
Query Processing under GLAV Mappings for
Relational and Graph Databases

Diego Calvanese
Free Univ. of Bolzano-Bozen

I-39100 Bolzano, Italy

calvanese@inf.unibz.it

Giuseppe De Giacomo
Maurizio Lenzerini

Sapienza Università di Roma
I-00185 Rome, Italy

lastname@dis.uniroma1.it

Moshe Y. Vardi
Rice University

Houston, TX 77005, U.S.A.
vardi@cs.rice.edu

ABSTRACT
Schema mappings establish a correspondence between data
stored in two databases, called source and target respec-
tively. Query processing under schema mappings has been
investigated extensively in the two cases where each target
atom is mapped to a query over the source (called GAV,
global-as-view), and where each source atom is mapped to
a query over the target (called LAV, local-as-view). The
general case, called GLAV, in which queries over the source
are mapped to queries over the target, has attracted a lot
of attention recently, especially for data exchange. How-
ever, query processing for GLAV mappings has been con-
sidered only for the basic service of query answering, and
mainly in the context of conjunctive queries (CQs) in rela-
tional databases. In this paper we study query processing
for GLAV mappings in a wider sense, considering not only
query answering, but also query rewriting, perfectness (the
property of a rewriting to compute exactly the certain an-
swers), and query containment relative to a mapping. We
deal both with the relational case, and with graph databases,
where the basic querying mechanism is that of regular path
queries. Query answering in GLAV can be smoothly reduced
to a combination of the LAV and GAV cases, and for CQs
this reduction can be exploited also for the remaining query
processing tasks. In contrast, as we show, GLAV query pro-
cessing for graph databases is non-trivial and requires new
insights and techniques. We obtain upper bounds for an-
swering, rewriting, and perfectness, and show decidability
of relative containment.

1. INTRODUCTION
A schema mapping is a declarative, formal specification

of how data structured according to a source schema re-
late to data conforming to a target schema. Schema map-
pings are at the basis of several data management scenarios.
In data integration [44], they are established between the
source database and a so-called mediated schema, i.e., the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th – 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 2
Copyright 2012 VLDB Endowment 2150-8097/12/12... $ 10.00.

unified view to be presented to the clients for querying mul-
tiple sources in a transparent way. In data exchange [10,43],
schema mappings specify how the data at sources should be
transformed and packed so as to transfer the desired in-
formation from the sources to the target database. Model
management [16], and schema and ontology matching [31]
are other examples of scenarios where schema mappings play
a central role.

The interest of database research on schema mappings
has been constantly growing in the last years, starting from
the pioneering work in the context of data integration (see,
e.g., [46, 52]). Such research work can be discussed under
three coordinates: (i) the data model in which the schemas
are expressed, (ii) the mapping-based tasks that have been
studied, and (iii) the type of mechanisms used to express
schema mappings.

Data models. Most of the early research results on schema
mappings refer to the relational model, where the basic
classes of queries used to express schema mappings are
positive fragments of first-order logic, such as conjunctive
queries (CQs) and unions thereof. More recently, schema
mappings have been studied also in the context of semistruc-
tured data, both XML [10] and graph databases [5, 28].
Methods for extracting information from semistructured
data incorporate special querying mechanisms that are not
common in traditional database systems. Perhaps, the ba-
sic mechanism is that of regular-path queries (RPQs), which
retrieve all pairs of nodes in the graph connected by a path
conforming to a regular expression [6, 18].

Mapping-based tasks. Different operations and tasks
concerning schema mappings have been studied in the liter-
ature. For example, in the context of data exchange, one of
the basic tasks is the computation of a solution of a schema
mapping M with respect to a given source database Ds, i.e.,
a target database Dt such that the pair (Ds, Dt) satisfies
the specification M . In model management, schema map-
ping operations such as composition, inversion, and merge
have been investigated in detail, especially with the aim of
formalizing the typical operations to be carried out in the
context of schema evolution. Perhaps, the most interesting
class of mapping-based tasks, and the one we concentrate on
in this paper, is query processing under schema mapping.

Generally speaking, query processing under schema map-
ping amounts to processing a query expressed over the tar-
get schema based on both the data in the source database,
and the mapping from the source to the target. There are
two basic forms of query processing under schema mappings.

The first one, originating with [3], is query-answering, where
the goal is to compute the so-called certain answers to a
query, i.e., the answers to the query in all target databases
satisfying the schema mapping with respect to the source
database. The second form, originating with [45], is query-
rewriting, which is based on the idea of first using the map-
ping to reformulate the query in terms of the source al-
phabet, and then evaluating the resulting query, called the
rewriting, over the source database. Note that, in order for
the rewritten query to be evaluated at the source, it should
be expressed in a specific query language, namely, the one
suited for the query evaluation engine we can use for the
source database. For this reason, in the rewriting approach,
we fix in advance the language (or, the class of queries) used
to express the rewriting, and target our rewriting technique
toward such language. Obviously, in the case where differ-
ent rewritings exist in the chosen class, we should also aim
at computing the (or, a) “best” one. Typically, in the litera-
ture [41,44] “best” has been intended as “maximal”, i.e., the
rewriting ensuring the maximal set of answers among those
in the class. This is in line with the idea of guaranteeing that
the answers returned by the rewriting are themselves certain
answers, though not all of them in general. Notice that also
“minimally containing rewritings” have been considered in
the literature [7, 39], but not much used, especially in data
integration and data exchange, since the returned answers
are not guaranteed to be certain answers.

The relationship between query rewriting and answering
is discussed in [27], where it is observed that, apart from
seeing query rewriting as a means to perform query answer-
ing [45], also query answering can be seen under the lens
of query rewriting: indeed, given a schema mapping and a
source database, any algorithm for computing the certain
answers to a target query based on such a mapping can be
considered as a function of the source data, or, in other
words, as a rewriting of the target query in terms of the
source alphabet. Since such a rewriting computes exaclty
the certain answers, it is often called the perfect rewriting.
However, we have to take into account that, in general, the
answering algorithm is a computable function, and it is ques-
tionable whether we can express such a function in terms of a
given query language. It is thus of interest, given a maximal
rewriting in a class of queries, to be able to check whether
such a rewriting is perfect, i.e., it always computes the cer-
tain answers [27]. So, perfectness is another relevant task in
query processing under schema mappings.

The problem of query containment is fundamental to
many aspects of database systems, including query opti-
mization, determining independence of queries from up-
dates, and rewriting queries using views. However, as argued
in [50], in data integration, the standard notion of query con-
tainment does not suffice. This is why in [50] the authors
define relative containment, which formalizes the notion of
query containment relative to the sources available to the
data-integration system. Relative contanment is indeed a
further relevant task concerning schema mappings.

Types of mappings. From a syntactic point of view, a
schema mapping is constituted by a set of mapping asser-
tions, each one specifying a relationship between the source
and the target. In its most general form, an assertion spec-
ifies a correspondence between a view over the source and
a view over the target. In the so-called sound schema map-
pings, which are the ones we deal with in this paper, the

correspondence is containment: the answers to the view on
the source are a subset of the answers to the view on the
target. Obviously, the expressive power of this mechanism
depends on the expressivity of the query language used in
the view definitions. Since the early work on schema map-
pings in data integration [44], various restricted forms of
such assertions have been considered, in particular GAV
and LAV. The most obvious form of mappings are GAV
(Global-As-Views) mappings, which associate with each ele-
ment of the (global) target schema one view over the source
schema, in a way analogous to how views are defined in
standard databases. Indeed, processing queries under GAV
mappings amounts essentially to substituting (global) view
symbols with their definition in terms of the sources. With a
surprising stance, [45] reversed this conception, by propos-
ing to describe the content of sources in terms of queries
over a (virtual) target schema, giving rise to so-called LAV
(Local-As-Views) mappings. In this way, precise semantics
is assigned to sources. The ability of easily processing LAV
mappings for relational data gave new impetus to data in-
tegration in the ’90’s, on the basis of virtualizing the target
schema, while leaving the sources untouched. In the years,
it became clear that a pure LAV approach, while compelling
from a theoretical point of view, is not practically realizable,
because schemas of legacy sources are typically too dirty for
allowing a clean description in terms of a query over the
target. This is one of the reasons why recent work on data
integration and virtually all work on data exchange focuses
on GLAV mappings, which generalize both GAV and LAV
by mapping queries over the source schema to queries over
the target schema. GLAV mappings overcome the limita-
tions of LAV by allowing the use of queries over the sources
to cleanse source data to be related to the target schema.

The importance of GLAV mappings in modern informa-
tion systems is also emphasized by the work on ontology-
based data access [51], where the domain of interest is for-
malized by means of an ontology, while the data remain at
the sources. In such a setting, the correct relationship be-
tween the sources and the concepts in the ontology often can
only be expressed by means of a view-to-view mechanism.

