rule in γ contains a single atom in its conclusion and
that every rule is used in, at most, one resolution step.

Such a deduction can be represented as a tree T , where every node is one
atom. Every nonleaf node in T is the conclusion of some rule r. The children of r
are the atoms in the premise of rule r. The premise of ξ consists of all the leaves
of T and its conclusion is the root of T . It is easy to check that any subtree T ′
of T which contains, for every node, either all its children in T or none of them,
can be converted into a deduction γ ′ witnessing �123 � ξ ′, where the premise of
ξ ′ consists of all the leaves of T ′ and its conclusion is the root of T ′.

Since the hypothesis holds, no such subtree may contain S(x̄) as its root and
S( ȳ) as a leaf where S is a relation symbol in σ2 and x̄ �⊆ ȳ . Therefore, any
path from the leaves to the root in T containing a node S( ȳ) may only contain,
at most, 2rr! other nodes with S atoms, where r is the arity of S. This means
that any such path must have length bounded by kσ2

2rσ2 rσ2
!, where kσ2

is the
number of relation symbols in σ2 and rσ2

is the maximum arity of a relation
symbols in σ2. As a result, up to variants, there is only a finite number of
conclusions of �123 obtainable through σ2-rename-resolutions and this implies
that FULLD-COMPOSE(�12, �23) terminates.

Definition 3. A FullD-mapping is a good-FullD-mapping if it is given by
(σ1, σ2, �12) and no constraint of the form φ(z̄), S( ȳ) → S′(x̄), where

(1) φ(z̄) is a conjunction of atoms over σ1 ∪ σ2,

(2) there is no atom S(w̄) in φ(z̄) where w̄ contains all the variables in x̄,

(3) there is a variable in x̄ which is not in ȳ , and

(4) S and S′ are both relation symbols in σ1 or both in σ2

can be deduced from �12 using only σ1-rename-resolutions or only σ2-rename-
resolutions. We define good-FullTGD similarly.
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We can check whether an FullD-mapping is a good-FullD-mapping in expo-
nential time in the size of constraints as in the proof of Theorem 4.

THEOREM 5. Both good-FullD and good-FullTGD are closed under compo-
sition and inverse.

PROOF. Assume that two good-FullD-mappings are given by (σ1, σ2, �12) and
(σ2, σ3, �23). Set �123 := �12 ∪ �23. Assume constraints ξ of the form

φ(z̄), S( ȳ) → S′(x̄)

and ξ ′ of the form

ψ(v̄), S′(x̄) → S′′(ū).

Each fails at least one of the conditions 2–4 (with the appropriate subsitutions
of signatures and sets of constraints for ξ ′) of Definition 3 with S′ in σ2. Then
resolution on ξ and ξ ′ gives ξ ′′:

φ(z̄), ψ(v̄), S( ȳ) → S′′(ū).

which also fails at least one of the conditions 2–4 as follows. If ξ ′ fails 4, then S′′
is not in σ2 and therefore ξ ′′ fails 4. If ξ ′ fails 2, then ξ ′′ fails 2 as well. Therefore,
assume that ξ ′ fails 3. In other words, every variable in ū is in x̄. Therefore if ξ

fails 2, then ξ ′′ also fails 2. Also, if ξ fails 3, then every variable in x̄ is in ȳ so
ξ ′′ fails 3. Finally, if ξ fails 4, then S is not in σ2 so ξ ′′ also fails 4.

Then it is easy to verify (by induction on the length of proofs) that no con-
straint ξ ′′ satisfying conditions 2, 3, and 4, where both S and S′ are in σ2 of
Definition 3, can be deduced using only σ2-rename-resolutions from the con-
straints specifying the two mappings. Therefore, the hypotheses of Theorem 4
hold so the composition exists and furthermore, satisfies the conditions of a
good-FullD-mapping. A similar proof works for good-FullTGD-mappings.

The inverse of a good-FullD-mapping given by (σ1, σ2, �12) is given
by (σ2, σ1, �12) which is also a good-FullD-mapping. The same holds for
good-FullTGD-mappings.

We examined many other subsets of FullD for closure under composition and
inverse, but were unable to find more natural conditions of similarly wide ap-
plicability. Since source-to-target FullD-constraints are total and surjective, it
is natural to wonder whether the set of all total and surjective FullD-mappings
is closed under composition. The following example shows that it is not.

Example 6. Consider the FullTGD-mappings m12 and m23 given by
(σ1, σ2, �12) and (σ2, σ3, �23), where

�12 is R(x, y) → S(x, y)
R(x, y), S( y , z) → S(x, z)

�23 is S(x, y) → T (x, y)

and where σ1 = {R}, σ2 = {S}, and σ3 = {T }. Here, m12 and m23 are total and
surjective and their composition says that tc(R) ⊆ T , which, as we have seen
in the proof of Theorem 1, is not expressible even in FO.
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5. SECOND-ORDER DEPENDENCIES

In order to handle existential quantifiers in an ED-mapping, we will first con-
vert the ED constraints which specify the mapping into SkED constraints (by
Skolemizing) and this will give us SkED-mappings. Therefore, in this section
we focus on the composition of SkED-mappings; in the next section we consider
how to convert SkED-mappings back to ED-mappings. There are two cases
of composition to consider. Unrestricted composition, in which we are allowed
to introduce additional existentially quantified functions in order to express
the composition, and restricted composition, in which we are only allowed to
use function symbols from the input mappings. In this section we concentrate
on restricted composition. SkED constraints require special semantics, which
we examine in Section 8. All results in this section apply to both SkED- and
SkTGD-mappings (the former correspond to SO tgds, which are not restricted
to being source-to-target).

Theorems 1 and 2 from the previous section show that SkTGD is not closed
under restricted composition and that determining whether the restricted com-
position of two SkTGD-mappings is an SkTGD-mapping is undecidable. This is
because in restricted composition, we are not allowed to add function symbols,
so SkTGD does not add any power toward the restricted composition of FullTGD
mappings. As in the case of FullD-mappings, we give necessary and sufficient,
undecidable conditions for two SkED-mappings to have restricted composition
(Theorem 6), and we give sufficient conditions for restricted composition that
can be checked efficiently.

Theorem 6 suggests essentially the same algorithm for composition of
SkED-mappings as FULLD-COMPOSE; we call this SKED-COMPOSE. The only
difference between them is that SKED-COMPOSE operates on SkED con-
straints, while FULLD-COMPOSE operates on FullD constraints. The correctness
of SKED-COMPOSE, sufficient conditions for its termination, and good-SkED-
mappings are defined for SkED just like for FullD.

THEOREM 6. If the SkED-mappings m12, m23 are given by (σ1, σ2, �12) and
(σ2, σ3, �23) with �123 := �12 ∪ �23 and σ13 = σ1 ∪ σ3, then the following are
equivalent:

(1) There is a finite set of constraints �13 ⊆ SkED over the signature σ13 such
that m := m12 ◦ m23 is given by (σ1, σ3, �13), where �13 has no function
symbols or constants other than those appearing in �123.

(2) There is a finite set of constraints �13 ⊆ SkED over the signature σ13 such
that

DC(SkED, �123)|σ13
= DC(SkED, �13),

where �13 has no function symbols or constants other than those appearing
in �123.

(3) There is k such that for every ξ over σ13 satisfying �123 � ξ, there is a
deduction of ξ from �123 using, at most, k σ2-resolutions.

PROOF. Essentially the same as that of Theorem 3, using Lemma 3 to follow,
instead of Lemma 1.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 4, Publication date: March 2007.



26 • A. Nash et al.

LEMMA 3. Under the hypotheses of Theorem 6, the following are equivalent:

(1) (A, C) |= DC(SkED, �123)|σ13
.

(2) ∃B (A, B, C) |= �123.

PROOF. Assume that (A, B, C) |= �123 for some B. Then (A, B, C) |=
DC(SkED, �123) (by soundness) and therefore (A, C) |= DC(SkED, �123)|σ13

,
since B is not mentioned in DC(SkED, �123)|σ13

.
Conversely, assume (A, C) |= DC(SkED, �123)|σ13

. In particular, this im-
plies the existence of all Skolem functions mentioned in DC(SkED, �123)|σ13

.
There may be additional Skolem functions mentioned in �123, but not in
DC(SkED, �123)|σ13

. We give arbitrary values to these additional Skolem func-
tions. We define F to be the set containing all these Skolem functions and � to
be the set of all facts in F .

We set (A′, B, C′) := chase((A, ∅, C), �123, F ).
If the chase terminates and A = A′ and B = B′, then we have (A, B, C) |=

�123 by Proposition 2, which implies that (A, B) |= �12 and (B, C) |= �23, as
desired.

The chase terminates because of the required safety condition (which is pre-
served by the deduction rules). Therefore, (A′, B, C′) is well-defined. Now, as-
sume, so as to get a contradiction, that A �= A′ or C �= C′. Set 	AC to the set of
facts given by A and C. Then we must have

�123 ∪ 	AC ∪ � � R(c̄),

where c̄ is a tuple of constants and R is a relation in A or C not containing c̄ or

�123 ∪ 	AC ∪ � � c0 = c1,

where c0, c1 are distinct constants in A or C.
We consider the former case; the latter is similar. We must have (A, C) �|=

R(c̄). If �123 ∪	AC ∪� � R(c̄), then by Proposition 1 there exists ξ ∈ SkED over
σ13 such that �123 � ξ and 	AC ∪�∪{ξ} � R(c̄). Since (A, C) |= 	AC and (A, C) �|=
R(c̄), it follows that (A, C) �|= ξ , contradicting (A, C) |= DC(SkED, �123)|σ13

.

6. EMBEDDED DEPENDENCIES

Now we consider composition of ED-mappings; that is, mappings given by em-
bedded dependencies. To compute the composition of two ED-mappings m12, m23

given by (σ1, σ2, �12) and (σ2, σ3, �23), we will proceed in three steps, as follows.

