
Answering Aggregate Queries in Data Exchange

Foto Afrati∗
National Technical University of Athens

afrati@softlab.ece.ntua.gr

Phokion G. Kolaitis†

IBM Almaden Research Center
kolaitis@almaden.ibm.com

ABSTRACT
Data exchange, also known as data translation, has been extensively
investigated in recent years. One main direction of research has fo-
cused on the semantics and the complexity of answering first-order
queries in the context of data exchange between relational schemas.
In this paper, we initiate a systematic investigation of the semantics
and the complexity of aggregate queries in data exchange, and make
a number of conceptual and technical contributions. Data exchange
is a context in which incomplete information arises, hence one has to
cope with a set of possible worlds, instead of a single database. Three
different sets of possible worlds have been explored in the study of
the certain answers of first-order queries in data exchange: the set
of possible worlds of all solutions, the set of possible worlds of all
universal solutions, and a set of possible worlds derived from the
CWA-solutions. We examine each of these sets and point out that
none of them is suitable for aggregation in data exchange, as each
gives rise to rather trivial semantics. Our analysis also reveals that, to
have meaningful semantics for aggregation in data exchange, a strict
closed world assumption has to be adopted in selecting the set of pos-
sible worlds. For this, we introduce and study the set of the endomor-
phic images of the canonical universal solution as a set of possible
worlds for aggregation in data exchange. Our main technical result
is that for schema mappings specified by source-to-target tgds, there
are polynomial-time algorithms for computing the range semantics of
every scalar aggregation query, where the range semantics of an ag-
gregate query is the greatest lower bound and the least upper bound of
the values that the query takes over the set of possible worlds. Among
these algorithms, the more sophisticated one is the algorithm for the
average operator, which makes use of concepts originally introduced
in the study of the core of the universal solutions in data exchange.
We also show that if, instead of range semantics, we consider possi-
ble answer semantics, then it is an NP-complete problem to tell if a
number is a possible answer of a given scalar aggregation query with
the average operator.

∗Part of the research on this paper was carried out while this author
was visiting the IBM Almaden Research Center.
†On leave from UC Santa Cruz.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation
General Terms: Algorithms, Theory
Keywords: Schema mapping, data exchange, aggregate queries

1. Introduction and Summary of Results
Data exchange, also known as data translation, can be succinctly

described as the problem of transforming data structured under one
schema, called the source schema, into data structured under a dif-
ferent schema, called the target schema, in such a way that certain
constraints between the two schemas are satisfied. Data exchange
is typically formalized using schema mappings between the source
schema and the target schema. In recent years, the study of data ex-
change between relational schemas has been extensively investigated.
Several different aspects of data exchange have been explored as part
of this investigation. Specifically, one main direction of research has
addressed the problem of identifying “good” solutions for data ex-
change, such as universal solutions and the core of the universal so-
lutions, and on designing polynomial-time algorithms for producing
such “good” solutions [6, 7, 13, 14]. A different main direction has
explored in depth fundamental operators on schema mappings, such
as the composition operator and the inverse operator [5, 8, 9, 19, 20].
A third main direction has studied the semantics and the complexity
of query answering in the context of data exchange between relational
schemas [6, 16, 17, 18]. Data exchange between XML schemas, as
well as extensions of the framework to data exchange in the pres-
ence of arithmetic comparisons and to peer data management sys-
tems, have also been investigated [2, 4, 12].

Consider a data exchange setting specified by a schema mapping
M between a source schema S and a target schema T, and let Q
be a query over T. Query answering in this setting is the following
problem: given a source instance I , find the certain answers of Q
with respect to I . Typically, the set of possible worlds used in the
definition of the certain answers of Q with respect to I is the set of
all solutions for I . So far, the study of the certain answers in data ex-
change has focused primarily on conjunctive queries and on their ex-
tensions with union and inequalities �=. In particular, it is known that
for schema mappings specified by source-to-target tuple-generating
dependencies (s-t tgds, in short), the certain answers of conjunctive
queries can be computed in polynomial time in the size of the source
instance I . Moreover, this tractability result extends to unions of con-
junctive queries with at most one inequality per disjunct [6]. This
turns out to be a sharp boundary, since computing the certain answers
of conjunctive queries with at most two inequalities per disjunct is,
in general, a coNP-complete problem [18]. Note that these are data
complexity results, in the sense that both the schema mapping M and
the query Q are fixed, i.e., only the source instance I is the input.

129

In this paper, we initiate an investigation of aggregate queries in
data exchange. In addition to their ubiquity in on-line analytical pro-
cessing (OLAP), aggregate queries are also widely used in data ware-
housing and in extract-transform-load (ETL) processes, two impor-
tant applications that can be modeled as data exchange tasks. Given
that the investigation of data exchange has been accompanied by the
development of prototype systems and industrial tools [15], we be-
lieve that the time is ripe for a systematic study of aggregate query
answering in data exchange. Here, we embark on this study by mak-
ing a number of conceptual and technical contributions to aggregate
query answering for schema mappings specified by s-t tgds.

What is the “right” semantics of aggregate queries in a data ex-
change setting? This is the first key issue that has to be addressed.
Data exchange is a framework in which incomplete information arises,
hence one has to cope with a set of possible worlds, instead of a single
database. This is so because the schema mapping at hand typically
under-specifies the data exchange task and, as a result, for a given
source instance, there are multiple target instances (often containing
null values) that satisfy the constraints of the schema mapping.

Aggregate queries have already been fruitfully studied in other con-
texts of incomplete information, and we can draw on that experience.
Specifically, Arenas et al. [3] studied aggregate queries in the con-
text of inconsistent databases, i.e., databases that violate functional
dependencies or some other integrity constraints. In this case, the
possible worlds are the repairs of the inconsistent database, which,
by definition, are consistent databases that differ from the given in-
consistent database in a minimal way. Arenas et al. [3] introduced
range semantics as the semantics of aggregate queries on inconsis-
tent database. This means that, given an inconsistent database, the
aggregate query is first evaluated on each repair, and then the inter-
val with endpoints the greatest lower bound (glb) and the least upper
bound (lub) of the values obtained is returned as the answer to the
aggregate query on the given inconsistent database. Range semantics
have also been used in subsequent investigations of aggregate queries
in inconsistent databases [10, 11]. They can be viewed as the certain
answers for aggregate queries, since they guarantee that in every pos-
sible world, the value of the aggregate query will be in that interval.
In what follows, we will adopt range semantics as the semantics of
aggregate queries in data exchange.

The preceding analysis, however, is only one half of the puzzle.
Before applying range semantics, one has to determine the underlying
set of possible worlds. As mentioned earlier, when defining the cer-
tain answers of conjunctive queries (and, more broadly, of first-order
queries) in data exchange, the set of possible worlds typically used is
the set of all solutions for a given source instance. Two other alterna-
tives, however, have also been considered. The first is the set of all
universal solutions, which (unlike the set of all solutions) was shown
in [7] to give rise to tractable semantics for conjunctive queries with
inequalities and, more generally, for existential first-order queries.
The second alternative was introduced by Libkin [17], who argued in
favor of a semantics having a closed-world-assumption (CWA) char-
acter. To this effect, Libkin introduced the class of CWA-solutions
and used them to define a certain answer semantics based on these
solutions, as well as variants of certain answers.

We examine these three alternatives and point out that none is a
viable choice as the set of possible worlds for aggregate queries in
data exchange. Indeed, each of them gives rise to rather trivial range
semantics for aggregate queries. Intuitively, the reason is that they al-
low for some form of open world assumption, which, in turn, renders
the range semantics meaningless. Even the semantics proposed by
Libkin [17] suffer from this drawback because queries are ultimately
evaluated over databases that may contain arbitrary constants (these
are the databases in the sets Rep(T), where T is a CWA-solution).

After exploring and rejecting some additional alternatives, we ar-
rive at the conclusion that a strict closed world assumption has to
be adopted for the semantics of aggregate queries in data exchange.
To this effect, we propose the set of the endomorphic images of the
canonical universal solution as the set of possible worlds for aggre-
gate queries. This set of possible worlds gives rise to meaningful
range semantics for aggregate queries. Moreover, for conjunctive
queries, the certain answers with respect to this set of possible worlds
coincide with the “standard” certain answers for conjunctive queries
in which the set of possible worlds is the set of all solutions.