Contribution. Most of the research on query processing
under schema mapping in data integration has concentrated
on GAV mappings, and on LAV mappings under the label
of view-based query processing (see, for instance the survey
in [41]). In data integration, GLAV mappings have been
specifically considered in [19, 38, 42], but only for the case
of relational databases, and only for query answering and
query rewriting. GLAV schema mappings have been mainly
investigated in data exchange: in [9,32,33,47] the emphasis
is on providing foundations for data exchange systems based
on schema mappings, whereas in [11–14, 34–36, 48] the goal
is to study operators on schema mappings relevant to model
management, notably, composition, merge, and inverse. For
XML data, data exchange based on GLAV mappings has
been studied in [8, 10].

In this paper we thoroughly investigate query processing
under GLAV mappings. We start by reviewing and extend-
ing the work on relational databases, where the basic query-
ing mechanism used both in mappings and user queries are
CQs. In this case, it is known that query answering can
be done by splitting the GLAV mapping into a GAV map-
ping followed by a LAV mapping over an intermediate alpha-
bet, as shown in [38]. Using this observation, together with

the possibility of doing query answering through maximal
rewriting, allows us to easily reconstruct a complete picture
of query processing under GLAV mappings for CQs in the
relational case, including, apart from query answering and
query rewriting, also perfectness and relative containment.

We then turn to graph databases. Here, the basic query-
ing mechanism is that of regular path queries (RPQs), which
allow for a controlled use of recursion necessary to navigate
graphs of unbounded size [2,22]. Notice that query process-
ing in the presence of recursion has also been studied in the
context of Datalog [15, 20, 29, 30]. However, when we con-
sider these works in the setting of query processing under
mappings, the severe restrictions on the use of recursion that
are imposed to gain decidability, make them inapplicable to
the case of RPQ mappings.

Query processing under RPQ LAV and GAV mappings
has been studied extensively [25,27,40]. However, while for
CQs the results on LAV and GAV can be readily adapted to
deal also with GLAV mappings, interestingly, for RPQs this
is not the case. In this paper we obtain tight upper bounds
for answering, rewriting, and perfectness, and show decid-
ability of relative containment, but such results are non-
trivial and require new insights and techniques.

The paper is organized as follows. In Section 2 we present
our framework for query processing under schema mappings,
and illustrate the basic techniques developed for the case of
LAV mappings. In Section 3, we show that for the relational
case these results can be extended easily to GLAV CQ map-
pings. Then we present our main contributions, which con-
sist in novel techniques for the case of graph databases for
the various mapping-based tasks, namely query answering
and rewriting (Section 4), perfectness (Section 5), and rel-
ative containment (Section 6). Finally, Section 7 concludes
the paper.

2. BACKGROUND
In this section, after some preliminary notions, we intro-

duce the forms of query processing under schema mappings
that we investigate in this paper, and we summarize the
techniques and results for the known case of LAV mappings.

2.1 Databases and queries
We consider databases as finite relational structures. A

(relational) schema is a set of relation symbols, each with an
associated arity. Let Σ be an alphabet of relation symbols,
each with an associated arity. A finite relational structure
(or simply structure) D over Σ is a pair (∆D, ·D), where
∆D is a finite domain and ·D is a function that assigns to
each relation symbol in a ∈ Σ a relation aD, also denoted
by a(D), of the appropriate arity over ∆D. Given a query
q over Σ, we denote by q(D) the result of evaluating q over
D.

We consider the case of conjunctive queries (CQs) over
relational databases. In particular, we deal with standard
CQs without equalities and without constants. A CQ is a
conjunction of atoms whose variables are either free (called
distinguished variables) or existentially quantified. They
correspond to the well-known select-project-join fragment
of relational algebra. If we add union to CQs, we obtain
unions of conjunctive queries (UCQs).

We also consider the case of regular path queries (RPQs)
over graph structured data. In such a setting, a database
consists of binary relations only, and can be interpreted as a

finite graph whose nodes represent objects and whose edges
are labeled by elements from the alphabet Σ of binary rela-
tion symbols [1, 17].

A regular-path query (RPQ) over an alphabet Σ of bi-
nary relation symbols is expressed as a regular expression
or a deterministic or non-deterministic finite-state automa-
ton over Σ (DFA and NFA, respectively). When evaluated
on a database D over Σ, an RPQ q computes the set of pairs
of objects connected in D by some path labeled with a word
in the regular language L(q) defined by q.

A query q over Σ is empty if q(D) = ∅ for every database
D over Σ. Given two queries q1 and q2 over Σ, we say that
q1 is contained in q2, denoted q1 v q2, if q1(D) ⊆ q2(D), for
every database D over Σ. Moreover, q1 is equivalent to q2,
denoted q1 ≡ q2, if q1 v q2 and q2 v q1.

An atomic query is a query of the form {~x | r(~x)}, where
r is a relation symbol, and ~x is a tuple of pairwise distinct
variables of the same arity as r. When clear from the con-
text, we denote such an atomic query simply as r. We also
use r(~x) when we need to make the distinguished variables
~x explicit.

2.2 Query processing under schema mappings
We consider databases over a fixed, countably infinite do-

main ∆ and over two schemas, a source schema Σ and a
target schema Γ. We call databases over Σ source databases
and databases over Γ target databases. When not specified
otherwise, Ds will denote a source database and Dt a target
database. A (GLAV) mapping from Σ to Γ is a finite set M
of mapping assertions of the form e; f , where e is a query
over Σ and f is a query over Γ of the same arity as e.

A pair (Ds, Dt) of source and target databases satisfies a
mapping assertion e ; f , if e(Ds) ⊆ f(Dt), and satisfies
a mapping M , denoted (Ds, Dt) |= M , if it satisfies every
mapping assertion in M .

We consider also two special forms of mappings, in which
either the source queries or the target queries are atomic.
More precisely:

• a LAV mapping ML is a mapping all of whose asser-
tions have the form a; f , where a is an atomic query,
and for each source symbol a there is exactly one map-
ping assertion involving a. For each source symbol a,
ML[a] denotes the target query that ML associates
with a, i.e., a;ML[a] ∈ ML. Moreover, for a target
database Dt, ML(Dt) denotes the source database in
which the extension of each source symbol a is given
by ML[a](Dt).

• a GAV mapping MG is a mapping all of whose asser-
tions have the form e; b, where b is an atomic query,
and for each target symbol b there is exactly one map-
ping assertion involving b. For each target symbol b,
MG[b] denotes the source query that MG associates
with b, i.e., MG[b]; b ∈ MG. Moreover, for a source
database Ds, MG(Ds) denotes the target database in
which the extension of each target symbol b is given
by MG[b](Ds).

Given a mapping M , a source database Ds, and a query qt
over Γ, the set of certain answers (under sound mappings) to
qt w.r.t. M and Ds is the set of tuples that are in qt(Dt), for
every target database Dt such that (Ds, Dt) |= M . Given a
mapping M and a target query qt, the perfect rewriting of qt

w.r.t. M , denoted by cert [qt,M], is the (source) query that,
for every source database Ds, returns the set of certain an-
swers to qt w.r.t. M and Ds.1 Hence, cert [qt,M](Ds), con-
sidered as the evaluation of the perfect rewriting cert [qt,M]
over the source database Ds, is the set of certain answers to
qt w.r.t. M and Ds.

Definition 1. Ans is the following decision problem:
given a source database Ds, a mapping M , a target query qt,
and a tuple ~c of values, decide whether ~c ∈ cert [qt,M](Ds).

Mapping-based containment allows us to compare two
queries, each one either over the source or over the target
schema, taking into account a (GLAV) mapping between
source and target.

Definition 2. Let M be a mapping, q1s , q2s two source
queries, and q1t , q2t two target queries.

• q1s vM q2t if for every source database Ds, we have that
q1s(Ds) ⊆ cert [q2t ,M](Ds).

• q1t vM q2s if for every source database Ds, we have that
cert [q1t ,M](Ds) ⊆ q2s(Ds).

• q1t vM q2t if for every source database Ds, we have that
cert [q1t ,M](Ds) ⊆ cert [q2t ,M](Ds).

In all three cases2, we say that the left-hand side query is
M -contained in the right-hand side query.

We observe that both CQs and RPQs are positive queries,
and that in the above definition we have assumed to deal
only with such kinds of queries. Indeed, for arbitrary
queries, we would need to restrict the quantification only
to those source databases Ds such that there exists a target
database Dt with (Ds, Dt) |= M .

Notice that the last case of the above definition, where
two target queries are compared considering their certain an-
swers w.r.t. a given mapping, is called relative containment,
and has been studied in the context of LAV mappings [49].
The corresponding decision problem is defined as follows:

Definition 3. RCon is the following decision problem:
given two target queries q1t and q2t , and a mapping M , decide
whether q1t vM q2t .