Procedure ED-COMPOSE(�12, �23)

(1) �′
12 := SKOLEMIZE(�12)

�′
23 := SKOLEMIZE(�23)

(2) �′
13 := SKED-COMPOSE(�′

12, �′
23)

(3) Return DESKOLEMIZE(�′
13)

The first step, SKOLEMIZE, is straightforward and the second step,
SKED-COMPOSE, has been discussed in the previous section, so here we concen-
trate on the third step, de-Skolemization. We provide a sound (but not complete)
algorithm for de-Skolemization: DESKOLEMIZE. Even if the second step succeeds,
it may be impossible to find �13 ⊆ ED such that �′

13 ≡ �13 (Example 8), so we
identify necessary and sufficient, polynomial-time checkable conditions for our
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algorithm to succeed (Proposition 3). DESKOLEMIZE may produce a result of size
exponential in the size of its input; we show that in the general case, this is
unavoidable (Theorem 8), but we also provide polynomial-time checkable condi-
tions for DESKOLEMIZE to run in polynomial time in the size of its input (Propo-
sition 3). The algorithm consists of 12 steps and is as follows;4 we provide a
detailed description of each step with examples at the end of this section.

Procedure DESKOLEMIZE(�)

(1) Unnest

(2) Check for cycles

(3) Check for repeated function symbols

(4) Align variables

(5) Eliminate restricting atoms

(6) Eliminate restricted constraints

(7) Check for remaining restricted constraints

(8) Check for dependencies

(9) Combine dependencies

(10) Remove redundant constraints

(11) Replace functions with ∃-variables

(12) Eliminate unnecessary ∃-variables

We prove the following correctness and efficiency results for DESKOLEMIZE at
the end of this section.

THEOREM 7. If DESKOLEMIZE(�) succeeds on input � ⊆ SkED giving �′, then

�′ ⊆ ED and �′ ≡ �.

PROPOSITION 3.

(1) DESKOLEMIZE(�) succeeds on input � ⊆ SkED iff it reaches Step 9, which
can be checked in polynomial time in the size of �.

(2) Furthermore, for every constant �, DESKOLEMIZE runs in polynomial time on
any set of constraints � such that by the end of Step 8, there are no more than
� constraints containing any one function symbol f . This can be checked in
polynomial time in the size of �.

Intuitively, DESKOLEMIZE attempts to put the constraints in its input � into
a form where they are the obvious result of Skolemization, then it reverses
this Skolemization in the obvious way. Most of the work is done in bringing the
constraints to such a form.

Step 11 is where function symbols are actually replaced by existentially
quantified variables. For it to work properly, constraints must be combined
as done in Step 9. These two steps are, in some sense, the main steps in the
algorithm. Steps 10 and 12 are just “clean-up” steps. The remaining steps 1
through 8 ensure that the constraints are in the proper form for Steps 9 and
11. Procedure DESKOLEMIZE may abort at Steps 2, 3, 4, 7, or 8. Except for Step 4,
these steps only check that the constraints are in the desired form and abort

4These steps can also be executed in some other orders. In particular, Steps 5, 6, and 7 can be

executed before Steps 3 and 4 and Steps 3 and 4 can be combined into a single step.
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if they are not. Before going through the steps of DESKOLEMIZE in detail, let us
look at a simple example to give some intuition for the algorithm.

Example 7. Assume that the input to DESKOLEMIZE consists of the single
constraint

R(x, y) → S(x, f (x, y)), S( f (x, y), y)

which is obtained from Skolemizing the TGD-constraint

R(x, y) → ∃u S(x, u), S(u, y)

which says that for every edge in R, there is a path of length 2 in S. Strictly
speaking, this is not an SkTGD constraint as defined in the preliminaries (since
the function symbol f appears in the conclusion), but is close enough. Step 1
gives the following set of SkTGD constraints:

R(x, y), u = f (x, y) → S(x, u)
R(x, y), u = f (x, y) → S(u, y)

We call x and y base variables and u a term variable. Steps 2 and 3 succeed
and, in this case, Step 4 does nothing. However, if the constraints had been

R(x, y), u = f (x, y) → S(x, u)
R(w, z), v = f (w, z) → S(w, z)

then Step 4 would have replaced variables w, z, v with x, y , u in the second
constraint. The goal of this step is to have every equation in which a given
Skolem function appears be identical. In this case, there are no equalities that
restrict the values of the Skolem functions, so Steps 5 and 6 do nothing and
Step 7 succeeds. Step 8 checks that every base variable which appears in a
conclusion also appears as an argument to every Skolem function in the premise
(we will discuss the case of nested Skolem functions later). In this case, both x
and y satisfy this condition. If we were to apply Step 11 at this point, we would
obtain the constraints

R(x, y) → ∃u S(x, u)
R(x, y) → ∃u S(u, y)

which say that for every edge in R from x to y , there is an outgoing S edge
from x and an incoming S edge into y . This is not quite the same as saying
that there is a path of length 2 from x to y because these edges may not meet.
In other words, we may have values of u witnessing that the first constraint
holds which are different from those values of u which witness that the second
constraint holds. This is why we first apply Step 9 (Step 4 is intended to make
Step 9 possible), which gives the following constrains:

R(x, y), u = f (x, y) → S(x, u)
R(x, y), u = f (x, y) → S(u, y)
R(x, y), u = f (x, y) → S(x, u), S(u, y)

Now, Step 10 simplifies this to the single constraint:

R(x, y), u = f (x, y) → S(x, u), S(u, y)

since the other two easily follow from it, and Step 11 yields
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R(x, y) → ∃u S(x, u), S(u, y)

as desired. Notice that at every step, we have constraints that are equivalent
to those at the previous step.

Of course, this is a simple example; we will see soon that things can get
more complicated. We abort at some steps of the algorithm if the constraints
cannot be put into the desired form for subsequent steps. By doing so, we may
fail to de-Skolemize some constraints which, in fact, are equivalent to embed-
ded dependencies. However, it seems likely that deciding whether some SkED
constraints are equivalent to ED constraints is undecidable, so we do not hope
for a complete algorithm. The following example from Fagin et al. [2004] shows
that de-Skolemization is not always possible.

Example 8. Consider the ED-mappings m12 and m23 given by (σ1, σ2, �12)
and (σ2, σ3, �23), where

�12 is E(x, y) → F (x, y)
E(x, y) → ∃u C(x, u)
E(x, y) → ∃v C( y , v)

�23 is F (x, y), C(x, u), C( y , v) → D(u, v)

and where σ1 = {E}, σ2 = {F, C}, and σ3 = {D}. Here, Steps 1 and 2 of
ED-COMPOSE succeed, but Step 3 fails. In fact, no algorithm for de-Skolemization
can succeed on this composition, since m12◦m23 is not an ED-mapping, as shown
in Fagin et al. [2004].

Since DESKOLEMIZE(�) may produce a result of size exponential in the size of
� due to Step 9, ED-COMPOSE(�12, �23) may produce a result of size exponential
in the size of �12 ∪ �23 due to de-Skolemization, even when the preceding com-
position steps yield a polynomial-size result. The following theorem shows that
in the general case, this is unavoidable.

THEOREM 8. There are two sequences of TGD-mappings mk
12 and mk

23 given
by �k

12 and �k
23 such that the TGD-composition mk

12 ◦ mk
23 grows exponentially

in the size of �k
12 ∪ �k

23, but the SkTGD-composition mk
12 ◦ mk

23 grows linearly in
the size of �k

12 ∪ �k
23.

This algorithm in fact can be applied to any set of SkED-constraints, but
since we are interested in those SkED-constraints obtained from ED-mappings
by SKOLEMIZE and SKED-COMPOSE, we add some observations that apply to this
special case. In the special case we are interested in, procedure DESKOLEMIZE

may abort only at Steps 3, 7, or 8. In particular, the following result follows
from these observations.

THEOREM 9. ED-COMPOSE generalizes view unfolding. In other words, if

(1) σ2 = {V1, . . . , Vk} and each Vi is a view given by the conjunctive query with
equations ∃ ȳiφi(x̄i, ȳi) over σ1, where φi(x̄i, ȳi) is a conjunction of atoms
(including equations) over x̄i, ȳi ,

(2) σ3 = {W1, . . . , Wk} and each Wi is a view given by the conjunctive query
with equations ∃v̄iψi(ūi, v̄i) over σ2, where ψi(ūi, v̄i) is a conjunction of atoms
(including equations) over ūi, ȳi ,
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(3) �12 is a functional mapping from σ1 to σ2 given by

(αi) φi(x̄i, ȳi) → Vi(x̄i)

(βi) Vi(x̄i) → ∃ ȳiφi(x̄i, ȳi), and

(4) �23 is a functional mapping from σ2 to σ3 given by

(γi) ψi(ūi, v̄i) → Wi(ūi)

(δi) Wi(ūi) → ∃v̄iψi(ūi, v̄i),

then ED-COMPOSE correctly computes their composition

ψ
φ̄

i (ūi, v̄i) → Wi(ūi)

Wi(ūi) → ∃v̄iψ
φ̄

i (ūi, v̄i),

where ψ
φ̄

i denotes the result of substituting in ψi the conjunctions φ1, . . . , φk for
the ocurrences of V1, . . . , Vk.

PROOF (SKETCH). Since SKED-COMPOSE does resolution only through σ2, the
following resolution patterns are possible:

(1) αi with βi,

(2) one or more constraints from {α1, . . . , αk} with γi,

(3) δi with β j , and

(4) δi with γi.

In particular, SKED-COMPOSE terminates. It is easy (but tedious) to verify
that: (a) the constraints obtained by resolution of δi with γi can be deduced
from the others and that (b) the remaining constraints can be deskolemized by
DESKOLEMIZE.

