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ABSTRACT 
Structured document content reuse is the problem of restructuring 
and translating data structured under a source schema into an 
instance of a target schema. A notion closely tied with structured 
document reuse is that of structure transformations. Schema 
matching is a critical strep in structured document 
transformations. Manual matching is expensive and error-prone. It 
is therefore important to develop techniques to automate the 
matching process and thus the transformation process. In this 
paper, we contributed in both understanding the matching 
problem in the context of structured document transformations 
and developing matching methods those output serves as the basis 
for the automatic generation of transformation scripts.  

Categories and Subject Descriptors 
I.7.2 [Document and Text Processing]: Document Preparation. 

General Terms 
Documentation, Languages. 

Keywords 
Document Structure Transformations, Schema matching. 

1. Introduction 
The need for developing methods and tools, that support data 
exchange and reuse has increased over the years, especially with 
the proliferation of Web data sources deploying a variety of data 
models and encoding syntaxes. XML (eXtended Markup 
Language) has clearly emerged as the most relevant 
standardization effort for structuring document and data on the 
Web; it leverages a promising consensus on the encoding syntax 
for both human and machine. However, reusing XML documents 
remains a challenging task. In XML document content reuse, a 
document (or a part of document) structured under one schema 
must be restructured and translated into an instance of a different 
schema. Thus, a notion tied to structured document reuse problem 
is that of structure transformations. This is typically attained in 
real world by writing translators encoded on a case-by-case basis 
using specific transformation languages. Currently the best known 

and widely adopted language for transforming structured 
documents is XSLT [22]. However XSLT is a powerful 
transformation language, it has several drawbacks. Simple 
transformations require the user to write a program, which needs 
non-trivial programming skills.  Faced with the complexity of 
current structure transformation languages, several simpler and 
highly declarative transformation languages have been introduced. 
These languages try to keep a manageable balance between 
complexity and expressiveness. Authors in [19] propose a new 
language called Paired SynTrees which extends TT grammar with 
XPath expressions and a set of boolean conditions (including 
existence testing expressions and function constraints) in order to 
localize nodes in a tree. Special graphical tools have been also 
proposed to assist the specification of the transformations [15], 
[25]. Authors in [20] give an overview of existent structure 
transformation languages and tools.However, such languages and 
tools shield the user from programming effort; they require that a 
mapping between each source and target XML representations is 
carefully specified. Manual mapping is time consuming and thus 
especially unacceptable for applications where the information 
sources change frequently. Moreover, since the XML schemas can 
be very diverse, the mappings created by the expert are often 
complex. This complexity makes them hard to maintain when 
original XML schemas change.  

This paper seeks to automating the process of mapping discovery 
(identified as schema matching process) and thus automatically 
deducing from such mappings the transform scripts which can 
rearrange and modify the associated data. The paper is organized 
as follow: section 2 describes related work. In section 3 and 4, we 
respectively propose a data model for XML Schemas and point a 
set of structure transformation operations. Section 5 details the 
proposed matching techniques. An evaluation study is presented 
in section 6. Finally, section 7 describes briefly the mapping 
structure and XSLT generation.   

2. Related Work 
Several approaches focusing on automating XML document 
transformations has been recently proposed by the document 
community. Examples include the work done in [11], where 
authors propose a syntax directed approach for automating 
structure transformations between two grammars based on finite 
state tree transducer. The idea behind this work is to generate a 
transformation semi-automatically if the user defines a matching 
between elements containing the text of the document (i.e. 
leaves). This approach presents several limitations: first it works 
only if the two grammars have common parts, which restricts the 
scope of transformations to local transformations. Moreover, this 
approach is unable to resolve all the heterogeneities that may 
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occur between structured documents: authors restrict themselves 
to transformations for which certain types of structure elements in 
the source document are transformed to the same types of 
elements in the target document. For example, a list of repeating 
nodes in the source document can only be transformed into a list 
that contains the same number of repeating elements. The authors 
of [18] propose an approach for automating the transformations of 
XML documents. To this end they define a set of DTD 
transformation operations that establish the semantic relationships 
between two DTDs. The approach is based on a tree matching 
algorithm, called DMatch (DTD Match), to discover automatically 
a sequence of operations that transforms a source DTD into a 
target DTD. The matching process is based on both provided 
auxiliary semantic information and a cost model. The latter model 
is based on heuristics functions for choosing transformation 
operations among multiple alternatives. This approach presents 
several limitations. First the matching algorithm used is only able 
to discover one-to-one correspondences between DTDs and does 
not deal with many-to-many matches. Second, the matching 
algorithm requires additional semantic information to work 
correctly, which limits the scope of its application since such 
semantic information is not always available. Finally, the 
matching algorithm used is inspired by work done in tree 
matching and is unable to deal with the current XML schema 
model.  

Additionally to document community, database and artificial 
intelligence communities have widely considered schema 
matching problem in many application domains such as data 
integration, and peer-to-peer data management [5], [6], [9], [16], 
[17] . With the growing use of XML, several matching algorithms 
take into consideration the hierarchical structure of XML. In the 
following, we present some examples and check their applicability 
in the context of XML data transformations.  