We now turn our attention to query rewriting, and define
it in terms of mapping-based containment.

Definition 4. A source query qs is a (sound) rewriting
of a target query qt w.r.t. a mapping M if qs vM qt.

The fact that the rewriting is “sound” is reflected in the
fact that we require qs to be M -contained in qt, rather than
equivalent (modulo M). In this paper we are interested
mainly in sound rewritings, which we call simply rewritings
in the following.

A fundamental problem we are interested in is establishing
the existence of a non-empty rewriting.
1The perfect rewriting is not to be confused with an exact
rewriting, which, when it exists, returns for every source
database exactly the answers of the original query (and not
only the certain answers) [27].
2We do not consider the fourth case, in which we compare
two source queries, since in this case the mapping is irrele-
vant, and M -containment corresponds to ordinary contain-
ment.

Definition 5. Rew is the following decision problem:
given a target query qt and a mapping M , decide whether
there exists a non-empty rewriting of qt w.r.t. M .

In query rewriting, we are also interested in computing
rewritings that capture the original query at best. Let C
be a query class. A source query qs in C is a C-maximally
contained rewriting of a target query qt in C w.r.t. a mapping
M if (i) qs is a rewriting of qt w.r.t. M , and (ii) there is no
source query q′s in C that is a rewriting of qt w.r.t. M and
such that qs v q′s and not qs ≡ q′s.

Notice that in the above definition we do not necessarily
require that the mapping M is expressed by means of queries
that are in C or that the input query is in C. For example,
we might consider C to be UCQs, while M might consist of
mapping assertions e; f in which e and f have to be CQs.

Perfectness is the problem of checking whether a given
rewriting of a target query w.r.t. a mapping, is equivalent
to the perfect rewriting. We can rephrase the definition of
perfect rewriting in terms of mapping-based containment.

Definition 6. A source query qs is a perfect rewriting
of a target query qt w.r.t. a mapping M if both qs vM qt
(i.e., qs is a rewriting of qt), and qt vM qs.

The following definition formalizes in terms of mapping-
based containment the problem of checking whether a given
rewriting is indeed perfect.

Definition 7. Perf is the following decision problem:
given a mapping M , a target query qt, and a source query
qs, which is assumed to be a rewriting of qt w.r.t. M , decide
whether qt vM qs.

In the following, we study the complexity of the above
problems both under data complexity [53], where we assume
that the input in only the source database, while query and
mappings are fixed, and under combined complexity, where
the input is the source database, the query, and the map-
pings.

Example 1. We illustrate the above definitions with a
simple example. Consider a source schema Σ = {a1, a2, a3}
and a target schema Γ = {b1, b2}, where all source and tar-
get symbols are binary relations. Consider the GLAV RPQ
mapping M with mapping assertions

a1 · a∗2 ; b1 · b∗1 · b2
a3 ; b2

and the target queries

q1t = b∗1 · b∗2 · b2
q2t = b1 · b∗1 · b∗2.

Given the source database

Ds = {a1(1, 2), a2(2, 3), a2(3, 4), a3(4, 4)},

it is possible to see that the certain answers to q1t and to q2t
w.r.t. M are

cert [q1t ,M](Ds) = {(1, 4), (4, 4)}
cert [q2t ,M](Ds) = {(1, 4)}.

Turning to rewriting, the RPQ-maximally contained rewrit-
ing of q1t and of q2t w.r.t. M are respectively

r1s = a1 · a∗2 · a∗3 + a∗3 · a3
r2s = a1 · a∗2 · a∗3.

It can be shown that both of them are perfect rewritings.
Finally, turning to mapping-based containment, while q1t and
q2t are incomparable as queries over the target schema, when
we take into account the mapping, we get that

q2t vM q1t .

Note that, in this easy case, due to the perfectness of the
RPQ-rewriting, all query processing tasks can be carried out
by directly comparing and evaluating RPQs. As we will show
later, this does not hold in general.

2.3 The case of LAV mappings
For the case of (U)CQs under LAV mappings, a funda-

mental result [27, 45] establishes that the perfect rewriting
cert [qt,ML] of a (U)CQ qt w.r.t. a LAV mapping ML can
be effectively computed as a UCQ, and hence coincides with
the UCQ-maximally contained rewriting of qt. Such UCQ
consists of a set of CQs, each of polynomial length. The
number of such CQs is worst-case exponential in the size
of the largest CQ in qt and of the LAV mapping. Hence,
query answering can be simply done by evaluating the per-
fect rewriting over the source database. We get that Ans
is in AC0 in data complexity, which is the data complexity
of evaluating UCQs over a database [4]. Checking whether
there exists a non-empty rewriting corresponds to verifying
whether the perfect rewriting is non-empty. Analogously,
checking perfectness and the various forms of mapping-based
containment can be done directly through standard UCQ
containment using the computed perfect rewriting.

As shown in [23, 26, 27], for LAV RPQ mappings cer-
tain answers to an RPQ can be characterized in terms of
constraint satisfaction. We recall here this relationship,
since we build on it for our technical development for graph
databases.

A constraint-satisfaction problem (CSP) is traditionally
defined in terms of a set of variables, a set of values, and a
set of constraints, and asks whether there is an assignment
of values to the variables that satisfies the constraints. A
characterization of CSP can be given in terms of homomor-
phisms between relational structures [37]. Here we consider
relational structures whose relations are of arbitrary arity.

A homomorphism h : A → B between two relational
structures A and B over the same alphabet is a mapping
h : ∆A → ∆B such that, if (c1, . . . , cn) ∈ r(A), then
(h(c1), . . . , h(cn)) ∈ r(B), for every relation symbol r in the
alphabet. Let A and B be two classes of structures. The
(uniform) constraint-satisfaction problem CSP(A,B) is the
following decision problem: given a structure A ∈ A and a
structure B ∈ B over the same alphabet, is there a homo-
morphism h : A→ B? When B consists of a single structure
B andA is the set of all structures over the alphabet of B, we
get the so-called non-uniform constraint-satisfaction prob-
lem, denoted by CSP(B), where B is fixed and the input is
just a structure A ∈ A. As usual, we use CSP(B) also to
denote the set of structures A such that there is a homo-
morphism from A to B. From the very definition of CSP it
follows directly that every CSP(A,B) problem is in NP.

The relationship between non-uniform CSP and answer-
ing RPQs for LAV mappings is based on the notions of con-
straint template, associated with the query and LAV map-
ping, and constraints instance, associated with the source
database. Formally, given a source schema Σ and a target
schema Γ consisting of binary relation symbols, an RPQ q

over Γ, and a LAV RPQ mapping ML between Σ and Γ, the
constraint template CT (q,ML) of q with respect to ML is
the relational structure C defined as follows.

• The alphabet of C is Σ∪{ui, uf}, where ui and uf are
unary relation symbols.

• Let Aq = (Γ, Sq, S
0
q , %q, Fq) be an NFA for q, where

Γ is the alphabet, Sq the set of states, S0
q the set of

initial states, %q the transition relation, and Fq the set
of final states. The structure C = (∆C , ·C) is given
by:

– ∆C = 2Sq ;
– σ ∈ ui(C) iff S0

q ⊆ σ;
– σ ∈ uf (C) iff σ ∩ Fq = ∅;
– for each source symbol a ∈ Σ, we have that

(σ1, σ2) ∈ a(C) iff there exists a word w ∈
L(ML[a]) such that %q(σ1, w) ⊆ σ2 (we consider
%q extended to sets of states in the usual way).

Notice that the latter condition requires that (σ1, σ2) ∈ aC
iff there exists a word w = t1 · · · tk ∈ L(ML[a]) and a se-
quence S0, . . . , Sk of subsets of Sq such that the following
hold:

1. S0 = σ1 and Sk = σ2, and

2. if s ∈ Si and (s, ti+1, s
′) ∈ %q then s′ ∈ Si+1, for

0 ≤ i < k.

Intuitively, the constraint template represents for each
source symbol a, how the states of the NFA Aq for q change
when we follow database edges according to (paths specified
by) words in L(ML[a]). Specifically, the last condition above
corresponds to saying that a pair of sets of states (σ1, σ2) is
in a(C) if and only if there is some word w in L(ML[a]) such
that if Aq performs transitions according to w starting from
a state in σ1, it will always end in a state in σ2. Moreover,
the sets of states in ui(C) contain all initial states of Aq,
while the sets of states in uf (C) do not contain any final
state of Aq. This takes into account that we aim at charac-
terizing counterexamples to query answering, and hence we
are interested in not getting to a final state of Aq, regardless
of the initial state from which we start and how we follow
transitions.