The algorithm DESKOLEMIZE depends on �∗, which is used in Steps 5 and 10.
Here, �∗ is some sound polynomial-time approximation of |=. In other words, if
� �∗ φ, then � |= φ. Of course, the converse may not hold, but we require that
if φ ∈ �, then � �∗ φ. Its use in Step 10 is nonessential; there, we simply take
advantage of the fact that �∗ is available. In Step 5 we do use it essentially;
however, even if � �∗ φ is only true when φ ∈ �, DESKOLEMIZE will succeed on
a large class of inputs.

There are known cases in which there exists such �∗ that is also complete, but
has complexity NP. For example, when � has stratified witnesses (see Deutsch
and Tannen [2003] and Fagin et al. [2003a]), then �∗ is complete and can be com-
puted in NP by first chasing the premise of φ, then looking for a homomorphism
of the conclusion of φ into the result of this chase. (The chase needed in this case
is a straightforward adaptation to the case where existential quantification is
replaced by Skolem functions; the functions are treated as uninterpreted sym-
bols.) The fact that � has stratified witnesses ensures that the chase terminates
and that the result of chasing φ is polynomial in the size of φ. The NP complex-
ity comes from looking for a homomorphism. A more detailed discussion for
the options in the implementation of �∗ would take us too far away from our
main concerns here. For the purposes of the algorithm presented next, �∗ can be
treated as a black box. DESKOLEMIZE works for any �∗ which is sound; the more
complete �∗ is, the larger the set of inputs on which DESKOLEMIZE succeeds.
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We proceed to discuss every step in more detail. For each step, we provide a
brief explanation and, where appropriate, an example.

(1) Unnest:
The goal of this step is to bring the constraints into a normal form so as to
make it easier for subsequent steps to operate on them.
Set �1 := {ψ : φ ∈ �}, where ψ is equivalent to and obtained from φ

by “unnesting” terms and eliminating nonvariable terms from relational
atoms and from the conclusion so that in ψ :
(a) Function symbols occur only in equalities in the premise.
(b) Every term f (x̄) occurs in only one atom.
(c) Every equation is of the form y = z or of the form u = f (x̄), where

u, x̄, y , and z are variables and f is a function symbol. We call the latter
a defining equation for u. Furthermore, u (which we call a term variable
for f ) does not appear in any relational atom or on the lefthand-side
of any other defining equation. We call variables which are not term
variables base variables.

(d) The conclusion contains, at most, one atom.

(2) Check for cycles:
The goal of this step is to abort the computation for constraints which con-
tain cyclic dependencies among Skolem terms. Such constraints can not be
de-Skolemized.

For every φ ∈ �1, construct the graph Gφ where the edges are variables
in φ and where there is an edge (v, u) iff there is an equation of the form
v = f (. . . u . . .). We say that variable v depends on u if there is a path in Gφ

from v to u. If Gφ has a cycle, abort. Otherwise, set �2 := �1.
In the general case, a term variable may depend on other term variables,

or even on itself. This step is intended to rule out the latter case. For exam-
ple, this happens in the following constraint:

R(x, y), u = f (x, v), v = g ( y , u) → S(u, v).

In the special case of constraints arising in ED-COMPOSE, Lemma 4 to follow
allows us to assume that term variables depend only on base variables. In
other words, there are no equalities of the form v = f (. . . u . . .) where u is a
term variable. In particular, this guarantees that Gφ will have no cycles.

Notice that (20) can be obtained by resolution from (18) and

φ( j ȳ), S( j ȳ), v̄ = ḡ ( j ȳ) → τ ( j ȳ , v̄). (17)

Here, (17) is obtained from (19) by the substitution ȳ �→ j ȳ .

(3) Check for repeated function symbols:
The goal of this step is to abort the computation if any constraints contain
two atoms with the same function symbol. While in some special cases,
it is possible to exploit some symmetries in order to de-Skolemize such
constraints, we take the easy way out and give up. These are not constraints
obtained directly from Skolemizing first-order constraints, since in such
constraints every appearance of a Skolem function would have exactly the
same arguments.

For every φ ∈ �2, check that φ does not contain two atoms with the same
function symbol. If it does, abort. Otherwise, set �3 := �2. This is the step
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in which DESKOLEMIZE fails on the mappings in Example 8. The Skolemized
constraints from Example 8 are:

�12 is E(x, y) → F (x, y)
E(x, y), u = f (x, y) → C(x, u)
E(x, y), v = g (x, y) → C( y , v)

�23 is F (x, y), C(x, u), C( y , v) → D(u, v)

SKED-COMPOSE gives the following four constraints:

E(x, y), E(x, w), E( y , z), u = f (x, w), v = f ( y , z) → D(u, v)
E(x, y), E(x, w), E(z, y), u = f (x, y), v = g (z, y) → D(u, v)
E(x, y), E(w, x), E( y , z), u = g (w, x), v = f ( y , z) → D(u, v)
E(x, y), E(w, x), E(z, y), u = g (w, x), v = g (z, y) → D(u, v)

(4) Align variables:
The goal of this step is to get all ocurrences of a Skolem term to be the same.
When we Skolemize constraints, this must be the case.

Rename the variables in �3 to obtain �4 satisfying:
(a) For every function symbol f and any two equalities of the form u = f (x̄)

and v = f ( ȳ) in �4, u is the same variable as v and x̄ is the same
sequence of variables as ȳ .

(b) For every two different function symbols f and g and any two equalities
of the form u = f (x̄) and v = g ( ȳ) in �4, u and v are different variables.

If this is not possible, abort. After this step, there is a unique term variable
v f associated to the function symbol f .

This steps fails, for example, on the following constraints:

R(x, y), u = f (x, y), v = g (x, y) → S(u, v)
R(x, y), u = f (x, y), v = g ( y , x) → T (u, v)

In the special case of constraints arising in ED-COMPOSE, this step will always
succeed. This follows from Lemma 4, presented next, and the following
considerations. After the SKOLEMIZE steps, every function symbol appears
in exactly one constraint if we allow multiple atoms in the conclusion, or
equivalently, in constraints with identical premises. Clearly, we can always
align variables on such constraints. Also, we can clearly align variables after
an expand/rename step, so let us consider a resolution step. Assume that
we have a set of constraints � in which the variables are aligned and that to
this set � we add the constraint φ(x̄), ψ(z̄) → ρ(x̄, z̄), obtained by resolution
from φ(x̄) → S( ȳ) and S( ȳ), ψ(z̄) → ρ( ȳ , z̄), both in �, where the variables
in ȳ are also in x̄ and where φ(x̄) and ψ(z̄) are conjunctions of atoms with
variables from x̄ and z̄, respectively. We need to consider Skolem functions
in φ(x̄) and in ψ(z̄). Lemma 4 shows that those in ψ(z̄) can be replaced
with new Skolem functions, which depend only on the base variables. On
the other hand, those in φ(x̄) have not changed and are already aligned.
Therefore, the variables in �′ consisting of � and the new constraint are also
aligned. Since variables in the input constraints to SKED-COMPOSE can be
aligned (because they have been obtained by Skolemization), it follows that
the variables in the output constraints of SKED-COMPOSE can also be aligned.
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(5) Eliminate restricting atoms:
If u is a term variable for f and u appears in any other atom, we call this
atom an f -restriction. If φ has an f -restriction in the premise, we say that
f restricts φ. If φ has an f -restriction in the conclusion, we say that φ

restricts f . If there is any function f which restricts φ, we say that φ is
restricted. This step as well as the next two deal with restrictions.

Set �5 := {φ′ : φ ∈ �4}, where φ′ is φ with the maximal set of restrictions
removed from the premise which gives �4 �∗ φ′. It is easy to verify that
such a maximal set always exists and is unique. Consider, for example, the
constraints

φ1 R(x) → ∃ y S(x, y)
φ2 S(x, y) → U (x, y)
φ3 S(x, x) → T (x)

where σ2 = {S}. Skolemization, basic composition, and the first few steps
of DESKOLEMIZE give the following constraints �4:

ψ1 R(x), y = f (x) → U (x, y)
ψ2 R(x), y = f (x), x = y → T (x)

In this case, �5 = �4. These constraints can be de-Skolemized to yield

ψ ′
1 R(x) → ∃ y U (x, y)

ψ ′
2 ∀ y(U (x, y) → x = y) → T (x)

which, however, are not ED-constraints. On the other hand, if we add T ′
to σ3 and the constraints

φ4 S(x, y) → T ′(x)
φ5 T ′(x) → T (x)

then �5 is

ψ1 R(x), y = f (x) → U (x, y)
ψ3 R(x), y = f (x) → T (x)
ψ4 R(x), y = f (x) → T ′(x)
ψ5 T ′(x) → T (x)

Notice that the restriction on ψ2 has been eliminated to give ψ3, since
ψ4 and ψ5 imply ψ3. The basic intuition is that we do not know how to
de-Skolemize a constraint of the form

φ(x̄), u = f (x̄), v = g (x̄), u = v → S( ȳ)

because we do not know how to express the restriction u = v on the Skolem
functions once these are replaced by existentially quantified variables
(∃-variables, for short). Part of the problem is that the restriction is in the
premise, but after the replacement, the ∃-variables corresponding to the
Skolem functions appear only in the conclusion. A similar problem occurs
with a constraint of the form

φ(x̄), u = f (x̄), v = xi → S( ȳ).
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(6) Eliminate restricted constraints:
In this step, we eliminate some constraints as follows. We first classify all
function symbols as either free or restricted. Free function symbols will be
those for which we are free to pick any values. We recursively define the re-
stricted function symbols as follows: f is restricted if there is a constraint φ

which restricts f and such that all functions which restrict φ are restricted.
In particular, f is restricted if a constraint φ restricts f and no function
restricts φ. All other functions are free. Now, we set �6 to be the set of con-
straints φ ∈ �5 such that no free function restricts φ. The rationale for this
step is that if a free function f restricts φ, then we can choose the values
of f such that a restricting equation for v f in the premise never holds.