Once the semantics of aggregate queries in data exchange have
been defined, we investigate the data complexity of aggregate queries
of the form SELECT f FROM R, where f is one of the aggre-
gate operators min(A), max(A), count(A), sum(A), avg(A), and
count(∗), and where R is a target relation symbol and A is an at-
tribute of R. These are precisely the queries studied by Arenas et al.
in [3] in the context of inconsistent databases, where they were called
scalar aggregation queries. Our main technical result is that if M
is schema mapping specified by s-t tgds, then there are polynomial-
time algorithms for the range semantics of every scalar aggregation
query of the above form. The polynomial-time algorithms for min,
max, count, and for a special case of sum are relatively straightfor-
ward, but make use of the canonical universal solution and its core
(and of known polynomial-time algorithms for computing the canon-
ical universal solution and its core). The polynomial-time algorithm
for avg is by far more sophisticated and makes use of the concepts of
a block of nulls and of a local endomorphism, which were introduced
in [7] and used to design a polynomial-time algorithm for computing
the core of the canonical universal solution. This tractability result
contrasts sharply with one of the main results in [3] to the effect that
it is a coNP-hard problem to compute the range semantics of aggre-
gate queries with the avg operator on inconsistent databases with two
functional dependencies.

As mentioned earlier, range semantics are a form of certain an-
swer semantics. Our final result asserts that the boundary between
tractability and intractability for aggregate queries with the avg op-
erator is crossed if, instead of range semantics, we consider possible
answer semantics. Specifically, we show that it is an NP-complete
problem to tell whether or not a number is a possible answer of a
given scalar aggregation query with the average operator.

2. Preliminaries
In this section, we establish terminology and notation that will be

used in the rest of the paper, and present a minimum amount of the
necessary background material. For more details, see [3, 6, 7].
Schemas and Instances A (relational) schema R is a finite sequence
(R1, . . . , Rk) of relation symbols, each of a fixed arity. An instance I
over R is a sequence (RI

1, . . . , R
I
k), where each RI

i is a finite relation
of the same arity as Ri. We shall often use Ri to denote both the
relation symbol and the relation RI

i that interprets it. We assume that
all instances are finite, which means that the relationsRI

i , 1 ≤ i ≤ k,
are finite. An atom over R is a formula P (v1, . . . , vn), where P is
a relation symbol in R and v1, . . . , vn are variables. A fact in an
instance I is an expression of the formRI

j (a1, . . . , an), where j ≤ k

and the tuple (a1, . . . , an) is a member of the relation RI
j of I .

In what follows, we assume that S is a fixed source schema and
T is a fixed target schema. We also assume that we have an infinite
set Const of constants and an infinite set Null of nulls that is disjoint
from Const. Since we are interested in aggregate queries, we assume
that Const is a superset of the set of all (non-negative and negative)
integers. Analogous results hold if a different infinite ordered set is
considered. All individual values in source instances are assumed to

130

be constants. In contrast, target instances typically have individual
values from Const ∪ Null. This situation arises when we perform
data exchange from S to T: the individual values of source instances
are known, while incomplete information in the specification of data
exchange may give rise to null values in the target instances.
Schema mappings, universal solutions, and cores A schema map-
ping is a triple M = (S,T,Σ) consisting of a source schema S, a
target schema T, and a set Σ of database dependencies that specify
the relationship between the source schema and the target schema.
We say that M is specified by Σ.

Let M = (S,T,Σ) be a schema mapping. If I a is source in-
stance, then a solution for I under M is a target instance J such that
(I, J) |= Σ. The set of all solutions for I under M is denoted by
Sol(M, I) or, simply, Sol(I) if M is understood from the context.

Let J , J ′ be two target instances. A function h from Const∪ Null
to Const∪Null is a homomorphism from J to J ′ if the following two
conditions hold:

(1) For every c in Const, we have that h(c) = c.
(2) For every relation symbolR in T and every tuple (a1, . . . , an) ∈

RJ , we have that (h(a1), . . . , h(an)) ∈ RJ′
.

Two instances J and J ′ are said to be homomorphically equivalent
if there are homomorphisms from J to J ′ and from J ′ to J . An
endomorphism of J is a homomorphism from J to J .

Let M = (S,T,Σ) be a schema mapping and I a ground instance.
A universal solution for I under M is a solution J for I under M
such that for every solution J ′ for I under M, there is a homomor-
phism h : J → J ′. Intuitively, universal solutions are the “most
general” solutions among the space of all solutions for I . The set of
all universal solutions for I under M is denoted by USol(M, I) or,
simply, USol(I) if M is understood from the context. Clearly, if J
and J ′ are universal solutions for I , then J and J ′ are homomorphi-
cally equivalent.

A source-to-target tuple-generating dependency (or an s-t tgd) is a
first-order formula of the form ∀x(ϕ(x) → ∃yψ(x,y)), where ϕ(x)
is a conjunction of atoms over S, ψ(x,y) is a conjunction of atoms
over T, and every variable in x occurs in an atom in ϕ(x). Usually,
we drop the universal quantifiers in the front of such an s-t tgd, and
simply write ϕ(x) → ∃yψ(x,y).

Let M = (S,T,Σ) be a fixed schema mapping specified by a
finite set Σ of s-t tgds. Given a source instance I , a canonical uni-
versal solution for I under M can be obtained in time polynomial in
the size of I using the naive chase procedure. Specifically, for every
s-t tgd ϕ(x) → ∃yψ(x,y) in Σ and for every pair of tuples a, b
from I such that I |= ϕ(a,b), we introduce a fresh tuple of distinct
nulls u and create new facts in the canonical universal solution so that
ψ(a,u) holds. Note that a canonical universal solution for I under
M is unique up to renaming nulls. Thus, we refer to the canonical
universal solution for I under M, and denote it by CanSol(M, I)
or, simply, CanSol(I) if M is understood from the context. As an
example, let M be the schema mapping specified by the s-t tgd

(x, y) → ∃z1∃z2(F (x, z1) ∧ F (z1, y) ∧ P (z2)).

Consider the source instance I = {E(a, b), E(a, c)}. Then the canon-
ical universal solution CanSol(M, I) for I is the target instance

{F (a, u1), F (u1, b), P (u2), F (a, u3), F (u3, c), P (u4)},
where u1, u2, u3, and u4 are distinct nulls.

Let J be a target instance. A sub-instance J∗ of J is called a
core of J if there is a homomorphism h from J to J∗, but there is
no homomorphism from J to a proper sub-instance J ′ of J∗. The
following facts are well known (see [7] for the proofs):

• Every instance J has a core (this uses the finiteness of J).

• If J1 and J2 are cores of J , then J1 and J2 are isomorphic; hence,
we can talk (up to isomorphism) about the core of J , and write
core(J) to denote it.

• If J and J ′ are homomorphically equivalent target instances, then
the cores of J and J ′ are isomorphic. In particular, if M is a
schema mapping and I is a source instance, then all universal
solutions for I have isomorphic cores. Thus, we can talk (up to
isomorphism) about the core of the universal solutions for I .

• Let M = (S,T,Σ) be a fixed schema mapping such that Σ is
a set of s-t tgds. If I is a source instance, then the core of the
universal solutions for I is also a solution; hence, it is the smallest
universal solution. Moreover, the core of the universal solutions
can be computed in time polynomial in the size of I .

Continuing with the preceding example, the core of the universal so-
lutions for the source instance I = {E(a, b), E(a, c)} is the target
instance {F (a, u1), F (u1, b), F (a, u3), F (u3, c), P (u2)}. Another
isomorphic core is {F (a, u1), F (u1, b), F (a, u3), F (u3, c), P (u4)}.
Certain Answers and Aggregate Certain Answers Let R and R∗

be two (not necessarily distinct) relational schemas. Suppose that for
every R-instance I , there is a set W(I) of R∗-instances that are as-
sociated with I ; intuitively, we view W(I) as a set of possible worlds
associated with I . For example, in the context of data exchange,
W(I) may the set of all solutions for I ; similarly, in the context of
inconsistent databases, W(I) may be the set of all repairs of I .

DEFINITION 2.1. Let Q be a k-ary first-order query over R∗.
• We say that a k-tuple t is a certain answer of Q with respect to

I and W(I) if for every J ∈ W(I), we have that t ∈ Q(J), where
Q(J) is the k-ary relation obtained by evaluating Q on J .

