
A Unifying Semantic Distance Model for Determining the
Similarity of Attribute Values∗

John F. Roddick1 Kathleen Hornsby2 Denise de Vries1

1 School of Informatics and Engineering,
Flinders University of South Australia,

PO Box 2100, Adelaide 5001, South Australia.
Email: {roddick,denise.devries}@infoeng.flinders.edu.au

2 National Centre for Geographic Information and Analysis,
University of Maine, Orono, Maine 04469-5711, USA.

Email: khornsby@spatial.maine.edu

Abstract

The relative difference between two data values is of
interest in a number of application domains including
temporal and spatial applications, schema versioning,
data warehousing (particularly data preparation), in-
ternet searching, validation and error correction, and
data mining. Moreover, consistency across systems in
determining such distances and the robustness of such
calculations is essential in some domains and useful in
many. Despite this, there is no generally adopted ap-
proach to determining such distances and no accom-
modation of distance within SQL or any commercially
available DBMS.

For non-numeric data values calculating the dif-
ference between values often requires application-
specific support but even for numeric values the prac-
tical distance between two values may not simply be
their numeric difference or Euclidean distance.

In this paper, a model of semantic distance is
developed in which a graph-based approach is used
to quantify the distance between two data values.
The approach facilitates a notion of distance, both
as a simple traversal distance and as weighted arcs.
Transition costs, as an additional expense of passing
through a node, are also accommodated. Further-
more, multiple distance measures can be incorporated
and a method of ‘localisation’ is discussed which al-
lows relevant information to take precedence over less
relevant information. Some results from our investi-
gations, including our SQL based implementation, are
presented.

Keywords: Semantic distance, difference mea-
sures, similarity.

1 Introduction

In most applications, determining the relative dis-
tance between two objects through an inspection of
the values of selected attributes is an important func-
tion. For simple numeric domains, this does not of-
ten cause a significant problem. However, for non-
numeric or non-planar numeric domains, even those
that are enumerated, this requires application-specific
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support. Despite this, there is no generally adopted
approach to determining semantic distance and there
is currently no accommodation of distance within
SQL or any commercially available DBMS. We use
the term semantic distance to refer to the notion of
relative or useful (as opposed to lexicographical, lin-
guistic or physical) distance between concepts.

The kinds of application requiring such support
vary widely and include:

• temporal and spatial applications, in which the
quickest route may not be the shortest or cheap-
est and vice versa,

• schema versioning, in which data stored under
one protocol must be comparable with new data
stored under a later protocol,

• data warehousing, in which the summarisation
and cleaning of data may be achieved more ef-
ficiently through the clustering of objects with
similar values,

• search engines, in which the entered keywords
might only be indicative of the useful keywords
to use when searching, i.e. a query using the
keywords Venezuela and Duck might also be in-
terested in articles which mention the Orinoco
Goose,

• validation and error correction, where the close-
ness of an attribute’s value to a predefined set of
values may require checking and/or correction,
and

• data mining, in which the proximity of objects
or the extraction of rules about clustered objects
may be required.

In general, each application that requires such sup-
port currently adopts one of two alternatives. Either
the design and, more significantly, the population of
comparison tables from scratch, or the forced trans-
lation of data with respect to some reference taxon-
omy. Although easier to implement, the latter option
has the effect of losing the original descriptions, with
the potential loss of useful information, while for the
former, the compilation of distance tables may be ex-
pensive, particularly since the domain from which the
attribute takes its values may be large. Moreover, the
determination of distance may need to be calculated
consistently across systems that may be controlled by
different organisations. A commonly agreed and flex-
ible policy is therefore required.

This paper proposes such a policy that can en-
able, as required, standardised distance datasets to
be constructed, adopted and exchanged. The policy



is flexible, in that it subsumes many of the reported
discussions on this problem1, and practical, in so far
as the computational complexity is low and simple
modifications to query languages such as SQL can
be implemented. The method for distance calcula-
tion developed in this paper allows for the reuse of
semantic distance information. We also believe that
many of the more advanced ideas being discussed in
the literature regarding object clustering can also be
accommodated. One advantage of a common model
is the reusability of comparison tables and functions,
a general agreement on the methods of applying se-
mantic distance over a (group of) applications and
ideally, as will be discussed later, enhancements to
standards such as SQL.