The existence of a word w ∈ L(ML[a]) such that
%q(σ1, w) ⊆ σ2 can be verified in polynomial space in the
size of q, and in fact in nondeterministic logarithmic space
in the size of ML[a] [23, 26,27].

Given a source database Ds with domain ∆Ds and a pair
of objects c, d, the constraint instance (Ds, c, d) is the struc-
ture I = (∆I , ·I) over the alphabet Σ ∪ {ui, uf} defined as
follows:

• ∆I = ∆Ds ∪ {c, d};

• a(I) = a(Ds), for each a ∈ Σ;

• ui(I) = {c}, and uf (I) = {d}.

The following theorem provides the characterization of an-
swering RPQs w.r.t. LAV mappings in terms of CSP.

Theorem 1 ([23]). Let q be a target RPQ, ML a LAV
RPQ mapping, Ds a source database, and c, d a pair of
objects. Then, (c, d) /∈ cert [q,ML](Ds) if and only if there
is a homomorphism from (Ds, c, d) to CT (q,ML).

From this result it is immediate to derive that Ans is
in coNP in data complexity and in PSpace in combined
complexity [23]. It turns out that these bounds are tight [21].

The characterization in terms of CSP can also be exploited
for the various forms of mapping-based containment, and
hence for rewriting, perfectness, and relative containment.

For query rewriting [27], we observe that a word ws =
a1 · · · an (considered as a source query) is not a rewriting of
a target query qt w.r.t. a LAV mapping ML iff ws 6vM qt
iff there is a homomorphism from the structure (Dws , c0, cn)
to CT (qt,ML), where Dws is a source database of the form
{a1(c0, c1), a2(c1, c2), . . . , an(cn−1, cn)}, for some constants
c0, c1, . . . , cn. We can construct a “counterexample” NFA
Aqt,ML that guesses such a homomorphism on the fly and
checks it. So Aqt,ML accepts word ws iff ws is not a rewriting
of qt, and Ac

qt,ML
, the complement of Aqt,ML , accepts all

words ws that are rewritings of qt. Thus, Ac
qt,ML

describes
the maximal rewriting, and it is nonempty iff a rewriting
exists. An algorithms based on checking non-emptiness of
Ac

qt,ML
, gives us the same tight ExpSpace upper bound for

Rew originally established in [24].
For perfectness, let ML be a LAV RPQ mapping, qs a

source RPQ, and qt a target RPQ. To check perfectness,
i.e., whether cert [qt,ML] v qs, we define two constraint
templates: CT (qs, I) for qs, based on the identity map-
ping I, and CT (qt,ML), for qt. We know that (c, d) /∈
cert [qt,ML](Ds), for some source database Ds, iff there is
a homomorphism from the constraint instance (Ds, c, d) to
CT (qt,ML). Also, since qs(Ds) = cert [qs, I](Ds), we have
that (c, d) /∈ cert [qs, I](Ds) iff there is a homomorphism from
(Ds, c, d) to CT (qs, I). We want to check that for every
Ds, (c, d) /∈ cert [qs, I](Ds) implies (c, d) /∈ cert [qt,ML](Ds).
As shown in [26], we can consider CT (qs, I) as a source
database, so the condition holds iff there is a homomor-
phism from CT ′(qs, I) to CT (qt,ML) for every structure
CT ′(qs, I) that is identical to CT (qs, I), except that the
unary relations ui and uf are restricted to a singleton. From
this, we obtain a NExpTime upper bound for checking per-
fectness, and this bound turns out to be tight [26].

For relative containment between two target queries q1t
and q2t , we can argue similarly as for perfectness, ex-
cept that we have to consider for both queries the con-
straint template associated to the LAV mapping. Specif-
ically, we want to test whether cert [q1t ,ML] is contained
is cert [q2t ,ML], that is, for every source database Ds, if
(c, d) ∈ cert [q1t ,ML](Ds), then (c, d) ∈ cert [q2t ,ML](Ds).
Equivalently, if (c, d) /∈ cert [q2t ,ML](Ds), then (c, d) /∈
cert [q1t ,ML](Ds). Equivalently, if there is a homomorphism
from (Ds, c, d) to CT (q2t ,ML), then there is a homomor-
phism from (Ds, c, d) to CT (q1t ,ML). As shown in [26], the
last condition holds iff there is a homomorphism from each
CT ′(q2t ,ML) to CT (q1t ,ML), where again CT ′(q2t ,ML) is
obtained from CT (q2t ,ML) by selecting specific constants to
represent the unary relations ui and uf . Also in this case,
we obtain a tight NExpTime upper bound.

3. THE CASE OF GLAV MAPPINGS FOR
RELATIONAL DATABASES

Notice that, in general, cert [qt,M] is not a query that
can be expressed in the same query language as qt and M .
However, given a mapping M , a source database Ds, and
a target query qt, we can directly compute the certain an-

swers cert [qt,M](Ds) w.r.t. a GLAV mapping M by reduc-
ing this problem to the problem of “materializing” inter-
mediate views and computing the certain answers w.r.t. a
LAV mapping and the data in the materialized views. We
proceed as follows:

1. Introduce for each mapping assertion e ; f of M a
fresh (intermediate view) symbol v, of the same arity
as e and f . Let V be the resulting (view) schema.

2. Split each mapping assertion e ; f of M into a GAV
assertion e ; v and a LAV assertion v ; f , where v
is the view symbol introduced for e; f . Let MG and
ML respectively denote the resulting sets of GAV and
LAV mapping assertions3.

3. For each GAV assertion e ; v in MG, materialize
the intermediate view v with the result of e(Ds). The
resulting database MG(Ds) is expressed over V.

4. Compute cert [qt,ML](MG(Ds)), i.e., the certain an-
swers of qt w.r.t. the (LAV) mapping ML and MG(Ds).

The correctness of the above algorithm has been shown
in [38] for CQs. More generally, it is an immediate conse-
quence of the following result.

Theorem 2. Let M be a GLAV mapping split into a
GAV mapping MG and a LAV mapping ML, and let qt be
a target query. Then, for each source database Ds, we have
that cert [qt,M](Ds) = cert [qt,ML](MG(Ds)).

Proof. We show both inclusions separately. Let Dv de-
note MG(Ds), which is a database over the set V of inter-
mediate view symbols.

“⊇” Consider a tuple ~c ∈ cert [qt,ML](Dv), and a target
database Dt such that (Ds, Dt) |= M . We have to show that
~c ∈ qt(Dt). Since ~c ∈ cert [qt,ML](Dv), it suffices to show
that (Dv, Dt) |= ML. For a mapping assertion v ; f in ML,
let e ; f be the corresponding assertion in M , and e ; v
the corresponding assertion in MG. Then, v(Dv) = e(Ds)
and since e(Ds) ⊆ f(Dt), we also have that v(Dv) ⊆ f(Dt).
It follows that (Dv, Dt) |= ML.

“⊆” Consider a tuple ~c ∈ cert [qt,M](Ds), and a target
database Dt such that (Dv, Dt) |= ML. We have to show
that ~c ∈ qt(Dt). Since ~c ∈ cert [qt,M](Ds), it suffices to show
that (Ds, Dt) |= M . For a mapping assertion e ; f in M ,
let e; v be the corresponding assertion in MG, and v ; f
the corresponding assertion in ML. Then, v(Dv) = e(Ds)
and since v(Dv) ⊆ f(Dt), we also have that e(Ds) ⊆ f(Dt).
It follows that (Ds, Dt) |= M .

Theorem 2 implies that we can indeed compute the cer-
tain answers w.r.t. a GLAV mapping as indicated above, by
materializing intermediate views and computing the certain
answers w.r.t. a LAV mapping and the data in the materi-
alized views.

In the case of GLAV CQ mappings, the perfect rewriting
of a (U)CQ w.r.t. a LAV mapping can itself be expressed as
a UCQ. Hence, we are able to deal separately with the GAV
and the LAV parts of a GLAV mapping not only for query
answering, but also for rewriting, perfectness, and relative
containment. It follows that addressing all these tasks for
GLAV CQ mappings and (U)CQ target queries is essentially
straightforward, as we show in the rest of this section. For
graph databases, instead, the perfect rewriting of an RPQ

3Note that in MG the view symbols play the role of target
symbols, while in ML they play the role of source symbols.

w.r.t. an RPQ LAV mapping cannot be directly represented
as a query expression. This makes the situation significantly
more complicated, as we will show in the rest of the paper.

3.1 Query answering
Theorem 2 gives us a PTime upper bound in data com-

plexity for query answering for (U)CQs, since the material-
ization of the intermediate views requires polynomial time
in the size of the source database. However, this bound can
be refined by avoiding this materialization. This is done
by computing explicitly the perfect rewriting and directly
evaluating it over the source database. Indeed, as we show
next, the perfect rewriting of a source (U)CQ w.r.t. a GLAV
CQ mapping is a UCQ. This is an immediate consequence
of the fact that the perfect rewriting of a (U)CQ w.r.t. a
LAV mapping is a UCQ, and that we can make use of the
standard notion of query unfolding w.r.t. a GAV mapping.