• We write certain(Q, I,W(I)) to denote the set of all certain
answers of Q with respect to I and W(I). In symbols,

certain(Q, I,W(I)) =
⋂

{Q(J) : J ∈ W(I)}.
Assume thatQ is a k-ary first-order query on R∗ and f is one of the

aggregate operators min(A), max(A), count(A), sum(A), avg(A),
and count(∗), where A is an attributes of Q. In what follows, we
write f(Q) to denote the aggregate query SELECT f FROM Q.

What are the “certain answers” of the aggregate query f(Q) with
respect to I and the set of possible worlds W(I)? One natural in-
terpretation is to consider the range of all possible values f(Q)(J),
where J is in W(I), and then return the interval with endpoints
the glb and the lub of these possible values. As mentioned earlier,
this is precisely the semantics for aggregate queries in inconsistent
databases adopted by Arenas et al. [3].

DEFINITION 2.2. Let Q be a k-ary first-order query over R∗ and
let f be one of the aggregate operators min(A), max(A), count(A),
sum(A), avg(A), and count(∗), where A is an attributes of Q.
When applying aggregate operators to instances with null values, we
adopt the convention of SQL for the treatment of nulls. Specifically,
for all aggregate operators other than count(∗), a null-elimination
step is performed before the aggregate operator is applied, hence null
values are not taken into account into the computation (see [1]).

• We say that a value r is a possible answer of Q with respect to I
and W(I) if there is an instance J in W(I) such that f(Q)(J) = r.

• We write poss(f(Q), I,W(I)) to denote the set of all possible
answers of the aggregate query f(Q) with respect to I and W(I).

• The aggregate certain answers of the aggregate query f(Q) with
respect to I and W(I) is the interval

[glb(poss(f(Q), I,W(I))), lub(poss(f(Q), I,W(I)))],

where glb and lub stand, respectively, for greatest lower bound and
least upper bound.

131

• We write agg-certain(f(Q), I,W(I)) to denote the aggregate
certain answers of f(Q) with respect to I and W(I). If the set W(I)
of possible worlds is understood from the context, then we simply
write agg-certain(f(Q), I).

Clearly, the aggregate certain answers provide the following guar-
antee: if agg-certain(f(Q), I,W(I)) = [c, d], then for every J in
W(I), we have that c ≤ f(Q)(J) ≤ d.

We will study aggregate certain answers in the context of data ex-
change, where, as seen earlier, we typically have instances containing
null values. Note that the null-elimination step that precedes the ap-
plication of aggregate operators can have an impact on the results.
For example, let R = {(101, 101), (201, 201, (301, 301), (u, 0)} be
a binary relation with attributes A and B, where u is a null. Then
avg(A) = 201 and avg(B) = 150.75. In contrast, if nulls were not
eliminated, then both averages would be equal to 150.75.

3. Semantics of Aggregation in Data Exchange
Let M = (S,T,Σ) be a schema mapping such that Σ is a finite

set of s-t tgds. Consider an aggregate query of the form f(Q), where
Q is a k-ary first-order query over the target schema T and f is an
aggregate operator. In view of the preceding discussion, to assign
meaningful semantics to the query f(Q) in this context, we must first
associate a set W(I) of suitable possible worlds with every source
instance I , and then return the interval agg-certain(Q, I,W(I)) as
the semantics of f(Q) in this context.

In data exchange, three different sets of possible worlds have been
considered in the study of the semantics of first-order queries: the
set Sol(M, I) of all solutions for I [6]; the set USol(M, I) of all
universal solutions for I [7]; and a set of possible worlds based on the
CWA-solutions [17]. We now examine each of these three alternatives
and show that none of them is suitable as a set of possible worlds for
the semantics of aggregate queries.

3.1 Sol(I) and USol(I) as Sets of Possible Worlds

The set of all solutions and the set of all universal solutions give
rise to rather trivial aggregate certain answer semantics. This is a
consequence of the following two simple results.

PROPOSITION 3.1. Let M = (S,T,Σ) be a schema mapping
such that Σ is a finite set of s-t tgds. Assume thatR is a target relation
symbol and f is one of the aggregate operators min(A), max(A),
sum(A), and avg(A), where A is an attribute of R. If I is source
instance, then agg-certain(f(R), I,Sol(I)) = (−∞,∞).

PROOF. (Sketch) We use the fact that if J is a target instance that
contains the canonical universal solution CanSol(I), then J is a solu-
tion for I (this is true because Σ is a set of s-t tgds). Consequently, we
can obtain solutions with an arbitrary number of tuples and with arbi-
trary positive and negative integers as values for the attribute A.

PROPOSITION 3.2. Let M = (S,T,Σ) be a schema mapping
such that Σ is a finite set of s-t tgds. Assume thatR is a target relation
symbol with at least two attributes, and A is an attribute of R. Let
I be a source instance, let a = min(R.A)(CanSol(I)), and let b =
max(R.A)(CanSol(I)). Then the following are true:

1. agg-certain(min(R.A), I,USol(I)) = a.

2. agg-certain(max(R.A), I,USol(I)) = b.

3. If a = b, then agg-certain(avg(R.A), I,USol(I)) = a.

4. If a < b, then agg-certain(avg(R.A), I,USol(I)) = (a, b).

5. If CanSol(I) contains a fact R(t) in which t[A] is a positive
integer and a fact R(t′) in which t′[A] is a negative integer, then
agg-certain(sum(R.A), I,USol(I)) = (−∞,∞).

PROOF. (Sketch) Homomorphisms map constants to themselves,
and all universal solutions are homomorphically equivalent to each
other. Consequently, all universal solutions have the same set of con-
stants in every attribute; in particular, the minimum and the maximum
of an attribute in an arbitrary universal solution coincide, respectively,
with a and b. For simplicity, assume that A is the first attribute of R.
Assume that the source instance I is such that CanSol(I) contains
the fact R(b, p2, . . . , pk). Let m be a positive integer and let uj

i be
nulls, where 2 ≤ i ≤ k and 1 ≤ j ≤ m. It is easy to see that
if we add the facts R(b, uj

2, . . . , u
j
k), 1 ≤ j ≤ m, to CanSol(I),

then the resulting target instance can be mapped homomorphically
into CanSol(I), hence it is a universal solution for I . From this, it
follows that lub(poss(avg(R.A), I,USol(I))) = b. Moreover, if
b > 0, then lub(poss(sum(R.A), I,USol(I))) = ∞. The argument
for the greatest lower bound is similar.

3.2 Rep(CanSol(I)) as a Set of Possible Worlds

Both the set of possible worlds of all solutions and the set of possi-
ble worlds of all universal solutions have an open-world-assumption
(OWA) character. Libkin [17] argued in favor of a semantics of first-
order queries in data exchange that have a closed-world-assumption
(CWA) character, and proceeded to propose such a semantics. Libkin’s
semantics are defined in two steps that we now summarize.

The first step is to introduce the concept of CWA-solutions in data
exchange. Libkin made a case that CWA-solutions are good solutions
for data exchange purposes because they satisfy certain requirements,
which, intuitively, assert that “every fact in the target instance is di-
rectly justified by the source instance and the s-t tgds.” Instead of re-
producing the rather elaborate definition of a CWA-solution, we will
use the following characterization, given in Theorem 3.4 of [17].

THEOREM 3.3. Let M = (S,T,Σ) be a schema mapping such
that Σ is a set of s-t tgds. The following two statements are equivalent
for a source instance I and a target instance J .

1. J is a CWA-solution for I .

2. J is a homomorphic image of CanSol(I); moreover, there is a
homomorphism from J to CanSol(I).1

We write CWA(I) to denote the set of all CWA-solutions for I . Note
that both CanSol(I) and core(CanSol(I)) are CWA-solutions for
I . Before proceeding any further, we should point out that Libkin
[17] considered a slightly different concept of homomorphism than
the more standard one we use here. Specifically, he considered null-
preserving homomorphisms, i.e., homomorphisms that map nulls to
nulls, while the homomorphisms we use here may map nulls to nulls
or to constants (constants map to themselves under both concepts).
As stated in [17], all the results in that paper have “exact analogs”
when the more standard concept of homomorphism is used.

The second step is to associate, with every CWA-solution J for I ,
a set Rep(J) of null-free target instances that is obtained as follows.
A valuation v is a mapping v : Null → Const from the set of nulls
to the set of constants. If J is a target instance and v is a valuation,
then v(J) is the null-free target instance obtained from J by replacing
every null u in J by the constant v(u). Then Rep(J) is defined as

Rep(J) = {v(J) : v is a valuation}.
Rep(J) coincides with the set of null-free homomorphic images of J .
Using these concepts, Libkin [17] introduced the following version of
certain-answer semantics for first-order queries in data exchange.
1Actually, Libkin stipulated a third condition, namely, that J contains
core(CanSol(I)). It is easy to see, however, that this third condition
is superfluous.