For example, in the following constraints

φ1 R(x, y), u = f (x, y), v = g (x, y), u = y → T (x, v)
φ2 R(x, y), u = f (x, y), v = g (x, y), v = y → T (x, u)

f restricts φ1, which restricts g and g restricts φ2, which restricts f .
Therefore, both f and g are free and we can eliminate both constraints. It
is clear that this is sound, since we can set f and g such that the range of
f and g are disjoint from each other and from the values appearing in R
and T (see the discussion on semantics of SkED constraints in Section 8).
Then the premises of φ1 and φ2 will never hold and both constraints will
always be satisfied, regardless of the choice of R and T .

(7) Check for remaining restricted constraints:
If there are any restricted constraints in �6, abort. Otherwise, set
�7 := �6.

(8) Check for dependencies:
For every φ ∈ �7 and every term variable v in φ, define Dφ,v to be the set of
base variables on which v depends. Set Vφ to the set of base variables which
appear in the conclusion of φ. Now, for every term variable v in the conclu-
sion of φ, check that Vφ ⊆ Dφ,v. If this fails, abort. Otherwise, set �8 := �7.

In this step and the next, we make sure that once we replace Skolem
functions with ∃-variables (which will happen in Step 11), we get equiv-
alent constraints. One direction of this equivalence is straightforward:
We can set the ∃-variables to the values of the corresponding Skolem
functions. The difficulty is in the other direction. We must make sure that,
given values for the ∃-variables witnessing that the ED-constraints hold,
we can set the Skolem functions to also witness that the corresponding
SkED-constraints hold.

To understand why we must check dependencies, consider the con-
straints

�12 is A(x), y = f (x) → F (x, y)
B(u), v = g (u) → G(u, v)

�23 is F (x, y), G(u, v) → T (x, y , u, v)

which, when composed, yield the single constraint φ:

A(x), B(u), y = f (x), v = g (u) → T (x, y , u, v).
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In this case, Dφ, y := x, Dφ,v := u, Vφ := {x, u} and the check fails.
The problem with the obvious replacement of Skolem functions with
∃-variables is that in φ′

A(x), B(u) → ∃ y , v T (x, y , u, v)

and y depends on both x and u, instead of only on x, as desired, and v
also depends on both x and u, instead of only on u, as desired. In fact,
φ and φ′ are not equivalent, as witnessed by the relations A := {1, 2},
B := {3}, and T := {〈1537〉, 〈2538〉} for which φ′ holds, but not φ. The
problem here is that x = 1 forces g (3) := 7, yet x = 2 forces g (3) = 8,
and these choices are incompatible. Interestingly, the following set of two
first-order sentences � is equivalent to φ:

A(x) → ∃ y∀u(B(u) → T (x, y , u, v))

B(u) → ∃v∀x(A(x) → T (x, y , u, v))

However, these are not ED-constraints, which is what our algorithm tries
to produce.

(9) Combine dependencies:
Set �9 := {ψ� : ∅ �= � ⊆ �8}, where ψ� is defined as follows. If there
is a function f which appears in every φ ∈ �, then the premise of ψ�

consists of those atoms in all the premises in � and the conclusion of ψ�

consists of those atoms in all the conclusions of � (remove duplicate atoms).
Otherwise, ψ� is some constraint in �. Notice that �9 ⊇ �8, since ψ{φ} = φ.

We have already seen the need for this step in Example 7. There, �8 is

φ1 is R(x, y), u = f (x, y) → S(x, u)
φ2 is R(x, y), u = f (x, y) → S(u, y)

and �9 is

ψφ1
R(x, y), u = f (x, y) → S(x, u)

ψφ2
R(x, y), u = f (x, y) → S(u, y)

ψφ1,φ2
R(x, y), u = f (x, y) → S(x, u), S(u, y)

This step is not always as trivial as it looks in Example 7. Consider, for
example, the constraints from the proof of Theorem 8, to follow, where
1 ≤ i ≤ k:

�k
12 is R0(x) → ∃ y S0(x, y)

Ri(x) → Si(x)
�k

23 is S0(x y), Si(x) → Ti( y)

In this case, �8 consists of k constraints of the form

R0(x), y = f (x), Ri(x) → Ti( y)

and �9 consists of 2k − 1 constraints of the form

R0(x), y = f (x), RZ (x) → TZ ( y),

where Z is a nonempty subset of {1, . . . , k} and where RZ (x) := ∧
i∈Z Ri(x)

and similarly for TZ .
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(10) Remove redundant constraints:
Pick some set �10 ⊆ �9 such that �10 �∗ φ for every φ ∈ �9, and such
that this does not hold for any proper subset of �10.

We have seen earlier that in Example 7, �9 is

ψφ1
R(x, y), u = f (x, y) → S(x, u)

ψφ2
R(x, y), u = f (x, y) → S(u, y)

ψφ1,φ2
R(x, y), u = f (x, y) → S(x, u), S(u, y)

In this case, �10 := {ψφ1,φ2
}, since both ψφ1

and ψφ2
follow from ψφ1,φ2

. This
happens because the premises of ψφ1

and ψφ2
are the same, but this is

not always the case. In particular, �10 = �9 in the case of the constraints
from the proof of Theorem 8, discussed before.

(11) Replace functions with ∃-variables:
Set �11 := {φ′ : φ ∈ �10}, where the premise of φ′ is the premise of φ with
all equalities removed and where the conclusion of φ′ is the conclusion of
φ, with all variables appearing on the left of equalities in φ existentially
quantified.

This step is where the elimination of Skolem functions actually takes
place, but since most of the preparatory work has already been done, it is
very simple. For example, it converts

R(x, y), u = f (x, y) → S(x, u), S(u, y) to

R(x, y) → ∃u S(x, u), S(u, y).

(12) Eliminate unnecessary ∃-variables:
Set �12 := {φ′ : φ ∈ �11} and return �12, where φ′ is like φ, but where
existentially quantified variables which do not appear in the conclusion
atom have been removed (with their corresponding existential quantifier).

If we apply Step 11 to the following constraint:

R(x, y), u = f (x, y), v = g (x, y) → S(x, u), S(u, y)

we would obtain

R(x, y) → ∃u, v S(x, u), S(u, y).

Clearly, v is not needed, so in this step, we replace the aforementioned
constraint with

R(x, y) → ∃u S(x, u), S(u, y).

Example 9. Consider three runs of the algorithm DESKOLEMIZE(�i
13), for

i ∈ {1, 2, 3}. Let �i
13 = {γ1, . . . , γi} be a set of the following (unnested) SkTGD

constraints:

γ1 R1( y), R2(x), y = f (x) → T1(x)
γ2 R2(x), y = f (x) → T2( y)
γ3 R2(x), y = f (x) → R1( y)

For completeness, we note that each �i
13 is obtained by first de-Skolemizing the

ED-mappings given by �i
12 and �i

23, which are shown next, and then invoking
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SKED-COMPOSE:

i �i
12 �i

23 �i
13

1. {α1, α2} {β2} {γ1}
2. {α1, α2} {β1, β2} {γ1, γ2}
3. {α1, α2, α3} {β1, β2} {γ1, γ2, γ3}

Dependencies α1, α2, α3, β1, β2 are specified as:

α1 R1(x) → S1(x)
α2 R2( y) → ∃z(S2(z y))
α3 S2(z y) → R1(z)

β1 S2(z y) → T2(z)
β2 S1(x), S2(x y) → T1( y)

In all three runs of DESKOLEMIZE(�i
13), Steps 2 and 3 pass, since each of γ1, γ2, γ3

is cycle-free and has no multiple atoms with the same function symbol. Step 4
has no effect, since the variable names of the dependencies are already aligned.
The remaining steps are explained next.

In the run DESKOLEMIZE({γ1}), Step 5 has no effect because {γ1} is a singleton
set. Its only member γ1 gets eliminated in Step 6, since there are no rules in {γ1}
with f -restricting atoms in conclusions. Intuitively, γ1 is a tautology because
we can always construct an f whose range is disjoint with R1. Hence, {γ1} is
equivalent to the empty set of constraints, which is trivially in TGD.

In the run DESKOLEMIZE({γ1, γ2}), γ2 contains an f -restricting atom T2 in its
conclusion. Hence, we cannot eliminate the restricted constraint γ1 in Step 6,
and so de-Skolemization aborts in Step 7.

In the run DESKOLEMIZE({γ1, γ2, γ3}), we are able to de-Skolemize, despite γ2.
In Step 5, 	0 = {γ1, γ2, γ3}. By considering the only function symbol f , we get
	1 = {ψ, γ2, γ3} ≡ 	0, where ψ is obtained by eliminating the restricting atom
R1( y) from the premise of γ1 as

ψ := R2(x), y = f (x) → T1(x).

Clearly, 	0 �∗ ψ , since 	0 ⊃ {γ1, γ3} �∗ ψ . Moreover, 	1 has no restricting
constraints, so Step 6 has no effect and Step 7 passes. Step 8 succeeds with
�8 = �7 = {ψ, γ2, γ3}, since every dependency in 	1 has, at most, one term
variable y in its conclusion. Taking γ3 as an example, we get Vγ3

= {x, y},
Dγ3,x = Dγ3, y = ⋃

u∈Vγ3
Dγ3,u = {x}.