Cupid (Microsoft Research) 

Cupid is a hybrid matcher combining several matching methods 
[12]. Cupid transforms the original XML schemas into trees and 
then performs a bottom-up structure matching. The basic 
assumption behind the structure matching phase of Cupid is that 
much of the information content is represented in leaves and that 
leaves have less variation between schemas then internal 
structures. Thus the similarity of inter-nodes is based on the 
similarity of their leaf sets. Schema structure in Cupid is used as a 
matching constraint, that is, the more the structures of the two 
nodes are similar, and more the two nodes are similar. For this 
reason, Cupid faces problems in the cases of equivalent concepts 
occurring in completely different structures, and completely 
independent concepts that belong to isomorphic structures.  

Similarity Flooding (Stanford Univ. and Univ. of Leipzig) 

In [13], authors present a structure matching algorithm called 
Similarity Flooding (SF). For computing structural similarities, 
SF relies on the intuition that nodes of two distinct graphs are 
similar when their adjacent nodes are similar. The spreading of 
similarities in the matched models is reminiscent to the way how 
IP packets flood the network in broadcast communication. An 
iterative process is used to propagate similarities between nodes, 
where in every iteration the similarity of a map pair is 
incremented by the similarity of its neighbours. An important 
assumption behind the algorithm is that adjacency contributes to 

similarity propagation. Thus, the algorithm will perform 
unexpectedly in cases when adjacency information is not 
preserved. Furthermore, SF ignores all type of constraints while 
performing structural matching. Constraints like typing and 
integrity constraints are used at the end of the process to filter 
mapping pairs with the help of user.  

As we can see, proposed structural matching methods remain 
insufficient and very limited (generally deals only with DTDs and 
exploits few structural characteristics, essentially parent-child 
relationships). Convinced that the structural organisation in XML 
documents inferred some semantics of the data and traduced the 
designer point of view, a solution to XML schema matching 
problem should exploit this information in a manner that increase 
the matching accuracy. Furthermore, current schema matching 
algorithms only focus on discovering 1-1 mappings, also called 
direct mapping. The output result is a confidence score (ranging 
in [0,1]) between schemas’ elements. When addressed the 
problem of automating document transformations, such output is 
often insufficient. First, because complex mappings (involving 
more than one source and/or target elements) make up a 
significant portion of discovered mappings in practice. Second, to 
generate a transformation script, scores between 0 and 1 are 
insufficient (we need to further precise transformation operations). 
In the remaining, we propose different methods and algorithms to 
solve such problems.   

3. The Data Model 
As we already mention in section 2, up to now few existent XML 
schema matching algorithms focus on structural matching 
exploiting all W3C XML schemas [23] features. In this section, 
we propose an abstract model that serves as a foundation to 
represent conceptually W3C XML schemas and potentially other 
schema languages [2]. We model XML schemas as a directed 
labelled graph with constraint sets; so-called schema graph. 
Figure 1 illustrates a schema graph example. 

3.1 Schema graph nodes 
We categorize nodes into atomic nodes and complex nodes. 
Atomic nodes have no edges emanating from them. They are the 
leaf nodes in the schema graph. Complex nodes are the internal 
nodes in the schema graph. Each atomic node has a simple 
content, which is either an atomic value from the domain of basic 
data types (e.g., string, integer, date, etc.); or a constructional 
value, meaning a list value or a union value. The content of a 
complex node, called complex content, refers to some other nodes 
through directed labelled edges. In Figure 1, nodes University and 
Library are complex nodes, while nodes Name and Location are 
atomic nodes. 

3.2 Schema graph edges 
Each edge in the schema graph links two nodes capturing the 
structural aspects of XML schemas. We distinguish three kinds of 
edges: (1) containment relationship, denoted c, that is a 
composite relationship, in which a composite node (“whole”) 
consists of some component nodes (“parts”); (2) of-property 
relationship, denoted p, that specifies the subsidiary attribute of a 
node; and (3) association relationship, denoted a, that is a 
structural relationship, specifying that both nodes are conceptually 
at the same level. Association relationships essentially model 
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key/keyref and substitution group mechanisms. They are generally 
bidirectional. Two association relationships are represented in 
Figure 1. The first association between the two nodes Book and 
Monograph is used for modelling the substitution group relation 
between the two nodes. While the second association relation 
between Journal-article and Journal specifies a key/keyref 
relation. Visually association edges are depicted as dashed lines.  

3.3 Schema graph constraints 
Different constraints can be specified with XML Schema 
language. These constraints can be defined over both nodes and 
edges. Typical constraints over an edge are cardinality constraints. 
Cardinality constraints over a containment edge specify the 
cardinality of a child with respect to its parent. Cardinality 
constraints over an of-property edge imply for example an 
optional or mandatory attribute for a given node. The default 
cardinality specification is [1..1]. We also distinguish three kinds 
of constraints over a set of edges: (1) ordered Composition,  
defined for a set of containment relationships and used for 
modelling XML Schema “sequences” and “all” mechanisms; (2) 
exclusive Disjunction, used for modelling the XML Schema 
“choice” and  applied to containment edges; and (3) referential 
constraint, used to model XML schema referential constraints. 
Referential constraints are applied to association edges, and are 
generally modelled through a join predicate. As example, the 
association edge between Article and Journal with the predicate 
Article/JournalRef = Journal (as typical join condition). Other 
constraints are furthermore defined over nodes. Examples include 
uniqueness and domain constraints. Domain constraints are very 
broad. They essentially concern the content of atomic nodes. They 
can restrict the legal range of numerical values by giving the 
maximal/minimal values; limit the length of string values, or 
constrain the patterns of string values.  

Figure 1. A Schema Graph example. 