The paper is organised as follows. The next sec-
tion discusses in more detail the nature of distance
and similarity. Following that in Section 3 we will
develop our ideas of semantic distance and present a
general method for its calculation. We also discuss
the complexity of the method and, in Section 4, com-
pare our model to those outlined in the literature.
In Section 5 we discuss our work in implementing a
system, including changes to SQL, that utilises these
ideas. Finally, there is some discussion of future direc-
tions in Section 6 and a summary given in Section 7.

2 Conceptualising Distance and Similarity

There are many ways in which we can determine the
semantic distance between two objects. For example,
for numeric data, the data values can be viewed as
direct arguments to a calculation function. For non-
numeric data, some form of similarity procedure can
be developed that correlates non-numeric instances
with numeric values. Such methods commonly pro-
duce a numeric value indicating the closeness of the
values according to some accepted convention and
scale. However, in this respect, it can be argued that
the reduction of non-numeric data to numeric prox-
imity values can, for some applications, be improved,
particularly when the value itself has no meaning ex-
cept as a comparison.

Even for numeric data, in many cases the useful
distance between two values may not simply be the
numeric difference between them. A useful measure
of distance for some spatial applications, for example,
may be a measure of the time taken to get from point
A to point B rather than any of the numerous meth-
ods of measuring physical distance. Importantly, this
value may change as the mode of transport changes.

For temporal and geospatial applications, as well
as in other conceptual spaces, the distance between
two concepts2 as viewed through one or more given
models may be of interest. For example, the tempo-
ral interval concepts of overlaps and meets (q.v. (Allen
1983)) are closer in semantic terms than, say, the con-
cepts of overlaps and after. Similar semantics exist for
spatial terms (Kainz, Egenhofer & Greasley 1993).

The difference or similarity between two objects
may also be a function of a number of attributes,
each with different distance measures. For example,
finding cities similar to Adelaide first requires each
fact known about Adelaide to be compared to those
of other cities according to the semantics of that fact,
and then an aggregate difference determined between
Adelaide and each city evaluated.

1While not completely general, the authors could not find an
application in the literature which was unable to be accommodated
by this model.

2We use the terms object and concept in this paper in order to
distinguish between the instantiation of a notion and its notion in
a conceptual sense.

We can thus consider distance with reference to
four forms of (non-orthogonal) abstraction:

1. numeric attribute values used directly,

2. non-numeric attribute values converted to nu-
meric values for comparison,

3. distances between concepts / objects as repre-
sented through different models,

4. concepts / objects represented by aggregations
or clusters of (numeric or non-numeric) values.

In considering how to calculate distance and sim-
ilarity, there are a number of points which must be
taken into account:

• In many cases, a simple numeric subtraction is ei-
ther not possible or makes no sense. One street
name cannot be subtracted from another and
even house numbers provide a poor indication of
the distance between residences. Even attribute
values where subtraction seems suitable (such as
grid references) may contain subtle problems on
closer inspection. The calculation of distances
around the earth, for example, requires the use
of non-Euclidean mathematics3.

• Psychological research indicates that relative
measures are often more readily understood than
absolute values, particularly if the value given to
the distance would be arbitrary. Thus, in some
cases, reverting to some numeric representation
of distance may be inappropriate and notations
indicating that the distance between A and B is
the same as between C and D may be more con-
venient. For example, the relative fall in share
prices was similar to the magnitude of the fall
in the October 91 crash. That is, the focus may
also be on the changes between relative distances
rather than the relative distance itself.

• The model through which we view reality pro-
vides the measure(s) of distance. Arguably, few
objective measures of distance exist and where
they do, there are commonly multiple measures
from which the modeller must pick one for use
in the application. Colours, for example, may
be divided by brightness, greyscale equivalence,
colour disk distance, and so on, in order to de-
termine the relative distance between them.