In Step 9, combining the dependencies for � = �8 yields

γ4 := R1( y), R2(x), y = f (x) → T1(x), T2( y), R1( y)

(combinations resulting from proper subsets of �8 are not shown for brevity). In
Step 10, we remove the redundant constraints, which include ψ , γ2, γ3, because
they share the premise with γ4 and their conclusion is subsumed by that of γ4;
we obtain �10 = {γ4}. Finally, replacing function f by an existential variable in
γ4 yields

�12 = {R2(x) → ∃ y(T1(x), T2( y), R1( y))}.
Thus, DESKOLEMIZE({γ1, γ2, γ3}) ⊆ TGD.
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The following technical lemma shows that in the case of constraints which
arise from Skolemizing ED constraints and running SKED-COMPOSE on them,
there is no need to consider nested Skolem functions. The main point is that a
constraint of the form (20), which follows, can be replaced by a constraint of the
form (23), also shown. The technical conditions depicted reflect the case that
arises from applying a resolution step, which is the only step in SKED-COMPOSE

which may give rise to nested Skolem functions. Constraint (20) is obtained by
resolution of constraints (18) and (19).

LEMMA 10. If � ⊆ SkCQ= consists of the following three constraints:

ψ(x̄), ū = f̄ (x̄) → S( j ȳ), ρ(x̄, ū) (18)

φ( ȳ), S( ȳ), v̄ = ḡ ( ȳ) → τ ( ȳ , v̄) (19)

ψ(x̄), φ( j ȳ), ū = f̄ (x̄), v̄ = ḡ ( j ȳ) → τ ( j ȳ , v̄), (20)

where

—x̄, ȳ , ū, and v̄ are disjoint tuples of variables,
— S is a relational symbol,
—ψ(z̄), φ(z̄), ρ(z̄), and τ (z̄) are conjunctions of atoms with variables from z̄,
— j : ȳ → x̄ū is a function mapping variables to variables (so j ȳ is a tuple of

variables from x̄ū, possibly with repetitions),
— f̄ x̄ is a tuple of functions f1, . . . , fk whose arguments are variables from x̄,

and
— ḡ ȳ is a tuple of functions g1, . . . , g� disjoint from f̄ , whose arguments are

variables from ȳ,

then � is equivalent to �′ ⊆ SkCQ=, which consists of

ψ(x̄), ū = f̄ ′(x̄) → S( j ȳ), ρ(x̄, ū) (21)

φ( ȳ), S( ȳ), v̄ = ḡ ′( ȳ) → τ ( ȳ , v̄) (22)

ψ(x̄), φ( j ȳ), ū = f̄ (x̄), v̄ = h̄(x̄) → τ ( j ȳ , v̄), (23)

where f̄ ′, ḡ ′, and h̄ are disjoint tuples of functions which do not appear in �.
Moreover, (20) is equivalent to (23).

PROOF. If � holds, then we have functions f̄ and ḡ witnessing this. Set
f̄ ′ := f̄ , ḡ ′ := ḡ and define functions h̄ by h̄(x̄) := ḡ ( j ȳ), where ū := f̄ (x̄) (so
j ȳ is uniquely determined by x̄). Then (21), (22), and (23) hold. That is, � |= �′.
A similar argument shows that (20) implies (23). If, on the other hand, � holds,
then we have functions f̄ ′, ḡ ′ witnessing that (21) and (22) hold. Then f̄ := f̄ ′
and ḡ := ḡ ′ witness that (18) and (19) hold, and (20) follows from these.

Now, assume that (23) holds. We have f̄ and h̄ witnessing this. We want to
show that (20) holds. Define G as follows:

G(ā) := {h̄(x̄) : ψ(x̄), φ( j ȳ), ū = f̄ (x̄), j ȳ = ā}
(recall that j ȳ is a tuple of the variables in x̄, ū). Set ḡ (ā) := b̄ for some arbitrary
tuple b̄ ∈ G(ā) if G(ā) �= ∅. Otherwise, set ḡ (ā) := c̄ for some arbitrary tuple c̄.

We must show that f̄ and ḡ as defined witness that (19) and (20) hold.
Assume that the premise of (20) holds for some values of x̄. Set ū := f (x̄) and
v̄ := ḡ ( j ȳ). We need to show that τ ( j ȳ , v̄) holds.
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Since the premise of (20) holds, h(x̄) ∈ G( j ȳ) and therefore G( j ȳ) �= ∅.
This implies that ḡ ( j ȳ) ∈ G( j ȳ). In other words, ḡ ( j ȳ) = h̄(z̄) for some z̄
such that ψ(z̄), φ( j ȳ) and x̄, f̄ (x̄) and z̄, f̄ (z̄) coincide on the range of j . Since
ḡ ( j ȳ) = h̄(z̄), the premise of

ψ(z̄), φ( j ȳ), v̄ = h̄(z̄) → τ ( j ȳ , v̄) (24)

holds. Furthermore, (24) is obtained from (23) by the substitution x̄ �→ z̄. Since
(23) holds, (24) holds. Therefore τ ( j ȳ , v̄) holds, as desired.

PROOF (THEOREM 7). At the beginning and end of every step of the
DESKOLEMIZE, we have constraints that are equivalent to each other. This is
obvious for some steps, which do nothing other than verify that some condition
holds, and is easy to verify for all other steps except the step which replaces
functions with ∃-variables. We will call the constraints with functions just be-
fore this step � and those with ∃-variables just after this step �′. We need to
show that � ≡ �′. The direction � |= �′ is easy; all we need to do is set the
∃-variables to those values given by the corresponding functions. The direction
�′ |= � is harder. We have done some of the previous steps, particularly the
combining of dependencies, to ensure that this holds. So, suppose D |= �′ and
that v is the ∃-variable which corresponds to the function fv. We set fv(c̄) to
a value of v which witnesses that a constraint ψ� holds for c̄, where ψ� is as
defined in the step “combine dependencies” and where the premise of ψ� holds
for c̄, yet the premise of no constraint ψ�′ with � ⊂ �′ holds for c̄. Clearly, there
is a unique such set �, since if both ψ�1

and ψ�2
hold for c̄, then ψ�1∪�2

also
holds for c̄. Now, assume that the premise of some constraint φ ∈ � (in which f
appears) holds for a tuple c̄. Then, we must have φ ∈ � and since ψ� holds and
its premise holds for c̄, its conclusion must also hold for c̄. Since we have set
fv(c̄) to a value that witnesses this, the conclusion of φ must also hold for c̄.

PROOF (THEOREM 3). Procedure DESKOLEMIZE may only abort at Steps 2, 3,
4, 7, or 8 and has no loops that may not terminate. Therefore, if Step 9 is
reached, DESKOLEMIZE will terminate. Furthermore, all steps can be carried out
in polynomial time, except for Step 9, which may give an exponential increase
in the size of constraints. However, if the hypotheses of Part 2 hold, then no
such exponential increase can occur.

PROOF (THEOREM 8). Set [k] := {1, . . . , k}. Consider the TGD-mappings mk
12

and mk
23 given by (σ k

1 , σ k
2 , �k

12) and (σ k
2 , σ k

3 , �k
23), where

�k
12 is R0(x) → ∃ y S0(x, y)

Ri(x) → Si(x)
�k

23 is S0(x y), Si(x) → Ti( y)

for i ∈ [k] and where σ k
1 = {Ri : i ∈ {0, . . . , k}}, σ k

2 = {Si : i ∈ {0, . . . , k}}, and

σ k
3 = {Ti : i ∈ [k]}. The SkTGD-composition mk

13 := mk
12 ◦ mk

13 is given by the set

�k
13 of constraints

R0(x), y = f (x), Ri(x) → Ti( y)

for i ∈ [k], which grows linearly in the size of �k
12 ∪ �k

23.
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The TGD-composition mk
13 := mk

12 ◦ mk
13 can be obtained by de-Skolemizing

�k
13. It is given by the set �′k

13 of 2k − 1 constraints

R0(x), RZ (x) → ∃ y TZ ( y)

such that ∅ �= Z ⊆ [k], where RZ (x) := ∧
i∈Z Ri(x) and TZ (x) := ∧

i∈Z Ti(x). On
the other hand, mk

13 cannot be expressed by any (σ1, σ3, �), � ⊆ TGD) where �

has fewer than 2k−1 constraints. This inexpressibility result is given at the end
of Section 7, in which we introduce a mechanism that enables us to complete
this proof.

7. INEXPRESSIBILITY TOOL FOR EMBEDDED DEPENDENCIES

In this section we develop a formal vehicle for proving inexpressibility results
for ED, TGD, FullD, and FullTGD mappings. We use it to show the inexpress-
ibility claim of Theorem 8. However, the tools presented in this section may be
of independent value and could be used for obtaining inexpressibility results
for other problems in database theory.

To illustrate the intuition behind this mechanism, consider a set � of logical
sentences over σ , and some structure A0 over σ . The truth value of � in the
structure A0 is A0 |= �. Now, suppose we add one or more tuples to some
relation in A0 and obtain the structure A1. The truth value of � in A1 may
remain the same, or may flip from “true” to “false” or from “false” to “true.”
As we keep adding tuples, we obtain a chain of successively larger structures
A0, . . . , An, . . . with the corresponding truth values of � for each structure in
the chain. The truth values of � form contiguous segments within which �

remains “true” (positive segments) or “false” (negative segments). For example,
the truth values (“true,” “true,” “false,” “false,” “true.”) for a chain of structures
(A0, A1, A2, A3, A4) partition the chain into three segments: a positive segment
(A0, A1) followed by a negative segment (A2, A3) followed by a positive segment
(A4). To characterize �, we count the maximal number n of negative segments
for any such chain of structures over �. If this number is finite, we call � n-
monotonic, and nonmonotonic otherwise. To characterize a class of constraints,
we study the monotonicity properties of its constituent sentences.

Next we give formal definitions of chains, segments, and n-monotonic sen-
tences.

Definition 4. Let K be a set of structures over σ and � be a set of sentences
over σ . Then, for each pair of structures A, B ∈ K:

(1) A ⊆ B if for all relation symbols R over σ , R A ⊆ R B;

(2) A ⊂ B if A ⊆ B and A �= B; and

(3) A �� B, if (A |= � iff B |= �) and ∀C ∈ K(A ⊆ C ⊆ B∨B ⊆ C ⊆ A → A |= �

iff C |= �).