3.4 Type Binding and Type Hierarchy 
In addition to elements and attributes declarations, XML schema 
introduced typing mechanisms. Built-in simple types as well as 
their restrictions are represented as domain constraints within the 
schema graph. User-defined types are not represented in the 
schema graph but represented in a type table and a binding from 
schema graph nodes to types are established. The concept of 

Schema graph as described above does not also include features 
like type extensions and abstract types. Extending a type means to 
add elements and/or attributes, which always results in a complex 
type. At a conceptual level, this refers to a 
generalisation/specification relationship. Such relationships are 
represented by the mean of a type hierarchy. Let us assume for 
example that we have an abstract type PUBLICATION and two 
subtypes of PUBLICATION respectively ARTICLE and BOOK.  
This will be represented in a type hierarchy by two specification 
relationships respectively between PUBLICATION and 
ARTICLE and PUBLICATION and BOOK. We also specify that 
PUBLICATION type is abstract (meaning that it may not have 
direct instances, but its concrete subtypes may). If nodes Article 
and Book in the schema graph of Figure 1 are of types ARTICLE 
and BOOK, a binding between types and schema graph nodes is 
generated.  

4. Transformation operations 
To motivate our choice of transformation operations, we list the 
following problems we must face in matching two XML schemas:  

• Frequently, schema designer tends to qualify semantically 
similar concepts using different names. For this we consider 
a rename operation defined as follow: Rename: t = rename 
(s), generates a construction1 that is the same as a 
construction s, but with a different name t.  

• For a target node, a particular source may have (1) a proper 
subset of the desired values or (2) a proper superset of the 
desired values. For such case, we propose two operations 
Union defined as follow: Union: t = union (s1,s2), generates 
a construction t whose content is the union of s1 values and 
s2 values; and Selection defined as follow: Selection: t = 
SelectP (s) (where P is a predicate) generates a construction t 
whose content is the part of content of s that satisfies the 
predicate P.   

• Schema designers do not always choose to represent values 
at the same level of atomicity. For example, an author name 
is represented in a given schema using an element Name. 
While in an other schema, it is separated into a First-Name 
and a Last-name. For such cases, we define two operations 
Merge and Split as follow: Merge: t = merge (S1….Si), 
generates a construction t whose value is obtained by 
concatenating s1….si values; and Split: (t1…ti) = splitcriteria 
(s), where t1…ti are obtained by splitting a construction s 
respecting to a separation criterion. An example of separation 
criterion is “white space” in the case of strings.  

• A target construction may be obtained by applying a natural 
join (as in relational schemas) to source constructions. We 
define a join operation as follows: Join: t= joinP(S1,S2),  
generates a target construction t which is the natural join of  
S1 and S2 under the predicate P. 

• Frequently we need some specific functions to transform the 
content of source values into target values. Such functions 
include for example unit conversion, date format 

                                                                 
1 Construction refers to schema elements, or attributes, or 

relationships. 
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transformations, mathematical functions such as min, avg, 
div, etc. For such cases, we introduce a new operation apply 
defined as follow: Apply: t = applyf (s1…si) where f is a 
function that takes s1…si values and returns t, whose value 
corresponds to f (s1…si).  

• For the case where we have a one-to-one matching without 
any modification, we provide an operation called connect: 
Connect: t = connect (s), generates a construction t which 
has the same content and label as s.  

5. Matching Process 
To match schema graphs, we make use of four basic matching 
criteria (1) linguistic matching, (2) datatype compatibility, (3) 
Designer type hierarchy and (4) structural matching.  

5.1 Linguistic matching 
The aim of this phase is to compute the similarity between schema 
nodes based on the similarity of their labels. To perform linguistic 
matching, we make explicit the meaning of used element names 
and establish semantic relationships between them based on 
WordNet [8]. Most of schema matching algorithms suggest the 
use of WordNet for linguistic matching, but generally gave few, if 
any details about how they exploit WordNet. Our linguistic 
matching is inspired essentially from Hirst and St-Onge’s work 
[14]. When attempting to find a relation between two words, each 
synset (set of synonyms representing a sense associated to a word) 
of the first word must be considered with each synset of the 
second word, looking for a possible connection between some 
synset of the first word and some synset of the second. The idea 
behind Hirst and St-Onge’s measure of semantic relatedness is 
that two concepts are semantically close if their WordNet synsets 
are connected by a path that is not too long and that does not 
change direction too often. A set of allowable paths have been 
then defined. The linguistic similarity between two words is 
computed based on the path relating them as follows: 

        c – Path length – k × number of changes of direction2 
Moreover, based on the classification of allowable paths, we 
identified four kinds of semantic relations between words, namely 
equivalent (≡), Broarder than (⊇ ), Narrower than (⊆ ), and related 
to (∼ ). The detailed algorithm is given in [2]. The same algorithm 
is also applied to type names. To simplify the comprehension of 
our approach, we assume in this paper that nodes have the same 
names as their types. 