132

DEFINITION 3.4. Let M = (S,T,Σ) be a schema mapping such
that Σ is a set of s-t tgds. If Q is a k-ary first-order query and I is a
source instance, then

certain�(Q, I) =
⋂

J∈CWA(I)

(
⋂

J′∈Rep(J)

Q(J ′)).

In words, a k-tuple t is in certain�(Q, I) if and only if for every
CWA-solution J for I , and for every target instance J ′ in Rep(J),
we have that t ∈ Q(J ′).

It is easy to see that certain�(Q, I) is a special case of the concept
certain(Q, I,W(I)) introduced in Definition 2.1. Indeed,

certain�(Q, I) = certain(Q, I,
⋃

J∈CWA(I)

Rep(J)).

Moreover, it is also easy to verify that
⋃

J∈CWA(I)

Rep(J) = Rep(CanSol(I))

and, consequently,

certain�(Q, I) = certain(Q, I,Rep(CanSol(I)).

This last fact was already obtained by Libkin (see [17, Theorem 4.1]).
Thus, certain�(Q, I) is the special case of certain(Q, I,W(I)) in
which W(I) = Rep(CanSol(I)).

If Q is an arbitrary first-order query, then certain(Q, I,Sol(I)),
certain(Q, I,USol(I), and certain�(Q, I) may differ from each
other. If Q, however, Q is a conjunctive query, then

certain(Q, I,Sol(I)) = certain(Q, I,USol(I)) = certain�(Q, I).

In this case, certain(Q, I,Sol(I)) can be obtained by first evaluating
the conjunctive query Q on CanSol(I) and then removing all tuples
containing at least one null. This implies that the data complexity
of the certain answers of conjunctive queries is in PTIME (see [6, 7,
17]). Similar results hold for unions of conjunctive queries.

At this point, it is natural to consider the set Rep(CanSol(I)) as
the next candidate for the set of possible worlds for the semantics of
aggregate queries in data exchange. In other words, it is natural to
consider agg-certain(f(Q), I,Rep(CanSol(I)) as the semantics of
aggregation in data exchange, where f is an aggregate operator and
Q is a first-order query. It does not take long to realize, however, that
agg-certain(f(Q), I,Rep(CanSol(I)) suffers essentially from the
same shortcomings as agg-certain(f(Q), I,Sol(I)).

PROPOSITION 3.5. Let M = (S,T,Σ) be a schema mapping
such that Σ is a finite set of s-t tgds. Assume thatR is a target relation
symbol and f is one of the aggregate operators min(A), max(A),
sum(A), and avg(A), where A is an attribute of R. If I is source
instance such that CanSol(I) contains at least one factR(t) in which
t[A] is a null, then

agg-certain(f(R), I,Rep(CanSol(I)) = (−∞,∞).

PROOF. Since the canonical universal solution CanSol(I) for I
contains at least one fact R(t) such that t[A] is a null, it follows
that Rep(CanSol(I)) contains instances in which the attributeA has
arbitrarily small and arbitrarily large values.

In many respects, the failure of Libkin’s approach to yield non-
trivial semantics for aggregation in data exchange is due to the fact
that, after all, this approach deviates from the closed world assump-
tion to a large extent. This is caused by the sets Rep(J), where
J varies over all CWA-solutions for I . Indeed, while the concept
of a CWA-solution adheres to the closed world assumption, the sets

Rep(J) do not, since they consist of arbitrary null-free homomor-
phic images of CWA-solutions. In particular, the target instances in
Rep(J) may contain constants that are justified neither by the source
instance at hand, nor by the s-t tgds of the given schema mapping.

The preceding analysis suggests that, in order to obtain non-trivial
semantics for aggregation in data exchange, we need to look beyond
Sol(I), USol(I), and Rep(CanSol(I)) as suitable sets of possible
worlds for aggregate queries in data exchange; more importantly, we
need to adopt a rather strict closed world assumption.

At first sight, it seems that a way to overcome the shortcomings of
Libkin’s semantics is to consider, for every CWA-solution J for I ,
the subset Rep∗(J) of Rep(J) that consists of all target instances J ′

of the form J ′ = v(J), where v : Null → Const is a valuation that
maps nulls to constants occurring in the source instance I . In other
words, Rep∗(J) is the set of all null-free homomorphic images of
J in which every value is a constant in the source instance I . This
approach gives rise to the set

⋃
J∈CWA(I) Rep∗(J) as a candidate set

of possible worlds for aggregation in data exchange. As before,
⋃

J∈CWA(I)

Rep∗(J) = Rep∗(CanSol(I)).

Thus, we are led to consider Rep∗(CanSol(I) as a set of possi-
ble worlds, and agg-certain(f(Q), I,Rep∗(CanSol(I)) as candi-
date semantics of aggregate queries in data exchange.

It is easy to see that agg-certain(f(Q), I,Rep∗(CanSol(I)) is
non-trivial semantics. Nonetheless, this semantics suffers from a dif-
ferent serious drawback. Specifically, if Rep∗(CanSol(I)) is used
as a set of possible worlds for the semantics of conjunctive queries
Q, then certain(Q, I,Rep∗(CanSol(I)) may differ from the “stan-
dard” (and robust) semantics certain(Q, I,Sol(I)) (recall that, for
conjunctive queries, the latter coincides with certain(Q, I,USol(I))
and with certain�(Q, I)).

EXAMPLE 3.6. Let M be the schema mapping specified by the s-t
tgds E(x, y) → F (x, y) ∧ P (x) ∧ P (y) and U(x) → ∃yB(y), and
letQ be the unary conjunctive query P (x)∧∃y∃z(F (y, z))∧B(z)).
Consider the source instance I = {E(1, 2), E(2, 1), U(1), U(2)}.
Then CanSol(I) = {F (1, 2), F (2, 1), P (1), P (2), B(u1), B(u2)},
where u1 and u2 are distinct nulls. It is clear that

certain(Q, I,Sol(I)) = Q(CanSol(I)) = ∅.
In contrast, if J ∈ Rep∗(CanSol(I)), then Q(J) = {1, 2}; hence
certain(Q, I,Rep∗(CanSol(I)) = {1, 2}.

3.3 Endomorphic Images of CanSol(I) as Possible Worlds

In Sections 3.1 and 3.2, we examined four different candidate sets
of possible worlds for the semantics of aggregate queries in data ex-
change, and determined that none of them is viable. One inevitable
conclusion drawn from this analysis is that we must adopt an ap-
proach that is based on a strict closed world assumption. Towards
this goal, we now consider the set of possible worlds formed by the
endomorphic images of the canonical universal solution.

DEFINITION 3.7. Let M = (S,T,Σ) be a schema mapping such
that Σ is a set of s-t tgds. If I is a source instance, then we write
Endom(I,M) for the set of all endomorphic images of the canonical
universal solution CanSol(I) for I . If M is understood from the
context, then we simply write Endom(I) in place of Endom(I,M).

The following are some basic properties of the set Endom(I).

• Endom(I) contains both CanSol(I) and core(CanSol(I)) as
members.

• Every member of Endom(I) is a sub-instance of CanSol(I); the
converse, however, need not hold (see [17]).

133

• Every member of Endom(I) is a CWA-solution for I ; the con-
verse, however, need not hold.

We propose to use Endom(I) as the set of possible worlds for
the semantics of aggregate queries in data exchange. There are three
main reasons for this choice: (i) the members of Endom(I) adhere
to a strict closed world assumption; (ii) if Endom(I) is used as the
set of possible worlds for the semantics of conjunctive queriesQ, then
certain(Q, I,Endom(I)) coincides with certain(Q, I,Sol(I)); and
(iii) agg-certain(f(Q), I,Endom(I)) is non-trivial semantics for
aggregate queries f(Q). Next, we elaborate on each of these reasons.

The basic properties of Endom(I) imply that a target instance is
a member of Endom(I) if and only if it is both a CWA-solution for
I and a sub-instance of the canonical universal solution CanSol(I).
This is the precise sense in which the members of Endom(I) adhere
to a strict closed world assumption: since they are CWA-solutions,
they satisfy the stringent conditions stipulated by Libkin [17], which
assert that every fact in them has a tight justification by the source
instance and the s-t tgds of the schema mapping; moreover, since
they are sub-instances of CanSol(I), they do not contain any facts
that are not already produced by the naive chase procedure.