• The model of reality used also provides the mea-
sure of what is considered sufficiently proximate
for a give use. Data warehousing and data sum-
marisation techniques generally aggregate data
to reduce storage space and provide a notion of
sameness in the clustering of similar objects. The
granularity of these values may be non-linear.

• Many applications, such as transport routes,
classifications of diseases, and so on, utilise a
model based on graphs rather than on simple hi-
erarchies or trees. The distance following one
path in a graph may be different from that for
an alternative path.

• The semantic distance between two points is not
always symmetric (q.v. (Rodŕıguez & Egenhofer
1999)). That is, the difference between A and B
may not be the same as that between B and A.

3This notion relates to Stevens’ scales of measurements (nom-
inal, ordinal, ratio, and so on.) where certain operations are not
valid on, for example, nominal values (Stevens 1946).



• There may be a transition cost in passing through
a node. For example, there may be a delay
or some other penalty associated with passing
through each town in a road trip. It may be ap-
propriate to add a loading to the total distance
for each intervening node to favour paths that
pass through fewer nodes.

3 A Unifying Model for Semantic Distance

Our proposals aim to accommodate the issues out-
lined in the previous section in a general framework
for determining the ‘distance’ between two objects in
some context, while allowing applications that do not
require the same semantic power to operate efficiently
within a simplification of the same framework.

We propose a model as follows:

• For each domain requiring a distance measure
(that is, for each different concept to be used),
the values in the domain to be distinguished are
arranged as a directed graph with the nodes rep-
resenting points in conceptual space, and the arcs
as connections between these points such that

1. distance is a useful4 semantic to use and,
2. a numeric or non-numeric value, represent-

ing this distance, can be associated with
each link.

• Nodes need not be named. However, external
reference to unmarked nodes is prohibited.

• A value d(ni, nj) representing the distance be-
tween each adjacent node is associated with each
directed arc indicating the uni-directional or bi-
directional distance between the nodes.

• Where numeric distances are used they need not
imply meaning. However, some convention must
be active such that the calculated values may be
understood in terms of that concept. To ensure
monotonically increasing distances, all distances
must be non-negative.

• A distance combination function ⊕must be spec-
ified or supplied. To ensure monotonically in-
creasing distance, ⊕ is constrained to yield a
value that is semantically no less distant than ei-
ther of the arguments, ie ∀i, j : i⊕ j ≥ max(i, j).
(i, j > 0). For most applications ⊕ will be simple
addition but alternative methods of combining
distances can be supplied, particularly for non-
numeric values.

• A focussing (or zooming) factor ζ for the graph
as a whole may be supplied to give a preference to
concepts closer to the notion under consideration
(à la (Hornsby & Egenhofer 1999)).

• Each node is given a (possibly zero) transition
cost τnode that is added to the cost of the path
in cases where the node is neither the start nor
end node.

• The distance D from a start node s to a final
node f is computed as the minimum value of a
function of the component distances d, as follows:

D(s, s) = 0
D(s, f) = d(s, f)

4Usefulness is almost always contextual. However, many con-
texts share similar views of the distance between domain values
and thus agreed values can often be determined.

if s and f are adjacent

D(s, f) = min(d(s, ni)⊕
ζ(τ(ni)⊕D(ni, f)))

otherwise.

where
d(ni, nj) is the distance between adjacent

nodes ni and nj ,
ζ is the focussing or zooming ratio,
τ is the transition cost of a node, and
⊕ is the combination function,

(commonly arithmetic addition).

• Finally, a limit value L can be supplied above
which any value of D(ni, nj) is considered infi-
nite.

Thus for ζ > 1 and τ ≥ 0, incorporating a greater
number of steps has a penalty. For ζ less than one
(and τ ≥ 0), objects reached through a higher number
of nodes are advantaged (although for ζ > 0 they still
keep getting further distant). For example, the cal-
culation of the shortest5 distance between Navy and
Orange in Figure 1(a) is affected by ζ and various
values of τ , as shown in Figure 2.