5.2 Datatype compatibility 
XML schema recommendation provides many different datatypes 
and regular expressions. It is probably the ideal set of datatypes 
since it is refined enough for the purpose of schema matching. In 
fact, XML schema allows the definition of very specific datatypes. 
For this, we make use of built-in XML schema datatypes 

                                                                 
2 c and k  are constants. The choice of c and k were done on 
running experiments based on examples provided in [3] where 
authors compare several semantic distance measure algorithms. 
C=8 and k=1, thus, the longer the path and the more changes of 
direction, the lower the weight. 
 

hierarchy [24] in order to compute datatype compatibility 
coefficient. XML schema datatypes are classified in multiple 
categories (called primitive datatypes) including for example 
Duration, Boolean, String, Decimal, etc. Each category has 
several derived datatypes. Two datatypes are considered to be 
similar if they belong to the same datatype category, and their 
datatype compatibility depends on their respective position in 
XML schema datatype hierarchy. Based on XML Schema 
datatype hierarchy, we construct a datatype compatibility table, 
such as the one used in [12] that gives a similarity coefficient 
between two given datatypes. Moreover, we also make use of 
imposed constraints (expressed by means of facets) over datatypes 
in order to refine the datatype compatibility coefficient (two 
datatypes belonging to the same category and presenting similar 
set of constraints are more likely to be similar)3.  For example, 
two string datatypes (or string derived datatypes) having similar 
length constraints and two integers having similar numerical value 
ranges are more likely representing similar real word entities. We 
limit the scope of datatype compatibility to atomic nodes that are 
already similar using linguistic matching method. Finally we 
update the linguistic similarity coefficient of atomic nodes by 
including their datatype compatibility. 

5.3 Designer Type hierarchy 
As mentioned in section 3.4, XML schema features concerning 
sub-typing, abstract types and substitution group mechanisms 
traduce the designer point of view and could be used as a set of 
meta-data to help the matching process to discover both direct and 
complex mappings. In the following, we present some examples 
of such features and show how they can be used to deduce match 
candidates: (1) Abstract Types: Let us consider a source schema 
where two elements Journal-Article and Procceding-Article are 
declared respectively of types JOURNAL-ARTICLE and 
PROCEEDING-ARTICLE (we use the same appellation for 
elements and types to simplify the comprehension of the 
example). Assume that these two types are subtypes of an abstract 
type ARTICLE. Consider a target schema where only an element 
Article of type ARTICLE is presented. Based on the fact that 
JOURNAL-ARTICLE and PROCEEDING-ARTICLE are subsets 
of type ARTICLE in the source schema and the type ARTICLE in 
the source schema matches the type ARTICLE in the target 
schema, one can deduce the following complex mapping: the 
union of source elements Journal-article and Proceeding-article 
matches the target element Article. This kind of hints may also 
provide wrong matches, let us keep the same source schema, but 
consider the target schema as the schema represented in Figure 1, 
element Article in the target schema corresponds to element 
Journal-Article in the source schema and not to the union of 
elements Journal-article and Proceeding-article. Such wrong 
matches can be corrected by the structural matching techniques 
described in section 5.4. 

                                                                 
3 Although XML Schema offers specific datatypes, those are 

usually not exact and constraints are often incomplete, since 
they are not a necessity, but merely a convenience for the 
schema designer. Our use of datatypes constraints is restricted 
to some facets. For example, we do not consider patterns 
comparison. Works such as [7] and [26] can be used to extend 
datatype compatibility measure. 
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(2) Substitution Group: Two substitutable elements are 
conceptually at the same level. Let us consider a source schema 
where elements book and monograph are substitutable and a 
target schema where element publication is similar (by linguistic 
matching) to the source element book. Since in the source schema 
elements book and monograph are substitutable, a direct match 
between monograph and target schema element publication can 
be inferred.  

The result of this step is a set of direct and complex mappings 
(essentially involving Union/Selection operators).  Such mappings 
will be kept or rejected using either structural matching 
techniques or user intervention. In the case where type hierarchy 
is not available, we also make use of semantic relationships 
discovered by the linguistic matching to derive complex matches. 
However, we give the priority to designer type hierarchy since it 
reflects the designer point of view. More examples and algorithms 
on how to derive match candidates based on type hierarchy are 
detailed in our previous work [2].  

5.4   Structural matching 
The matching techniques described in sections 5.1, 5.2 and 5.3 
may provide incorrect match candidates. Structural matching is 
used to correct such match candidates based on their structural 
context and thus derive correct direct and complex matches. 
Structural matching relies on the notion of node context. In the 
following we describe the basis needed to define such context and 
thus perform structural matching.  

5.4.1 Node context definition 
As in [10], we distinguish three kinds of node contexts depending 
on its position in the schema graph: (1) The ancestor-context: of a 
node n is defined as the path (going through containment edges) 
having n as its ending node and the root of the schema graph as its 
starting node. The ancestor-context of the root node is empty and 
it is assigned a NULL value; (2) The Child-context: of a node n 
includes its attributes (through of-property edges) and its 
immediate subelements (through containment edges). The child-
context of a node reflects its basic structure and its local 
composition. The child-context of an atomic node is assigned a 
NULL value. For association relationships, we include the 
associated nodes in the child context. For example the child-
context of the node Article in the schema graph of Figure 1 is 
composed of nodes Title, Author, Uri, Abstract and Journal-ref. 
Since Journal-ref is a key ref node, we also include the referential 
node Journal in the child-context of Article; and (3) The leaf-
context: Leaves XML documents represent the atomic data that 
the document describes. The leaf-context of a node n includes the 
leaves of the subtrees (composed by containment relationships) 
rooted at n and. The leaf-context of an atomic node is assigned a 
NULL value. 

The context of a node is defined as the union of its ancestor-
context, its child-context and its leaf-context. Two nodes are 
structurally similar if they have similar contexts. To measure the 
structural similarity between two nodes, we compute respectively 
the similarity of their ancestor, child and leaf contexts.   