Definition 5. A set K of structures over signature σ is a chain if (K, ⊂) is a
total order.

Definition 6. A segment is an equivalence class of (K, ��). Segment S is
positive for � if A |= � for all A ∈ S, and negative otherwise.
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Definition 7. Let � be a set of sentences. Then:

(1) � is n-monotonic if every chain for � has (at most) n negative segments

(2) � is strictly n-monotonic if � is n-monotonic and there exists a chain for �

with exactly n negative segments; and

(3) � is monotonic if it is n-monotonic for some n ∈ N.

We proceed to study the monotonicity properties of the mapping languages
that we focus on in this article. First, we illustrate some 0-monotonic, 1-
monotonic, and nonmonotonic sentences so as to familiarize the reader with
the concept.

Example 10. Here, � = {R(x) → R(x)} is 0-monotonic. More generally, �

is 0-monotonic if and only if � is a tautology. In fact, if � is a tautology, then
A |= � for all A over the signature of �, that is, each chain of structures for �

contains a single positive segment. Conversely, if no chain contains a negative
segment, then A |= � for all A and hence � is a tautology.

Example 11. Here, � = {R(x) → ∃ y S( y)} is 1-monotonic. The sentence in
� is equivalent to R �= ∅ → S �= ∅. Hence, � partitions each chain K into, at
most, three segments containing structures (∅, ∅), (R, ∅), (R ′, S), respectively,
for some nonempty R, R ′, S, R ⊆ R ′. The structure (R, ∅) belongs to the only
negative segment in such a chain.

Example 12. Here, � = {R(x) → S(x)} is nonmonotonic. Let Ak =
({c0, . . . , ck}, {c0, . . . , ck−1}), Bk = ({c0, . . . , ck}, {c0, . . . , ck}) be structures over
σ = {R, S}, where all ci constants are distinct. Clearly, Ak �|= �, Bk |= �,
Ak ⊂ Bk ⊂ Ak+1. In other words, there exists a chain A0, B0, A1, B1, . . . , Ak ,
Bk , . . . of singleton segments that witnesses the nonmonotonicity of �.

We generalize the preceding examples for several classes of sentences. First,
we consider tuple-generating dependencies that may only contain dependent
(see the definition to follow) existential variables. We show that such sentences
are 0-monotonic or nonmonotonic (Lemma 5). We will see that this class of sen-
tences, which subsumes full tuple-generating dependencies, is the only source
of nonmonotonic dependencies that make up the constraints in our mapping
languages.

Second, we examine tuple-generating dependencies that express inclu-
sions of Boolean conjunctive queries, and prove that these are 1-monotonic
(Lemma 8). Third, we prove the same monotonicity property for equality-
generating dependencies (Lemma 9). After examining the aforementioned
classes of constraint, we prove Lemma 11, which establishes a monotonicity
bound for a set of sentences based on the monotonicity of its members. These
lemmas lead to the main result of this section, which states the monotonicity
properties for the (first-order) mapping languages that we consider.

We call a variable y ∈ { ȳ} dependent in a tgd ϕ = ∀x̄(P (x̄) → ∃ ȳ Q(x̄, ȳ)) if
there exist variables u1, . . . , un such that ui and ui+1 appear in the same atom
of Q , 1 ≤ i < n, and u1 = y , un ∈ {x̄}. Otherwise, y is called independent. We
start with tuple-generating dependencies ϕ that may only contain dependent
existential variables.
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LEMMA 5. Let ϕ = ∀x̄(P (x̄) → ∃ ȳ Q(x̄, ȳ)) be a tuple-generating dependency
such that each y ∈ { ȳ} is dependent. Then, ϕ is 0-monotonic or nonmonotonic.

PROOF. Assume that ϕ is not 0-monotonic, namely, it is not a tautology. The
proof of nonmonotonicity is based on the following two observations:

—If ϕ is false in some structure A, then there exists a larger structure B ⊃ A
that makes ϕ true (Lemma 6); and

—if ϕ is true in some structure B, then there exists a larger structure A ⊃ B
that makes ϕ false (Lemma 7).

Together, the previous observations assert the existence of an infinite chain of
alternating structures that witness the nonmonotonicity of ϕ.

We prove the subordinate Lemmas 6 and 7. Notice that Lemma 6 applies to
arbitrary tuple-generating dependencies.

LEMMA 6. If a tuple-generating dependency ϕ is violated in some structure A,
then there exists a larger structure B ⊃ A that satisfies the dependency. In other
words, ∀A : A �|= ϕ → ∃B(B |= ϕ ∧ A ⊂ B).

PROOF. Let A be a structure such that A �|= ϕ. Construct a complete struc-
ture B in which every relation R B is a cross-product over the domain of A.
Clearly, B |= ϕ, A ⊆ B. Since A �|= ϕ, thus A �= B and we obtain A ⊂ B.

LEMMA 7. Let ϕ = ∀x̄(P (x̄) → ∃ ȳ Q(x̄, ȳ)) be a tuple-generating dependency
such that each y ∈ { ȳ} is dependent, and ϕ is not a tautology. Then, if ϕ is true
in some structure B, then there exists a larger structure A ⊃ B that violates the
dependency. In other words, ∀B : B |= ϕ → ∃A(A �|= ϕ ∧ B ⊂ A).

PROOF. Let B be a structure such that B |= ϕ. Since ϕ is not a tautology,
there exists a structure F0 such that F0 �|= ϕ. F0 is nonempty (since the empty
structure makes ϕ true). Let F be an isomorphic copy of F0 that does not have
any constants in common with B. Set A := B ∪ F . Clearly, A ⊃ B. We show
that A �|= ϕ.

Since F0 �|= ϕ, thus F �|= ϕ. Let t̄ be a tuple such that F |= P (t̄), F �|=
∃ ȳ Q(t̄, ȳ). Such a tuple exists since F is nonempty. Given that F |= P (t̄), we
obtain A = B ∪ F |= P (t̄) because P is a conjunctive query.

There remains to show that A = B ∪ F �|= ∃ ȳ Q(t̄, ȳ). Suppose the contrary,
that is, A |= ∃ ȳ Q(t̄, ȳ). Then, there is an atom R(z̄) in Q where z̄ ⊆ x̄ ∪ ȳ , and
a tuple r̄ such that F �|= R(r̄) and B ∪ F |= R(r̄). Since B and F do not share
constants, R(r̄) must contain only constants from B. In other words, z̄ ⊆ ȳ ,
that is, R contains only ȳ variables, and z̄ �= ∅. By the premise of the lemma,
each ȳ variable is dependent. In other words, there exists an atom in Q that
contains both x̄ and ȳ variables. However, this atom is satisfied in A only if
B ∩ F �= ∅, a contradiction.

To illustrate Lemma 7, consider the dependency ∀x y(R(x y) → ∃z(R(xz),
S(z)). Since z is connected, the dependency satisfies the premise of the lemma
and is nonmonotonic.

Next we consider sentences ϕ that express inclusions of Boolean conjunctive
queries. We show that such sentences are 1-monotonic.
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LEMMA 8. Let ϕ = ∀x̄(P (x̄) → ∃ ȳ Q( ȳ)). Then, ϕ is 1-monotonic.

PROOF. Observe that ϕ is equivalent to the sentence ψ → θ , where ψ =
∃x̄ P (x̄) and θ = ∃ ȳ Q( ȳ) are Boolean conjunctive queries.

We need to show that each chain for ϕ contains at most one negative segment.
Assume the opposite, namely, there exists a chain that contains structures
A ⊂ B ⊂ C such that A �|= ϕ, B |= ϕ, C �|= ϕ (where A and C belong to two
distinct negative segments). Then, the following formula must be true:

(A |= ψ ∧ A �|= θ ) ∧ (B �|= ψ ∨ B |= θ ) ∧ (C |= ψ ∧ C �|= θ ).

Since A ⊂ B, thus A |= ψ implies B |= ψ . In other words, B |= θ must hold
to make the disjunction true. But since B ⊂ C, B |= θ implies C |= θ . This
contradicts C �|= θ . Hence, our assumption was false, and ϕ is 1-monotonic.

As a last building block, we consider a generalized form of equality-
generating dependencies, where multiple equality atoms may appear in the
conclusion, and we show that these are 1-monotonic.

LEMMA 9. Let ϕ = ∀x̄(P (x̄) → ψ(x̄)), where P (x̄) is a conjunctive query and
ψ(x̄) is a set of equalities between variables in x̄. Then, ϕ is 1-monotonic.

PROOF. We need to show that each chain for ϕ contains, at most, one negative
segment. Consider a chain for ϕ which contains a structure A such that A �|= ϕ.
Then, there exists a tuple t that satisfies the premise A |= P (t), but violates the
equality conditions A �|= ψ(t). Once the equality conditions are violated, ψ(t)
remains false in every larger structure. Phrased differently, for every structure
B ⊃ A, B |= P (t) and B �|= ψ(t), and hence B �|= ϕ. Therefore, each chain over ϕ

contains, at most, one negative segment. Hence, ϕ is 1-monotonic.

We examined the building blocks of our mapping languages. The following
three lemmas explain how to put these building blocks together.

LEMMA 10. A set � of embedded dependencies is equivalent to a set �′ of
embedded dependencies such that each ψ ∈ �′ satisfies the premise of one of the
Lemmas 5, 8, or 9.