PROPOSITION 3.8. Let M = (S,T,Σ) be a schema mapping in
which Σ is a set of s-t tgds.

• If Q is a union of conjunctive queries over T and I is a source
instance, then

certain(Q, I,Endom(I)) = certain(Q, I,Sol(I)).

• If Q is a union of conjunctive queries with inequalities �= over T
and I is a source instance, then

certain(Q, I,Endom(I)) = certain(Q, I,USol(I)).

PROOF. (Sketch) The first part holds because CanSol(I) is a mem-
ber of Endom(I) and unions of conjunctive queries are preserved
under homomorphisms. The second part follows from the following
three facts: the core of CanSol(I) is a member of Endom(I); for
every member J of Endom(I), there is a 1-1 homomorphism from
core(CanSol(I)) to J ; unions of conjunctive queries with inequali-
ties �= are preserved under 1-1 homomorphisms.

Finally, we give an example that demonstrates that, even for schema
mappings specified by a single s-t tgd, Endom(I) gives rise to inter-
esting semantics for aggregate queries in data exchange.

EXAMPLE 3.9. Consider the schema mapping M specified by the
s-t tgd: P (x, y) → ∃z(T (x, y) ∧ T (x, z)). Let In, n ≥ 1, be the
source instance {P (a1, b1), . . . , P (an, bn)}, where the ai’s and the
bi’s are positive integers. Then CanSol(In) is the target instance

{T (a1, b1), . . . , T (an, bn), T (a1, u1), . . . , T (an, un)},
where the ui’s are distinct nulls. Every subsetK of {1, . . . , n, } gives
rise to an endomorphism hK of Jn defined as follows: hK(ui) = ui

if i is in K, and hK(ui) = bi if i is not in K. Vice versa, it is easy
to see that every endomorphism of Jn is determined by a subset K
of {1, . . . , n}. Thus, Endom(I) consists of the exponentially many
endomorphic images JK = hK(CanSol(In)), as K ranges over
all subsets of {1, . . . , n}. Note that CanSol(In) = JK with K =
{1, . . . , n}, while core(CanSol(In)) = JK with K = ∅.

Assume that the attributes of T are A and B. It is easy to see that
if K ⊆ {1, . . . , n}, then we have that count((T.A)JK) = n + |K|
and sum((T.A)JK = (

∑n
i=1 ai) + (

∑
i∈K ai). Consequently,

agg-certain(count(T.A), In,Endom(In)) = [n, 2n]
and
agg-certain(sum(T.A), In,Endom(In)) = [

∑n
i=1 ai, 2

∑n
i=1 ai].

Moreover, the endpoints of these intervals are obtained by eval-
uating count(T.A) and sum(T.A) on core(CanSol(In)) and on

CanSol(In). Computing the range semantics of the average, how-
ever, is more complicated; in particular, the endpoints of the interval
cannot always be obtained by evaluating the average on the canon-
ical universal solution and its core. To see this, take the source in-
stance I = {(1, b1), (2, b2), (3, b3)}. It is easy to check that
agg-certain(avg(T.A), I,Endom(I)) = [7/4, 9/4], while
avg(T.A)(core(CanSol(I))) = 2 = avg(T.A)(CanSol(I)).

4. Queries with min, max, sum, count, count(∗)
The main result of this section is as follows.

THEOREM 4.1. Let M = (S,T,Σ) be a schema mapping in
which Σ is a finite set of s-t tgds, let Q be a conjunctive query over
T, and let f be one of the aggregate operators min(A), max(A),
sum(A), count(A) and count(∗), where A is an attribute of Q.

Then the following problem is in PTIME: given a source instance I ,
compute agg-certain(f(Q), I,Endom(I)). In particular, the data
complexity of the aggregate certain answers of every scalar aggrega-
tion query with min, max, sum, count and count∗ is in PTIME.

The proof of Theorem 4.1 will make use of the next two propo-
sitions. In both propositions, we assume that M = (S,T,Σ) is a
fixed schema mapping in which Σ is a finite set of s-t tgds, and Q is a
conjunctive query over T such that A is one of its attributes. The first
proposition asserts that if I is a source instance, then min and max
queries take the same value on every instance in Endom(I).

PROPOSITION 4.2. Let f be the min or the max aggregate op-
erator, let I be a source instance, and let J = CanSol(I) be the
canonical universal solution for I under M. Then, for every instance
T ∈ Endom(I), we have that f(Q)(T) = f(Q)(J). Hence

agg-certain(f(Q), I,Endom(I)) = [f(Q)(J), f(Q)(J)].

PROOF. First, we consider the case in which the column of Q(J)
under attribute A consists entirely of nulls. In this case, for every
T ∈ Endom(I), the column of Q(T) under attribute A consists en-
tirely of nulls because T is a sub-instance of J . Hence the answer is
“undefined” for both min and max.

Assume that the column of Q(J) with attribute A contains at least
one constant. We argue as follows for max (min is treated in a simi-
lar way). Let T ∈ Endom(I) be such that the column of Q(T) with
attribute A contains at least one attribute. Since T ⊆ J , the mono-
tonicity of conjunctive queries implies that Q(T) ⊆ Q(J). Hence,
max(Q.A)(T) ≤ max(Q.A)(J). Let (u1, . . . , uk) ∈ Q(J) be such
that ui = (maxQ.A)(J). Since there is an endomorphism h : J →
T , we have that (h(u1), . . . , h(uk)) ∈ Q(T). But ui is a constant, so
ui ≤ max(Q.A)(T). Hence max(Q.A)(J) ≤ max(Q.A)(T).

The following example shows that the situation for sum, count,
and count(∗) is different.

EXAMPLE 4.3. Let M be a schema mapping consisting of the fol-
lowing three s-t tgds:
P1(x, y) → R(x, y), P2(x, y) → ∃zR(x, z), P3(x, y) → ∃R(x, z).

If I = {P1(5, 4), P2(5, 1), P3(5, 1)}, then the canonical universal
solution is J = {R(5, 4), R(5, w1), R(5, w2)}; moreover, we have
that core(J) = {R(5, 4)}. It is easy to see that

agg-certain(sum(R.A), I,Endom(I)) = [5, 15]

agg-certain(count(R.A), I,Endom(I)) = [1, 3],

where A is the first attribute of R.

We now show that for count, count(∗) queries, and for a special
case of sum queries, the aggregate certain answers can be obtained
via evaluation on the canonical universal solution and on its core.

134

PROPOSITION 4.4. Assume that I is a source instance and J is
the canonical universal solution CanSol(I) for I under M.

1. If f is one of the aggregate operators count and count(∗), then

agg-certain(f(Q), I,Endom(I)) = [f(Q)(core(J)), f(Q)(J)].

2. If all numeric constants in I are non-negative integers, then

agg-certain(sum(Q), I,Endom(I)) =

[sum(Q)(core(J)), sum(Q)(J)] .

PROOF. (Sketch) The proof uses the following facts: (a) If T1

and T2 are cores of J , then f(Q)(T1) = f(Q)(T2); (b) For each
T ∈ Endom(I), we have that core(T) ⊆ T ⊆ J ; (c) Conjunctive
queries are preserved under homomorphisms; and (d) The sum op-
erator is monotone on sets of non-negative integers, i.e., if C and
D are two sets of non-negative integers such that C ⊆ D, then∑

i∈C i ≤
∑

i∈D i.

For every fixed schema mapping M specified by s-t tgds, both the
canonical universal solution for a given source instance I and its core
can be computed in PTIME [6, 7]. By combining this result with
Propositions 4.2 and 4.4, we derive Theorem 4.1 for the operators
min,max, count, count(∗), and for the special case of sum in which
all numeric constants in the source instance are non-negative integers.
The general case for sum will be obtained using results in Section 5;
the details will appear in the full paper.