5.4.2 Path resemblance measure 
Structural node context defined in section 5.4.1 relies on the 
notion of path. In order to compare two contexts, we essentially 

need to compare two paths. Path comparison has been widely 
used in answering conjunctive queries. However, they rely on 
strong matching following the two classical constraints: root 
constraint and edge constraint. Under such conditions paths such 
as Author/Publication and Publication/Author are no matched 
however they convey same semantics. Other unmatchable paths 
under such conditions are Author/Contact/Address and 
Author/Address. Based on such observations, it is more 
appropriate to go beyond the strong matching by relaxing the 
above conditions. One can think of several ways of relaxing 
strong matching: for example allow matching paths even when 
nodes are not embedded in a same manner or in the same order. 
Several works in query answering have proposed relaxation issues 
to approximate answering of queries (including path queries) [1], 
[4]. Relaxations may give raise to multiple match candidates. For 
this reason, authors in [4] define a path resemblance measure 
between a given path query Q and a path in the source tree. Such 
measure is used for ranking match candidates. We extend these 
definitions by allowing two elements within each path to be 
matched, even if they are not identical but their linguistic 
similarity exceeds a fixed threshold. We define a path 
resemblance measure, denoted pr, which determines the similarity 
between two given paths. The values of pr range between 0 and 1. 
Match candidates can then be ranked according to pr measure.   

Consider two paths P1 and P2 being matched (when P1 is a target 
path and P2 is a source path), P2 is the best match candidate for P1 
if it fulfils the following criteria: 

• The path P2 includes most of the nodes of P1 in the right 
order. 

• The occurrences of the P1 nodes are closer to the beginning 
of P2 than to the tail, meaning that the optimal matching 
corresponds to the leftmost alignment.  

• The occurrences of the P1 nodes in P2 are close to each other, 
which mean that the minimum of intermediate non matched 
nodes in P2 are desired.  

• If several match candidates that match exactly the same 
nodes in P1 exist, P2 is the shortest one. 

To calculate pr (P1, P2), we first represent each path as a set of 
string elements; each element represents a node name (e.g., the 
path Author/Publication is a string composed two string elements 
Author and Publication). We used the four scores established in 
[4] and borrowed from dynamic programming for string 
comparison; each of which corresponds to one of the above 
criteria.  

5.4.2.1 Longest Common Subsequence  
To answer the first criterion, we use a classical dynamic 
programming algorithm in order to compute the Longest Common 
Subsequence (LCS), between P1 and P2. More the length of the 
longest common subsequence is high; more P2 includes P1 nodes 
in the right order. Finally, to obtain a score in [0,1], we normalize 
the length of the longest common subsequence by the length of 
target path P1 as following: 

lcsn(P1, P2) =|lcs(P1, P2)|/|P1| 
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Example: Consider P1 to be Publication/Book/Author and P2 as 
Author/Publication/Book, the longest common subsequence 
between the two paths is Publication/Book,  lcs (P1, P2) = 2, 
thus lcsn = 2/3= 0.66. 

5.4.2.2  Average positioning 
To answer the second criterion, we first compute, according to lcs 
(P1, P2) what would be the average positioning of the optimal 
matching of P1 within P2. The optimal matching is the match that 
starts on the first element of P1 and continues without gaps. 
Consider P1 = Author/Publication/Book and P2 = 
Staff/Author/Publication/Book, since the optimal matching 
corresponds to the leftmost alignment, the average optimal 
position, denoted Av-Optimal-Position is (1+2+3)/3 =2. We then 
evaluate using the LCS algorithm, the actual average positioning 
(AP). AP takes the value 3 in our example ((2+3+4)/3). Last, we 
compute pos coefficient indicating how far the actual positioning 
is from the optimal one, using the following formula: 

pos(P1, P2) = 1-((AP-Av-Optimal-Position)/(|P2|-2*Av-Optimal-
Position+1)) 

5.4.2.3 LCS with minimum gaps 
To answer the third criterion, we use another version of the LCS 
algorithm in order to capture the LCS alignment with minimum 
gaps. If P1 = Person/Address and P2 = Person/Contact/Address, 
we count a gap of length 1 between the two paths, thus gaps =1. 
To ensure that we obtain a score inferior to 1, we normalize the 
obtained gap using the following formula:  

                   gap(P1, P2) = gaps/(gaps + lcs(P1, P2)) 

5.4.2.4 Length difference 
Finally, in order to give higher values to source paths whose 
length is similar to the target path, we suggest to compute the 
length difference ld between a source path P1 and lcs(P1, P2) 
normalized by the length of P1 as follow:   

                      ld(P1, P2)= (|P2|- lcs(P1, P2))/|P2| 
To obtain the path resemblance score, all the above metrics are 
combined as follow:  
pr(P1, P2) = α lcsn (P1, P2) + ß pos(P1, P2) – λ gap(P1, P2) – δ 
ld(P1, P2)4  
Example: Let P2 = Author/Book/title and P1= 
University/Author/Publications/Book/Description/Title/subtitle; 
We have  lcs  = (2+3+4)/3 = 3, AP = (2+4+6)/3 = 4, gaps =2, 
ld= 7-3/7=4/7. We obtain a path resemblance score equal to 0.68. 