If more than one distance measure is adopted, then
additional labelled arcs can be included. In addition,
a set of rules specifying the allowable combination of
the different distance measures must be provided.

Note that the calculation proceeds recursively
from the start node s and can thus be terminated
if some maximum threshold is reached.

Consider the examples shown in Figure 1. In
the graphs we have adopted zero as no difference
and higher numbers as the magnitude of difference,
ie. greater semantic distance. In some examples, only
one (bi-directional) distance measure is included so
arcs are labelled only with a single distance between
nodes.

While the model is reasonably powerful, it can be
simplified easily. Common simplifications include:
• Common distances on all arcs. Ie, a distance may

be provided for the whole graph which is applied
to all arcs. In this case the distance represents
the number of arcs travelled.

• An assumption of symmetric distances (as indi-
cated by bi-directional arcs). In this case, as in
some of the examples in Figure 1, only one dis-
tance need be given.

• A tree structured graph. In this case, when cou-
pled with common distances on arcs, the distance
represents an indication of the height of the min-
imum unifying concept.

• A zooming factor of unity. In this case there is
no penalty (or advantage) for being further away
except by virtue of the addition of arc distances.

• A node transition cost of zero. That is, all costs
are the result of traversing links.

• All link distances zero. That is, all costs are the
result of passing through nodes.

If ζ ≥ 0 and either τ > 0 or the distances in the
graph are non-zero, the complexity of an algorithm
(such as that in Figure 3) to compute the distance
can be seen to be the same as the Shortest Path prob-
lem. Note also that, assuming again that ζ ≥ 0, the
computation is deterministic for a finite number of
nodes. Moreover, as the calculation is always addi-
tive, if the limit value L is provided (above which the
concepts are considered totally dissimilar), the time
to compute the distance can be further reduced.

5Note there are other paths which compute to higher values.
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Figure 1: Example Applications

4 Related Work

Much of the work related to semantic distances re-
lies on the linguistic or semantic similarity of terms
that are based on a lexicographic definition of words
or terms without reference to the application con-
text. In this work we assume semantic similarity is
dependent upon context. For example, work based
on hierarchical schemata evaluates the similarity of
terms based on spatial or mereological classifications
(that is, part–whole relationships) of entities in which
the granularity of the description of entities and their
classes affects the value of the distance. In this case,
the IS A structure can add distance between similar
concepts.

Kedad and Métais (1999) propose using meta-
data, including a linguistic dictionary, in a hierarchi-
cal structure with no distance set by the user. In their
model, values are considered close if they belong to
the same class. The semantic distance is fixed by the
dictionary definition. They employ examples show-
ing how classes of colours can be classified in terms
of the various terms for shades of primary colours.
The model proposed is then able, for example, to ex-
tract values similar to the colour red such as vermilion
or ruby. The semantic similarity dependent upon a
particular context is not readily extracted. For exam-
ple, pastel colours would not be able to be processed
as a query as it is not part of this colour hierarchy.
In contrast, the work described here proposes a graph
structure from which the distance between many con-
ceptual classes can be determined.

Weinstein and Birmingham measure syntactic cor-
respondence between definitions of pairs of terms.
Their work deals with artificial ontologies and not
real world complexities as in the context of real-world
applications, it is not possible to calculate the mean-

ing of a term (Weinstein & Birmingham 1999). They
define concepts as having roles and constraints, where
roles include a relation, ie. a relationship to other con-
cepts. A concept that restricts the set of instances
that can satisfy the relation is termed a type restric-
tion. Contexts restrict accessibility within an ontolog-
ical structure and are used to hide concepts and rela-
tions. Contexts are partially ordered and accessibility
among contexts is transitive and non-symmetric.