5. Queries with the average operator
Assume that M = (S,T,Σ) is a fixed schema mapping in which

Σ is a finite set of s-t tgds, R is a relation symbol in the target schema
T, and A is one of the attributes of R. In this section, we give a
polynomial-time algorithm for the following problem: given a source
instance I , find the aggregate certain answers

agg-certain(avg(R.A), I,Endom(I))

of the scalar aggregation query SELECT avg(R.A) FROM R.
We describe here a polynomial-time algorithm such that, given a

source instance I , the algorithm finds a target instance T ∈ Endom(I)
such that avg(R.A)(T) = glb(poss(R.A, I,Endom(I))). In words,
our algorithm finds an endomorphic image of the canonical univer-
sal solution CanSol(I) for I such that the average on attribute A is
the minimum average on attribute A over all endomorphic images of
CanSol(I). We present the algorithm for the case in which the values
to be aggregated are positive integers. It can be extended to apply to
arbitrary values by adding a large enough number to each value in the
source instance so that all values under attribute A in CanSol(I) are
positive integers; then, an optimum endomorphic image for the orig-
inal instance is also optimum for the all-positive instance, and vice
versa. The algorithm for finding an endomorphic image of the canon-
ical universal solution with the maximum average is symmetrical.

As seen in Example 3.9, the set Endom(I) of possible worlds can
be exponentially big, even if Σ consists of just a single s-t tgd. More-
over and unlike the state of affairs for sum and count seen in Proposi-
tion 4.4, the aggregate certain answers for avg cannot be obtained by
simply evaluating the query on CanSol(I) and on core(CanSol(I)).
Thus, a more sophisticated algorithm is needed in order to find the
value of the minimum average efficiently and without an exhaustive
search over CanSol(I). Our polynomial-time algorithm uses the con-
cepts of a block of nulls and of a local endomorphism, which were
originally introduced in [7] to design a polynomial-time algorithm
for computing the core of the universal solutions for schema map-
pings specified by s-t tgds. Several new concepts, however, have also
to be introduced before describing the main ideas in our algorithm.

5.1 Locally avg-optimal endomorphic images

DEFINITION 5.1. Let K be a target instance.

• Two elements in the domain of K are adjacent if one of the rela-
tions of K contains a tuple in which both elements occur.

• The Gaifman graph of the nulls of K is the undirected graph such
that the nodes are all the nulls of K, and there exists an edge
between two nulls whenever the nulls are adjacent in K.

• A block of nulls of K (or, simply, a block of K) is the set of nulls
in a connected component of the Gaifman graph of the nulls.

• If B is a block of nulls of K, then K[B] denotes the sub-instance
of K induced by the nulls of B and the constants of K.

• A block homomorphism for a block B is a homomorphism from
K[B] to K.

PROPOSITION 5.2. LetK be a target instance with bmany blocks.
Then the following statements are true.

1. For every block B of K and for every block homomorphism h for
B, there exists a block B′ of K such that the image h(B) of B is
contained in B′ ∪ Const.

2. For each block Bi of K, let hBi be a block homomorphism for
Bi, where 1 ≤ i ≤ b. Then the union

⋃b
i=1 hBi of these block

homomorphisms is an endomorphism of K.

3. Let h be an endomorphism of K. Then there is a set of block
homomorphisms such that h is equal to their union.

PROOF. The first statement is immediate from the definitions. For
the second statement, note that the union h =

⋃b
i=1 hBi is a well-

defined function because the blocks partition the nulls, and every ho-
momorphism maps each constant to itself. To show that h is an endo-
morphism of K, take a tuple t in some relation PK of K. All nulls
occurring in t (if any) must belong to the same block, say Bj , of K.
Since hBj is a homomorphism, we have that h(t) = hBj (t) ∈ PK ,
as desired. For the third statement, take, for each block B of K, the
restriction of h to B, which is a block homomorphism for B. The
union of these block homomorphisms is equal to h.

Let K be an instance and B be a block of K. Take a block ho-
momorphism hB for block B. Let h be the following endomorphism
of K: h agrees with hB on K[B], and h maps every null not in B
to itself. Then h is a K-local endomorphism, as in [7], which means
that h is the identity outside B. We say that h is the K-local endo-
morphism defined by hB .

Since M = (S,T,Σ) is a schema mapping specified by a finite set
of s-t tgds, the following basic, but very useful, facts hold [7]:

• There is a polynomial p(n) such that, for every source instance I ,
the number of blocks of CanSol(I) is bounded by p(|I |), where
|I | is the number of facts of I .

• Let c be the maximum number of existential quantifiers ∃y ap-
pearing in a s-t tgd ∀x(ϕ(x) → ∃yϕ(x,y)) in Σ. If I is a source
instance, then every block B of CanSol(I) has size at most c.

The next proposition follows easily from the second fact.

PROPOSITION 5.3. Assume that I is a source instance, B is a
block of K = CanSol(M, I), and hB is a block homomorphism for
B. LetK′ be the image of theK-local endomorphism defined by hB .
Then the number of tuples in K − K′ is bounded by a number that
depends only on M.

DEFINITION 5.4. Assume that I is a source instance and that
J = h(CanSol(I)) is an endomorphic image of CanSol(I).

135

1. Let B be a block of CanSol(I) and let hB be the block homo-
morphism forB obtained by restricting h to CanSol(I)[B]. Sup-
pose we construct an endomorphic image J ′ of CanSol(I) by
considering the set of block homomorphisms that constructed J ,
replacing hB by some other block homomorphism h′

B for B, and
keeping all other block homomorphisms. Then we say that J ′ is
constructed from J by aB-local change using h′

B , or simply by a
B-local change, and write C(hB → h′

B) to denote this.

2. We say that J is locally avg-optimal if, for every block B of J ,
the following property holds: if J ′ is a an endomorphic image
of CanSol(I) obtained from J via some B-local change, then
avg(R.A)(J ′) ≥ avg(R.A)(J).

We now have all the conceptual framework needed to state the key
lemma that will lead to a polynomial-time algorithm for the average.

LEMMA 5.5. Assume that I is a source instance. An endomorphic
image J of CanSol(I) is locally avg-optimal if and only if it is an
optimal endomorphic image for the average, i.e.,

avg(R.A)(J) = glb(poss(avg(R.A), I,Endom(I))).

Before we prove this lemma, we need an additional definition and
an auxiliary result.

DEFINITION 5.6. Assume that I is a source instance,B is a block
ofK = CanSol(M, I), and hB is a block homomorphism forB. We
associate with hB two numbers, nhB and shB , defined as follows. Let
K′ be the image of the K-local endomorphism defined by hB .

• nhB is the number of tuples inRK −RK′
that do not have a null

in attribute A.

• shB is the sum of the values over the attribute A in RK −RK′
.

The pair (nhB , shB) is called the the characteristic pair of hB .

LEMMA 5.7. Let I be a source instance, let J = h(CanSol(I))
be an endomorphic image of CanSol(I), and let a = avg(R.A)(J).
For every block B of CanSol(I), let hB be the block homomorphism
obtained by restricting h to CanSol(I)[B]. Then the following state-
ments are equivalent.

1. J is locally avg-optimal.

2. For every local change C(hB → h′
B), we have that

shB − sh′
B ≥ a(nhB − nh′

B).

PROOF. Suppose that J is locally avg-optimal. Let S be the set
of tuples in RJ of relation R that do not have a null in attribute A,
let N be the number of tuples in S , and let S be the sum over the
attribute A of the tuples in S . Then obviously a = S/N . Suppose
a′ is the average over the attribute A in J ′. Then a′ = (S + shB −
sh′

B)/(N+nhB −nh′
B). Since J is locally avg-optimal, we have that

a′ ≥ a. Using the inequality a′ ≥ a, we can derive the inequality in
the statement of the lemma. The converse is proved analogously.

PROOF. (of Lemma 5.5) Clearly, if J is optimal for the average,
then it locally avg-optimal. For the other direction, suppose that J ′

is another endomorphic image with a smaller average. Then J ′ can
be produced from J by a set S of local changes (at most one local
change for each block Bi). For each local change, we have two char-
acteristic pairs (ni, si) and (n′

i, s
′
i), the former is the one associated

with the block homomorphism used in the construction of J , and the
latter is the one associated with the block homomorphism used in the
construction of J ′. Let S be the sum over the attribute A in the rela-
tion RJ , and let N be the number of tuples without nulls in attribute
A in the relation RJ . Since J ′ has a smaller average, we have:

(S +
b∑

1

si −
b∑

1

s′i)/(N +
b∑

1

ni −
b∑

1

n′
i) < S/N,

hence
∑b

1 si − ∑b
1 s

′
i > S/N(

∑b
1 ni − ∑b

1 n
′
i). Since there is

no local change that improves the average, we have that si − s′i ≤
S/N(ni − n′

i), for each i. If we sum over all i’s, we get
∑b

1 si −∑b
1 s

′
i ≤ S/N(

∑b
1 ni − ∑b

1 n
′
i), which is a contradiction.