5.4.3 Structural context similarity 

5.4.3.1 Ancestor context similarity 
The ancestor context similarity, ancestor-ctx-sim captures the 
similarity between two nodes based on their ancestor context; 

                                                                 
4 α ,ß, λ and δ are positive parameters ranging between 0 and 

1 that represent the comparative importance of each factor. They 
can be tuned but must satisfy a + ß = 1, so that pr(P1, P2) =1 in 
case of a perfect match, and λ and δ must be chosen small enough 
so that pr cannot take a negative value. 

defined for a given node n by the path from the root to n. The 
ancestor-ctx-sim between two nodes n1 and n2 is given by the path 
resemblance measure between the two paths (root, n1) and (root, 
n2) weighted by the linguistic similarity between n1 and n2 as 
follow: 

ancestor-ctx-sim (n1, n2)← pr ((root, n1), (root, n2)) × lsim (n1, n2) 

5.4.3.2 Child-context similarity 
The child-context similarity, child-ctx-sim is obtained by 
comparing nodes immediate descendents (children) sets including 
attributes and subelements. Let us consider a node n1 having n 
immediate children represented by the set (n11, …, n1n) and node 
n2 having m immediate children represented by (n21, …, n2m). To 
compute the similarity between these two sets, we first compute 
the linguistic similarity between each pair of children in the two 
sets. Second, we select the matching pairs with maximum 
similarity values. And finally, we take the average of best 
similarity values. 

5.4.3.3 Leaf context similarity 
Since the effective content of a node is often captured by the leaf 
nodes of the subtree rooted at that node, we compute leaf context 
similarity of two nodes n1 and n2 by comparing their respective 
leaves sets: leaves (n1) and leaves (n2). It is possible that each 
schema represents different levels of abstraction and different 
granularities. Thus, to compute the similarity between two leaves 
l1 ∈  leaves (n1) and l2 ∈  leaves (n2), we propose to compare the 
contexts in which appear these leaves. If a leaf node l ∈  leaves 
(n1), then the context of l is given by the path from n1 to l. The 
context similarity of two leaves is then obtained by comparing 
such paths; the path resemblance measure is then used as follow:  

          Leaf-sim (l1,l2)= pr ((n1,l1), (n2,l2)) × lsim (l1,l2) 
The leaf context similarity of two nodes n1 and n2 is obtained by 
first computing the leaf similarity between each pair of leaves in 
the two leaves sets, second selecting the matching pairs with 
maximum similarity values, and finally taking the average of best 
similarity values. 

5.4.4 Node similarity 
In this section, we propose to compute the similarity of two nodes 
belonging respectively to source schema graph and target schema 
graph by combining all the previous similarity measures 
(linguistic similarity, datatype compatibility and context 
similarity). For this, we distinguish three different cases: 

• Case 1: The two nodes being compared are atomic nodes 
(leaves), and then their respective child context and leaf 
context are assigned the NULL value. The similarity between 
two atomic nodes is then given by the similarity of their 
respective ancestor context weighted by their linguistic 
similarity. 

• Case 2: One of the two nodes being compared is an atomic 
node, say n1, and the other is a complex node, say n2. Since 
for the atomic node n1, the child-context and the leaf-context 
are assigned a Null values. The similarity between n1 and n2 
is obtained by computing first their respective ancestor-
context. Second, since the content of an atomic node is 
captured by the node it self, while the content of a non 
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atomic node is captured by its leaf-context, we propose to 
calculate the average of the linguistic similarity between n1 
and nodes belonging to the leaf-context of n2. The similarity 
between the two nodes is then obtained by weighted 
similarity of their ancestor and leaf contexts. 

• Case 3: Both nodes are complex nodes and then their 
similarity is the weighted sum of their ancestor context 
similarity, their child-context similarity and their leaf context 
similarity.   

Once element similarity is computed, one can use it to correct 
indirect matches and set appropriate operations as we will 
describe in section 5.4.5. 

5.4.5 Discovery of nodes and edges matches 
Most schema matching algorithms produce similarity scores 
between source and target schemas nodes such as the ones we 
produce in section 5.4.4. Such result solves partially the problem. 
First, produced similarities between individual nodes are not 
enough to produce access paths for retrieving data from the 
available sources. Second, all the produced mappings are one-to-
one mappings, complex mappings identified using type hierarchy 
have to be incorporated in the matching result and further 
complex mappings have to be discovered. For this we proceed in 
four steps:  

Step 1: Compatible nodes identification 

While generating mapping elements, we apply a top-down 
strategy5. At the top level, we establish correspondences between 
complex nodes of the target and source schemas. Similar complex 
nodes are called compatible nodes. Let us consider simplified 
schema graphs illustrated by Figure 2(a) and 2(b). Assume that 
both nodes University are similar (based on node similarity 
measure described in section 5.4.4), then they are considered as 
compatible nodes. Node Library is not a compatible node, since it 
has not similar node. Visually compatible nodes are depicted as 
coloured boxes and dashed lines.  

Step 2: Context generation for compatible nodes 

After identifying compatible nodes, we proceed to construct a 
context for each compatible node (the notion of context here 
differs from the context we defined in section 5.4.1). By taking 
edges around a complex node n into account, we cluster a set of 
nodes and edges with a complex node as a conceptual component 
in the schema graph. We call this the context of n. For a given 
compatible node n, we construct such context by (1) including all 
atomic nodes directly related to the compatible node n; (2) 
including all non compatible nodes directly connected to n with 
their connected atomic nodes and connected non compatible 
nodes; (3) if a directly connected compatible node is also similar 
to an atomic node, it is also included in the context of n; (4) 
including all nodes having an association relationship with n and 
their respective context; and (5) including all containment 

                                                                 
5 We use the same top-down strategy as in [26]. However the 

difference is that this technique is used to discover structural 
similarity. In our approach, it is just used for mapping 
generation; the structural matching has been already performed.  

relationships between nodes in the context of n. Figure 2 illustrate 
two schema graphs after context construction. 