For a (U)CQ qv expressed over V, let unfold [qv,MG] de-
note the unfolding of qv w.r.t. a GAV CQ mapping MG, i.e.,
the UCQ obtained from qv by replacing each occurrence in
qv of a view symbol v with the query MG[v] 4. Note that
such an unfolding in general requires the introduction of
fresh variables for each occurrence of v in qv. The following
result is immediate.

Lemma 3. Let qv be a (U)CQ over the alphabet V of in-
termediate views. Then for each source database Ds we have
that qv(MG(Ds)) = unfold [qv,MG](Ds).

The next theorem shows that, if qv is the perfect rewriting
of a target query qt w.r.t. ML, then by unfolding it w.r.t.
MG, we get the perfect rewriting of qt w.r.t. M .

Theorem 4. Let M be a GLAV CQ mapping split into a
GAV mapping MG and a LAV mapping ML, and let qt be a
target (U)CQ. Then cert [qt,M] ≡ unfold [cert [qt,ML],MG].

Proof. We have to show that cert [qt,M](Ds) =
unfold [cert [qt,ML],MG](Ds), for every source database Ds.
But this is an immediate consequence of Theorem 2 and
Lemma 3, by observing that cert [qt,ML] is a query expressed
over the view alphabet V.

We observe that, although we stated the previous result
only for CQ mappings and UCQ target queries, it actually
holds whenever it is possible to explicitly compute the per-
fect rewriting of the target query w.r.t. the LAV mapping
as a query expression that can then be unfolded w.r.t. the
GAV mapping.

By exploiting that the perfect rewriting cert [qt,ML] of a
(U)CQ qt w.r.t. the LAV mapping ML is a UCQ that can be
effectively computed (see Section 2.3), we obtain an optimal
upper bound for query answering.

Theorem 5. For GLAV CQ mappings and (U)CQ
queries, Ans is in AC0 in data complexity and NP-complete
in combined complexity.

Proof. We first observe that the unfolding of a UCQ
w.r.t. a CQ GAV mapping is still a UCQ. Hence, for a target
query qt and a GLAV mapping M , by Theorem 4, we have
that cert [qt,M] is a UCQ. For data complexity, cert [qt,M]
is a fixed query, so its size does not matter. Then, the

4Recall that when e ; v is the (unique) mapping assertion
in MG involving v, then MG[v] = e.

AC0 upper bound in data complexity is an immediate con-
sequence of the fact that UCQs can be evaluated over a
source database in AC0 in data complexity [4].

For the NP upper bound in combined complexity, we ob-
serve that to check whether for a tuple ~c of constants we
have that ~c ∈ cert [qt,M](Ds), it suffices to guess a CQ q
(of polynomial size) in cert [qt,M] and a homomorphism h
from q to Ds, and check that h maps the tuple ~x of distin-
guished variables of q to ~c. The NP lower bound in combined
complexity is an immediate consequence of the same lower
bound for plain CQ evaluation over a database.

We observe that the above upper bound in data complex-
ity can also be derived by applying the forward chaining
technique in [15].

3.2 Query rewriting
For (U)CQ queries and LAV CQ mappings, as observed in

Section 2.3, the UCQ-maximally contained rewriting coin-
cides with the perfect rewriting, and can be effectively com-
puted with the complexity bounds mentioned above. Hence,
as follows from Theorem 4 for the perfect rewriting, we can
obtain a UCQ-maximally contained rewriting of a CQ qt
w.r.t. a GLAV CQ mapping M as follows: (i) split M into
a GAV part MG and a LAV part ML; (ii) compute the
UCQ-maximally contained rewriting rv of qt w.r.t. the LAV
mapping ML, which is expressed over the intermediate view
symbols V; (iii) unfold rv w.r.t. the GAV mapping MG, to
obtain a source query rs. From this we can derive a tight
upper bound for checking non-emptiness of the rewriting.

Theorem 6. For GLAV CQ mappings and (U)CQ
queries, Rew is NP-complete.

Proof. Since the rewriting rs computed by the above
algorithm is obtained as the unfolding of the query rv ex-
pressed over the intermediate view symbols V, it is non-
empty if and only if rv is non-empty. The query rv is a
UCQ consisting of a set of CQs, each of length bounded by
the length of the maximum CQ in qt. We can check in NP
whether rv is non-empty by simply guessing a CQ over V
within the length bound, and checking whether its unfolding
w.r.t. the LAV mapping ML is contained in qt, which can
also be done in NP.

3.3 Perfectness
We can check perfectness for GLAV CQ mappings and

(U)CQ queries, by exploiting Theorem 4, which states that
the perfect rewriting of a target (U)CQ is a source UCQ
that can be effectively computed, since it coincides with the
UCQ-maximal rewriting. Hence, given a GLAV CQ map-
ping M , a source UCQ qs, and a target UCQ qt, to check
perfectness, we compute the UCQ-maximal rewriting rs of
qt with respect to M , which is a source UCQ, and check
whether rs v qs. Hence, we get the following upper bound,
which matches the one for the LAV case [26].

Theorem 7. For GLAV CQ mappings and (U)CQ
queries, Perf is in Πp

2.

Proof. We do not need to actually compute the whole
rewriting rs of qt, which in the worst-case is an UCQ consist-
ing of an exponential number of CQs. Instead, we can check
whether r v qs, for each CQ r in rs, by a coNP procedure
that uses an NP oracle for checking CQ containment, which
gives us the claim.

3.4 Relative containment
We can check relative containment by exploiting again

Theorem 4. Hence, given a GLAV CQ mapping M and two
target (U)CQs q1 and q2, to check whether q1 vM q2, i.e.,
whether cert [q1,M] is contained is cert [q2,M], it suffices to
compute the maximal rewritings r1 of q1 and r2 of q2, and
check whether r1 v r2. Hence, we get the following upper
bound, which matches the one for the LAV case [26].

Theorem 8. For GLAV CQ mappings and (U)CQ
queries, RCon is Πp

2-complete.

Proof. The hardness already holds for the LAV case [49].
For the upper bound, again, we do not need to actually
compute the whole rewritings r1 and r2. Instead, we can
check whether r v r2, for each CQ r in r1 by a coNP
procedure that uses an NP oracle to guess both a CQ r′ in
r2 and a homomorphism from r′ to r.

4. QUERY ANSWERING AND REWRIT-
ING FOR GRAPH DATABASES

For query answering under GLAV mappings in the case
of RPQs, we can proceed as for UCQs, and make use of
Theorem 2 to compute the certain answers to a target RPQ
w.r.t. a GLAV RPQ mapping.

Theorem 9. For GLAV RPQ mappings and RPQ
queries, Ans is coNP-complete in data complexity and
PSpace-complete in combined complexity.

Proof. The lower bounds follow directly from the same
lower bounds for LAV mappings. For the upper bounds, it
suffices to observe that we can materialize the intermediate
views resulting from splitting the GLAV mapping in PTime
in data complexity and combined complexity. The claim
then follows from Theorem 2 and from the upper bounds
for the LAV case (see Section 2.3).

We now turn to query rewriting for GLAV RPQ mappings.
The following example shows that in this case rewriting can-
not be achieved by splitting the GLAV mapping into a GAV
and a LAV mapping, and treating them separately.

Example 2. Consider a source schema Σ = {a1, a2} and
a target schema Γ = {b1, b2, b3, b4}, where all source and tar-
get symbols are binary relations. Consider the GLAV RPQ
mapping M with mapping assertions

a1 ; b1, a1 ; b2, a2 ; b3 + b4.

By splitting M , we obtain the LAV mapping ML

v1 ; b1, v2 ; b2, v3 ; b3 + b4

and the GAV mapping

a1 ; v1, a1 ; v2, a2 ; v3.

Given the target RPQ qt = b1 ·b3 +b2 ·b4, the RPQ-maximal
rewriting of qt w.r.t. ML is empty (notice that RPQs are not
closed under conjunction). On the other hand, it is easy to
verify that a non-empty rewriting of qt with respect to M is
a1 · a2.5

5Note that this example is based on Example 4.1 in [27],
where it is shown that the RPQ rewriting of qt w.r.t. ML is
empty, but that a non-empty rewriting can be expressed as
a conjunctive RPQ [23].