PROOF. Let ϕ ∈ �, ϕ = ∀x̄(P (x̄) → ∃ ȳψ(x̄, ȳ)). Construct ϕ1 by eliminating
all equality atoms from ϕ that involve variables from ȳ , as follows: If y ∈ ȳ
appears in an equality atom y = z in ψ , replace all occurrences of y in ψ by
z and remove y = z. Clearly, ϕ ≡ ϕ1. If ϕ1 has no equality atoms left, it is
a tuple-generating dependency; set �ϕ = {ϕ1}. Otherwise, since each equality
atom in ϕ1 mentions only variables in x̄, thus ϕ1 is equivalent to {ϕ2, ϕ3}, where
ϕ2 is a tuple-generating dependency and ϕ3 is a generalized equality-generating
dependency satisfying the premise of Lemma 9; set �ϕ = {ϕ2, ϕ3}.

Let ϕ′ = ∀x̄(P (x̄) → ∃ ȳ Q(x̄, ȳ)) be the tuple-generating dependency in �ϕ .
If each y ∈ { ȳ} is dependent (or ϕ′ is a full tgd), then ϕ′ satisfies the premise
of Lemma 5. Otherwise, ϕ′ = ∀x̄(P (x̄) → ∃ ȳ1, ȳ2(Q1(x̄, ȳ1), Q2( ȳ2)), where ȳ1

contains only dependent variables and ȳ2 contains only independent variables.
Consequently, ϕ′ ≡ {ϕa, ϕb}, where ϕa = ∀x̄(P (x̄) → ∃ ȳ1 Q1(x̄, ȳ1)) satisfies the
premise of Lemma 5 and ϕb = ∀x̄(P (x̄) → ∃ ȳ2 Q2( ȳ2)) satisfies the premise of
Lemma 8.
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Lemma 11 establishes an upper bound on the combined monotonicity for a
set of arbitrary monotonic sentences.

LEMMA 11. If every sentence ϕ ∈ � is nϕ-monotonic, then � is n-monotonic
where n = ∑

ϕ∈� nϕ .

PROOF. Let K be a chain for �. Here, � partitions K into a set of disjoint
segments (K, ��). Each sentence ϕi ∈ � partitions K into a set of disjoint seg-
ments (K, �ϕi ). Let S be a negative segment of (K, ��), and let A ∈ S, A �|= �.
Hence, there exists some ϕi such that A �|= ϕi. Therefore, S overlaps with some
negative segment Si ∈ (K, �ϕi ) which contains A. Notice that for each B ∈ Si,
B �|= ϕi implies that B �|= �. Therefore, Si ⊆ S. In other words, each negative
segment of (K, ��) fully contains a negative segment of (K, �ϕ) for some ϕ ∈ �.
Since all segments of (K, ��) are disjoint, there are (at most) as many nega-
tive segments in (K, ��) as the cumulative number n of negative segments in
(K, �ϕ) for all ϕ ∈ �. Each ϕ ∈ � is nϕ-monotonic, so (K, �ϕ) contains, at most,
nϕ negative segments. Therefore, n ≤ ∑

ϕ∈� nϕ .

We would like to make an equally general statement for the case where �

contains a nonmonotonic dependency. However, it seems difficult to do so for
an arbitrary class of dependencies. Although a nonmonotonic dependency has
chains with an unbounded number of negative segments, it is possible that
the monotonic sentences in � “wipe out” all but a finite number of negative
segments in each such chain. Therefore, in Lemma 12 we focus specifically on
embedded dependencies.

LEMMA 12. Let � be a set of embedded dependencies in which each depen-
dency satisfies the premise of one of the Lemmas 5, 8, or 9. Then � is nonmono-
tonic or n-monotonic where n = ∑

nϕ for all monotonic ϕ ∈ �.

PROOF. If � has an implied dependency ϕ, the monotonicity of � is identical
with that of � − {ϕ}. So, without loss of generality, we assume that � does not
contain any implied dependencies. If � has monotonic dependencies only, the
statement of the lemma follows from Lemma 11. Otherwise, the only sources
of nonmonotonicity are the dependencies ϕ satisfying the premise of Lemma 5.
Let ϕ ∈ � be such a nonmonotonic dependency. Further, let �r = � −{ϕ}. Since
� does not contain implied dependencies, thus �r �|= ϕ.

To show nonmonotonicity of �, we construct an unbounded chain of struc-
tures similarly to how this is done in Lemma 5, but using a modified mechanism
that preserves the truth value of �r as an invariant in each structure of the
chain.

Let A be a structure such that A �|= ϕ, A |= �r . We construct a structure B
such that B |= �, A ⊂ B by chasing the constraints in �, such that the values
for existentially quantified variables are drawn from the existing constants in
A. Since A is finite, the process terminates, yielding a finite B |= �. The chase
adds at least one new tuple to some relation in B to make ϕ true, hence A ⊂ B.

Now, let B be a structure such that B |= �. Since �r �|= ϕ, there exists
a structure F0 such that F0 �|= ϕ and F0 |= �r . We construct A �|= ϕ as in
Lemma 7 for each B using this fixed F0. Since F0 |= �r , the A |= �r .

Together, these constructions witness the nonmonotonicity of �.
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Now we are ready to state the main result of this section. The case analysis
in the following theorem is based on Lemma 10.

THEOREM 10.

(1) Each FullTGD dependency is 0-monotonic or nonmonotonic.
(2) Each FullD dependency is 1-monotonic or nonmonotonic.
(3) Each TGD dependency is 1-monotonic or nonmonotonic.
(4) Each ED dependency is 2-monotonic or nonmonotonic.

PROOF.

(1) Follows immediately from Lemma 5.

(2) Let ϕ ∈ FullD. Suppose that ϕ �∈ FullTGD. Then, ϕ is equivalent to a
set � = {ψ1, ψ2} of constraints, where ψ1 ∈ FullTGD and ψ2 is a gen-
eralized equality-generating dependency (possibly with multiple equality
atoms in the conclusion). Moreover, ψ1 is 0-monotonic or nonmonotonic. By
Lemma 9, ψ2 is 1-monotonic. Hence, by Lemmas 11 and 12, ϕ is 1-monotonic
or nonmonotonic.

(3) Let ϕ ∈ TGD. Then, three cases are possible: (a) ϕ ∈ FullTGD, (b) ϕ is an
inclusion of Boolean conjunctive queries, or (c) ϕ is equivalent to {ψ1, ψ2},
where ψ1 ∈ FullTGD and ψ2 is an inclusion of Boolean conjunctive queries.
In case (a), ϕ is 0-monotonic or nonmonotonic. In case (b), ϕ is 1-monotonic,
by Lemma 8. In case (c), ϕ is 1-monotonic or nonmonotonic by Lemmas 9,
11, and 12. Hence, ϕ is 1-monotonic or nonmonotonic.

(4) Let ϕ ∈ ED. Suppose that ϕ �∈ TGD. Then, ϕ is equivalent to a set � =
{ψ1, ψ2} of constraints, where ψ1 ∈ TGD and ψ2 is a generalized equality-
generating dependency. Here, ψ1 is 1-monotonic or nonmonotonic, and ψ2 is
1-monotonic. Hence, by Lemmas 11 and 12, ϕ is 2-monotonic or nonmono-
tonic.

Example 13. To illustrate a 2-monotonic ED-dependency, consider ϕ =
∀x, y(R(x, y) → ∃z(S(z), x = y)). The chain of structures A0 = ({(a, a)}, ∅),
A1 = ({(a, a)}, {b}), A2 = ({(a, a), (a, b)}, {b}) contains two negative segments.

As an application of the inexpressibility tools presented in this section, we
complete the proof of Theorem 8 from Section 6.

PROOF (INEXPRESSIBILITY CLAIM OF THEOREM 8). Let [k] = {1, . . . , k} and let ϕZ
be a constraint of the form

R0(x), RZ (x) → ∃ y TZ ( y),

where Z ⊆ [k], RZ (x) := ∧
i∈Z Ri(x), and TZ (x) := ∧

i∈Z Ti(x).
Let � = {ϕZ : ∅ �= Z ⊆ [k]}. Each dependency ϕZ ∈ � specifies inclusion of

Boolean conjunctive queries and is hence 1-monotonic by Lemma 8. Moreover,
� contains a total of 2k −1 dependencies. Therefore, by Lemma 11, � is at most
(2k − 1)-monotonic.

We show that � is strictly (2k − 1)-monotonic. Let Zc denote the subset of
[k], where index c is the binary encoding of Z , namely, c = ∑

j∈Z 2 j . Then,

Z0, . . . , Z2k is an enumeration of subsets of [k]. The enumeration has the
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property that Zc2
�⊆ Zc1

for any c1 < c2. We construct a chain of structures
for � that contains 2k − 1 negative segments by induction.

—Let A0 be the empty structure for �, A0 |= �.

—Let Ac |= � be a structure obtained in induction step c. Construct Bc+1 by
copying all relations from Ac and adding the constant c to relation R0 and
all relations Ri such that i ∈ Zc+1. The added constant c violates exactly one
dependency ϕZc+1

∈ �. No other dependency gets violated, since Zci+1
�⊆ Z j

for any j ≤ c. We have Bc+1 �|= �, Bc+1 ⊃ Ac.

—Let Bc �|= � be a structure obtained in induction step c, c ≥ 1. Construct
Ac by copying all relations from Bc and setting Ti := Ri for all i ∈ [k]. This
construction makes all dependencies of � satisfied in Ac. Hence, Ac |= �,
Ac ⊃ Bc.

The constructed chain B1, A1, . . . , A2k−1, B2k witnesses that � is strictly
(2k − 1)-monotonic. By Theorem 10, each TGD-dependency is 2-monotonic or
nonmonotonic. Therefore, by Lemmas 11 and 12, at least �(2k − 1)/2� = 2k−1

embedded dependencies are needed to express �. By the same theorem, � is
not expressible by any set of full dependencies.

8. SEMANTICS OF SKED CONSTRAINTS

In this section we examine the semantics of SkED constraints. The semantics
of SkED are somewhat special, but seem to be needed to obtain domain inde-
pendence (Example 14). These semantics have already been discussed in Fagin
et al. [2005], but we cover several additional aspects here.