Example: In Figure 2 (b), the context of the compatible node 
University includes atomic nodes Name and Location and non 
compatible node Library. The context of compatible node Article 
includes referential node Journal and its context. In Figure 2 (a), 
the context of node University include the compatible node 
Address, since Address is similar to a leaf node (location) 
belonging to the context of a matched node University.   

Step 3: Node mappings generation 

At this point, we finished with the top level comparison between 
source and target schema graphs. We are now ready to detect node 
and edges matches at the bottom level. For each matching  pair 
(nT , nS) which represented two compatible nodes in source and 
target schema graphs, we make use of node similarity score 
generated in section 5.4.4 to settle nodes matches. The following 
gives examples on how we proceed:    

Example 1: Let the schema in Figure 2 (a) be the target schema 
and the schema in Figure 2 (b) be the source schema. Consider the 
two compatible nodes: target node University (UniversityT) and 
the source node University (UniversityS), we first settle node-set 
matches between both source and target contexts that hold with 
the highest node similarity score. As an example, we settle the 
match pair (NameT, NameS) using a connect operation.  

Example 2: The target node AddressT is both similar to the source 
nodes University/Location and Author/Address with 
approximatively same scoring.  This is due to in the case of 
University/Location to the fact that ancestor context similarity is 
high and in the case of Author/Address to the fact that the leaf 
context similarity is high. Since target node University/Address 
and source node Author/Address belong to non compatible 
complex nodes while target element University/Address and 
source element University/Location belong to two compatible 
contexts, a match is then derived between source node 
University/Location and target node University/Address. 
Moreover since we decide to map a non-leaf node with a leaf 
node, a complex mapping with split operation can be deduced.  

Example 3: Assume that we have already discovered that the 
union of target nodes Journal-article and Proceeding-article 
match the source node Article based on designer type hierarchy 
analysis. Such mapping can be confirmed or rejected by the 
system after compatible nodes context analysis. In fact, the 
context of source node Article includes the referential node 
Journal. Moreover, based on node similarity, the target node 
Journal-article is compatible with both source nodes Article and 
Journal. By analysing the contexts of source node Article, we 
discover that it more likely matches the target node Journal-
article. The complex mapping is then removed and a new 
mapping is settled between source node Article and target node 
Journal-article using a join operation. Let just notice that if node 
Journal is not present in the source schema graph, the discovered 
complex mapping is accepted and a selection operation is 
assigned to it.   

Step 4: Access paths generation  

With the available correspondences between nodes in source and 
target schemas, we further discover matches between edges. As in 
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[26], the recognition of edges matches starts by locating an edge 
set et in T. Then, based on nodes Nt connected by et, we can locate 
a set of nodes that correspond to Nt in S, from which we either 
locate or derive a edge set es that corresponds to et. We further 
focus on the discovery of access paths in order to retrieve source 
data when performing transformation. For each target element t, 
we first define the access path indicating where matched source 
elements are localized, then the discovered transformation 
operation and finally the conditions under which the mapping 
element holds true. Examples of generated mapping rules are 
given in Figure 3.  

6. Performance Study  

6.1 Real world example 
In order to evaluate the proposed matching techniques, we 
considered one real-world application: bibliographic data 
description. The characteristics of used XML schemas are 
summarized in Figure 4 showing some indications of the 
complexity of test schemas. We choose schemas that differ in the 
number of nodes (schema size) and in their depth (the manner of  

nodes nesting). Test schemas present linguistic and structural 
heterogeneities. We let any one of the schema graphs be the target 
and let any other schema graph be the source. Different 
granularities and abstract levels are used to describe the same real 
world concepts. Test schemas require several indirect matches 
involving merge/split, union/select and join operators. To 
compute real matches, two different users were involved, and the 
average number of users discovered matches was considered. The 
total number of real matches was 1382 matches (1102 direct 
matches and 280 complex matches). Our matching algorithm 
discovered 1312 matches including 1281 correct matches and 31 
incorrect matches. The incorrectly classified mapping elements 
include 18 direct mappings and 13 complex mappings.  The 
correctly recognized mapping elements included 1082 direct 
matches and 199 indirect matches. For direct matches, the 
precision, recall, F-measure and overall achieved 99%, 94%, 97%, 
and 93%. For complex matches, the precision, recall, F-measure 
and overall achieved 98%, 71%, 82%, and 70%.  The 
performance of the matching algorithm reached for precision, 
recall, F-measure and overall 98%, 92%, 95%, and 90%.  

Our process successfully found all the complex matches related to 
the problems of Merged/Split Values and join relationships. 
However, for the problem of union/selection, our matching 
algorithm correctly found all the complex matches related to 80 of 
93 union/selection matches and incorrectly declared 13 extra 
union/selection operators.  For discovering union/selection 
operators, we essentially rely on type hierarchy analysis, if 
available; otherwise we make use of WordNet semantic 
relationships. Among the 80 discovered union/selection relations, 
22 are discovered using WordNet. The experimental results show  

(a) 

(b) 

Figure 2. Source and target schema graphs 
after context construction. 

Figure 3. Examples of generated mapping rules. 
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that the combination of linguistic and structural matching 
produces fairly reasonable results, even if schemas are structurally 

highly heterogeneous. 