To address emptiness of RPQ rewritings in the case of
GLAV RPQ mappings, following the approach adopted for
LAV mappings (see Section 2.3), we aim at construct-
ing an NFA for the RPQ-maximal rewriting and then
checking non-emptiness of such an NFA. The straightfor-
ward extension of such an approach to the GLAV case
is as follows. Let ws = a1 · · · an be a word over the
source alphabet Σ and Dws a source database of the form
{a1(c0, c1), a2(c1, c2), . . . , an(cn−1, cn)}, for some constants
c0, c1, . . . , cn. Then, ws (considered as a source query) is not
a rewriting of a target query qt w.r.t. a GLAV mapping M
iff ws is not M -contained in qt iff there is a homomorphism
from the structure (MG(Dws), c0, cn) to CT (qt,ML), where
MG and ML are respectively the GAV and LAV mappings
obtained by splitting M . Again we can construct an NFA
Aqt,M that recognizes bad rewritings. This NFA guesses
the homomorphism from (MG(Dws), c0, cn) to CT (qt,ML).
The difficulty with this approach, however, is that the ho-
momorphism condition now is not only between adjacent
letters in ws. Rather, we need to check that the homomor-
phism condition holds for every edge in MG(Dws). Thus,
the automaton Aqt,M , which tests for the negation of the
homomorphism condition, is already of doubly exponential
size, so its complement Ac

qt,M is of triply exponential size.
As shown next, we can retain the same upper bound as for
the LAV case by following a direct approach in the construc-
tion of the automaton for the rewriting.

We first describe a direct approach for the case of LAV
mappings and then show how to modify it for GLAV map-
pings. Let the target RPQ qt be given in terms of an NFA
Aqt over the target alphabet Γ, let Σ = {a1, . . . , am} be the
source alphabet, and let ML =

⋃
1≤i≤m {ai ; fi} be a LAV

RPQ mapping. We proceed as follows:

1. We first determinize Aqt to get an equivalent DFA
Ad = (Γ, S, s0, %, F) over Γ.

2. We construct a universal automaton Au over the state
space S of Ad and over the source alphabet Σ as fol-
lows: Au = (Σ, S, s0, δ, F), where the transition func-
tion δ is defined as follows, where we assume that the
RPQ fi is represented as an NFA. For each s ∈ S and
ai ∈ Σ:

δ(s, ai) = {s′ | there exists a word w ∈ L(fi)
such that %(s, w) = s′}.

Intuitively, Au simulates Ad over all target databases
that are consistent with the input source database.

3. We now construct the automaton Rqt,ML as the DFA
equivalent to the universal automaton Au: Rqt,ML =
(Σ, 2S , {s0}, α, TF), where TF = {P ∈ 2S | P ⊆ F},
and α(T, a) = δ(T, a) (again, we consider δ extended
to sets of states in the usual way). Intuitively, when
Rqt,ML runs on a word w of the source alphabet Σ, it
simulates all possible runs over possible unfoldings of
w w.r.t. ML.

The construction of Ad is exponential, as is the construction
of Au, which is why the construction of Rqt,ML is doubly
exponential.

Note that a run of Rqt,ML over w = a1 · · · an is a sequence
T0 · · ·Tn of subsets of S such that:

(a) δ(Ti−1, ai) = Ti, for i ∈ {1, . . . , n}, and

(b) Tn ⊆ F .

In fact, because of Requirement (b), we could relax Require-
ment (a) and rephrase it as:

(a’) δ(Ti−1, ai) ⊆ Ti, for i ∈ {1, . . . , n}.

Now we can see how this construction can be modified
for a GLAV mapping M . Again, we assume that the target
RPQ qt is given in terms of an NFA Aqt over the target
alphabet Γ, and let M =

⋃
1≤i≤m{ei ; fi} be a GLAV

RPQ mapping. We proceed as follows:

1. We first determinize Aqt to get an equivalent DFA
Ad = (Γ, S, s0, %, F) over Γ.

2. For each target query fi in the right-hand side of a
mapping assertion of M , we construct an NFA Ai over
the target alphabet Γ.

3. We construct an NFA An over the state space S of Ad

and over the intermediate alphabet V = {v1, . . . , vm}
of view symbols, as follows: An = (V, S, s0, δ, F),
where δ is defined as follows:

δ(s, vi) = {s′ | there exists a word u ∈ L(Ai)
such that %(s, u) = s′}.

4. We now need to characterize rewritings of qt w.r.t. M .

Proposition 10. A word w = a1 · · · an over the source
alphabet Σ is a rewriting of qt w.r.t. M if there exists a
sequence T0 · · ·Tn of subsets of S such that the following
hold:
(a) If a subword w[i, j] = ai · · · aj−1, for 1 ≤ i < j ≤ n+ 1

of w is in L(ek), then δ(Ti−1, vk) ⊆ Tj.
(b) Tn ⊆ F .

We call T0 · · ·Tn a witnessing sequence for w.

5. The idea behind the construction of the rewriting
Rqt,M of qt w.r.t. M is to guess a candidate witness-
ing sequence and check that is satisfies the conditions
of Proposition 10. It is not obvious, however, how to
check Condition (a), where we quantified over all sub-
words w[i, j] of w. So we take an indirect approach.

Lemma 11. Let w = a1 · · · an be a word over the source
alphabet Σ and let T0 · · ·Tn be a sequence of subsets of S such
that Tn ⊆ F . Then T0 · · ·Tn is not a witnessing sequence
for w if there exists a subword w[i, j] of w that is in L(ek)
and δ(Ti−1, vk) * Tj.

Thus, it is easy to construct an automaton Abad that runs
on an interleaving of a word w = a1 · · · an and a candidate
witnessing sequence T0 · · ·Tn and checks that T0 · · ·Tn is
not a witnessing sequence: either Condition (b) of Propo-
sition 10 does not hold, or we can guess a subword w[i, j]
and check that the condition of Lemma 11 holds. Note that
the state set S of Ad is exponential in qt, so the Ti’s are
of exponential size. Still, Abad does not need to remember
any set Ti, only elements of S, so the size of the state space
of Abad is exponential. By complementing Abad we get an
automaton Agood , of doubly exponential size6, that checks
that T0 · · ·Tn is a witnessing sequence for w.
6Note that the alphabet of Abad is already of double expo-
nential size, however it does not contribute further to the
exponential blowup in the complexity of determinization.

6. Finally, we construct an NFA Rqt,M that, given a word
w over the source alphabet Σ, guesses a candidate wit-
nessing sequence for w and simulates Agood to check
that the candidate witnessing sequence is indeed a wit-
nessing sequence.

Note that Rqt,M is doubly exponential. In contrast to
the automaton we get in the case of LAV RPQ mapping,
which is a deterministic automaton, the automaton here is
nondeterministic. It is this nondeterminism that allows us
to overcome the potentially triply-exponential blow-up.

Theorem 12. For GLAV RPQ mappings and RPQ
queries, Rew is ExpSpace-complete.

Proof. The claim follows from the above construction,
by observing that we need not construct Rqt,M explicitly.
Instead, we can check for non-emptiness while constructing
Rqt,M on the fly, since all checks that it needs to make are
local conditions.

We observe that, by construction, Rqt,M is the RPQ-
maximal rewriting. In fact, such a rewriting is the maximal
one among all path-based rewritings, and it turns out that
such a rewriting is actually regular, as in the LAV case.

5. PERFECTNESS FOR GRAPH
DATABASES

Now, let us consider a GLAV RPQ mapping M , split
into a GAV mapping MG and a LAV mapping ML.
Given a target query qt, by Theorem 2, we know that
cert [qt,M](Ds) = cert [qt,ML](MG(Ds)), for every source
database Ds. Let qs be a source query. We want to
test whether cert [qt,M] v qs, that is, for every source
database Ds and for every pair (c, d) of constants in Ds,
if (c, d) ∈ cert [qt,M](Ds), then (c, d) ∈ qs(Ds). Equiv-
alently, for all Ds, if (c, d) ∈ cert [qt,ML](MG(Ds)), then
(c, d) ∈ qs(Ds). Equivalently, if (c, d) /∈ qs(Ds) then
(c, d) /∈ cert [qt,ML](MG(Ds)). Equivalently, if there is a
homomorphism from (Ds, c, d) to CT (qs, I), then there is a
homomorphism from (MG(Ds), c, d) to CT (qt,ML), where
I is the identity mapping on Σ. As in the LAV case, we
can show that it suffices to consider only those constraint
instances (Ds, c, d) that are of the form CT ′(qs, I), where
CT ′(qs, I) is identical to CT (qs, I), except that the unary
relations ui and uf are restricted to a singleton. Thus,
we obtain that checking perfectness amounts to checking
that there is a homomorphism from each MG(CT ′(qs, I)) to
CT (qt,ML), where we assume that MG acts as the identity
mapping on the unary relations ui and uf .

Theorem 13. For GLAV RPQ mappings and RPQ
queries, Perf is NExpTime-complete.