We introduce another fragment of SO, ∃SOED which has the standard
second-order semantics. We show that source-to-target SkED-mappings are
also source-to-target ∃SOED-mappings (Theorem 11).5 However, this transla-
tion may incur an exponential size increase.

We first discuss the semantics of SkED constraints. The main question is:
What is the universe from which the functions can take values? In other words,
what is their allowed range? Intuitively, the problem is with the universe of the
existentially quantified intermediate database.

Example 14. Consider the FullTGD-mappings mk
12 and mk

23 given by

(σ1, σ k
2 , �k

12) and (σ k
2 , σ3, �k

23), where

�k
12 is R(x) → ∃ y Si( y)

�k
23 is Si(x), Sj (x) → T (x)

for 1 ≤ i, j ≤ k and i �= j , where σ1 = {R}, σ k
2 = {S1, . . . , Sk}, and σ3 = {T }.

Consider the case where R = {1, . . . , k − 1} in A and T is empty in C. First,
notice that (A, C) ∈ mk

12 ◦ mk
23, as witnessed by the database B where Si =

{i}. Skolemizing and composing the aforementioned constraints, we obtain �k
13

given by the set of constraints

{R(x), R( y), fi(x) = z, f j ( y) = z → T (z) : 1 ≤ i, j ≤ k, i �= j },

5When restricted to structures with at least two elements in the active domain.
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where fi is the Skolem function corresponding to ∃ y Si( y). If we restrict the
range of every fi to fall within the domain of A and C, then one of the preceding
constraints must fail, as follows. Consider the case where x = 1 and y = 1. Then
the set { fi(1) : 1 ≤ i ≤ k} must be a subset of {1, . . . , k − 1}. By the pigeonhole
principle, there must be i and j such that i �= j and fi(1) = f j (1). Then the
constraint corresponding to such i, j fails for (A, C), since T is empty in C.
Therefore, (A, C) �|= �k

13. On the other hand, if we keep the same relations R
and T , but allow the domain to have at least k values, then we have (A, C) |= �k

13
witnessed by setting fi(x) = i for all i, x.

This shows that restricting the range of the Skolem functions to be domain of
the input structures may yield domain-dependent formulas, even though they
satisfy the safety conditions. Certainly, no such domain-dependent formulas
can express the composition, since whether (R, T ) belong to the composition
does not depend on their domains.

Therefore, we require all databases to be finite (i.e., all relations are finite),
but to have an implicit countably infinite universe. Notice that no finite domain
would work for all constraints, since the previous example gives a family of
sets of constraints for which the meaning changes, depending on whether the
domain has size less than k. We allow the functions to take any values from
this implicit universe.

Since the semantics of SkED are special, it is natural to ask whether the
constraints in SkED can be expressed in some fragment of ∃SO under the usual
second-order semantics. We show that this is possible for a source-to-target
SkED.

THEOREM 11. Every finite set of source-to-target SkED constraints (under
the semantics described earlier) is equivalent to a finite set of source-to-target
∃SOED constraints (under the usual second-order semantics) when restricted to
instances with at least two elements.

PROOF (OUTLINE). In the case of source-to-target constraints, we know that
we do not have “recursive” Skolem terms. Phrased differently, there are no
Skolem terms of the form f (. . . f . . .) (directly, or indirectly through equalities).
Therefore, there is a finite number of values which we can refer to by building
Skolem terms on top of the elements of the domain. Intuitively, these are all the
elements that the intermediate database needs to have and the worst case is
when they are all different. If the domain has n elements and we have p Skolem
functions of arity q, then an easy upper bound on the number of elements we
can refer to is ≤ n(p+q)p

whenever n ≥ 2 (this is shown by induction depth of the
Skolem terms; at each step, we go from m ≥ n possible values to

m + pmq ≤ (p + 1)mq ≤ 2pmq ≤ npmq ≤ m(p+q)

possible values). Therefore, we can encode all these values with tuples of arity
r = (p + q)p. We encode every value c from the original domain as the tuple
(c, . . . , c); that is, c repeated r times.

Given a finite set � of source-to-target SkEDs (which we assume without
loss of generality to be in unnested form), we first compute r, then transform
each constraint φ ∈ � by replacing every occurrence of an equation of the form
f (x̄) = y with F (x̄, ȳ), where ȳ is a tuple of arity r. We also replace y with ȳ
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everywhere except in relational atoms. To every relational atom, we add a set
of equalities of the form y = y1, . . . , y = yk , which we abbreviate as y = ȳ .
Finally, we add constraints of the form

. . . → ∃ ȳ F (x̄, ȳ)

F (x̄, ȳ), F (x̄, ȳ ′) → ȳ = ȳ ′,

where . . . are obtained from any premises which mention f . Notice that we
need both equalities and FO existential quantifiers in the conclusions and that
we may incur an exponential increase in size, since we need r to be exponential
in p.

Notice that the proof only requires that we do not have “recursive” Skolem
terms. Source-to-target is a strong condition that ensures this, but weaker con-
ditions on the set of constraints �12 ∪ �23 suffice. For example, it is enough
to require that �12 ∪ �23 have stratified witnesses (see Deutsch and Tannen
[2003] and Fagin et al. [2003a]). When such conditions hold, we can compose
∃SOED-mappings using a technique similar to that of the proof of Theorem 11.
In this case, we do not Skolemize, but replace every relation S of arity s from σ2

with an existentially quantified relation R of arity rs (where r is as in the proof
of Theorem 11). Then, we replace every occurrence of a universally quantified
variable v in S with v̄ and add the equation v = v̄ and replace every occurrence
of an existentially quantified variable u with ū. This gives an algorithm for
composition of source-to-target ∃SOED-mappings.

9. OTHER BASIC OPERATORS

In addition to composition, we are interested in several other basic operators,
including domain, range, intersection, cross-product, and inverse. These opera-
tors take as input mappings and models and give as output mappings or models
(a model is a set of instances). The following table summarizes the definitions
of these basic operators:

dom(m) := {A : ∃B 〈A, B〉 ∈ m}.
rng(m) := {B : ∃A 〈A, B〉 ∈ m}.
A ∩ B := {A : A ∈ A, A ∈ B}.
id(A) := {〈A, A〉 : A ∈ A}.
A × B := {〈A, B〉 : A ∈ A, B ∈ B}.

m1 ∩ m2 := {〈A, B〉 : 〈A, B〉 ∈ m1, 〈A, B〉 ∈ m2}.
m−1 := {〈B, A〉 : 〈A, B〉 ∈ m}.

As in the case of mappings, we say that a model A is given by (σ1, �1) if
it consists exactly of those databases over the signature σ1 which satisfy the
constraints �1. If furthermore, �1 is finite subset of L, we say that A is an
L-model. As in the case of composition, we say that L is closed under one of
these operators if it produces an L-model or L-mapping whenever the inputs
are compatible L-models or L-mappings.

PROPOSITION 4. Every L ⊇ FullTGD is closed under identity, cross-product,
and intersection.
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PROOF. If m12 and m34 are given by (σ1, σ2, �12) and (σ3, σ4, �34) and A and
B are given by (σ1, �1) and (σ2, �2), then

—A × B is given by (σ1, σ2, �1 ∪ �2).

—A ∩ B is given by (σ1, �1 ∪ �2) (here σ1 = σ2).

—m12 ∩ m34 is given by (σ1, σ2, �12 ∪ �34) (here σ1 = σ3 and σ2 = σ4).

To express identity, we need to refer to the third auxiliary signature σ ′
2 (which

we normally ignore) which contains, for every relation symbol R in σ2, a relation
symbol R ′ of the same arity. In this case, σ1 = σ2 so σ ′

2 = σ ′
1.

—id(A) is given by (σ1, σ1, σ ′
1, �1 ∪ �), where � consists of two constraints of

the form ∀(x̄)(R(x̄) → R ′(x̄)), ∀(x̄)(R ′(x̄) → R(x̄)) for every R in σ1.

PROPOSITION 5. Each one of the operators composition, range, and domain
can be reduced to any one of the others.

PROOF. If

—m12 is given by (σ1, σ2, �12), m23 is given by (σ2, σ3, �23),

—m1 is given by (σ1 ∪ σ3, σ2, �12 ∪ �23), m2 is given by (σ2, σ1 ∪ σ3, �12 ∪ �23),

—dom(m1) is given (σ1 ∪ σ3, �1), and rng(m2) is given (σ1 ∪ σ3, �2),

then m12 ◦ m23 is given by (σ1, σ3, �1) and (σ1, σ3, �2). Conversely, if

—m12 is given by (σ1, σ2, �12), m21 is given by (σ2, σ1, ∅),

—m12 ◦ m21 is given by (σ1, σ1, �1), and m21 ◦ m12 is given by (σ2, σ2, �2),

then dom(m12) and rng(m12) are given, respectively, by (σ1, �1) and (σ2, �2).

Proposition 5 and Theorem 2 give the following.

COROLLARY 2. Checking whether the domain or range of a FullTGD-
mapping is a FullTGD-model is undecidable.

All the languages we consider satisfy the premises of Proposition 4. There-
fore, Proposition 5 indicates that we can concentrate our attention on closure
under composition and inverse. Notice that if an L-mapping m is given by
(σ1, σ2, �12), then its inverse is given by (σ2, σ1, �12), which is, of course, easy to
compute. However, the restrictions on L may be such that the second expression
no longer gives an L-mapping. For example, this happens with source-to-target
constraints. This is why we seek restrictions on L which are symmetric with
respect to the input and output signatures and which guarantee closure under
composition.

10. CONCLUSIONS

Mapping composition is one of the key operators used for manipulating schemas
and mappings between schemas. We studied composition of mappings given by
embedded dependencies, which are expressive enough for many data manage-
ment applications. We addressed challenges that were not considered in prior
work, in particular, those due to recursion and de-Skolemization.
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