. . . in these structures, concepts are defined
in relation to other concepts using logic. Lo-
cal concepts inherit from shared concepts,
and primitives are shared. In our artifi-
cial ontologies, concept definitions include
roles with numeric and instance fillers, sub-
ject to unary and binary constraints. We
. . . explore the nature of these structures:
the degree to which we can predict over-
lap of concept denotations, and the poten-
tial usefulness of these predictions to sup-
port agent communication. (Weinstein &
Birmingham 1999)

In our model, by having a separate concept graph
for each context, real world complexities can be ac-
commodated, because the context itself, defined by
the user, gives meaning to the terms used.

Spanoudakis and Constantopoulos (1994, 1996)
have investigated in depth the use of metrics to
measure the distance between semantic descriptions
of artefacts, particularly those developed at various
stages of software development. Their model operates
on semantic descriptions of objects using the mod-
elling abstractions - classification, generalization and
attributes. Objects are compared by four partial dis-
tance functions, which compare objects at different
levels of detail, measuring identification, classifica-



Steps
Navy → Blue τBlue Blue → White τW hite White → Yellow τY ellow Yellow → Orange

0.15 0 0.2 0 0.3 0 0.3

ζ
1 0.15 0.35 0.65 0.95

1.2 0.15 0.39 0.75 1.11
0.8 0.15 0.31 0.55 0.79

Navy → Blue τBlue Blue → White τW hite White → Yellow τY ellow Yellow → Orange
0 0.5 0 0.4 0 0.3 0.3

ζ
1 0 0.5 0.9 1.5

1.2 0 0.6 1.08 1.8
0.8 0 0.4 0.72 1.2

Navy → Blue τBlue Blue → White τW hite White → Yellow τY ellow Yellow → Orange
0.15 0.5 0.2 0.4 0.3 0.3 0.3

ζ
1 0.15 0.85 1.55 2.15

1.2 0.15 0.99 1.83 2.55
0.8 0.15 0.71 1.27 1.75

Figure 2: The effects of varying ζ and τ for the example in Figure 1(a).

Set solution (target value) to infinite.
Set calcdist (working value) to zero.
Non-deterministically follow all paths starting at s adding to calcdist until

(a) f reached
If calcdist < solution and calcdist < threshold then

set solution to calcdist
End-if
Terminate search.

(b) calcdist not less than solution
more expensive path - Abandon search.

(c) calcdist greater than threshold
path too expensive - Abandon search.

(d) node is marked
looping - Abandon search.

If solution is infinite then no path has been found.

Figure 3: Marking algorithm for model

tion, generalization and attribution distances. The
results of the partial distance function are aggregated
into an Overall Distance measure which is then trans-
formed into a Similarity measure. This model also
introduces a Salience function, where salience is de-
fined as the belief that an attribute is dominant based
on a compound of the properties charactericity, ab-
stractness and determinance. It is unclear, however,
at what point the salience function is calculated and
applied to the similarity measure.

Miller and Yang apply clustering techniques and a
discrete distance function to measure distances over
interval data where the interval distance measures the
degree of association (Miller & Yang 1997). However,
all examples shown are quantitative intervals. Their
method assesses whether a semantically meaningful
distance metric is available in order to consider those
attributes together and apply clustering to the set of
attributes. It is unclear how non-numeric intervals are
treated.

Richardson and Smeaton combine the lexical
database WordNet (Fellbaum 1998) with Resnick’s
measure of similarity to give a semantic simi-
larity measure that can be used as an alterna-
tive to pattern matching (Richardson, Smeaton &
Murphy 1994). They use synsets (synonymous word
forms), collocations (connected words) and a hierar-
chical concept graph (HCG) with semantic pointers
to hyponyms/hypernyms (is a/has a relationships)
and meronyms/holonyms (part of/ has part relation-
ships). Edges between concepts are given weights
and the weight of a link is affected by the density
of the HCG at that point, the depth in the HCG

and the strength of connotation between the nodes.
Richardson and Smeaton highlight one of the sig-
nificant problems with WordNet and with hierarchi-
cal graphs – The irregular densities of links between
concepts results in unexpected semantic distance mea-
sures. These are typically as a result of expected links
between concepts not being present.