Proof. The lower bound holds already for the case of
LAV RPQ mappings [26]. For the upper bound, from
the construction above, we have that the constraint tem-
plate CT (qs, I) is of exponential size in the size of qs, and
there are exponentially many restrictions of CT (qs, I) in
which the unary source and target relations are singletons.
CT (qt,ML) is also of exponential size. Given that checking
for the existence of a homomorphism between two struc-
tures is NP-complete in the size of the structures, we get
the NExpTime upper bound.

Note that the algorithm in Theorem 13 has to con-
sider 2|qs| many restrictions of CT (qs, I), and, for each

such restriction it has to consider 2|qt|·2
|qs|

mappings into
CT (qt,ML). Thus, its deterministic complexity is exponen-
tial in |qt| and doubly exponential in |qs|.

6. RELATIVE CONTAINMENT FOR
GRAPH DATABASES

Given a GLAV RPQ mapping M and two target RPQs
q1 and q2, we want to check whether q1 vM q2, i.e., whether
cert [q1,M] is contained is cert [q2,M]. That is, for every
source database Ds, if (c, d) ∈ cert [q1,M](Ds), then (c, d) ∈
cert [q2,M](Ds). Equivalently, if (c, d) /∈ cert [q2,M](Ds)
then (c, d) /∈ cert [q1,M](Ds). Equivelently, if there is a ho-
momorphism from (MG(Ds), c, d) to CT (q2,ML), then there
is a homomorphism from (MG(Ds), c, d) to CT (q1,ML),
where MG and ML are respectively the GAV and LAV map-
pings obtained from M .

Thus, containment fails if there is a source database Ds

such that there is a homomorphism h from (MG(Ds), c, d)
to CT (q2,ML), but there is no homomorphism from
(MG(Ds), c, d) to CT (q1,ML).

Let V be the schema of intermediate view symbols intro-
duced by splitting M into MG and ML. Ideally, we’d like
to be able to guess a database Dv over the intermediate
view symbols V, check that Dv = MG(Ds) for some source
database Ds, and check that there is a homomorphism h
from (Dv, c, d) to CT (q2,ML), but there is no homomor-
phism from (Dv, c, d) to CT (q1,ML).

There are two challenges:

1. We need to be able to solve the inverse problem: given
Dv, is there some Ds such that Dv = MG(Ds).

2. We need to be able to bound the size of Dv.

We address first the inverse problem, and we do it so that
we also get a bound on Dv. Let the elements of Dv be
x1, . . . , xn. For each edge vj(xj1 , xj2), Ds must contain a
path in L(ej) from xj1 to xj2 , where ej is the source query
in the mapping assertion ej ; fj corresponding to vj . Some
of the elements on these paths come from x1, . . . , xn, but
others do not. Let D′s be the source database obtained by
extracting from Ds all these paths and “linearizing” them.

This process duplicates elements, so an element xi may
have several copies in D′s. Thus, it is fine if MG(D′s) creates
copies of edges in Dv, but it should not create new edges.
We can represent D′s as a set of k words, where k is the
number of edges in Dv, and the words are over the alphabet
{x1, . . . , xn} ∪ {x} ∪ Σ, where x denotes an element of D′s
that is not in Dv. In this representation of paths, letters
from {x1, . . . , xn}∪ {x} represent nodes, and letters from Σ
represent edges. Note that two occurrences of some xij rep-
resent the same node xij , but we assume that all occurrences
of x represent distinct nodes.

Suppose now that we are given D′s represented as a set
of k words. We want to check that MG(D′s) = Dv. Given
such a candidate source D′s, for the j-th edge vj(xj1 , xj2) in
Dv, we need to check, using an NFA Aj that the j-th word
in D′s, considering edges only, is a word in L(ej) from xj1
to xj2 .

More difficult is to check that MG(D′s) contains no spuri-
ous edges. There are two types of spurious edges: (1) edges

that arise from a path corresponding to L(ej) between y1
and y2, where either y1 or y2 is an x node; (2) edges corre-
sponding to a path in L(ej) between y1 and y2, which are
not x nodes, where the edge vj(y1, y2) is not in Dv.

To check for spurious edges that include an x node, we
label all nodes on the words of D′s by sets of states of the
NFAs corresponding to the ej ’s, such that:

(a) all x nodes are labeled by the start states,

(b) if a word contains y · b · z, y’s label contains a state s,
and one of the NFAs has a transition from s to t upon
reading b, then z’s label contains t, and

(c) if the label of one node xi contains a state s, then all
nodes xi contain s in their label.

No node can be labeled by an accepting state, since this
would imply that MG(D′s) contained an edge that includes
an x node. We also need a similar labeling where non-x
nodes are labeled by the start states, and no x node is la-
beled by an accepting state.

Instead of checking for spurious edges between non-x
nodes, we check that there is a homomorphism fromMG(D′s)
to CT (q2,ML). That is we need a labeling of all nodes in Dv

by elements of CT (q2,ML) such that, if there is a path cor-
responding to L(ej) between non-x nodes y1 and y2 in D′s,
labeled by elements p1 and p2 of CT (q2,ML), then there is
a vj edge between p1 and p2.

To check this we need, for each element p1 of CT (q2,ML),
a labeling of all nodes in the words of D′s by sets of states
of the NFAs corresponding to the ej ’s such that:

(a) all nodes labeled by p1 are labeled by the start states,

(b) if a word contained y · b · z, y’s label contains a state s,
and one of the NFA’s has a transition from s to t upon
reading b, then z’s label contains t, and

(c) if the label of one node xi contains a state s, then all
nodes xi contain s in their label.

Now a node labeled by an element p2 of CT (q2,ML) can
contain an accepting state of the NFA of ei in its label only
if there is an edge vi(p1, p2) in Dv.

Altogether, if q2 is of size m, then CT (q2,ML) has at
most 2m nodes, and we need 2m +2 labelings to ensure that
we avoid spurious edges and violation of homomorphism.
Since all xi nodes are labeled identically, we can guess their
labelings, and then guess the words of D′s one letter at a
time checking for existence of consistent labelings on the fly.
This can be done in space O(n · (2m + 2)), where n is the
size of the expressions ei’s.

It is now quite possible that MG(D′s) properly contains
Dv, but if there is no homomorphism from (Dv, c, d) to
CT (q1,ML), then also there is no homomorphism from
(MG(D′s), c, d) to CT (q1,ML), and our labelings guaran-
tee that there is a homomorphism from (MG(D′s), c, d) to
CT (q2,ML). Hence, Dv is not necessarily the counter-
example we are looking for, but MG(D′s) is guaranteed to
be so. So, we do not really guess a counter-example, but
rather a witness of its existence.

Note that the number of labels is 2n·(2m+2). Suppose
that two nodes xj1 and xj2 of Dv have the same labels.
Then if we equate them, there is no need to change the la-
beling, so we will still have that there is a homomorphism

from (MG(D′s), c, d) to CT (q2,ML) but not to CT (q1,ML).
Thus, we can assume, without loss of generality, that the
size of Dv is bounded by 2n·(2m+2).

Thus, to check that cert [q1,M] is not contained in
cert [q2,M], we guess an intermediate database Dv of size

bounded by 2n·(2m+2), check that there is no homomorphism
from Dv to cert [q1,M], guess the labelings of the elements
in Dv, and then for each edge vj(xj1 , xj2) in Dv, guess on
the fly a word in L(ej) and check that the labeling can be
extended to the whole word consistently. We obtain the
following result.

Theorem 14. For GLAV RPQ mappings and RPQ
queries, RCon is decidable.

7. CONCLUSIONS
We have carried out a thorough study on query process-

ing under schema mappings, for the case of both relational
and graph databases. We have shown that the common in-
tuition that it is easy to extend the results from LAV to
GLAV is actually false in the case of graph databases. In-
deed, GLAV query processing for graph data requires new
insights and non-trivial techniques. In the future, we plan
to continue our investigation, by considering other relevant
mapping-based tasks that were left out in this paper, such
as checking a rewriting for exactness (i.e., equivalence to
the query, modulo the mappings), or checking the mappings
for losslessness w.r.t. a target query. Interestingly, the first
problem to address about these tasks is to define a convinc-
ing semantics, since the semantics adopted for the case of
LAV mappings does not extend easily to the case of GLAV.

Acknowledgements
Work partially supported by the EU under the projects
ACSI (Artifact-Centric Service Interoperation), grant
n. FP7-257593 and Optique (Scalable End-user Access to
Big Data), grant n. FP7-318338.

8. REFERENCES
[1] S. Abiteboul. Querying semi-structured data. In Proc.

of the 6th Int. Conf. on Database Theory (ICDT’97),
pages 1–18, 1997.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: from Relations to Semistructured Data and
XML. Morgan Kaufmann, 2000.