5.2 The Algorithm

By Lemma 5.5, the search for an endomorphic image of CanSol(I)
with minimum average reduces to the search of a locally avg-optimal
endomorphic image of CanSol(I). Here, we give a polynomial-time
algorithm for the latter task. This algorithm exploits the fact that there
is a polynomial number of blocks, and each block has size bounded
by a number that depends only on the fixed schema mapping M. Be-
fore describing the algorithm and establishing its properties, however,
we need to develop additional sophisticated machinery.

DEFINITION 5.8. Let I be a source instance and let J = CanSol(I)
be the canonical universal solution for I .

• For each block B of J and for each subset Sj of RJ[B], we define
a pair of numbers (sj , nj) as follows: sj is the sum over the
attribute A of tuples in Sj , and nj is the number of tuples in Sj

that do not have a null in attribute A.

• A critical number is an integer of the form |(si − sj)/(ni − nj)|,
where (si, ni) and (sj , nj) are pairs arising from different sub-
sets of RJ[B], for some block B.

• We arrange all critical numbers in increasing order and take the
intervals defined by consecutive critical numbers (including the
interval defined by the smallest critical number and −∞, and the
one defined by the greatest critical number and +∞). We call
them critical intervals.

Lemma 5.7 motivates a subroutine, which we will call subroutine
compare and denote by compare(hi, hj , o, C). This subroutine com-
pares two block homomorphisms hi and hj for the same block (or
pair of blocks in one case) and for a critical interval C; in the output
o, it puts either the “worse” of the two block homomorphisms (which
will then be discarded) or “equality”, if they are equivalent homo-
morphisms; see the description of subroutine compare for the precise
statements of when two homomorphisms are equivalent or when one
is discarded. We distinguish two cases, depending on whether C is
an open interval or a closed interval with identical endpoints.

SUBROUTINE compare (hi, hj , o, C = (a, b)) with a �= b
Note: One of a and b could be −∞ or +∞

Case 1. si − sj > 0 and ni − nj > 0.

If (si − sj)/(ni − nj) ≥ b, then o = hj . Otherwise, o = hi.

Case 2. si − sj < 0 and ni − nj < 0.

If (sj − si)/(nj − ni) ≤ a, then o = hj . Otherwise, o = hi.

Case 3. si − sj = 0 and ni − nj = 0. Then o = equiv

Case 4. si − sj = 0 and ni − nj �= 0.

If nj ≥ ni, then o = hi. Otherwise, o = hj .

Case 5. si − sj �= 0 and ni − nj = 0.

If sj ≤ si, then o = hi. Otherwise, o = hj .

Case 6. si − sj > 0 and ni − nj < 0. Then o = hj .

Case 7. si − sj < 0 and ni − nj > 0. Then o = hi.

SUBROUTINE compare (hi, hj , o, C = [a, a]).
Only the first two cases are different as follows:

Case 1. si − sj > 0 and ni − nj > 0.

If (si − sj)/(ni − nj) > a, then o = hj . If (si − sj)/(ni − nj) = a,
then o = equiv.

Case 2. si − sj < 0 and ni − nj < 0.

If (sj − si)/(nj − ni) < a, then o = hi. If (si − sj)/(ni − nj) = a,
then o = equiv.

136

Two block homomorphisms that come out of subroutine compare
as equivalent are called avg-equivalent. The next lemma shows that
if two homomorphisms come out of Compare (hi, hj , o, C = [a, a])
as equivalent, then they indeed compare the same way with any other
homomorphism. Thus, there is no inconsistency.

LEMMA 5.9. Assume that compare (hi, hj , o, C = [a, a]) out-
puts o = equiv. If hk is such that compare (hi, hk, o, I = [a, a])
outputs o = hi (o = hk, respectively), then compare (hj , hk, o,
I = [a, a]) outputs o = hj (o = hk, respectively).

We are now ready to present our polynomial-time algorithm for
finding a locally avg-optimal endomorphic image of CanSol(I). For
every block B and every critical interval C, the algorithm constructs
a decision graph (V,E1, E2) using the subroutine compare. The al-
gorithm then decides whether or not the block B is a dismissed block
for C or a non-dismissed block for C. Although the criterion for this
decision is part of the algorithm, we state it separately to make the
presentation of the algorithm less cumbersome.

In the decision graph (V,E1, E2), the set V of its nodes consists
of all block homomorphisms for block B; furthermore, E1 is a set
of undirected edges and E2 is a set of directed edges. To decide
whether or not B is a dismissed block for C, we first find all (maxi-
mal) connected components of (V,E1) and then, for each such con-
nected component, we merge in (V,E1) all nodes in one node nnew ,
and draw an edge to/from nnew , whenever there was an edge to/from
a node in the connected component. Let (V1, E3) be the resulting
graph. If (V1, E3) has a unique minimal node nmin (i.e., a unique
sink), then B is non-dismissed for C; otherwise, B is dismissed for
C. If B is non-dismissed, then we select one of the block homomor-
phisms for blockB in the connected component represented by nmin

and call it the optimum homomorphism hopt for block B and C.
If C is a critical interval for which no blocks is dismissed, then the

optimum homomorphisms selected for each block B are assembled
together to produce an endomorphism g of CanSol(I), which is a
candidate for being the locally avg-optimum endomorphism returned
by the algorithm. In turn, this requires another subroutine, called
subroutine assemble, which we will give separately.

ALGORITHM AVG-OPTIMAL
Input: Source instance I
Output: A locally avg-optimal endomorphic image of CanSol(I)

1. For each critical interval C do:

• For each block B, do:

• Initialize the decision graph of B with nodes all block homomor-
phisms for B and no edges.

• For each pair (hi, hj) of block homomorphisms for B do:

compare(hi, hj , o, C).

If o = hi, then draw a directed edge in the decision graph of B
from hi to hj .

If o = equiv, then draw an undirected edge in the decision
graph of B from hi to hj .

• Using the decision graph for block B and interval C, decide whether
block B is dismissed or non-dismissed for C; if B is non-dismissed,
select an optimum homomorphism hopt for B and C.

• If at least one block is dismissed for C, then dismiss C. Otherwise,

1. assemble (h1, h2, ..., hj , g, C), where h1, h2, ..., hj are the opti-
mum homomorphisms for interval C.

2. Compute the average avg of g(CanSol(I)) over attribute A.

3. If avg lies in C, then keep (C, avg); otherwise dismiss interval C.

2. Consider all non-dismissed intervals and find the endomorphic image among
them with the minimum average. Return this as the output of the algorithm
AVG-OPTIMAL on input I .

To see how we assemble block homomorphisms, we first establish
some terminology and then present the subroutine assemble.

If B is a block of CanSol(I), then every block homomorphism
h for B is one of two kinds: (a) an interior block homomorphisms,
which means that h(B) ⊆ B ∪ Const; or (b) an exterior block ho-
momorphisms, which means that there is a block B′ �= B such that
h(B) ⊆ B′ ∪ Const and h(B) ∩ B′ �= ∅. It follows that if h(B)
contains only constants, then h is an interior block homomorphism.
Note that all exterior block homomorphisms of a specific block B
have the same characteristic pair.

We construct the inter-block graph GB of a target instance K as
follows. The nodes of GB are the blocks of K. There is a directed
edge from block B to block B′ if there is an exterior block homo-
morphism of B that maps K[B] to K[B′]. It is easy to see that all
strongly connected components of GB contain blocks Bi such that
the associated sub-instances K[Bi] are homomorphically equivalent.
Suppose that the input to subroutine assemble is a set H of block ho-
momorphisms (one for each block) with the following property: let
B be the set of all blocks for which the associated block homomor-
phism in H is an exterior one; then B does not contain any strongly
connected component of GB that is a sink. In this case, subroutine
assemble simply builds the endomorphism in the output by taking the
union of all block homomorphisms in H. Otherwise, we consider
the problematic components, defined as follows: a sink strongly con-
nected component is problematic if it is contained in B. Intuitively,
this means that if we take the union of the homomorphisms in H,
then the endomorphic image constructed will have as a sub-instance
all blocks of each problematic component.

SUBROUTINE assemble (h1, h2, ..., hj , g, C)

• Construct the inter-block graph GB.

• For each problematic component P in GB, do:

• For each block B in P do:

• For each pair of interior block homomorphisms hi, hj of B do:

Compare (hi, hj , C, o).

If o = hi or o = equiv, then mark hj .