Rodŕıguez and Egenhofer (1999) present an ap-
proach for semantic similarity across different ontolo-
gies based on the matching process of each of the spec-
ification components in the entity class representa-
tions. The similarity function determines lexical simi-
larities with feature sets (functions, parts, attributes).
The similarity function equals the weighted sum of
each specification component. The work focusses on
entity classes and on comparing distinguishing fea-
tures in terms of strict string matching between syn-
onym sets that refer to those features. It is interest-
ing to note that when undertaking human testing, the
subjects’ answers varied on the number of ranks used
to classify entity classes. However, the authors left
semantic similarity among features to future work.

Rodŕıguez, Egenhofer and Rugg (1999) combine
feature mapping with semantic distance calculation
to assess semantic similarities and provide a summary
of other work that has been undertaken in compar-
ing semantics. Their model for measuring semantic
similarity has a strong linguistic basis and takes into
account synonyms and different senses in the use of
terms. It also considers component-object relations
with properties of asymmetry in evaluation of simi-
larity. Their work outlines a model that assesses simi-
larity by combining feature mapping with a semantic



distance measurement defined in terms of the rele-
vance of different features in terms of the distance in
a semantic network. The global similarity function
is a weighted sum of the similarity values for parts,
functions and attributes and yields values between 0
and 1. Context, although recognized as a relevant
issue for semantic similarity, is not addressed in this
work.

Sowa’s Conceptual Graph Standard (Sowa 1998,
1999) provides a guide for the implementation of
conceptual graphs in systems. The conceptual graph
is an abstract representation for logic with nodes as
concepts and conceptual relations linked together by
arcs. The conceptual graphs developed within our
model applies these standards and uses the operations
defined within the standard as well as extending func-
tionality with new operations to determine similarity
and to specify queries.

5 Implementation

One of the major motivations of our approach is that
reusable semantic distance graphs can be developed.
These graphs could then be shared locally or made
available as standardised datasets.

It is not our aim here to define precisely the nature
of any SQL enhancements. Indeed, various implemen-
tations can be envisaged that do not affect the model.
Rather, our aim here is to show that such enhance-
ments can be made fairly simply and can provide a
powerful and useable extension.

In our implementation6, each of our concepts is
realised through four related tables:

• A relation containing information about defined
graphs, including a value for ζ for each graph,

• A relation containing defined comparators, for
each concept, such as Close To, Unlike, and so
on,

• A ternary relation containing node details includ-
ing τ for each node,

• A 4-ary relation containing arc details including
arc distances and a flag indicating whether the
arc distance is symmetric. If not then a separate
tuple must be included for the reverse link.

While the graphs could be user-supplied, it would also
be possible to develop libraries of commonly accepted
concepts in a similar manner to that used for stan-
dardised domain-specific XML schema definitions.

As well as providing the graph searching algo-
rithms, we extended SQL to provide support within
the query language for most of the additional seman-
tics7. This consisted of three parts:

1. DDL commands to define, delete and modify con-
cept graphs.

2. Commands to define additional comparators
within SQL.

3. Modifications to the syntax of the value compara-
tor.

To support the definition of the graphs we included
a CREATE CONCEPTGRAPH statement as follows:

6For general utility, our prototype implementation is based
around the relational model and the freely available MySQL software
(MySQL n.d.).

7The combination function ⊕ was not implemented in our pro-
totype - we used simple arithmetic addition. However, suggestions
for its inclusion in SQL are provided.

CREATE CONCEPTGRAPH <graphname>
FROM UNIDIRECTIONAL|BIDIRECTIONAL

ADJACENCYTABLE <table>
[VERTICES <table>]
[ZOOM BY <zoomfactor>]
[COMBINATION FUNCTION <combfunc>]
[MAXIMUM <max value>];

where

ADJACENCYTABLE is a ternary relation representing
the domain values and the conceptual distance
between them.

The optional VERTICES table has a binary structure
and allows vertices with transition costs to be
held.

The optional ZOOM BY clause provides for a zooming
factor. If omitted it defaults to 1.