[3] S. Abiteboul and O. Duschka. Complexity of
answering queries using materialized views. In Proc. of
the 17th ACM Symp. on Principles of Database
Systems (PODS’98), pages 254–265, 1998.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley Publ. Co., 1995.

[5] S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset,
and P. Senellart. Web Data Management. Cambridge
University Press, 2011.

[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. L. Wiener. The Lorel query language for
semistructured data. Int. J. on Digital Libraries,
1(1):68–88, 1997.

[7] F. N. Afrati, M. Chandrachud, R. Chirkova, and
P. Mitra. Approximate rewriting of queries using
views. In Proc. of the 13th East European Conference
on Advances in Databases and Information Systems
(ADBIS 2009), volume 5739 of Lecture Notes in
Computer Science, pages 164–178. Springer, 2009.

[8] S. Amano, C. David, L. Libkin, and F. Murlak. On
the tradeoff between mapping and querying power in
XML data exchange. In Proc. of the 13th Int. Conf. on
Database Theory (ICDT 2010), pages 155–164, 2010.

[9] M. Arenas, P. Barcelo, R. Fagin, and L. Libkin.
Locally consistent transformations and query
answering in data exchange. In Proc. of the 23rd ACM
Symp. on Principles of Database Systems
(PODS 2004), pages 229–240, 2004.

[10] M. Arenas, P. Barcelo, L. Libkin, and F. Murlak.
Relational and XML Data Exchange, volume 8 of
Synthesis Lectures on Data Management. Morgan &
Claypool, 2010.

[11] M. Arenas, R. Fagin, and A. Nash. Composition with
target constraints. In Proc. of the 13th Int. Conf. on
Database Theory (ICDT 2010), pages 129–142, 2010.

[12] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Foundations of schema mapping management. In
Proc. of the 29th ACM Symp. on Principles of
Database Systems (PODS 2010), pages 227–238, 2010.

[13] M. Arenas, J. Pérez, and C. Riveros. The recovery of
a schema mapping: Bringing exchanged data back.
ACM Trans. on Database Systems, 34(4), 2009.

[14] P. C. Arocena, A. Fuxman, and R. J. Miller.
Composing local-as-view mappings: Closure and
applications. In Proc. of the 13th Int. Conf. on
Database Theory (ICDT 2010), pages 209–218, 2010.

[15] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat.
Extending decidable cases for rules with existential
variables. In Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence (IJCAI 2009), pages 677–682,
2009.

[16] P. A. Bernstein and H. Ho. Model management and
schema mappings: Theory and practices. In Proc. of
the 33rd Int. Conf. on Very Large Data Bases
(VLDB 2007), pages 1439–1440, 2007.

[17] P. Buneman. Semistructured data. In Proc. of the
16th ACM Symp. on Principles of Database Systems
(PODS’97), pages 117–121, 1997.

[18] P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and optimization
technique for unstructured data. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages
505–516, 1996.

[19] A. Cal̀ı. Query answering by rewriting in GLAV data
integration systems under constraints. In Proc. of the
2nd Int. Workshop on Semantic Web and Databases
(SWDB 2004), volume 3372 of Lecture Notes in
Computer Science, pages 167–184. Springer, 2004.

[20] A. Cal̀ı, G. Gottlob, and A. Pieris. Advanced
processing for ontological queries. Proc. of the VLDB
Endowment, 3(1):554–565, 2010.

[21] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Answering regular path queries using
views. In Proc. of the 16th IEEE Int. Conf. on Data
Engineering (ICDE 2000), pages 389–398, 2000.

[22] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Containment of conjunctive regular path
queries with inverse. In Proc. of the 7th Int. Conf. on
the Principles of Knowledge Representation and
Reasoning (KR 2000), pages 176–185, 2000.

[23] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. View-based query processing and
constraint satisfaction. In Proc. of the 15th IEEE
Symp. on Logic in Computer Science (LICS 2000),
pages 361–371, 2000.

[24] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Rewriting of regular expressions and
regular path queries. J. of Computer and System
Sciences, 64(3):443–465, 2002.

[25] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Reasoning on regular path queries.
SIGMOD Record, 32(4):83–92, 2003.

[26] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. View-based query containment. In Proc.
of the 22nd ACM Symp. on Principles of Database
Systems (PODS 2003), pages 56–67, 2003.

[27] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. View-based query processing: On the
relationship between rewriting, answering and
losslessness. Theoretical Computer Science,
371(3):169–182, 2007.

[28] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Y. Vardi. Simplifying schema mappings. In Proc.
of the 14th Int. Conf. on Database Theory
(ICDT 2011), pages 114–125, 2011.

[29] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming
and Databases. Springer, Berlin (Germany), 1990.

[30] O. M. Duschka, M. R. Genesereth, and A. Y. Levy.
Recursive query plans for data integration. J. of Logic
Programming, 43(1):49–73, 2000.

[31] J. Euzenat and P. Schwaiko. Ontology Matching.
Springer, 2007.

[32] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: Semantics and query answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[33] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
Getting to the core. ACM Trans. on Database
Systems, 30(1):174–210, 2005.

[34] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. on Database
Systems, 30(4):994–1055, 2005.

[35] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Quasi-inverses of schema mappings. ACM Trans. on
Database Systems, 33(2):1–52, 2008.

[36] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan.
Reverse data exchange: Coping with nulls. In Proc. of
the 28th ACM Symp. on Principles of Database
Systems (PODS 2009), pages 23–32, 2009.

[37] T. Feder and M. Y. Vardi. The computational
structure of monotone monadic SNP and constraint
satisfaction. SIAM J. on Computing, 28:57–104, 1999.

[38] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In Proc. of the 16th Nat.
Conf. on Artificial Intelligence (AAAI’99), pages
67–73. AAAI Press, 1999.

[39] G. Grahne and A. O. Mendelzon. Tableau techniques

for querying information sources through global
schemas. In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in
Computer Science, pages 332–347. Springer, 1999.

[40] G. Grahne and A. Thomo. Query containment and
rewriting using views for regular path queries under
constraints. In Proc. of the 22nd ACM Symp. on
Principles of Database Systems (PODS 2003), pages
111–122, 2003.

[41] A. Y. Halevy, A. Rajaraman, and J. Ordille. Data
integration: The teenage years. In Proc. of the 32nd
Int. Conf. on Very Large Data Bases (VLDB 2006),
pages 9–16, 2006.

[42] C. Koch. Query rewriting with symmetric constraints.
In Proc. of the 2nd Int. Symp. on Foundations of
Information and Knowledge Systems (FoIKS 2002),
volume 2284 of Lecture Notes in Computer Science,
pages 130–147. Springer, 2002.

[43] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In Proc. of the 24th ACM
Symp. on Principles of Database Systems
(PODS 2005), pages 61–75, 2005.

[44] M. Lenzerini. Data integration: A theoretical
perspective. In Proc. of the 21st ACM Symp. on
Principles of Database Systems (PODS 2002), pages
233–246, 2002.

[45] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views. In Proc.
of the 14th ACM Symp. on Principles of Database
Systems (PODS’95), pages 95–104, 1995.

[46] A. Y. Levy, D. Srivastava, and T. Kirk. Data model
and query evaluation in global information systems. J.
of Intelligent Information Systems, 5:121–143, 1995.

[47] L. Libkin and C. Sirangelo. Data exchange and
schema mappings in open and closed worlds. In Proc.
of the 27th ACM Symp. on Principles of Database
Systems (PODS 2008), pages 139–148, 2008.

[48] J. Madhavan and A. Y. Halevy. Composing mappings
among data sources. In Proc. of the 29th Int. Conf. on
Very Large Data Bases (VLDB 2003), pages 572–583,
2003.

[49] T. D. Millstein, A. Y. Levy, and M. Friedman. Query
containment for data integration systems. In Proc. of
the 19th ACM Symp. on Principles of Database
Systems (PODS 2000), pages 67–75, 2000.

[50] T. D. Millstein, A. Y. Levy, and M. Friedman. Query
containment for data integration systems. J. of
Computer and System Sciences, 66(1):20–39, 2003.

[51] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. on Data Semantics, X:133–173, 2008.

[52] J. D. Ullman. Information integration using logical
views. Theoretical Computer Science, 239(2):189–210,
2000.

[53] M. Y. Vardi. The complexity of relational query
languages. In Proc. of the 14th ACM Symp. on Theory
of Computing (STOC’82), pages 137–146, 1982.

	Introduction
	Background
	Databases and queries
	Query processing under schema mappings
	The case of LAV mappings

	The case of GLAV mappings for relational databases
	Query answering
	Query rewriting
	Perfectness
	Relative containment

	Query answering and rewriting for graph databases
	Perfectness for graph databases
	Relative containment for graph databases
	Conclusions
	References