• Choose the winning interior homomorphism h∗
B for block B arbi-

trarily among the unmarked ones.

• For each pair (Bi, Bj) of P do:

Let B be the union of h∗
Bi

(J [Bi]) and h∗
Bj

(J [Bj]).

Let hi be a homomorphism mapping all elements of h∗
Bi

(J [Bi]) to
h∗

Bj
(J [Bj]) and all elements of h∗

Bj
(J [Bj]) to themselves.

Let hj be a homomorphism mapping all elements of h∗
Bj

(J [Bj])

to h∗
Bi

(J [Bi]) and all elements of h∗
Bi

(J [Bi]) to themselves.

Compare(hi, hj , C, o) ***caveat: we view B as one block***.

If o = hi or o = equiv, then mark Bj .

• Choose as representative of component P one of the unmarked blocks
arbitrarily.

• Change {h1, h2, ..., hj} to {h′
1, h′

2, ..., h′
j} by replacing the block ho-

momorphisms of the component representatives by their winning interior
homomorphisms.

• Construct the endomorphism g by taking the union of {h′
1, h′

2, ..., h′
j};

return g as the output of the subroutine.

EXAMPLE 5.10. Let us revisit the schema mapping specified by
the s-t tgd P (x, y) → ∃z(T (x, y) ∧ T (x, z)) in Example 3.9. For
every source instance I , each block of CanSol(I) is of size one. Thus,
the critical numbers are precisely the values of the attribute A. It is
easy to see that, for each critical interval, the algorithm, proceeds by
discarding all these values (except one, for the endomorphism to go

137

through) that are to the right of the interval, and keeping all values
that are to the left of the interval. Furthermore, in this case, there
are no problematic components, hence subroutine assemble simply
returns the union of the input block homomorphisms.

It is worth pointing out that, in this example, the problem of finding
an endomorphic image with the minimum average is literally equiva-
lent to the following combinatorial problem: given a bag S0 of pos-
itive integers, find a sub-bag S of S0 such that: (a) S and S0 have
the same set of distinct numbers; and (b) the average of the members
of S is minimized. This shows that the problem of computing agg-
certain(avg(A), I,Endom(I)) is algorithmically interesting, even
for seemingly very simple schema mappings M.

The correctness of algorithm AVG-OPTIMAL follows from the next
two propositions. The first is proved along the lines of Lemma 5.7;
the proof of the second will be given in the full paper.

PROPOSITION 5.11. Suppose that, on input hi, hj , C = (a, b),
subroutine compare returns o = hj as output. Then the following
statement is true. Suppose J is an endomorphic image of CanSol(I)
such that it uses block homomorphism hi for blockB, avg(R.A)(J) =
a, and a ∈ I . Suppose also that J1 is constructed from J by the local
change C(hi → hj). If avg(R.A)(J1) = a1, then a ≤ a1.

Two endomorphic images of CanSol(I) are avg-equivalent if the
average over the attribute A is the same on both.

PROPOSITION 5.12. The following statements are true for algo-
rithm AVG-OPTIMAL.

1. For each critical intervalC and for each blockB, there is at most
one block homomorphism (up to avg-equivalence) which is a sink.

2. There is at least one non-dismissed critical interval. Consequently,
the algorithm always has a non-empty output.

3. Let J be the endomorphic image returned by the algorithm. Then
J is a locally avg-optimal endomorphic image.

The running time of Algorithm AVG-OPTIMAL is bounded by a
polynomial in the size of the input source instance I . This uses the
fact that CanSol(I) has polynomially-many blocks, and each block
has size bounded by a constant, which, in turn, implies that there
are polynomially-many critical intervals. Combined with Proposition
5.12, this completes the proof of the main result of this section.

THEOREM 5.13. Let M = (S,T,Σ) be a schema mapping in
which Σ is a finite set of s-t tgds, letR be a target relation symbol, and
let A be an attribute of R. Then there is a polynomial-time algorithm
for the following problem: given a source instance I , compute
agg-certain(avg(R.A), I,Endom(I)).

In contrast to the aggregate certain answers, computing the possible
answers of scalar aggregation queries with the average operator turns
out to be an NP-complete problem.

THEOREM 5.14. There is a schema mapping M = (S,T,Σ) in
which Σ is a finite set of s-t tgds and such that the following problem
is NP-complete: given a source instance I and a number r, is there a
target instance J ∈ Endom(I) such that avg(R.A)(J) = r?

PROOF. (Hint) The NP-hardness is proved via a reduction from
the PARTITION problem; the details are given in the full paper.

6. Concluding Remarks
We initiated the study of aggregate queries in data exchange by fo-

cusing on schema mappings specified by s-t tgds. After examining

and rejecting several sets of possible worlds studied earlier for first-
order queries, we converged on the set Endom(I) of all endomor-
phic images of the canonical universal solution for a source instance
I as the “right” set of possible worlds for the semantics of aggregate
queries. We then gave polynomial-time algorithms for the range se-
mantics of all scalar aggregate queries with respect to Endom(I).

The next step is to study the semantics and the complexity of scalar
aggregate queries for richer schema mappings. We have already stud-
ied the semantics of scalar aggregation queries for schema mappings
specified by second-order tgds (SO tgds), which arise as the compo-
sition of schema mappings specified by s-t tgds [8]. Since it is known
that, for SO tgds, an endomorphic image of CanSol(I) need not be
a solution for I (in fact, core(CanSol(I)) need not be a solution),
we cannot take Endom(I) as the set of possible worlds. A natural
alternative is to take as possible worlds those members of Endom(I)
that are solutions. Using this set of possible worlds, we can show
that the tractability results obtained here do not extend to SO tgds. In
particular, there are schema mappings specified by SO tgds such that
computing the range semantics of count, sum, and avg is NP-hard.

It would be interesting to study aggregate queries for schema map-
pings specified by s-t tgds and target tgds. Finally, the semantics and
the complexity of richer aggregate queries with GROUP BY con-
structs should also be explored.

7. References
[1] ISO/IEC 9075-2:2003, “SQL/Foundation”. ISO/IEC, Section 4.15.4:

Aggregate functions.
[2] F. Afrati, C. Li, and V. Pavlaki. Data exchange in the presence of

arithmetic comparisons. In EDBT Conference, 2008. To appear.
[3] M. Arenas, L. E. Bertossi, J. Chomicki, X. He, V. Raghavan, and

J. Spinrad. Scalar aggregation in inconsistent databases. TCS,
3(296):405–434, 2003.

[4] M. Arenas and L. Libkin. XML data exchange: consistency and query
answering. In PODS, pages 13–24, 2005.

[5] R. Fagin. Inverting Schema Mappings. In PODS, pages 50–59, 2006.
[6] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:

Semantics and Query Answering. TCS, 336(1):89–124, 2005.
[7] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the

Core. ACM TODS, 30(1):174–210, 2005.
[8] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing Schema

Mappings: Second-order Dependencies to the Rescue. ACM TODS,
30(4):994–1055, 2005.

[9] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Quasi-inverses of
schema mappings. In PODS, pages 123–132, 2007.

[10] A. Fuxman. Efficient Management of Inconsistent Databases. PhD
thesis, University of Toronto, 2006.

[11] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer: Efficient management
of inconsistent databases. In SIGMOD, pages 155–166, 2005.

[12] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data
exchange. ACM TODS, 31(4):1454–1498, 2006.

[13] G. Gottlob. Computing cores for data exchange: new algorithms and
practical solutions. In PODS, pages 148–159, 2005.

[14] G. Gottlob and A. Nash. Data exchange: computing cores in
polynomial time. In PODS, pages 40–49, 2006.

[15] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
Grows Up: From Research Prototype to Industrial Tool. In SIGMOD,
pages 805–810, 2005.

[16] A. Hernich and N. Schweikardt. CWA-solutions for data exchange
settings with target dependencies. In PODS, pages 113–122, 2007.

[17] L. Libkin. Data exchange and incomplete information. In PODS, pages
60–69, 2006.

[18] A. Madry. Data exchange: On the complexity of answering queries with
inequalities. Inf. Process. Lett., 94(6):253–257, 2005.

[19] S. Melnik. Generic Model Management: Concepts and Algorithms,
volume 2967 of Lecture Notes in Computer Science. Springer, 2004.

[20] A. Nash, P. A. Bernstein, and S. Melnik. Composition of mappings
given by embedded dependencies. ACM TODS, 32(1):4, 2007.

138

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