The optional COMBINATION FUNCTION clause pro-
vides for an alternative function for combining
elements of the distance calculation. If omitted
it defaults to arithmetic addition.

The optional max value provides a threshold dis-
tance beyond which any distance is deemed to
be the maximum. If omitted it defaults to ∞.

An attribute’s definition can then be qualified as re-
ferring to a given concept graph. For example:

CREATE TABLE STOCKREL
...
ITEMCOLOUR CHAR(10) CONCEPTGRAPH(COLOURS),
ITEMTYPE CHAR(10) CONCEPTGRAPH(STOCKITEMS),
...

The SELECT statement was then extended by ex-
tending the comparator operators. This was done by
defining additional operators as follows:

CREATE COMPARATOR <comparatorname>
OVER <conceptgraph>
AS <distanceconstraint>

where distanceconstraint provides a simple arith-
metic function. For example,

CREATE COMPARATOR CLOSETO
OVER COLOURS
AS "< 0.3"

CREATE COMPARATOR CLOSETO
OVER STOCKITEMS
AS "< 0.4"

CREATE COMPARATOR UNLIKE
OVER COLOURS
AS "> 0.7"

For example, queries searching for (a)
GREEN−ish stock items and (b) New chairs
which have a (very) different colour to stock item
A12, could be written:

SELECT ITEMNO, ITEMDESC
FROM STOCKREL
WHERE ITEMCOLOUR CLOSETO "GREEN"

SELECT NEWITEMNO, NEWITEMDESC
FROM STOCKREL, NEWSTOCK
WHERE ITEMNO = "A12"
AND NEWITEMTYPE CLOSETO "Chair"
AND ITEMCOLOUR UNLIKE NEWITEMCOLOUR



Queries using concepts not explicitly defined can
also be used through explicit specification in the
query. For example, given an alternative colour-
based distance metric of intensity, which might con-
sider rich colours as closer to each other than to pale
colours, we could write:
SELECT ITEMNO, ITEMDESC

FROM STOCKREL
WHERE ITEMCOLOUR

CLOSETO(INTENSITY) "GREEN"

Our extensions were implemented through query
interception and rewriting but could also have been
implemented through direct amendment of the SQL
processing.

6 Discussion and Future Directions

There are occasions when more than one distance
measure is needed, either independently or in combi-
nation. Two modes of combination can be identified:
• Integration of Concepts. In this mode, concepts

can be combined at a fine-grained level to allow a
mixing of paths between intermediate ideas. For
example, the travel time from Adelaide to Orono
may be determined using many graphs, one for
roads, a second one for air routes and a third for
rail. In this case the closest airport might not
represent the most appropriate route.

• Aggregation of Concepts. In this mode, concepts
are not able to be combined. However, a mea-
sure of similarity may be ascertained through ag-
gregating the results over many paths. The city
of Adelaide in Australia, for example, could be
considered similar to the city of San Diego in the
USA, given both are a similar age, have simi-
lar populations, weather patterns, industrial em-
phases, a large island just off the coast, and so
on.

One particular area that therefore suggests itself
for future work is the use of combinations of concepts
to find broad similarities (similar to Spanoudakis
and Constantopoulos’ Aggregate Distance Metric
(Spanoudakis & Constantopoulos 1996)). For exam-
ple, we might ask not only Find all cities that are
similar to Adelaide where similar is defined over a
collection of measures, but also implement a form of
data mining that utilises these aggregate difference
measures.

7 Summary

Determining the distance between object consistently
is a common and often time-consuming problem. This
paper has presented a flexible and general model
for determining the semantic distance between ob-
jects, which we believe can be adopted (and un-
derstood) generally and implemented through sim-
ple graph search algorithms. Such a model can be
used to promote a general agreement on the methods
of applying semantic distance over a group of appli-
cations, while still allowing tailoring when required.
The model facilitates the reuse of distance measures
through reusable semantic distance graphs and has
demonstrated the plausibility of simple enhancements
to standards such as SQL.
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