6.2 Comparative study  
In this section, we essentially run evaluation comparisons between 
our proposed solution, Cupid and Similarity Flooding systems. 
This is because Cupid, SF and our solution are fairly comparable 
because they deal with XML structure, they are all schema based, 
and they all utilize linguistic and structural matching techniques. 
Figure 5 illustrates the obtained results. From the point of view of 
the quality of the matching results, our proposed solution 
outperforms the other systems:  
(1) Direct matches: Since our basic goal is to compare the 
structural matching capabilities of each system, we use the results 
of our linguistic matching algorithm as an initial mapping to both 
Cupid and SF. Given schemas of varying levels of details such as 
address (city, state, zip) and address, both Cupid and SF will 
return a low similarity measure. The reason is that Cupid is biased 
towards the similarity of leaf nodes, and SF towards the similarity 
of adjacent nodes. When matching schema elements with different 
contexts, such as researcher (name, address) and researcher 
(name, supervisor (name, address)), both Cupid and SF fail to 
distinguish researcher name from supervisor name. Our solution is 
able to obtain correct mappings because we maximize the use of 
structure by taking into considerations ancestor-context, child-
context and leaf-context similarities.  
(2) Complex matches: Up to now, most of current matching 
approaches have focused only on direct matches. They do not 
consider complex mapping. In Cupid, if a leaf node s in the source 
schema is highly similar to a target leaf node t in the target 
schema, a mapping element between s and t is returned. This 
resulting mapping may be 1:n, since a source element may map to 
many target elements. This simplest scheme to compute global 1:n 

mappings is very limited. First because only splitting values are 
considered (no n :1 mappings are discovered). Second, this 
technique leads frequently to wrong complex matches, imagine 
that we have a source schema with a node S.University having a 
child node Address (S.Address) and a target nodes T.University 
and T.Author where both of them having a child node Address. If 
the similarity between S.University.Address and 
T.University.Address approximates the similarity between 
S.University.Address and T.Author.Address, a wrong complex 
match will be discovered. This is avoided in our approach by 
considering only compatible nodes contexts. Finally, no 
union/select and join complex mappings are considered in Cupid. 
As in cupid, the discovery of complex match is SF is done after 
the structural matching. SF makes use of several filters to deduce 
the list of match candidates from a list of ranked matching pairs. 
The filtering can be characterized by providing a set of constraints 
and selection functions that pick the best subset of the multiple 
mapping under a given selection metric. For a given similarity 
threshold, SF selects a subset of a multiple mapping, in which all 
map pairs carry a similarity value of at least equal to the threshold 
value. Contrary to Cupid, SF can generate global m:n mappings, 
however similarly to Cupid several wrong mappings are generated 
and no specific operations are discovered. Our matching solution 
gives reasonably correct complex mappings because we limited 
the search scope to compatible nodes contexts and rely on 
structure to discover such mappings.    

7. XSLT scripts generation 
After validating generated mapping rules by the user, we structure 
the mapping result using W3C XML Schema language and this 
for two reasons. First, it is easier to manipulate structured 
mapping result either to modify it or to automatically generate 
transformation scripts. Second, structuring the mapping result 
greatly increases its reusability and adaptation, especially when 
schemas evolve. The nature of mapping result may be understood 
by considering different dimensions, each describing one 
particular aspect: (1) the entity dimension, specifying schema 
entities involved in a mapping element; (2) the cardinality 
dimension: determining the cardinality of a mapping element 
ranging from direct mapping (1:1) to complex mapping (m:n); (3) 
the structural dimension, reflecting the way how elementary 
mapping elements may be combined into more complex mapping 
elements; (4) the transformation dimension, reflecting how 
instances of the source schema are transformed during the 
mapping process; and (5) the constraint dimension, controlling 
the execution of a mapping element. Based on the established 
mapping between source and target schema in section 5.4, a 
mapping generator relates a given source and target schema 
graphs by generating an instance of the mapping schema 
containing a set of mapping elements each of which encapsulates 
all information needed to transform instances of source nodes into 
instances of target nodes. An XSLT generator will then traverse 
the both the target schema graph and the mapping result in a 
depth-first manner and generates adequate XSLT templates for 
each mapping element. The structure of the target schema is 
respected, while generating the XSLT script. This guarantees the 
generation of valid target instances after the transformation 
process. Structured mapping generator and XSLT generator 
descriptions are out of the scope of this paper. Detailed 
description and examples could be found in [2]. 

Figure 4. Characteristics of tested schemas. 

Figure 5. Comparative study with Cupid and SF.
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8. Conclusion 
Due to the extensive use of XML markup language in several 
domains, there has been a great interest on proposing rich data 
models that reflects document semantics and structure. The 
existence of such rich models has made a large amount of 
heterogeneously XML documents widely available. In this 
framework, XML documents transformation is of major concern. 
Currently, to perform XML document transformations, the burden 
falls on the human to manual coding the transformations. This 
paper proposed novel schema matching techniques for automating 
the transformation of XML documents. We essentially proposed a 
structural similarity measure that relates schemas nodes based on 
the similarity of the structural context in which they appear. Our 
experiments showed that the combination of ancestor, child and 
leaf context play an important role in deriving correct matches. 
Generated mapping result is then used to automatically generate 
XSLT scripts. A prototype system that incorporates a 
conceptualization toolkit for generating and graphically 
represented schema graphs for W3C XML schema and graphical 
user interfaces to support the matching process and its validation, 
has been implemented. 
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